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Robust Foot Placement Control for Dynamic Walking using Online
Parameter Estimation

Qingbiao Li, Iordanis Chatzinikolaidis, Yiming Yang, Sethu Vijayakumar and Zhibin Li

Abstract— This paper presents an estimation scheme to
control foot placement for achieving desired velocity of dynamic
walking in presence of sensor and model errors. Inevitable
discrepancies, such as sensors noises/delays and modeling
errors, degrade the performance of model-based controls or
even cause instabilities. To resolve these issues, an online
parameter estimation approach is formulated using Tikhonov
optimization based on measurements, which is particularly ro-
bust for approximating more accurate dynamics. The proposed
scheme initially uses the foot placement predicted by the linear
inverted pendulum model, while the control parameters are
being optimized from adequate measurements that represent
the real dynamics within and in-between steps; and then, the
estimation based control is fully used to accurately predict the
future foot placement in the presence of discrepancies.

I. INTRODUCTION

Humanoid robots designed with human morphology of-
fer advantages of traversing environments that are easily
accessible by humans, such as stairs, passageways, rugged
terrains etc [1] as well as utilizing human-oriented tools
[2]. In terms of mobility, a humanoid robot is a floating-
base system with two legs [3] that is able to operate
with morphological adaptation to various surfaces, providing
adaptability and maneuverability [4]. They have potentials
to be indispensable in emergency and disaster responses,
where wheeled robots are limited by the terrain irregularities.
In turn, the mechanical complexity of humanoids imposes
control challenges compared to the wheeled robots.

Many model-based approaches have been studied to ad-
dress the problem of bipedal locomotion. Kajita et al. [5]
proposed the Linear Inverted Pendulum (LIP) model, which
regards the robot as a point mass, to generate horizontal
motions and keep the Centre of Mass (COM) height constant.
Given a target COM motion, the corresponding Zero Moment
Point (ZMP) or Centre of Pressure (COP) for achieving it can
be analytically computed. LIP model and its extensions have
been widely applied in bipedal walking, and its simplified
modeling is illustrated in Fig. 1.

However, many model-based approaches similar to LIP
have fixed coefficients and parameters manually tuned off-
line for controlling legged locomotion in general. For ex-
ample, Raibert’s control of a one-leg hopping robot has
decoupled regulation of hoping height by delivering a fixed
vertical thrust during stance, forward speed by foot place-
ment, and an upright posture by exerting a torque around
the hip [6]. As a result, proper tuning of all variables was
very crucial and usually relied on experience, which could
only be done by a series of experimental trials. However, this
manual tunning has limitation because parameters might be

(a) Valkyrie robot (b) COM motion

Fig. 1: Bipedal walking control of the Valkyrie robot using the
Linear Inverted Pendulum model (sagittal scenario).

time-varying under different situations in order to achieve
an acceptable response. The same problems are present in
other model-based approaches, especially when unexpected
changes occur [7].

To overcome such limitations, auto-tuning parameters has
been explored given a known control structure [8]. Nakanishi
et al. [9] developed a framework to learn bipedal locomotion
through movement primitives by locally weighted regression
while the frequency of the learned trajectories is adjusted
automatically by a frequency adaptation algorithm. You et al.
[10] used linear regression based on past measurements for
updating the coefficients of an improved formulation based
on Raibert’s model to track a desired forward velocity more
accurately. This method improved the system’s flexibility
to unknown changes, such as a mass offset, and was later
extended to bipedal walking and running [11]. However, the
convergence rate in You’s method is significantly limited,
because its formulation has two coefficients coupled with
the measured velocity: one is directly for the velocity, and
the other is for the velocity error where measured velocity
appear as well. Hence, the coupling of these two coefficients
resulted in the fluctuation of estimated values.

We propose an online estimation approach derived from
the analytic insights of the LIP model, which has a major
advantage in comparison with Raibert’s linear model, i.e.
the decoupling between the current forward velocity and the
desired one. As a consequence, we expect a much faster
and stable convergence of the coefficients needed for foot
placement, thus better adaptation to unexpected changes, e.g.
an unknown mass offset. We studied in a more principled
approach of robust calculation of the coefficients as well as
the effects of downgraded sensory information.

This paper contributes in the following aspects:

• A rigorous analysis of the propagation of sensor errors



in walking control, and the inevitable uncertainties of
model-based methods;

• Identify control parameters derived from the model, and
solve the parameter estimation problem with nominal
values using optimization [12] [13].

• Online estimation for both the continuous dynamics
within a step and the discrete dynamics between steps.

This paper is organized as follows. The limitations and
inevitable uncertainties of LIP model are discussed in Sec-
tion II. The proposed methodology is elaborated in Sec-
tion III. Benchmark results studied in simulation are pre-
sented in Section IV, followed by conclusions in Section V.

II. PROBLEM STATEMENT

Model-based approaches constitute an analytic framework
for controlling robots and therefore are extensively used. In
a classical model-based approximation of bipedal walking –
Raibert’s model, LIP, etc. – an analytical solution is defined
to estimate the next foot placement, which is model specific.
For example, given a certain transition time t, the COM
motion of a LIP model can be computed based on the current
COM state by the hyperbolic functions as [7]:

x f = (x0 − p∗) cosh(τ) + ẋ0Tc sinh(τ) + p∗ (1)

ẋ f = (x0 − p∗)
sinh(τ)

Tc
+ ẋ0 cosh(τ), (2)

where τ = t/Tc is the normalized transition time. The time
constant Tc =

√
zc/g is defined by the fixed COM height zc

in the LIP model. The transition time t is the duration from
the current state to the moment of interest. x0 and ẋ0 are the
initial COM state, x f and ẋ f are the final COM state after
the transition time t, while p∗ is the position of the point
foot. All variables are expressed in a global coordinate.

First of all, tuning of the model’s parameters requires
substantial effort in model-based approaches of bipedal
walking [14]. Secondly, a set of model parameters are still
not adequate to capture the real system dynamics under all
circumstances. Thus, degradation of performance occurs due
to errors and uncertainties in the following sources.
• Sensory errors: limited resolution, bandwidth, etc. result

in noises, residuals or drifts in the measurements [15];
• Delays: latency and phase lag introduced by the com-

munication, signal filtering, etc. can degrade the control
performance and stability [16];

• Model mismatch: discrepancies of a simplified model
and a real physical system, un-modeled non-linearities
such as bending, backlash and deformation of the me-
chanical components.

To mitigate the performance degradation and extend the
applicability of the models in more situations, we will
exploit an underlying model that governs the general walking
behaviour, but its specific instantiation will depend on the
measurements. For a better understanding of the problem, we
will analyse how errors propagate through the LIP model.

Specifically, we focus on how the current COM state error
affects the prediction of future COM state and the resulting

foot placement. The current COM state, i.e. COM position
and velocity, as given by the sensor measurements x̃0 and ˜̇x0
can be decomposed into two parts: the true COM state xreal

0
and ẋreal

0 and the measurement errors ex0 and eẋ0 ,

x̃0 = xreal
0 + ex0 , (3)

˜̇x0 = ẋreal
0 + eẋ0 . (4)

In the following, [ ˜ ] and [ ˆ ] indicate measured and pre-
dicted variables, respectively.

To keep intuition and simplicity, we place the global frame
during the n-th step with respect to (w.r.t.) the stance foot.
The predicted future COM velocity can be calculated by the
current COM state, using the analytic solution defined in (2),

ˆ̇xnf = x̃n0
sinh(τla )

Tc
+ ˜̇xn0 cosh(τla )

= (xreal,n
0 + enx0

)
sinh(τla )

Tc
+ ( ẋreal,n0 + enẋ0

) cosh(τla )

= xreal,n
0

sinh(τla )
Tc

+ ẋreal,n
0 cosh(τla ) + enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla )

= ẋreal,n
f
+ ênẋ f

, (5)

where τla = tla/Tc is the normalized look-ahead time, and
ênẋ f

is the error of the predicted future COM velocity

ênẋ f
= enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla ). (6)

Clearly, (6) shows that the error propagates through the
dynamics as time goes by.

A similar uncertainty exists if we study how errors prop-
agate to the foot placement control for the next step (n + 1).
In (2), let ẋ f = ẋn+1

d
. We can calculate the foot placement

given an initial COM state and the next step time Tstep for
achieving a desired COM velocity as

p∗ = x̃n+1
0 + Tc ẋn+1

0 coth(τs ) − Tc ẋn+1
d csch(τs ), (7)

where τs = Tstep/Tc is the normalized step time. Note that
according to the LIP model, the final velocity of a step is
equal to the initial velocity of the next, i.e. ẋn+1

0 = ẋn
f
.

Since the swing foot cannot be placed instantaneously,
we need some look-ahead time τla . As a result, a predicted
future velocity ˆ̇xn

f
is needed. Substituting ẋn+1

0 in (7) by ˆ̇xn
f

in (5), yields

p∗ = x̃n+1
0 + Tc ( ẋreal

f + enẋ f
) coth(τs ) − Tc ẋn+1

d csch(τs ). (8)

Note that p∗ in (8) is defined in a global coordinate frame
during the n-th step. However, a relative foot placement w.r.t.
the body, defined as p without [ ∗ ], is of more interest in
terms of control

pn+1 = p∗,n+1 − x̃n+1
0

= Tc ẋreal,n
f

coth(τs ) − Tc ẋn+1
d csch(τs )︸                                          ︷︷                                          ︸

preal,n+1

+Tc coth(τs )ênẋ f︸            ︷︷            ︸
ên+1
p

.

(9)



Based on ênẋ f
in (6), the uncertain error term êp in (9) is

ên+1
p = Tc coth(τs )

[
enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla )

]

= coth(τs ) sinh(τla )enx0
+ Tc coth(τs ) cosh(τla )enẋ0

,

(10)

which provides further insights on how the errors of the
current COM state (enx0

, enẋ0
) propagate, and consequently

downgrade the accuracy of the foothold prediction. The
uncertainty is largely determined in an exponential manner
by the look-ahead time τla and the allowable step time τs
for achieving a desired walking velocity.

It can be inferred from (10) that since enx0
and enẋ0

vary
from time to time and are perhaps phase-dependent, proper
tuning of τla and τs is rather challenging; especially when
Tc can be a variable due to different robot configurations,
e.g. squatting, standing, walking, or carrying a payload.

If we could obtain each term in (3) and (4) this situation
would not constitute a problem: simple subtraction of the
error terms ex0 and eẋ0 could correct the calculations. But,
these terms are influenced by all the factors contributing to
the performance degradation, so their calculation is practi-
cally impossible. Mitigating their influence requires some
form of parameter adaptation using real-time information.

( 𝑥0
𝑛, ෨ሶ𝑥0

𝑛) ሶ𝑥𝑑
𝑛+1

𝑝n 𝑝n+1

Continuous Phase Discrete Transitions

(ො𝑥𝑓
𝑛, ሶ𝑥𝑓

𝑛)

Fig. 2: Foot placement control for the n+1 step based on the COM
state (x̄n0 , ẋn0 ) at the current n step and the target velocity ẋn+1

d
at

the n + 1 step (sagittal scenario).

Thus, this paper suggests an online estimation strategy that
considers the walking model as a grey box, rather than an
exactly known function. Our proposed approach tunes the
unknown terms that affect the foot placement estimation,
with their value calculated from the measurements during
walking. This way the uncertainties caused by errors, delays,
and unmodelled quantities are taken into consideration.

III. FOOT PLACEMENT CONTROL BASED ON
REGULARISED LEAST SQUARES

Legged locomotion is a problem which is characterised
by hybrid dynamics; that is, there are both continuous and
discrete phases. In specific, legged locomotion can be viewed
as the evolution of a continuous dynamical system which
– during leg touch down or take off – undergoes discrete
transitions.

As a result, our proposed optimization approach (Fig. 2)
is initially applied for estimating the state transition of the
COM during the continuous phase (Section III-A). After-
wards, based on the predicted final velocity of the step, a
similar optimization problem is formulated which accounts
for the discrete transitions. The result is the computation of
an accurate foot placement based on the real-time sensory
information, which achieves the desired walking velocity
with minimum steady state error (Section III-B).

A. Optimization of Velocity Estimation During a Step

While predicting the future COM state, uncertainty is in-
evitable; this can be recognised in (5). From the previous step
we can create a dataset Xs which holds all the corresponding
measurements x̃0, ˜̇x0, x̃ f , ˜̇x f , and the final foot placement
p̃.

Furthermore, if we substitute equations (3) and (4) in (5),
the measured end velocity of a step expressed in the local
stance foot frame is

˜̇xnf = ẋreal,n
f
+ enẋ f

= xreal,n
0

sinh(τla )
Tc

+ ẋreal,n
0 cosh(τla ) + enẋ f

= ( x̃n0 − enx0
)
sinh(τla )

Tc
+ ( ˜̇xn0 − enẋ0

) cosh(τla ) + enẋ f

= x̃n0
sinh(τla )

Tc
+ ˜̇xn0 cosh(τla ) − enx0

sinh(τla )
Tc

− enẋ0
cosh(τla ) + enẋ f

. (11)

Assuming that the measured foot placement is given w.r.t.
the COM, i.e. p̃ = −x̃0, we can express the initial and final
velocity as

˜̇xnf = − p̃n sinh(τs )
Tc

+ ˜̇xn0 cosh(τs ) − enx0

sinh(τs )
Tc

− enẋ0
cosh(τs ) + enẋ f

. (12)

Thus, (12) can be expressed in a more general form by
defining a vector of coefficients α = [α1,α2,α3]T as

˜̇x f =
[
−p̃n ˜̇xn0 1

] 

α1
α2
α3


= −p̃nα1 + ˜̇xn0α2 + α3, (13)

where α1 and α2 capture the uncertainties of the model-based
coefficients, and α3 accounts for the lumped terms of both
propagated and current measurement errors.

By indexing (13) in each step, we can extract k measure-
ments from the dataset Xs that correlate the state transition
from the beginning until the end of each step

ẋ f =



˜̇xn−k
f
...

˜̇xn−1
f

k×1

, X1 =



−p̃n−k ˜̇xn−k0 1
...

...
...

−p̃n−1 ˜̇xn−1
0 1

k×3

. (14)

We would like to solve for α in a way which reflects
the dynamics in the collected data, while having minimum
deviation from the values calculated by the LIP model. This



can be achieved by introducing a penalised least-squares
problem of the form

min
α

X1α − ẋ f


2

P1
+ ‖α − α0‖

2
Q1
, (15)

where ‖·‖2M denotes a weighted euclidean norm.
It shall be noted that in our formulation the second

term ‖α − α0‖
2
Q1

is important, because our study found that
in the prior work [11], using only the least square term
sometimes produced undesirable fluctuation of α. With (15),
we guarantee that α0 serves as an initial guess and a very
large deviation is penalised.

The minimisation problem expressed in (15) is also known
as Tikhonov regularisation [12] [13]. The closed-form solu-
tion can be readily computed as

α = α0 +
[
XT

1 P1X1 +Q1
]−1 [

XT
1 P1(ẋ f − X1α0)

]
, (16)

where P1 is the diagonal weighting matrix for the regression
term, and Q1 is the diagonal weighting matrix for the
regularisation term

P1 = GP



w1 · · · 0
...

. . .
...

0 · · · wk


,Q1 = GQ



w1 · · · 0
...

. . .
...

0 · · · wk


. (17)

For the regression term, GP is used to weight the influence
of the regression part and wi = i is a weight for the walking
state in X1, where i is the number of samples as well as the
index of the weight in the matrix, and k represents the latest
data. For the regularisation term, GQ is used to weight the
influence of the regularisation part, and wi = i serves the
same purpose as before.

By solving (16), we obtain an α that best approximates
the state transition expressed by the collected data until the
n − 1 step. Once the n step starts, we can measure xn =[
−p̃n ˜̇xn0 1

]
and predict the future velocity ˆ̇xn

f
at the end

of the n step by

ˆ̇xnf = xnα. (18)

B. Optimization of the Foot Placement for the Next Step

Section III-A describes the optimization approach con-
cerning the continuous transition “ẋn0 → ẋn

f
”. This section

elaborates on how the dynamics of the step-to-step transition
“ẋn

f
→ ẋn+1

f
” can be better approximated using a similar

optimization. This is essential because once ˆ̇xn
f

is calculated
by (18), we can predict an accurate foothold if the discrete
transition“ẋn

f
→ ẋn+1

f
” is known. Using prediction and our

optimization for estimating the unknown error terms, we
mitigate the degradation effecting both sensing and control.

For each step that has happened, we can measure ˜̇xn−1
f

,
˜̇xn
f
, and p̃n . From (9), the measured foot placement of the

step expressed w.r.t. the stance foot can be described as

p̃n = preal,n + enp
= Tc ẋreal,n−1

f
coth(τs ) − Tc ẋreal,n

f
csch(τs ) + enp

= Tc

(
˜̇xn−1
f − en−1

ẋ f

)
coth(τs ) − Tc

(
˜̇xnf − enẋ f

)
csch(τs ) + enp

= Tc ˜̇xn−1
f coth(τs ) − Tc ˜̇xnf csch(τs )

− Tcen−1
ẋ f

coth(τs ) + Tcenẋ f
csch(τs ) + enp , (19)

where the target velocity ẋn
d

can be regarded equal with the
real velocity ẋreal,n

f
at the end of the step.

Hence, the foot placement estimation formula in (19) can
be expressed in a general form using coefficients β1, β2, and
β3 as

pn = β1 ˜̇xn−1
f + β2 ˜̇xnf + β3, (20)

where β1 and β2 replace the model-based coefficients, and
β3 accounts for the error terms expressed in (6) and (10).

Once the estimation starts, the dataset Xs can be used
to form the matrix X2 that holds a fixed number of the
most recent measurements. The matrix X2 contains the COM
velocities at the end of every step for the past k steps and
its consecutive. The vector p is the concatenation of the
corresponding foot placement locations

p =



p̃n−k

...

p̃n−1

k×1

,X2 =



˜̇xn−k
f

˜̇xn−k+1
f

1
...

...
...

˜̇xn−1
f

˜̇xn
f

1

k×3

. (21)

The Tikhonov regularisation method can be used again
to calculate the model coefficients. Thus, the vector of
coefficients β =

[
β1 β2 β3

]T
can be estimated by

min
β
‖X2β − p‖2P2

+ ‖β − β0‖
2
Q2
. (22)

The solution and the weighting matrices P2 and Q2 are
defined similarly with the ones in (16) and (17), respectively.
After calculating β, the next foot placement is given by

pn+1 = xn+1β, (23)

where xn+1 =
[

ˆ̇xn
f

ẋn+1
d

1
]
.

C. Implementation details of the 2-stage Optimization

The process described below presents the implementation
of the continuous transition “ẋn0 → ẋn

f
”, and the step-to-step

transition “ẋn
f
→ ẋn+1

f
” during the initial stage, i.e. the stage

before a sufficient number of samples is acquired, and the
optimization once online estimation starts.

Step 1: Data generation using a fixed model: During the
initial stage, a fixed model – the LIP model in this work
– is used in order to predict the final velocity ˆ̇x f of the
current step based on the COM state x̃0 and ˜̇x0 of each step,
and then calculate the foot placement location p; that is we
collect data performing a usual model-based approach with
predefined parameters.
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Fig. 3: Sagittal velocity profile generated by LIP model and online
estimation to reach target velocity in Case 1

Step 2: Selection, storage, and update of the dataset Xs: In
the beginning of every step the COM position x̃i0 and velocity
˜̇xi0, as measured by the sensors, are inserted in the dataset
Xs . Consequently, the COM velocity at the beginning of the
next step i+1 is stored as the final velocity of the current step
˜̇xi+1

0 = ˜̇xi
f
. Furthermore, the relative foot placement location

that resulted in the measured initial and final velocity of the
step is stored in the dataset too. It can be used to obtain
matrices X1 and X2.

The dataset is updated with the measurements at the touch-
down moment of the swing foot. The update law is currently
implemented using a fixed size First In First Out (FIFO) data
structure. The optimal selection of the dataset size k will be
further elaborated in future work in order to achieve good
prediction results.

Step 3: Estimation of the model coefficients: Based on the
data available, we apply the Tikhonov regularisation method
as already proposed in Section III-A and Section III-B.

To sum up the approach, once the online estimation starts,
matrices X1 and X2 are formed using a fixed number of
the most recent measurements. The matrix X1 contains the
relative COM positions and velocities at the beginning of
every step, while the vector ẋ f is the concatenation of the
final velocities from the past kvel steps. Then, X1 and ẋ f

are used to estimate the optimal model coefficients α in the
continuous transition “ẋn0 → ẋn

f
” by (16).

Similarly, matrix X2 contains the COM velocities at the
end of each of the k f p steps and its consecutive, while
p is the concatenation of the foot placement locations.
Afterwards, they are used to estimate the optimal coefficients
β for the step-to-step transition “ẋn

f
→ ẋn+1

f
” by (22).

Step 4: Prediction of the next foot placement: While
updating the estimates of the model’s coefficients α and β,
the intermediate values can be used in order to obtain more
accurate predictions of the final velocity and the next foot
placement location for the current step. The final velocity of
the current step ˆ̇xn

f
can be estimated using xn and the model

coefficients α based on (18). Afterwards, ˆ̇xn
f

will used in
xn+1 to control the next foot placement pn+1 together with
model coefficients β in order to achieve the target velocity

0 2 4 6 8 10 12 14 16 18 20
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Fig. 4: Model coefficients α and β of online estimation in Case 1

ẋn+1
d

in (23).
The dataset and the model coefficients in Step 2, Step 3,

and Step 4 are recursively updated so as to obtain the optimal
model coefficients α and β, which are used to reach the target
velocity with minimum steady state error.

IV. SIMULATION

The proposed approach can be validated by comparing
against traditional models with the following criteria:
• Accuracy of the next foot placement prediction.
• The convergence rate of the model coefficients α and
β.

• The robustness of the robot during walking subject to
filtering delay and unknown mass offset.

In our simulation environment, the constant height of the
LIP model is set at 1.2m, matching the COM height of
the humanoid robot Valkyrie, while the step time is set
at 0.5s. Hence, the initial values of the model coefficients
α and β will be calculated according to the ideal LIP
model. Target velocity at the end of each step is set as
0.5m/s . The results of the 2-stage approach for online
estimation introduced in Section III is compared to the
results by the LIP model. Note that, inspired by You’s
work, a size kvel = 2 is used during the continuous
transition “ẋn0 → ẋn

f
”, while a dataset size of k f p = 6

is used during the step-to-step transition “ẋn
f
→ ẋn+1

f
”

after several initial tests. Besides, as mentioned in Eq. (17),
P1 = diag(0.10 , 0.20) and Q1 = diag(0.10 , 0.10 , 0.0010),
while P2 = diag(0.10 , 0.20 , 0.30 , 0.40 , 0.50 , 0.60) and
Q2 = diag(0.10 , 0.10 , 0.0010). Various types of errors are
introduced in order to examine the robustness of the proposed
method, including noise with a 110dB signal-to-noise ratio
(SNR), error and delay in filtering, constant vertical COM
offset and horizontal COM offset. A detailed comparison
between the LIP method and the online estimation method
has been carried out in cases with different levels of noise.

A set of four simulations under different scenarios has
been carried out to evaluate the performance of the proposed
method, as highlighted in Table I. Note that the velocity
profile within a step is a curve where the robot starts with a
initial velocity ẋ0 at the beginning of the step, decreases to



TABLE I: Simulation setup and results.

Cases Noise and delay COM offset Methods Steady state
error (m/s)

α β

Case 1 None None LIP model 0 [5.63, 2.21, 0] [0.392, −1.78, 0]
Online Estimation 0 [5.63, 2.21, −2.42 × 10−4] [0.392, −0.178, −4.37 × 10−5]

Case 2 110dB noise
filtering delay

None LIP model 8.17 × 10−2 [5.63, 2.21, 0] [0.392, −0.178, 0]
Online Estimation 2.00 × 10−4 [5.63, 2.21, 2.00 × 10−2] [0.392, −0.178, 3.66 × 10−3]

Case 3 110dB noise
filtering delay

10% vertical LIP model 5.56 × 10−2 [4.98, 2.08, 0] [0.418, −0.201, 0]
Online Estimation 2.80 × 10−3 [4.98, 2.08, 1.84 × 10−2] [0.418, −0.201, 2.88 × 10−3]

Case 4 110dB noise
filtering delay

−0.01m horizontal LIP model 0.280 [5.63, 2.21, 0] [0.392, −0.176, 0]
Online Estimation 1.30 × 10−3 [5.63, 2.21, 7.51 × 10−2] [0.392, −0.176, 1.24 × 10−2]
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Fig. 5: Result of Case 2 with 110dB noise and filtering delay.
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Fig. 6: Result of Case 3 with 110dB noise, filtering delay and 10% vertical COM offset.
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Fig. 7: Result of Case 4 with 110dB noise, filtering delay and COM has drifted reading of −0.01m offset horizontally.

minimum velocity when the COM position of the robot is
vertically above the position of the stance foot, and increases
up to a new maximum velocity ẋ f at end of the step. We are
interested in whether the robot can reach the target velocity

ẋd at the end of each step, instead of the average velocity
within the step. As shown in Eq. (2) and Eq. (8), when
step time is fixed, the forward velocity is the result of the
foot placement. The effect of foot placement estimation with



higher accuracy is illustrated by a smaller steady error in
forward velocity. The optimal value of the coefficients α and
β that affect the continuous transition “ẋn0 → ẋn

f
”, and the

step-to-step transition “ẋn
f
→ ẋn+1

f
” is also summarised.

First of all, as shown in Fig. 3 and Fig. 4, simulations on
an ideal case (Case 1) with no noise, delay and COM offset
are performed as a baseline, showing that both the LIP model
and the Online Estimation method can achieve the desired
velocity. The estimated coefficients agree with the analytical
solution calculated using LIP model. In the second case, we
introduce noise of 110dB and filtering delay into the system,
which causes an immediate 8.17×10−2m/s steady state error
to LIP model, as shown in Fig. 5a. Meanwhile, after a small
fluctuation between 5s to 10s, the online estimation method
managed to reach the desired velocity with a negligible error,
0.0002m/s. Fig. 5b illustrated the effect of the introduced
noise and delay on velocity, which is the subtraction of the
real data by ground truth value, (eẋ = ẋnoise f il ter − ẋideal ).
In the third case, we further introduce a 10% vertical COM
offset, as highlighted in Fig. 6. The result shows that the
proposed method is able to compensate not only for noise
and delay, but also for the COM offset. Besides, as the
constant height increased by the vertical COM offset, the
time constant Tc in (2) increases. Hence, the initial value
of the model coefficients α and β decreases as shown in
(11) and (19), and the effect of those sources of error
diminishes. That is why the steady error in the LIP model
deceases compared with Case 2. Finally, a fourth simulation
is performed by applying a −0.01m horizontal COM offset.
As shown in Fig. 7, although there exists a fluctuation in
the estimated coefficients and slightly longer converge period
(12s), online estimation method can still achieve the desired
COM velocity with low steady state error , whereas such an
COM offset has caused a 0.28m/s steady state error to the
velocity profile generated by the LIP model. Additionally, the
first and second optimal value of model coefficients (α and
β) in Table I are close to those value in LIP model. However,
the third coefficient (α3 and β3) reflects the overall effect of
sensory noise and delay, and hence are different from those
in LIP model. These are also proved in (11) and (19),

V. CONCLUSIONS

In this work, foot placement based on regularised least
squares is introduced in order to tackle some common forms
of errors that plague model-based approaches. Our method
assumes unknown terms that affect the actual foot placement,
while the exact value of those terms is on-line estimated from
the real-time measurements during walking. The robustness
of the proposed approach under various types of errors is
validated through simulations in four different scenarios.
Compared to traditional model-based methods, we were able
to reach the commanded velocities with minimum steady
state error, as illustrated in Section IV.

This work proved the feasibility of the proposed method.
Currently, FIFO is used in order to update the dataset as
already mentioned. In the future, we plan to extend the
current approach into a 3D point mass simulation, which

will include both sagittal and lateral motion. Finally, we are
planning to validate it in a real humanoid robot.

Besides, we also plan to consider the centroidal angular
momentum. For example, the Angular Momentum Pendulum
Model (AMPM) proposed by Komura et.al [17], or the LIP
plus flywheel (LIPF) model developed by J.Pratt [18] will
be investigated.
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