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Goals and Resource Constraints in CARMA

Paul Piho 1 Anastasis Georgoulas 2 Jane Hillston 3

School of Informatics
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Edinburgh, UK

Abstract

Carma is a recently developed, high-level quantitative modelling language developed for the design and
analysis of collective adaptive systems. In the current Carma language, agents within a system consist
of a behaviour, captured as a process, and knowledge, represented as a store of attributes. In this paper
we present the first steps to equipping agent specifications with more sophisticated forms of knowledge in
terms of goals and targets, and demonstrate how these may be integrated into the modelling and analysis
process. We illustrate the ideas with a simple example taken from the domain of swarm robotics.

Keywords: Stochastic modelling, collective adaptive systems, goals, control

1 Introduction

Examples of collective adaptive systems (CAS) are widespread in nature, ranging

from the swarming behaviour of insects to patterns of epidemic spread in humans.

These systems are characterised as consisting of a large number of simple entities

or agents whose perception is limited to their own locality, but which nevertheless

interact with their neighbours. Through these interactions complex emergent be-

haviour may be formed at the system level, often of a form which is difficult to

predict from the simple behaviour of the individual agents.

The highly distributed and robust nature of these systems has meant that they

have become a paradigm for the design of highly-distributed computer-based sys-

tems which are intended to operate without human intervention. In general it is

difficult to predict the emergent behaviour and harder still to know a priori how to

design the behaviour of individual agents in order to achieve a system level goal.
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Thus modelling becomes a valuable tool in the design of collective adaptive sys-

tems, allowing possible configurations of agents to be evaluated with respect to

global goals. Moreover, the highly-distributed nature of such systems means that

they are often resource-constrained. For example individual entities may have only

limited battery life. Therefore it is essential that models are capable to taking into

account non-functional as well as functional requirements.

Carma, Collective Adaptive Resource-sharing Markovian Agents, is a recently

defined, high-level stochastic process algebra-based modelling language [10]. Pre-

vious work has focused on the use of Carma to explore the potential behaviour

of systems through Markovian simulation. When non-functional requirements and

behavioural goals are considered, they must be expressed externally, for example as

formulae in a suitable temporal logic [2,13,6]. However in the long-term we would

like to be able to express goals within the models themselves and explore the use

of control algorithms within the environment of a model. This would allow the

behaviour of individual agents to be adapted in order to achieve the system goals,

whilst respecting the resource constraints applicable to individual agents.

As a first step towards this long-term objective, in this paper we present an

extension of the Carma modelling language which supports the specification of re-

source constraints and system-level functional goals. This extension provides basic

monitoring capabilities for Carma, which can subsequently be used for reasoning

about control policies. During a simulation, agents that violate resource constraints

can be readily identified, allowing this aspect of possible behaviour to be explored

and evaluated. At the system level, the specification of goals supports the iden-

tification of states that can be regarded as desirable targets within trajectories of

system behaviour.

The rest of the paper is structured as follows. In Section 2 we present the Carma

process algebra. The description of the proposed extension for specifying individual-

level resource constraints and global goals is given in Section 3. The extensions are

illustrated through a swarm robot model in Section 4. In Section 5 we present the

developed software tool for experimenting with the proposed changes. Finally, we

conclude this paper in Section 6.

2 CARMA

Carma is a new stochastic process algebra for the representation of systems devel-

oped in the CAS paradigm [10]. The language offers a rich set of communication

primitives, and exploits attributes, captured in a store associated with each com-

ponent, to enable attribute-based communication. For example, for many CAS

systems the location is likely to be one of the attributes. Thus it is straightforward

to model systems in which, for example, there is limited scope of communication,

or interaction is restricted to co-located components, or where there is spatial het-

erogeneity in the behaviour of agents.

A Carma system consists of a collective operating in an environment. The

collective is a multiset of components that models the behaviour of a system; it is
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used to describe a group of interacting agents that cooperate to achieve a given set

of tasks. The environment models all those aspects which are intrinsic to the context

where the agents are operating, i.e. the environment mediates agent interactions.

This is one of the key features of Carma. The environment is not a centralised

controller but rather something more pervasive and diffusive — the physical context

of the real system — which is abstracted as the environment, exercising influence

and imposing constraints on the different agents in the system. Specifically the

environment is responsible for setting the rates at which actions are performed,

and probabilities of receiving a given message. For example, in a model of a smart

transport system, the environment will determine the rate at which entities (buses,

bikes, taxis etc) move through the city, which may also depend on the current time.

This is an abstraction of the presence of other vehicles causing congestion which

may impede the progress of the modelled entities to a greater or lesser extent at

different times of the day. The role of the environment is also related to the spatially

distributed nature of CAS — we expect that the location where an agent is will have

an effect on what an agent can do.

A Carma component captures an agent operating in the system. It consists

of a process, that describes the agent’s behaviour, and of a store, that models its

knowledge. A store is a function which maps attribute names to basic values.

Processes located within a Carma component interact with other components

via the defined communication primitives. Specifically, Carma supports both uni-

cast and broadcast communication, and permits locally synchronous, but globally

asynchronous communication. Distinct predicates (boolean expressions over at-

tributes) associated with senders and potential receivers are used to filter possible

interactions. Thus, a component can receive a message only when its store satisfies

the target predicate. Similarly, a receiver also uses a predicate to identify accepted

sources. An interaction will occur only when the sender satisfies the predicate used

by the receiver, and the receiver satisfies the predicate used by the sender. The exe-

cution of communicating actions takes time, which is assumed to be an exponentially

distributed random variable whose parameter is determined by the environment.

More formally, we let Sys be the set of Carma systems S defined by the following

syntax:

S ::= N in E
where N is a collective and E is an environment. We let Col be the set of collectives

N which are generated by the following grammar:

N ::= C
∣
∣ N ‖ N

A collective N is either a component C or the parallel composition of collectives

N1 ‖ N2. The precise syntax of components is:

C ::= 0
∣
∣ (P, γ)

and we let Comp be the set of components C generated by this grammar. A

component C can be either the inactive component, denoted by 0, or a term of the
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form (P, γ), where P is a process and γ is a store. A store is a function which maps

attribute names to basic values. We let:

• Attr be the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
• Val be the set of basic values v, v′, v1,. . . ;
• Γ be the set of stores γ, γ1, γ

′, . . ., i.e. functions from Attr to Val.

The behaviour of a component is specified via a process P . We let Proc be the

set of Carma processes P , Q,. . . defined by the following grammar:

P,Q ::= nil

| act.P

| P +Q

| P | Q
| [π]P

| kill

| A (A
�
= P )

act ::= α�[πs]〈−→e 〉σ

| α[πr]〈−→e 〉σ

| α�[πs](
−→x )σ

| α[πr](
−→x )σ

e ::= a | my.a | x | v | now | · · ·

πs, πr, π ::= � | ⊥ | e1 �� e2 | ¬π | π ∧ π | · · ·

The process specifications are fairly standard, with prefix, choice and parallel com-

position all with their usual meanings. A predicate π is used to indicate that the

process is only active when the predicate is true. The distinguished process kill

removes the enclosing component from the collective. In the action descriptions,

the following notation is used:

• α is an action type in the set ActType;

• πs and πr are predicates that define filters on the acceptable communication

partners;

• x is a variable in the set of variables Var;

• e is an expression in the set of expressions Exp 4 ;

• −→· indicates a sequence of elements;

• σ is an update, i.e. a function from Γ to Dist(Γ) in the set of updates Σ; where

Dist(Γ) is the set of probability distributions over Γ.

Formally, an environment consists of two elements: a global store γg, that models

the overall state of the system, and an evolution rule ρ, which is a function that,

depending on the global store and on the current state of the collective (i.e., on

the configurations of each component in the collective), returns a tuple of functions

ε = 〈μp, μw, μr, μu〉:
4 The precise syntax of expressions e has been omitted for brevity. We only assume that expressions are
built using the appropriate combinations of values, attributes (sometime prefixed with my), variables and
the special term now. The latter is used to refer to the current time.
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• μp : Γ × Γ × Act → [0, 1], μp(γs, γr, α) expresses the probability that a com-

ponent with store γr can receive a broadcast message from a component with

store γs when α is executed;

• μw : Γ× Γ×Act → [0, 1], μw(γs, γr, α) yields the weight that will be used to

compute the probability that a component with store γr can receive a unicast

message from a component with store γs when α is executed;

• μr : Γ×Act → R≥0, μr(γs, α) computes the execution rate of action α executed

at a component with store γs;

• μu : Γ × Act → Σ × Col, μu(γs, α) determines the updates on the environ-

ment (global store and collective) induced by the execution of action α at a

component with store γs.

To extract observations from a model, a Carma specification also contains a set

of measures. Each measure is defined as:

measure m name[var1 = range1, . . . , varn = rangen] = expr;

Expression expr can be used to count or to compute statistics about attribute values

of components operating in the system. These expressions are used to compute the

minimum/maximum/average value of expression expr evaluated in the store of all

the components satisfying boolean expression guard , respectively.

The formal semantics of Carma gives rise to a continuous time Markov chain

(CTMC). The state space of the system is represented as a finite, discrete set of

states and the times of state transitions are governed by the rates given by the model

description. The state space generated by Carma models is usually too large to

be analytically tractable and thus the models are analysed by simulating individual

time trajectories.

The specification and analysis of Carma models is supported by an Eclipse

plug-in [1] and a model simulator. The plug-in implements an appropriate high-level

language, named the Carma Specification Language, that simplifies the creation

of Carma models by providing rich syntactic constructs inspired by main stream

programming languages.

3 Capturing requirements

In our current work we consider two distinct forms of requirements or constraints

that a CAS may be subject to. Firstly, the highly-distributed nature of CAS means

that the individual components within the system may be constrained in their access

to resources that they need in order to complete their tasks. Even in a system where

components are required to work collaboratively they may nevertheless compete for

resources. We can view this as a requirement for individual components to operate

within given resource bounds or constraints. Conversely, at the global level, system

requirements are often phrased in terms of goals or conditions on the global state

space that must be satisfied, possibly within a given time bound.

In this section we consider how to extend the Carma modelling language in
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order to capture both forms of requirement in a natural way.

3.1 Individual constraints

We limit our attention to constraints on resource usage that are individual-based —

examples include battery life, communication bandwidth and power consumption.

In particular we point out that in some cases these are hard constraints which when

violated cause the individual components to fail. In other cases we may want to

consider constraints that when violated make the component unable to contribute

to the current task — for example, the connection to the rest of the collective is

lost. Moreover such individual-level constraints can also be used to model time-out

behaviour or to induce component failures due to buffer overflows. We choose this

perspective since it seems most in-keeping with the semi-autonomous nature of the

components in a Carma model.

Our objective is to support the monitoring of individual components with respect

to the resource constraints. For example, this will allow us to easily keep track

of failed components as well as simplify the creation of models by allowing for

component failures to be defined implicitly through constraints. Thus we extend

the Carma language in order to specify constraints for individual components,

leading to the definition:

C ::= 0 | (P, γ, c(γ))

where, as previously, C is either the null process or defined as P along with the

local store γ and c(γ) denotes a set of constraints on the store attributes. The set

c(γ) consists of expressions defining constraints on the store variables given by the

following grammar:

c(γ) ::= e | e ∧ e

e ::= x � x �∈ {<,>,≥,≤,=, �=}
x ::= k | γ(a) k is a constant, γ(a) is the value of attribute a in store γ

That is, component constraints are defined as conjunctions of linear inequalities and

equalities on the evaluation of store attributes. Thus we assume that resource use

is recorded as an attribute within the component.

The implementation of the Carma specification language [1] allows definitions

of attributes that take numerical values. As the underlying model is a finite state

CTMC and the attributes are encoded in the state of the components, we require the

set of possible attribute values to be denumerable — for example, a finite subset of

real numbers or integers. Additionally, it is possible to define categorical attributes

through specifying enumerated types, like colour, as a set of named values, for

example red, blue and green. In the current implementation of the modelling tools,

the values of enumerated types are not ordered and thus here we restrict ourselves

to considering numerical attributes, where prescribing constraints in the form given

above is possible.
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The constraint specification needs to be incorporated into the formal semantics

of the language. Consider the following Carma process:

[π1]α
∗[π2]〈x〉σ

The simulator for Carma models proceeds as follows: (i) the predicate π1 is evalu-

ated to check whether the action is possible (ii) the filter predicate π2 is evaluated

to get all the possible receivers of the message x (iii) the evolution rule is evaluated

in the context of all the actions in the system (iv) an action is sampled from the set

of actions that can be performed. Supposing the action α∗ is performed, we update

the local store according to σ.

The two natural places for checking the constraints are when the predicate π1
is checked or after the store update has been calculated. We select the former

approach since it allows us to include the constraints in the set of guards for the

actions and use the existing implementation with minimal modifications. In other

words, in the example above, if we consider a constraint c(γ), the process in effect

becomes:

[π1 ∧ c(γ)]α∗[π2]〈x〉σ
Adopting this approach does not ensure that the constraint will not be violated

in the evolution of the component. For an example, consider the store attribute

b = 2 and the constraint b ≥ 0. Suppose the performed action would reduce the

constraint in the following way:

b ← b− 3

This means that the constraint is violated only after the action fires — this could

be interpreted by the action firing despite lack of resources. Firing of such actions

could be blocked by checking that the constraint will not be violated after the action

is performed. This causes some technical difficulties as, in general, the update σ is

probabilistic and returns a probability distribution over the possible updated store

values. One of the options is to prescribe an additional set of constraints c(σ(b)) for

the component such that possible outcomes of the update σ on b also have to satisfy

the constraint on b. In the current work we opt for an alternative of leaving it up to

the modeller to explicitly deal with such boundary cases in the most suitable way.

Thus in order to integrate the individual constraints into the operation of a

Carma model we give semantics to the constraint definitions in terms of guards

on processes and their actions in the given Carma model. We define translations

from the set of syntactically defined Carma components extended with constraints,

denoted Compc, to the set of Carma components Comp as given in Section 2. For

example, the translation of the action prefix is given by the following:

(
act.P, γ, c(γ)

) translation−−−−−−−→ (
[c(γ)] act.[c(γ)]P + [¬c(γ)] stop.nil, γ)

This means that the components in Compc defined by the process act.P , store γ

and set of constraints c(γ) are translated to components in Comp. In particular,

the constraints are included as guards on the process act.P so that if constraints

are violated the component will be unable to perform its usual actions. Instead,
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if the constraints are not satisfied the component will only be able to perform the

special action stop that turns the component into an inactive one defined by the

nil process. We define the action stop as a broadcast action with no receivers and

no message

stop := stop∗[⊥]〈〉{}
Similarly, we give translations for the remaining elements of the process grammar

that deal with choice, parallel composition and guards on processes.

(
P, γ, c(γ)

) translation−−−−−−−→ (
[c(γ)]P + [¬c(γ)] stop.nil, γ)

(
P +Q, γ, c(γ)

) translation−−−−−−−→ (
([c(γ)]P + [c(γ)]Q) + [¬c(γ)] stop.nil, γ)

(
P ‖Q, γ, c(γ)

) translation−−−−−−−→ (
([c(γ)]P ‖ [c(γ)]Q) + [¬c(γ)] stop.nil, γ)

(
[π]P, γ, c(γ)

) translation−−−−−−−→ (
[π ∧ c(γ)]P + [¬c(γ)] stop.nil, γ)

Thus, using this approach, individual-level constraints can be encoded in the

existing Carma framework. Implementing constraints in the Carma specification

language provides a clear and compact way of capturing when the behaviour of

a component depends on some limited resource. The translations above are per-

formed automatically by the modelling tool. This allows the modeller to focus

on the behaviour and the constraints without having to explicitly deal with the

consequences of the component violating the constraints. The proposed implemen-

tation allows different sets of constraints to be defined for each component type

and for components to be initialised in a system with a single constraint or sets

of constraints. This improves Carma model re-usability as models under different

individual constraints can be easily considered.

Figure 1 illustrates the extended syntax for the Carma specification language.

We aim to give an idea of the structure of the model, and so we have not given

the definitions of particular constraints or full definitions of agents or their instan-

tiations. In particular, specifications of the component’s local store attributes, its

process definitions as well as the full specification of the environment are omitted

— omissions are denoted with “. . .”.

The component block in Figure 1 for Agent is extended with the constraints

block where constraints, in this case constraint 1 and constraint 2, are defined.

When initialising components of type Agent in the system System the keyword

following is used to indicate which of the constraints the agents are using.

3.2 Global goals

In this section we shift our focus to global goals for systems. Global goals can

represent the desired functional behaviour or global properties of the system. An

example of the former would be specifying a target location that we want the com-

ponents to navigate to. An example of a desired global property is the number of

failed components being less than a given bound. Clearly these goals will have to

be treated differently from the constraints as the system is not expected to start
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component Agent {

...

constraints {

constraint_1 { ... };

constraint_2 { ... }; }

}

system System {

collective{

new Agent( ... )@(x,y) following constraint_1;

new Agent( ... )@(x’,y’) following constraint_2;

}

environment{ ... }

}

.
Fig. 1. Instantiating components with different constraints.

in a state that satisfies the prescribed goal. Thus while the individual constraints

identify states to be avoided, the goals identify states to aim for.

We restrict ourselves to considering state-based goals. This means that the

goals implicitly define a set of states of the model in which the desired behaviour is

achieved. Both the target location and the failed components examples mentioned

above are instances of state-based goals. Specifically, by prescribing the target

location we say that we are interested in those states of the system in which the

components have reached the target. Trajectory-based goals, in contrast, would

describe the goals in terms of trajectories, i.e. traces or time-stamped sequences of

states. This would be needed in order to consider timing properties of the modelled

systems. For example, saying that the target location has to be reached within T

time units would lead us to consider the trajectory of the system up to time T .

However, in this paper we focus on state-based goals, and trajectory-based goals

are left for further work.

In general state-based goals can be easily monitored: at each encountered state

of the system we can decide whether the goal is satisfied or not. Thus, given a

simulated trace, we can annotate it based on such goals. This can be done either

on-line or off-line. Note that this does not change the behaviour of the system and

thus the semantics of the model remain unchanged. In future work we would like to

introduce more sophisticated ideas of control where the global goals are used to drive

the behaviour of the system, through the evolution rule used in the environment of

the model. However, in this paper we are using basic off-line monitoring based on

global goals as a starting point.

The specification of global goals is as follows. First we define measures of interest

as functions from state to R, as outlined in Section 2. The goals are specified in a

form similar to the individual-based constraints. In particular, each goal is expressed

as a conjunction of inequalities and equalities on the defined measure. The grammar
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for such goal definitions is the following:

g ::= u | u ∧ u

u ::= y � y �∈ {<,>,≥,≤,=, �=}
y ::= k | m(s) k is a constant and m(s) is the value of measure m in state s

For the implementation we leverage already existing parts of the Carma tools.

In particular, the Carma specification language already supports the definition

of measures to extract observations and study the behaviour of the model. For

example, the measure defined by

measure Stopped = #{ Robot[Stop] | true};

would return a time-trajectory of the number of components named Robot that are

in state Stop. For monitoring whether a goal is satisfied or not we are interested

in boolean measures. Say we have a goal that the number of Robot components in

state Stop state is less than five. This can be expressed in the following way:

measure StoppedLessThan5

= bool2int( (#{ Robot[Stop] | true } < 5));

where bool2int is a helper function that converts the boolean values to integers so

that the measure is still a numerical value as required by the implemented model

simulator.

Our simple initial implementation amounts to mapping the defined goals to

measures like the StoppedLessThan5 example given above. However, with the

current restriction of the language and its implementation, measure values cannot

be accessed in the environment and so they cannot be used in the evolution rule.

In order to be able to use the measures directly in making control decisions the

Carma language will need to be modified in future work.

4 Case study

In this section we give a simple example of how the presented ideas of individual-

level resource constraints and global goals can be used to analyse a model taken

from the domain of swarm robotics.

In particular, we consider a model of a swarm of 10 robots navigating on a 4-

by-4 grid. Robots have a choice between actions north and east. The action north
corresponds to the movement in the y-axis of the plane and increments the robot’s

y coordinate by 1. Similarly, east increments the x coordinate. The robots are

constrained to the 4-by-4 grid by disabling the actions that would take the robots

out of the grid. This is done by setting a guard on the actions which checks whether

the incremented location is still within the grid.

By construction of the model each robot starts at the location (0, 0) and moves

to (3, 3) by taking one of the possible paths. If we set the rates of the actions

to be equal, in this case r = 1, then each of the paths is equally likely given no

P. Piho et al. / Electronic Notes in Theoretical Computer Science 337 (2018) 155–172164



additional restrictions. The structure of this basic model is illustrated in Figure 2a.

Note that in this model there are no interactions between components. Such a

model is enough to demonstrate the individual constraints and global goals while

being very fast to simulate. Later work will consider more complicated systems

that include communication between components. The resource that we consider

within this model is the battery life of the robots. The robots are given a local

store attribute, denoted b, that keeps track of their battery levels. In particular, we

let the attribute value 10 denote the full battery and instantiate each robot in the

system with b = 10.

We model battery depletion by setting probabilistic store updates for the actions

that move the robot, and we assume that some moves are more costly than others.

That is, we define two sets of locations. The first set corresponds to locations where

robots operate under normal energy consumption, coloured grey across Figure 2,

while the second corresponds to locations where robots have to spend more energy,

coloured red on the same figures. In particular, each action performed at a grey

location reduces the battery level by 0 or 1 with equal probability. On the other

hand, at red locations the battery level is reduced by 4 or 5 with equal probability.

We then set the resource constraint b > 0 for each robot. The constraint is inter-

preted in the obvious way: for the robot to be functional its battery has to be not

empty.

Each robot needs to perform exactly 6 actions to move from (0, 0) to (3, 3).

However, as the battery life is a consideration, some of the possible paths may

consume too much battery causing the robot to fail before reaching (3, 3). For

example the expected state of the battery indicator for a robot at (3, 3) given it has

taken a path involving two red locations is 10 − (4 × 0.5 + 2 × 4.5) = −1. Thus,

we are expecting the robots that take a path through two red nodes to violate the

constraints.

The left-hand side of Figures 3, 4, and 5 plot the expected numbers of robots at

(3, 3) and stopped robots against time. The trajectories are obtained by simulating

the createdCarmamodel 5000 times with each trajectory consisting of 100 samples.

The mean of trajectories is plotted with 95% confidence intervals. Due to the high

number of simulation runs these intervals around the means values are very narrow.

In the scenarios with both red and grey locations, the expected number of robots

that run out of battery before reaching (3, 3) is high in all cases — by taking a

random path many of the robots will visit two red locations. Thus we have modelled

a simple system under individual-level constraints — in this case battery life.

The next step is to exemplify the use of global goals. As explained above,

global goals can either be functional targets for the system or some desired global

properties. In this case, we are interested in the swarm of robots making it to the

location (3, 3). We can specify the number of robots that need to reach the target

for the system to successfully fulfil its intended function. Suppose in this case we

require five or more robots to reach the location (3, 3) for the goal to be satisfied.

Conversely we could also prescribe that no more than five robots can fail to make

it to (3, 3), which is equivalent since all the robots that do not fail will reach (3, 3)
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no constraints.
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(d) Spatial configuration for the third experiment.

Fig. 2. Spatial structures for the robot swarm models. Red nodes denote the locations where actions require
more energy.

by construction. Thus, the global measure of interest is either

measure Stopped = #{ Robot[nil] | true}

giving the number of Robot components that have violated their individual con-

straints and ended up in a state where they are incapable of performing additional

actions, or alternatively,

measure RobotsAtTarget

= #{Robot[ReadyToMove] | my.loc == [3 ,3]}

which gives the number of Robot components that are in location (3, 3) and in the

state ReadyToMove indicating a state where they are ready to perform another move

action.

The global goal can thus be defined as Stopped ≤ 5. Deriving a measure to

record whether the system satisfies this goal was described in Section 3.2. Note
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Fig. 3. Simulation results for uncontrolled (left) and controlled (right) system with spatial configuration
given by Figure 2b.
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Fig. 4. Simulation results for uncontrolled (left) and controlled (right) system with spatial configuration
given by Figure 2c.

that for a single simulation run the result would be a binary function of time. On

the other hand for the 5000 simulation runs the output of the Carma simulation

tool is an aggregated measure corresponding to the proportion of trajectories for
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Fig. 5. Simulation results for uncontrolled (left) and controlled (right) system with spatial configuration
given by Figure 2d.

which the property holds. We can interpret this as the expected probability with

which the goal is satisfied by the system. The time evolutions of the measure

corresponding to the goal is given on the left-hand side of Figures 3, 4, and 5, for

three distinct configurations of the grid. As expected, in the case of uncontrolled

systems, the probability of satisfying the goal is low.

In the case of Figure 3 we point out that the expected goal satisfaction measure

ends up being far from the extremes 1 and 0. This means that the stochastic

behaviour of the system gives rise to enough variance to cause high uncertainty in the

goal satisfaction. Note that in Figure 3 the measure corresponding to the number

of robots at location (3, 3) contradicts expectations by not being monotonically

increasing. This is a modelling artefact which relates to the discussion in Section 3.1

and is due to the constraints being checked after the action has been performed. In

particular, some robots will reach the target location (3, 3) but immediately move

into the failed state. In this example, we have chosen to treat them as failed robots.

We can now study how the expectation of satisfying the goal changes when a

simple control policy is applied. In particular, suppose a robot can sense whether it

is moving to a red or a grey location. With this information one can give a control

policy: if the robot has a choice between a red location and a grey location then

it will pick the grey. Again, the measure trajectories resulting from simulating the

controlled system for three different spatial configurations are given on the right-

hand side of Figures 3, 4, and 5. We have plotted the expected number of robots

at (3, 3), stopped robots and the expected probability of the goal being satisfied.

In the case of spatial configurations given in Figures 2b and 2c with the cor-
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responding simulation results in Figures 3 and 4 we see that all the robots are

expected to reach the location (3, 3) with high probability. This is indicated by the

expected occupancy measure at location (3, 3) growing to 10 and the expected num-

ber of stopped robots remaining very low. Note in these cases the simple control

policy is enough to make the robots take the paths that feature at most one red

location. Thus, the worst case scenario where the robots reach the location (3, 3)

with battery level 0 happens with a low probability of
(
1
2

)6
for spatial configuration

in Figure 2b and probability of
(
1
2

)5
for configuration in Figure 2c. This makes any

single robot stopping unlikely and hence we expect the goal to be satisfied with very

high probability.

In the case of spatial configuration given in Figures 2d and simulation trajectories

in Figure 5 we see that, although improved very slightly, most of the robots are

expected to fail to reach (3, 3) even under the given control policy. This is explained

by the placement of red locations. All of the robots are first steered to the location

(1, 0) from where the locations (1, 1) and (2, 0) are equally probable. All of the

robots that choose to go to (2, 0) are likely to fail to get to (3, 3) as all paths from

(2, 0) require going though another red location. From (1, 1) robots again have two

equally probable destinations — in particular, (1, 2) and (2, 1). The robots taking

the path through (2, 1) are again likely to fail while only the robots going through

(1, 2) would arrive at the destination with high probability.

5 Translation tool

We have developed a software tool to experiment with the proposed changes to the

Carma language. The implementation includes an extension to the parsing ma-

chinery, to support the new syntax, but does not change the simulation framework.

Instead, it transforms a model so that it only uses the standard Carma syntax,

and can thus be analysed and simulated with the existing software.

In the Carma specification language, a model includes one or more variants

called scenarios (denoted with the system keyword in Figure 1), which describe

different initialisations of the model and environment. In the extended syntax,

each scenario also specifies which individual constraints and global goals should be

considered. This allows different variants to be easily created by choosing from the

full set of constraints and goals defined.

The tool takes as input a Carma model and a scenario name, and, by examining

the syntax tree generated by the parser, constructs a new Carma model which

reflects the specified constraints and goals. The resulting model differs from the

original in three ways. Firstly, it only includes the chosen scenario, with the rest

being discarded. Secondly, the component definitions are modified appropriately by

adding new guards and processes, following the mapping in Section 3.1. Thirdly,

each goal is replaced by a measure, whose value at any given time is 1 if the goal is

satisfied or 0 if it is not. The transformation process is described in pseudocode in

Algorithm 1.

This prototype implementation allows for easy experimentation with the new
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language features. While simple, it is a first step towards integration of the changes

proposed here. We envision that a future release of the Carma tools will include

not only support for the syntax, but also modifications to the simulator to fully and

natively account for the presence of goals and constraints, with a view to allowing

goal-based control of execution.

Algorithm 1 Sketch of the transformation performed by the implementation

Retrieve all individual constraints for the given scenario

for each component do

Create the conjunction of all the constraints

Add guards and stop process as in Section 3.1

end for

for each global goal do

Create a measure expressing whether the goal is satisfied as in Section 3.2

end for

Remove the goals and constraints from the scenario definition

Remove other scenarios from the model

6 Conclusion

Stochastic process algebras have been shown to be a useful modelling paradigm for

analysis of emergent phenomena in CAS [3,12,11,5]. The work in this paper is mo-

tivated by studying emergent behaviour in the case of highly-distributed computer-

based systems like robot swarms and wireless sensor networks. In particular, we are

interested in applying a process algebraic framework to guide the design of control

policies for such systems.

Winfield et al. [14] is an example of an early work on applying formal methods

to study of CAS and in particular robot swarms. The paper presented a robot

swarm model where actions of individuals were given in terms of linear temporal

logic formulae. The aim was to use automatic theorem proving methods to prove

or disprove whether the given emergent property, also expressed in linear temporal

logic, holds. A more closely related approach, applying formal methods and mod-

elling to the design of CAS and specifically swarm robotics, was taken by Brambilla

et al. [4] and Konur et al. [8]. Both papers dealt with model checking properties of

a population-based swarm model. Finally, there has been recent work on the use

of formal models of robot swarms in conjunction with logic-based specifications of

desired properties for automatic synthesis of control policies [7,9].

In this paper we presented an extension of the Carma process algebra and its

accompanying modelling tools. Firstly, we noted that CAS often feature agents

that are resource-constrained — for example, by their battery life. We extended

the Carma language to accommodate prescribing individual-level constraints which

when violated cause the given component to fail. The second extension was moti-

vated by noting that the desired behaviour of CAS is often expressed in terms of the

system-level behaviour rather than that of individual components. We proposed an
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extension of the Carma modelling language for specifying desired system properties

and functional goals in terms of global measures of the system. The extension pro-

vides basic monitoring capabilities that provide a valuable platform for later work

on reasoning about, and devising, control policies.

An example from the domain of swarm robotics was presented to demonstrate

the use of resource constraints and global goals in the analysis of CAS. In particular,

a model of a robot swarm was given a simple control policy and compared to the

uncontrolled case. In both cases simulated trajectories of the system were monitored

for satisfaction of the prescribed global goal.

As further work we will consider ways in which goal monitoring can be used to

adapt the components, through the operation of the evolution rule in the environ-

ment, in order to steer the system towards satisfying the prescribed goals.
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