

Edinburgh Research Explorer

Low-Level Attacks in BitcoinWallets

Citation for published version:
Gkaniatsou, A & Arapinis, M 2017, Low-Level Attacks in BitcoinWallets. in ISC 2017 : 20th International
Information Security Conference. vol. 10599, Springer, Cham, pp. 233-253, International Conference on
Information Security, Ho Chi Minh City, Viet Nam, 22-24 November. DOI: 10.1007/978-3-319-69659-1_13

Digital Object Identifier (DOI):
10.1007/978-3-319-69659-1_13

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ISC 2017 : 20th International Information Security Conference

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-69659-1_13
https://www.research.ed.ac.uk/portal/en/publications/lowlevel-attacks-in-bitcoinwallets(e41fb300-4d18-43ba-8150-05e4e0c33f47).html

Low-Level Attacks in Bitcoin Wallets

Andriana Gkaniatsou1, Myrto Arapinis2, and Aggelos Kiayias3

School of Informatics, University of Edinburgh, UK
1a.e.gkaniatsou@sms.ed.ac.uk, 2marapini@inf.ed.ac.uk, 3aggelos.kiayias@ed.ac.uk

Abstract. As with every financially oriented protocol, there has been a great
interest in studying, verifying, attacking, identifying problems, and proposing so-
lutions for Bitcoin. Within that scope, it is highly recommended that the keys of
user accounts are stored offline. To that end, companies provide solutions that
range from paper wallets to tamper-resistant smart-cards, offering different level
of security. While incorporating expensive hardware for the wallet purposes is
though to bring guarantees, it is often that the low-level implementations in-
troduce exploitable back-doors. This paper aims to bring to attention how the
overlooked low-level protocols that implement the hardware wallets can be ex-
ploited to mount Bitcoin attacks. To demonstrate that, we analyse the general
protocol behind LEDGER Wallets, the only EAL5+ certified against side channel
analysis attacks hardware. In this work we conduct a throughout analysis on the
Ledger Wallet communication protocol and show how to successfully attack it
in practice. We address the lack of well-defined security properties that Bitcoin
wallets should conform by articulating a minimal threat model against which any
hardware wallet should defend. We further use that threat model to propose a
lightweight fix that can be adopted by different technologies.

1 Introduction

Bitcoin is currently considered to be the most successful cryptocurrency, with an esti-
mated average daily transaction value of US$200K. As it is becoming the most widely
adopted digital currency, there is substantial resource and research investment into the
security of the Bitcoin protocol and its transactions. Bitcoin is based on public key
cryptography, which requires users to digitally sign their payments to prove ownership.
Therefore, a salient aspect of Bitcoin is the wallet key management: loss of the private
keys effectively means loss of funds; exposure of the public keys conveys privacy loss.

Online wallets are popular with Bitcoin users, as they are offered as a service that
is faster and safer than running the Bitcoin client locally. User accounts are hosted on
remote servers and accessed through third-party Web services; wallets either store the
keys also in remote servers, or locally in the user’s web client (typically a web browser).
The user acceses his wallet through web-based authentication mechanisms and all cryp-
tographic operations take place server-side, typically in the Cloud. Although this ap-
proach is popular among Bitcoin users, certain security issues arise as the user’s private
keys can be exploited by the host. For instance, in 2013 the StrongCoin web-hosted
wallet transferred without user consent bitcoins from their servers to a different service,
OzCoin, as it was claimed to be stolen [7]. Online wallets are also common targets for

Distributed Denial of Service (DDoS) attacks, e.g., BitGo and blockchain.info in
June 2016. Such examples raised concerns about the reliability of such wallets and cre-
ated the trend for cold storage and cryptographic tokens, with most major companies
having integrated their software wallets with hardware devices.

wallet secure element HID encrypted
channel

LEDGER HW.1 smart card × ×
LEDGER Nano smart card × ×

LEDGER Nano S smart card ×
Trezor microcontroller ×

KeepKey microcontroller ×
Digital BitBox microcontroller

Table 1: Bitcoin Hardware Wallets Characteristics

Hardware wallets aim to
offer a secure environment for
key management and transac-
tion signing. When a user re-
quests a payment, the wallet’s
API creates the corresponding
Bitcoin transaction and sends it
to the hardware to be signed.
The hardware signs the trans-
action and returns the signature
together with the corresponding public key to the API, which is then pushed it to the
network. In that way the senstive signing keys do not ever leave the secure environ-
ment of the hardware wallet. The Bitcoin wallets currently in the market incorporate
either microcontrollers or smart-cards. As of April 2017, the hardware wallet options
suggested by bitcoin.org are the three LEDGER wallets, which are based on smart-
cards; or Trezor, Digital Bitbox and Keepkey, which are based on microcontrollers. All
wallets offer two versions: (a) a plain USB dongle, or (b) a USB Human Interface
Device (HID) with an embedded screen for the user to verify and confirm the trans-
action. The main differences between current hardware wallets are shown in Table 1.
Currently, apart from Digital BitBox, none of the wallets uses a secure communication
channel. Offering a tamper resilient cryptographic memory is not enough on its own
to guarantee against transaction attacks. Unauthorised access to the signing oracle of
the wallet is not much different from plain access to the keys themselves, as both allow
the funds to be stolen. Processing a Bitcoin request involves the communication be-
tween the hardware wallet and third-party systems. The lack of a general threat model
for the Bitcoin wallets and well-defined specifications of that communication leads to
proprietary implementations. As previous studies on different protocols have shown
(e.g., [8, 10, 13]), such practice often results in insecure low-level implementations that
are prone to Man-in-the-Middle (MitM) attacks.

All hardware wallets implement a payment protocol similar to the following. The
API broadcasts to the device the input funds and the payment details and requests the
transaction signature If the device supports a second factor verification mechanism for
the payment, it will sign the transaction only after the user’s approval. If the device does
not support such mechanism, it will sign it immediately. Although most Bitcoin wal-
lets claim to secure the transactions by enforcing the user’s validation of the payment
data, the success rate of transaction attacks is analogous to the user error rate. The val-
idation/comparison of hashes by the user, is a common technique e.g., device pairing,
self-signed certificates with HTTPS etc.. The usability aspects of hash comparison in
security protocols and the effects of human errors have been studied before. For exam-
ple, in [30] the authors conclude that the compare-and-confirm method (the user has to
confirm a checksum presented on the device’s screen) for a 4-digit string has 20% fail-

2

ure rate, whereas the work in [17] concludes that comparison of the Base321 hashes has
an average 14% failure rate. Such studies focus on low entropy hashes and suggest that
raising the entropy would result in bigger error rates. They conclude such techniques
cannot provide strong security guarantees. Thus, a transaction attack on an HID wallet
depends on the user’s ability to identify the tampered data.

In this paper we stress the importance of securing the low-level communication of
Bitcoin hardware wallets. We show that by taking advantage of that communication
layer it is possible to propagate the attacks directly to the underlying Bitcoin trans-
actions. The attacks we address are general and target any low-level communication
with hardware wallets. Applying them in practice is a matter of adapting them to the
corresponding hardware implementation. The security of microcontrollers has been ex-
tensively examined, and a number of fault and side-channel attacks have been found,
e.g., [4, 12, 20, 21]. Therefore, we focus on smart-card based wallets, which provide
guarantees against physical and interdiction attacks and have traditionally been used
for key management and cryptographic operations. As of April 2017, LEDGER is the
only company offering smart-card solutions. The LEDGER wallets are EAL5+ certi-
fied and are advertised as the most secure, tamper-proof and trustworthy devices for
managing Bitcoin transactions.2

We consider client-side security and not security in the Bitcoin network, although a
single wallet attack may escalate. Attacking Bitcoin at the network level is immensively
expensive as it requires great computational resources. General attacks on Bitcoin wal-
lets that could be applied to several users simultaneously are a much cheaper, easier and
efficient way to gain access to multiple accounts. The LEDGER API is available on the
Chrome Web Store, making it the ideal target for massively attacking users.

Our Contributions and Roadmap. To the best of our knowledge our work is the
first to: (i) stress the importance of securing Bitcoin transactions and preserving the
account’s privacy at the wallet level, (ii) consider a minimal threat model for hardware
Bitcoin wallets, and (iii) address the security issues originating in low-level communica-
tion of Bitcoin devices, by showcasing practical attacks. We provide a thorough analysis
of the LEDGER wallets by extracting their protocols, analysing them and showing prac-
tical attacks. We propose a lightweight and user-friendly fix which is general enough to
be adapted to all wallets regardless the hardware technology. As, the LEDGER protocols
are not publicly available, we reverse-engineered the communication protocol and ab-
stracted its implementations. In Section 3 we present and analyse the protocols that we
extracted. In Section 4 we articulate a general purpose threat model for Bitcoin wallets
and show how we have successfully mounted the identified attacks on LEDGER wallets.
To that end, in Section 4 we propose a lightweight and easily adaptable fix that requires
minimal changes.

1 Base32 hashes are a total of 25 bit entropy and consist of five characters with 32 possible
character mappings. A Bitcoin address has 160 bit entropy.

2 See http://goo.gl/KhtWXc, http://goo.gl/sbYXzh, http://goo.gl/hOU5jB.

3

http://goo.gl/KhtWXc
http://goo.gl/sbYXzh
http://goo.gl/hOU5jB

2 Background

Bitcoin is a Peer-to-Peer (P2P) payment system that utilises public-key cryptography
and consists of addresses and transactions. A transaction may have multiple inputs and
outputs and is formed by digitally signing the hash of the transaction from which spe-
cific funds are transfered. The signature and the corresponding public key are sent to
the network for verification. Upon successful validation, the funds are transferred to the
stated addresses. Assuming a user u with a private/public key pair (sku ,pku), let xu
be the recipient address, generated by hashing pku ; let yu be the hash of transaction tu
that transferred the funds to xu . The transaction that further transfers b funds to some
address zp is the signature Sigu of yu , b and zp using private key sku : Sigsku (yu ,b,zp).
Once a transaction is formed, it is broadcast to the network to be validated for: (a) out-
puts not exceeding inputs, (b) the user’s ownership of the funds by verification of the
signature with the corresponding pku .

Transactions in Bitcoin are expressed in a scripting language known as the Bitcoin
raw protocol, which defines the conditions on the inputs and the outputs. According
to [6], a transaction is defined in blocks of bytes. Table 2 presents the specific structure
of a transaction block and the abbreviations that we will use in the next Sections: v is
a fixed constant that defines the block format version; ic is a counter for the inputs;
txidi is the reference to the previous transaction whose outputs will fund the current
transaction; pc is a reference to the outputs of txidi that will be used; sigL is the length
of the signature; scriptSig is the signature of the current transaction with the private key
that correspond to the previous transaction outputs; s is a fixed constant that defines the
end of the inputs declaration; oc is a counter for the outputs of the current transaction;
amountt corresponds to the amount to be spent and l to the length of the destination
public key; addrp is the recipient public key for amountt .

v : version 4 bytes
inputs ic: input count 1 byte

txidi : previous transaction id (hash) variable length
pc: previous output index 4 bytes
sigL: script signature length 1 byte
scriptSig : script signature variable length
s: sequence 4 bytes

outputs oc: output count 1 byte
amountt : value 8 bytes
l : script length 1 byte
addrp : scriptPubKey variable length
bt : block lock time 4 bytes

Table 2: The Transaction Block.

Upon payment, the wal-
let must access the previous
transactions and the avail-
able funds. Memory limita-
tions and absence of access
to the network, make it diffi-
cult for hardware wallets to
track previous transactions.
Segregated Witnesses (Seg-
Wit) solve that problem by
including the value of the in-
puts in the signature of the
transaction: hardware wal-
lets then hash the inputs and
sign that hash.

Key Management of Hardware Wallets. Currently all hardware wallets implement
a Hierarchical Deterministic (HD) wallet of BIP32, which generates a new key-pair
for each address request [32]. HD wallets derive fresh private keys from a common
master key pair {skm ,pkm}. For the creation of a new wallet a 128- to 512-bit seed
s , a sequence of random numbers, is generated. The master private key skm is gen-

4

erated by a function skm = hash(s) where hash(s) is the SHA256 hash of s . Then,
given the master key pair (skm ,pkm), the wallet generates and maintains a sequence
of children private sk1,sk2, ... and public pk1,pk2, .. keys from the master private key
skm . A key ski is derived by the function ski = skm + hash(i ,pkm) (mod n), pki =
pkm +hash(i ,pkm)N or equally skiN with i denoting the index of the key, and hash
being the HMAC-SHA512 function. Children public keys pki can be derived only by
knowing the master public key pkm and the index i .

Related Work. Previous work on attacking Bitcoin has exposed malleability attacks,
where the adversary forces the victims to generate a transaction to an address controlled
by her. When a victim broadcasts the transaction to the network, the adversary obtains a
copy of that transaction that she modifies by tampering the signature without invalidat-
ing it. That modification results in a different transaction identifier (hash). The adversary
then broadcasts the tampered transaction to the network, resulting in the same transac-
tion being in the network under two different hashes. As a single transaction can only be
confirmed once, only one of these two transactions will be included in a block and the
other will be ignored. The attack is successful if the attacker’s modified version is ac-
cepted. Although this attack is not new, it was given great attention after the malleability
attack on MtGox [11], the first and one of the largest Bitcoin exchanges, in 2014. Since
then different malleability attacks and solutions have been proposed, e.g., [11,31]. Dou-
ble spending is another class of attacks on Bitcoin transactions, where the user spends
the same coin twice. The feasibility of double spending attacks by using hashrate-based
attack models was studied in [24, 26]. It was shown that the attack is successful when-
ever the number of confirmations of a dishonest transaction is greater than the number
of confirmations of the honest one. In [19] the authors exploit non-confirmed transac-
tions to implement double spending attacks on fast payments, and [26] shows how such
attacks coupled with high computational resources can have a higher success rate. Apart
from the attacks that target transactions, privacy has also been targeted. Though privacy
is a concern of the original specification [24] the public nature of Bitcoin renders strong
privacy difficult to achieve. For instance, by tracing the flow of coins it is possible to
identify their owner [15]. Likewise, [1] studied how transaction behaviour can be linked
with a single account.

All the aforementioned attacks do not tackle the wallet layer. They all assume the
wallet implementation to be secure. As many malware attacks have gained publicity
e.g., [5, 18, 25] or the malware attack on the Bitstamp wallet that costed US$5M [16],
the importance of protecting Bitcoin wallets has been repeatedly stressed out [28]. [3]
proposes a super-wallet as a solution to malware, in which the funds are split across
multiple devices using cryptographic threshold techniques. The importance of ensuring
wallet security is also presented in [29] where the authors formally analyse the authen-
tication properties of the Electrum wallet. The authors of [22] and [2] argue that Bit-
coin wallets be tamper-resistant and propose cryptographic tokens as a countermeasure
to malware attacks. Our work exploits Bitcoin transactions at the wallet level. Instead
of attacking the Bitcoin raw protocol directly, we show the importance of the protocols
connected to the Bitcoin implementations. Attacking such protocols overrides any secu-
rity restrictions that expensive hardware additions may add, and can be equally harmful
to attacking the Bitcoin raw protocol itself.

5

3 Ledger Wallet Implementation

The low-level communication layer of LEDGER wallets, defined by the APDU layer, is
crafted to implement the Bitcoin raw protocol. The communication consists of a series
of raw hexadecimal command-response pairs between the API and the hardware: the
API retrieves data or requests the hardware to execute a specific operation via APDU
commands; whereas the hardware responds to that request via APDU responses. For
example, in the following sequence:

command e04800001f058000002c8000000080000000000000000000000c040406060200
00000001

response 3044022033128d0d576487e2e0c5892c0915564a6a5f119e698c033262d66052
7943a16d022009caa037703d9a3dbf7eec4cecca08bf33b3b9a18ef929a810f8
faf6ab0f1c7a01

command retrieves the signature (response) over some transaction data. The LEDGER
protocols are closed-source and there does not exist any information on how the Bitcoin
specifications are translated into the APDU layer. A large part of our work has been
to reverse-engineer the APDU layer and extract the implemented protocol. This was
achieved by creating a man-in-the-middle sniffer3 sitting on top of the Ledger API,
capable of recording and interfering with the communication during any active sessions
with the dongle. To abstract the protocol from the actual implementation and to infer the
dongle’s operations we ran a series of sessions on three different Nano dongles and one
Nano S4, compared the APDU command-response pairs, analysed the exchanged data
and mapped it to the Bitcoin raw protocol (see Appendix A.1 for an example session).
We concluded that during an active session four protocols may be executed:
(a) Dongle Alive: the initial communication when the dongle is plugged-in.
(b) Setup: wallet configuration and generation of the master keypair {skm ,pkm}.
(c) Login: user authentication to the dongle, and vice versa.
(d) Payment: processing of a payment transaction.
The Dongle Alive and Login protocols run once each time the dongle is connected to
an active API. The Payment protocol repeats each time the user requests a payment. To
proceed to a payment the user is not required to re-authenticate. The Setup protocol is
executed once for initialising the wallet and each time an account restore is required;
user authentication is its prerequisite. The dongle communicates with the API only
when one of the four protocols are executed or when a firmware update is requested.

Commands Used During the Communication. Wallet communication consists of
raw messages between the API and the dongle. To make the analysis readable we
present the command-response messages in the form of c(p1,p2, . . . ,pn)→ r1,2 , . . . ,rm ,
which denotes that the API sends command c with parameters p1,p2, . . . ,pn ,n > 0 to
the dongle; and the dongle responds with r1,r2, . . . ,rm ,m ≥ 0. If m = 0 the dongle
either replies with OK (success) or error (failure). Table 3 lists the communication
primitives used to describe the protocols.

3 Due to the sensitivity of the application we have not made our code publicly available. How-
ever, it can be made available to reviewers upon request.

4 The protocol of Nano S is very similar to that of Nano, thus it was not necessary to test it in a
different dongle.

6

command meaning
get_firmware_version()→ fV returns the dongle’s firmware version fv

get_wallet_public_key(bipDeri ,
findexi , lindexi)→ pki

given the number of bip derivations bipDeri , the first index
findexi , the last index lindexi , returns the public key pki

get_device_attestation(blob)
→ {Sigatt ,attId , attDer , frwVer ,

modes , currentMode}

returns the signature Sigatt of blob which is the concatenated
byte-string of firmware version frmwVer , with the private key
skatt the verification key parameters attId ,attDer , the operation
modes modes , the current mode currentMode and frmwVer

verify(pin)→ OK sends the user’s pin to the dongle; if correct, the dongle replies OK
set_operation_mode(secFac,

opMode)→ OK
sets the second factor authentication secFac to true/false and the
wallet operation mode opMode to standard/relax/developer

sign(bipDeri , findexi , lindexi , m)
→ OK

initialises the signature of the message m with the private key ski
that corresponds to (bipDeri , findexi , lindexi)

sign(pin)→ Sigm returns the signature Sigm of message m with key the private key
ski if the pin it provides is correct

setup(pin,seed ,genKey)→ OK sets up a new user’s pin , stores a new seed and requests from the
dongle to generate, genKey , a new 3DES2 key

set_keyboard(chars , typeConf)→ OK sets up the keymap characters chars and the typing behaviour
typeConf

get_trusted_input(X)
→ {Sigt , oi , amountt}

given X , where X is the raw structure (Table 2) for each previous
output, returns the signature of each previous output Sigt , the
output index oi and amountt of the previous transaction t

untrusted_hash_transaction_
input_start(Sigt ,oi , amount)→ OK

streams the inputs, Sigt , oi and amountt to the dongle using the
raw structure (Table 2)

untrusted_hash_transaction_
input_finalize(addrp , amountp ,

feesp , bipDerc , findexc , lindexc)
→ {c, addrp , amountp , feesp ,

pkc , secFC}

streams the outputs, payment address addrp , payment amount
amountp , feesp , and selects the key pkc to which the change will
be sent based according to its BIP32 parameters
bipDerc ,findexc ,lindexc . The command returns the change c,
the change key pkc , dongle’s confirmation of addp , amountp ,
feesp , and the characters of the address secFC to be authenticated
by the user

untrusted_hash_sign (bipDeri ,
findexi , lindexi , secFR)→ Sigp

returns the signature Sigp of the transaction p with key ski given
its BIP32 parameters bipDeri , findexi , lindexi , iff secFR is
correct

Table 3: API Commands and their Meaning.

Keys that Appear During the Communication. We conclude that LEDGER wallets
manage the following key types:
(i) {skatt ,pkatt}: predefined attestation keys, used for the dongle’s firmware authenti-
cation and for setting up third-party hardware,
(ii) {skm ,pkm}: the master keypair from which all keys are derived,
(iii) {ski ,pki} pairs: transaction related keys, i.e., keys{skr ,pkr} for receiving funds
and {skc ,pkc} for transferring the change of a transaction. All keys, besides pkr , are
generated and stored dongle-side.
(iv) pkkp : a symmetric key for the encryption/decryption of the wallet’s key-pool. As
most Bitcoin wallets do, LEDGER software maintains a key-pool of 100 randomly gen-
erated addresses: each time the wallet requires a new address it picks one from the
key-pool which is then refilled. Based on the original Bitcoin client (i.e., the Satoshi
client) the key-pool gets encrypted (AES-256-CBC) with an entirely random master
key [27]. This master key is encrypted with AES-256-CBC with another key derived
from a SHA-512-hashed passphrase. In the original implementation, the user provides
that passphrase when generating that key and each time he wishes to proceed to a trans-

7

seed,skatt,pinuser

Dongle

pkatt ,pkm

API

get firmware version()

RES �→ frmwVer
RES

get wallet public key(bipDeratt1, findexatt1, lindexatt1)

IF (bipDerpkatt1 ,findexpkatt1 , lindexpkatt1)
RES �→ pkatt1

RES

new blob
get device attestation(blob)

Sigatt �→ sign((blob, frmwVer),skatt)
RES �→ {Sigatt ,attId,attDer

frmwVer,modes,currentMode}
RES

get firmware version()

RES �→ frmwVer
RES

verify(Sigatt, pkatt)
check(firmwVer)

Fig. 1: The Nano Alive Protocol.

seed,skatt,pinuser

Dongle

pkatt ,pkm,pin

API

verify(pin)

IF pinuser = pin RES �→ OK
RES

set operation mode(secFac, opMode)

IF secFac = 00 enable �→ False
else enable �→ True
IF opMode = 01 currentMode �→ standard
else currentmode �→ relaxed
RES �→ OK

RES

new m
sign(bipDerauth, findexauth,lindexauth, m)

IF(bipDerskauth ,findexskauth ,lindexskauth)
RES �→ OK

RES

sign(pin)

IF pinuser = pin
Sigauth �→ sign(m,skauth)
RES �→ Sigauth

RES

get wallet public key(bipDerauth, findexauth,lindexauth)

IF (bipDerpkauth , findexpkauth , lindexpkauth)
RES �→ pkauth

RES

verify(Sigauth, pkauth)

get wallet public key(bipDerkp, findexkp,lindexkp)

IF (bipDerpkkp , findexpkkp , lindexpkkp)
RES �→ pku

RES

Fig. 2: The Nano Login Protocol.

action. LEDGER wallets use pkkp as a passphrase to generate that encryption key.
(v) {skauth ,pkauth}: signature/verification keypair for the dongle-API authentication.

LEDGER dongles do not follow the common smart-card file structure: instead of
supporting dedicated and elementary files, the keys are stored in a tree-like structure
starting from the master key-pair and are referenced according to the corresponding
BIP32 derivation parameters: (1) the number of derivations bipDer , (2) the first deriva-
tion index findex and (3) the last derivation index, lindex .

Dongle Alive Protocol. Ledger Nano: The protocol consists of four message requests
with which the API checks the integrity of the dongle’s firmware through an attes-
tation check: the API requests the dongle to sign a random blob concatenated with
the firmware version frmwVer under a manufacturer key skatt . The exact steps are:
(a) The API retrieves the dongle’s firmware version frmwVer . (b) The API retrieves
pkatt . (c) The API sends blob to the dongle and retrieves the signature Sigatt of the
blob concatenated to the firmware version frmwVer , the id of the attestation key attId ,
frmwVer and the operation modes and currentMode. (d) The API retrieves again
frmwVer and verifies Sigatt . The state transition diagram of the protocol can be found
in Figure 1.

Ledger Nano S: The API retrieves pkatt , the dongle’s firmware version frmwVer
in plaintext, sets the currency and retrieves the keys pkauth , pkkp . The Nano S protocol
does not include the attestation authentication.

Login Protocol. Ledger Nano: The Login Protocol (Figure 2) establishes an authen-
ticated session by which the user gains access to the dongle and, consequently, to the

8

skatt

Dongle

pkatt

API

new seed, pin
setup(pin, seed, genKey)

pinuser �→ pin
IF genKey

skm �→ g(h(seed))
RES �→ OK

RES

set operation mode(secFac, opMode)

IF secFac = 00 enable �→ False
else enable �→ True
IF opMode = 01 currentMode �→ standard
else currentMode �→ relaxed
RES �→ OK RES

. . .

get wallet public key(bipDer1, findex1,lindex1)

IF (bipDerpk1 ,findexpk1 , lindexpk1)
RES �→ pk1c

RES

alive protocol

login protocol

get wallet public key(bipDerm, findexm,lindexm)

IF (bipDerpkm ,findexpkm , lindexpkm)
RES �→ pkm

RES

get wallet public key(bipDeru, findexu, lindexu)

IF (bipDerpku ,findexpku , lindexpku)
RES �→ pku

RES

Fig. 3: The Nano Setup Protocol.

seed,skatt,pinuser

Dongle

pkatt ,pkm,pin

API

get trusted input(v, ic)

T1 7→ {v, ic}
RES 7→ OK

RES

. . .

get trusted input(bt)

T5 7→ (T4 ∪bt)
Sigt 7→ sign(T5 ,skt)
RES 7→ {Sigt ,oc,amountt}

RES

get wallet public key(bipDert , findext ,lindext)

IF (bipDerpkt , findexpkt ,lindexpkt)
RES 7→ pkt

RES

untrusted hash transaction input start(v, ic)

P1 7→ (v, ic)
RES 7→ OK

RES

. . .

untrusted hash transaction input finalize(
addrp, amountp,feesp, bibDerc, findexc, lindexc)

P4 7→ (P3 ∪{addrp,amountp , feesp})
c 7→ amountt – (amountp + feesp)
IF (bibDerpkc ,findexpkc , lindexpkc)

new secFC
RES 7→ {c,addrp,amountp, feesp,

pkc,secFC}
RES

new secFR

untrusted hash sign(bibDert , findext , lindext , secFR)

IF (bibDerskt ,findexskt , lindexskt)
IF a(addrp,secFC) = secFR

Sigp 7→ sign(hash(P4),skt)
RES 7→ Sigp

RES

Fig. 4: The Nano Payment Protocol.

wallet. In contrary to Nano S in which no communication is involved (the user authen-
ticates directly from the device’s surface), the protocol consists of six messages, with
the main operations being: (a) user pin verification, (b) dongle authenticity verification
via a signature check, and (c) retrieval of wallet-related keys. The API also enables or
disables second-factor authentication for payments and configures the wallet’s opera-
tion modes. The supported modes are: (i) standard, the default, which allows standard
Bitcoin scripts (addresses staring with 1) or P2PSH scripts (addresses staring with 3)
and a single change address. At the beginning of the transaction the user is shown the
amount to pay, the change, and any fees. (ii) relaxed, which allows arbitrary outputs to
be authorised. At the beginning of a transaction the user is shown the amount to pay.
(iii) server, allowing arbitrary outputs to be authorised but the transactions are con-
trolled by a number of parameters.e.g., maximum total of transactions. (iv) developer,
allowing arbitrary data to be signed. The steps of the protocol are: (a) The API sends
the user’s pin to the dongle. (b) Upon pin verification the API sets the second factor au-
thentication (SecFac) and wallet operation (opMode) modes. (c) The API requests the
dongle to sign a random message m with key skauth and retrieves Sigauth by sending
pin . (d) The API retrieves pkauth and verifies Sigauth . (e) The API retrieves pkkp .

Setup Protocol. Ledger Nano: The setup process begins API-side. After selecting a
PIN, the user is given a 24-word passphrase which corresponds to the wallet’s seed.
After the user has confirmed the correct passphrase by providing the words that the
API has requested, API-side initialisation is done. Then, the dongle-side setup begins.

9

The main operations of the Setup protocol (due to space limitation Figure 3 presents
only the exchanged messages that are exploited by our attacks), are: user pin and seed
initialisation, and the keyboard and operations mode setup. During initialisation, the
API also retrieves the master public key pkm , and the first derived public key pk1. The
message flow is the following: (a) The API sets up a new pin and seed and requests
the generation of {skm ,pkm}. (b) The API requests from the dongle to sign frmwVer
concatenated to a random blob using the key skatt . (c) The API verifies the pin . (d) The
API retrieves pk1. (e) The Dongle Alive Protocol takes place. (f) The Login Protocol
takes place. (g) The API retrieves pkm and some extra unidentified key ku .

Ledger Nano S: Initialisation is performed dongle-side. The user is shown the 24-
word mnemonic and the first time the dongle connects to the API, it sends pkm .

Payment Protocol. Both Ledger Nano and Nano S use a second factor authentication
mechanism to ensure that transactions are not tampered, with both implementations re-
quiring the user’s confirmation of the payment address. In Ledger Nano the second fac-
tor authentication is of the form of a challenge-response, based on a 58-character-pairs
security card the user is provided with. Each time the dongle is requested to process a
payment, it presents the user with a challenge secFC consisting of four indexes of the
payment address. The user responds to that challenge with the corresponding charac-
ters from the security card, secFR. Only if secFR is correct, will the dongle continue
processing the transaction. Nano S also requires user interaction to process a transac-
tion: before signing the transaction it displays part of the payment address, the payment
amount and the fees on its screen. Only if the user confirms the transaction data by
pressing the OK button, the dongle will sign the signature.

LEDGER implements a proprietary Segregated Witness by enforcing the API to send
a detailed description of the inputs before the payment processing: the API forms a
pseudo transaction block which has only the inputs, and sends it to the dongle, through
a set of trusted_input commands. The dongle parses the block (bytewise concate-
nation) and returns its signature Sigi . When the API creates the actual transaction, it
will use Sigi to define the corresponding input.

Ledger Nano: The protocol, shown in Figure 4, is as follows: (a) The API sends
to the dongle the available funds through sets of get_trusted_input commands.
The inputs are sent in the form of pseudo transactions (following the specification in
Table 2): one for each input. The number of get_trusted_input command sets is
equal to the addresses (ti , i ≥ 1) with available funds. When the dongle has successfully
received block t for a given input, it signs it and returns the signature Sigt , the output in-
dex and the amount. (b) The API retrieves pkt for input t . (c) The API creates the actual
transaction block (Table 2), requested by the user, by sending the inputs Sigt through
sets of untrusted_hash_transaction_input_start commands, each set corre-
sponding to a single input. Then, outputs, i.e., the payment address addrp , the payment
amount amountp , the fees feesp and the change key pkc parameters (bipDerc , findexc ,
lindexc), are sent via a untrusted_hash_transaction_input_finalize com-
mand. (d) The dongle calculates the remaining balance c, selects the authentication
bytes secFC sends back to the API a confirmation of the payment details, c, pkc and
secFC . (e) The API requests from the dongle to sign the transaction with skt by send-

10

ing the user’s validation code, secFR. (f) The dongle checks secFR against secFC and
addrp and, if it is correct, it computes and returns the transaction signature Sigt .

Ledger Nano S: The Payment proceeds as presented in Figure 4 with a few differ-
ences: (a) The API starts the transaction by retrieving the balance address, pkc , via a
get_wallet_public_key command. (b) The API sends pkc back to the dongle via
the untrusted_hash_transaction_input_finalize command. (c) There is no
second factor authentication asked by the dongle, or sent by the API.

4 Attacks

a. Direct wallet attacks
a.1 access to the master

private key skm ;
a.2 access to the key pool

encryption key;
a.3 unauthorised access to

the wallet;
a.4 alter the wallet

security properties.

b. Transaction attacks
b.1 tamper the payment

amount;
b.2 tamper the payment

address;
b.3 denial of service.

c. Account privacy attacks
c.1 account traceability.

Table 4: Attack categories

A Bitcoin wallet should provide
high levels of security and pri-
vacy for the user, while also be-
ing easy to use. We therefore con-
sider a wallet to be secure when
it provides: (a) guarantees against
tampering, (b) a secure environ-
ment for transaction processing,
and (c) account privacy.

Our threat model assumes per-
fect cryptography and considers an adversary who has complete control over the com-
munication layer: he can eavesdrop and manipulate the communication by deleting,
inserting and altering the messages. We define the categories of possible threats to any
Bitcoin wallets shown in Table 4.

4.1 Attacks in practice

We show how we were able to perform attacks from the APDU layer, by bypassing the
restrictions of the API. Some attacks are passive, i.e., they only require observing the
communication channel; while others are active i.e., involve relaying and altering the
exchanged messages. Some example traces of the attacks can be found in Appendix.
a.1: Access to Master Private Key skm . Access to the wallet’s seed s is synonymous
to having access to skm . During the Setup protocol execution we were able to sniff
s which was sent in plaintext from the API to the dongle. By using the BIP32 deriva-
tion function we regenerated skm and all children keys. The API having access to s and
transmission of s in plaintext defeats the purpose of cold storage. The attacker may gain
access to the Setup protocol, and consequently to s , by forcing the dongle’s reinitialisa-
tion. Mounting Attack a.1: Given a valid pin p, a replay of the session {verify(p ′)→
error, verify(p ′)→ error, verify(p’)→ error} in which p ′ 6= p results into the
dongle entering a lock state and forcing re-initialisation. The attacker has now access to
the Setup protocol and can either acquire s or inject his own seed sa .
a.2: Access to Key-Pool Encryption Key. Unauthorized access to key-pool implies
loss of privacy and account treacability as the adversary gains insight on the addresses
that the account uses/has used. During a Login session the passphrase that is used to

11

create the key-pool key, which is the key pkkp , is transmitted in plaintext after a
get_wallet_public_key command.
a.3: Unauthorised Access to the Wallet. A general requirement in Bitcoin wallets is to
be used only by users that have the credentials, e.g., the pin. Our analysis showed that at
each Login protocol execution the pin is sent in plaintext, (though only in the LEDGER
Nano case), via a verify command, making the pin vulnerable to eavesdropping.
a.4: Alter the Wallet Security Properties. A second factor authentication mecha-
nism secures each transaction: the user has to verify random characters of the pay-
ment address. The following attack changes the security parameters of the dongle and
disables that mechanism. Mounting Attack a.4: Perform the following steps: (a) Re-
play a legit Setup session, {setup(p,s)→ OK, . . . , set_operation_mode(enable,
standard)→ OK, . . . } (Figure 3), and apply the substitutions (7→):
set_operation_mode(enable 7→ disable, standard 7→ relaxed). (b) In each
Login session, (Figure 2), replay the communication by applying the substitutions (7→):
set_operation(enable 7→ disable, standard 7→ relaxed). (c) In each Pay-
ment session, (Figure 4), replay the communication and apply the substitutions (7→):
i) in untrusted_transaction_input_hash_finalize: response(c,addrp ,
amountp , pkc , no 7→ secFC) where no is the card’s response that no second authen-
tication is required, and secFC are four random characters of the payment address
addrp . ii) untrusted_has_sign(sk_params, secFR 7→ no) where secFR is the
user’s input to secFC and no declares that no secondary authentication took place.
a.4: Learning the Security Card. If the second factor authentication mechanism is
enabled, each transaction requires the user’s input according to a security card. The
dongle requests four characters of the payment address to be verified by providing their
mappings of the security card (58 hexadecimal characters that encode the letters A-W,
a-w and the numbers 0-9). Each Payment session can reveal four new mappings. For
this, 1. the adversary alters secFC 7→ secFC ′ in favour of the character mappings he
does not yet know but that will allow him to correctly compute the response to the
challenge, 2. the adversary returns to the dongle the correct secFR according to the
original challenge secFC . In this way the adversary will learn four new characters in
each Payment protocol execution. And so, after 15 legitimate user initiated payments,
the attacker will have learned all characters of the security card.
b.1-b.2: Transaction Attacks. Given a Payment session an adversary can (a) redirect
the payment destination: addrp and (b) tamper the payment amount: amountp by al-
tering the exchanged messages. Mounting attack b.1-b.2: (a) to redirect the payment
destination apply the following substitutions (7→): untrusted_transaction_input
_hash _finalize(addrp 7→ addr ′p , amountp ,feesp , pkc parameters)→
response(c, addra 7→ addrp , amountp , pkc , secFC). In the command data the orig-
inal payment address addrp is substituted by the attacker’s add ′p . The response is also
relayed so that it contains the original address.
(b) to tamper the payment amount one should apply the following substitutions (7→):
untrusted_ transaction_input_hash_finalize(addrp , amountp 7→ amount ′p ,
feesp , pkc parameters) → response(c′ 7→ c, addrp , amount ′p 7→ amountp , pkc ,
secFC). In the command data the the original payment amount amountp is substituted
by the attacker’s amount ′p whereas in the response data amount ′p is changed back to

12

amountp and the remaining funds c′ is changed to the amount that would result af-
ter the original payment amount. This attack combined with either of the two a.4-type
attacks allows an attacker to have any transaction signed by the dongle, even without
knowledge of the PIN or the master secret key.
b.3: Denial of Service. DoS attacks that target specific Bitcoin Wallet users have be-
come viral, e.g., the DoS attacks on the BitGo wallets that left many users unable to use
their funds. Such attacks target the wallet’s server and consist of sending a huge amount
of requests. Though out of our scope, in the LEDGER wallet side of things, DDoS at-
tacks could also be mounted from the APDU layer by tampering the transaction data in
a way that either the dongle cannot interpret, or that the transaction cannot be verified.
c.1: Account Traceability. Bitcoin is associated with anonymity and is often used by
users who want their actions to be unlinkable. Each transaction results to the genera-
tion of a new key to avoid reusability of old addresses. In HD wallets, like LEDGER,
all public keys are derived from the master public key pkm with the formula pki =
f (pkm + hash(i ,pkm)) where i is the child key index and f the generator function.
As such, access to pkm equals to access to all pki keys and thereby the account be-
comes traceable. pkm can be obtained by eavesdropping a Setup session (which can
be enforced with Attack 4.1) as in both Nano and Nano S is transmitted in plaintext.
However, the account’s activities are also traceable by just eavesdropping the Payment
sessions: at least one pkr (an address with available funds) and probably one change
address pkc (if their available change) are revealed.
Generality of the Attacks. The purpose of our work is to show that it is possible
to attack Bitcoin hardware wallets via the low-level communication. The threat model
we present is hardware/software independent and applicable to all available Bitcoin
wallets. The attacks on the LEDGER wallets aim to prove that Bitcoin transactions are
vulnerable, even if tamper-resistant hardware such as smart-cards are incorporated. Our
work showcases how the API restrictions can be bypassed by relaying the hardware
communication. The same attacks, adapted to meet the criteria of each hardware, can
be applied to every wallet that does not use a secure communication channel i.e., Trezor
and Keepkey. All hardware wallets follow the same abstraction of the Payment protocol;
any plaintext communication is prone to attacks b.1-b.2. Althought they incorporate
a second factor authentication mechanism by enforcing the user’s verification of the
payment data, previous studies have shown that a significant average of 15% of such
verification is usually erroneous.

The privacy issues we address for the LEDGER wallets is an aspect that reflects to
all BIP32 wallets, especially to those that that do not communicate in a secure way.
Currently, all hardware wallets5 transmit the public keys (including the master public
key) in the clear: eavesdropping a single session reveals at least two public keys: the
address with available funds and the address that the remaining balance will be sent to.
Also, whenever the hardware connects to a fresh API, the master public key pkm is sent
in the clear. Access to that key implies access to all children public keys, which makes
eavesdropping that single session sufficient to track the account’s transactions. In any
case, whether the adversary has access to pkm or to its children pki the the flow of the
funds of the given account is linkable.

5 Apart from Digital BitBox whose specifications are not available publicly.

13

5 A Lightweight Fix of the Protocols

The LEDGER wallets, as all other hardware wallets not using a secure communication
channel, fail to prevent MitM attacks. All transaction data is sent in the clear, making
the wallet vulnerable to attacks and account linkability. Encrypting the entire commu-
nication would be an obvious solution to that. However, such strategy requires compu-
tational power, and possible changes to the security architecture of the current wallets.
Additional delays to the transaction processing would be another trade-off. Instead we
propose the symmetric encryption of specific communication parts: those that are prone
to attacks with respect to our threat model. Table 5 summarises what LEDGER wallet
data need to be protected to defend against which attacks. Our fix consists of three
components: 1. the secure pre-setup phase, 2. the authentication and session key estab-
lishment protocol, 3. encryption of sensitive parts.

data a.1 a.2 a.3 a.4 b.1 b.2 b.3 c.1

s

pin × × × × × × ×
secFC ,secFR × × × × ×

opMode × × × × ×
addrp , amountp ,feesp ,c,pkc × × × ×

pk_{m,m+1..,m+n} × × × × × ×

Table 5: LEDGER Data and the Corresponding Attacks.

Secure Environment for
the PIN Exchange. The
PIN needs to be entered
in the hardware before the
initialisation of the wallet
as the PIN is then used to
derive the cryptographic
keys to protect the inter-
actions between the don-
gle and the API. This pro-

cess must proceed in a secure offline environment. This can be achieved either by en-
tering the PIN directly on the trusted user interface of the device (if it is an HID wallet);
or by setting up the PIN on an air-gapped machine, e.g. using a live OS on a USB stick
which will ensure that the OS has and will never be connected to the Internet.

Authentication and session key establishment. This protocol gets executed every
time the API establishes a new session with the dongle. It is responsible for the API/hardware
authentication and the establishment of a fresh session key. A new session is established
whenever the hardware connects to an active API. For the key establishment we pro-
pose Password Authenticated Key Exchange by Juggling protocol (j-PAKE) [14] which
allows bootstrapping high entropy keys from the low-entropy user’s PIN. In that way,
we avoid storing secret data API side, ensure that fresh keys are used in each session
and guarantee the user’s presence at that session. In addition, the j-PAKE protocol al-
lows zero knowledge proof of the PIN which satisfies the authentication prerequisities
of the session. Finally j-PAKE provides guarantees against off-line and on-line dictio-
nary attacks and it satisfies the forward secrecy and known-key security requirements.
J-PAKE, like the Diffie-Hellman key exchange, uses ephemeral values but proceeds in
an additional round in which combines them with the user’s PIN and makes certain
randomisation vectors vanish.

Encryption of sensitive data. Once the session key is established slightly modified
versions of the four LEDGER protocols (Alive, Login, Setup, and Payment) can be exe-
cuted. The four new protocols are derived from the original Ledger protocols as follows.
First a session identifier is established for each execution of each of these protocols.

14

This will be generated dongle side, and transmitted to the API in plaintext. The session
identifier does not need to be confidential, but will need to be fresh and generated by
the dongle to avoid replay attacks. Then dongle and API execute the original proto-
col but encrypting under the current session key the sensitive data identified previously
(Table 5). The computed ciphertexts will all include the established session identifier.
A Message Authentication Code (MAC) is further computed and concatenated to the
chiphertext. The other party will then be able to decrypt and verify the encrypted parts.

6 Discussion

Although the security of financial related hardware in other areas has always attracted
a lot of attention, eg., the Chip and PIN systems [23], Bitcoin-related hardware has not
been extensively studied before (apart from [9]). Relying on the high levels of security
that the Bitcoin protocol offers is not enough to guarantee safe transactions. Lack of a
standard that defines the properties of the Bitcoin wallets leads to security misconcep-
tions and ad-hoc implementations that hide vulnerabilities. Our work, to the best of our
knowledge, is the first effort to address security aspects of Bitcoin wallets and stress the
importance of securing the implementations of low-level communications. We chose to
analyse smart-card based wallets as they are perceived to be the most secure and tamper
resilient means for key management. However, the core idea of the attacks is general
and applies to other hardware wallets of different technology.

In this paper we extract and analyse the protocols that are hidden behind the LEDGER
wallets, the only available smart-card based solutions. Our work includes the analysis of
both standard and HID dongles. We identify and categorise all possible vulnerabilities
for Bitcoin wallets and we introduce a general threat model. We then use that model to
analyse the LEDGER protocols. Our work concluded that the LEDGER implementations
are vulnerable to a set of attacks that target the wallet itself as well as the Bitcoin trans-
actions. Finally, we propose a lightweight fix, based on the j-PAKE protocol, which can
easily be adapted by any wallet and efficiently prevents any active or passive attack.
Attacking the LEDGER wallets is just an example, whereas the same methodology can
be easily adopted in other technologies. Our work does not aim at proving the specific
wallets insecure, but rather to showcase the importance of ensuring a secure low-level
implementation even if the higher levels provide guarantees.

References

1. E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating user privacy
in bitcoin. In Financial Cryptography and Data Security - 17th International Conference,
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers, pages 34–51, 2013.

2. T. Bamert, C. Decker, R. Wattenhofer, and S. Welten. BlueWallet: The Secure Bitcoin Wallet,
pages 65–80. 2014.

3. S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make bitcoin a better
currency. In Financial Cryptography and Data Security - 16th International Conference,
FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, pages
399–414, 2012.

15

4. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In Annual
International Cryptology Conference, pages 513–525, 1997.

5. Bitcoin ewallet vanishes from internet. http://www.tribbleagency.com/?p=8133.
6. Bitcoin Protocol Documentation. https://en.bitcoin.it/wiki/Protocol%

5Fdocumentation.
7. Bitcoinmagazine. https://bitcoinmagazine.com/articles/ozcoin-hacked-

stolen-funds-seized-and-returned-by-strongcoin-1366822516, 2013.
8. C. Bozzato, R. Focardi, F. Palmarini, and G. Steel. Apdu-level attacks in pkcs# 11 devices.

In International Symposium on Research in Attacks, Intrusions, and Defenses, pages 97–117,
2016.

9. J. Datko, C. Quartier, and K. Belyayev. Breaking bitcoin hardware wallets. DEFCON 2017.
10. G. De Koning Gans and J. De Ruiter. The smartlogic tool: Analysing and testing smart

card protocols. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, pages 864–871, 2012.

11. C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In European
Symposium on Research in Computer Security, pages 313–326. Springer, 2014.

12. D. Genkin, A. Shamir, and E. Tromer. Rsa key extraction via low-bandwidth acoustic crypt-
analysis. In International Cryptology Conference, pages 444–461, 2014.

13. A. Gkaniatsou, F. McNeill, A. Bundy, G. Steel, R. Focardi, and C. Bozzato. Getting to know
your card: reverse-engineering the smart-card application protocol data unit. In Proceedings
of the 31st Annual Computer Security Applications Conference, pages 441–450, 2015.

14. F. Hao and P. Ryan. J-PAKE: Authenticated Key Exchange without PKI, pages 192–206.
2010.

15. J. Herrera-Joancomartí. Research and challenges on bitcoin anonymity. In Data Privacy
Management, Autonomous Spontaneous Security, and Security Assurance - 9th International
Workshop, DPM 2014, 7th International Workshop, SETOP 2014, and 3rd International
Workshop, QASA 2014, Wroclaw, Poland, September 10-11, 2014. Revised Selected Papers,
pages 3–16, 2014.

16. S. Higgins. http://www.coindesk.com/unconfirmed-report-5-million-
bitstamp-bitcoin-exchange, 2015.

17. H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H. Wang, H. Kikuchi, A. Perrig, H.-M. Sun,
and B.-Y. Yang. A study of user-friendly hash comparison schemes. In Computer Security
Applications Conference, 2009. ACSAC’09. Annual, pages 105–114. IEEE, 2009.

18. D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy, S. Savage,
N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: Monetizing stolen cycles. In 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2014, 2014.

19. G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in bitcoin. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 906–917, 2012.

20. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Annual International Cryp-
tology Conference, pages 388–397, 1999.

21. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other sys-
tems. In Annual International Cryptology Conference, pages 104–113, 1996.

22. I.-K. Lim, Y.-H. Kim, J.-G. Lee, J.-P. Lee, H. Nam-Gung, and J.-K. Lee. The Analysis and
Countermeasures on Security Breach of Bitcoin, pages 720–732. 2014.

23. S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond. Chip and PIN is broken. In 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, pages 433–446, 2010.

24. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf.

16

http://www.tribbleagency.com/?p=8133
https://en.bitcoin.it/wiki/Protocol%5Fdocumentation
https://en.bitcoin.it/wiki/Protocol%5Fdocumentation
https://bitcoinmagazine.com/articles/ozcoin-hacked-stolen-funds-seized-and-returned-by-strongcoin-1366822516
https://bitcoinmagazine.com/articles/ozcoin-hacked-stolen-funds-seized-and-returned-by-strongcoin-1366822516
http://www.coindesk.com/unconfirmed-report-5-million-bitstamp-bitcoin-exchange
http://www.coindesk.com/unconfirmed-report-5-million-bitstamp-bitcoin-exchange
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

25. K. Poulsen. New malware steals your bitcoin. https:
//www.wired.com/2011/06/bitcoin-malware, 2011.

26. M. Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009, 2014.
27. The Bitcoin Wiki. https://en.bitcoin.it/wiki/Wallet%5Fencryption.
28. The Bitcoin Wiki. https://en.bitcoin.it/wiki, 2014.
29. M. Turuani, T. Voegtlin, and M. Rusinowitch. Automated verification of electrum wallet. In

Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, pages 27–42, 2016.

30. E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing methods. In
International Conference on Financial Cryptography and Data Security, pages 307–324.
Springer, 2007.

31. P. Wuille. Dealing with maellability. Online specification for BIP62, 2014.
32. P. Wuille. Hierarchical deterministic wallets. Online specification for BIP32, 2017.

A Appendix

A.1 Example Communication Trace

As an example, we provide the trace that was generated for the following transaction:

Transaction Id 92d30a91b45d6ab528af12f3a9c0701e01f67348a257ed50362439a2ee8274e7
Input addresses 1 113biVTVQk73Eem1UYYn9YcrPVrxp6xeVc

2 15DpocdQpwXeUp9Ccf2Nz9AQ9jKp9U5VdZ
Payment address 1GocNQ4Q8BtzacpHQiGLWk9vNppoq6Lh8W
Payment amount 0.00813844
Change address 1PmXm9UcAgDBp5i3SvqD3SfdKChfWthH4W

We only provide the traces of the commands of Figure 4 so as not to overwhelm.

1. get_trusted_input: e042000009000000010100000001
2. response: 9000
3. get_trusted_input: e04280000400000000
4. response: 32008ed5f038879105a5778cdacee02ca43f21bcbbd66cd647add3db69dd3222b9c3968d000

0000078710d00000000009132801b579e659b
5. get_wallet_public_key: e040000015058000002c8000000080000000000000000000000c
6. response: 410441ec4b255d40010284f117d8105456a268cd9536ca5ca3d3016bf6d21902e5dc4bf9b22

4b5cb2379b5c2b4a47044862d42c6e5b14daf22939fec8023c83ac519223131336269565456516b37334
5656d315559596e3959637250567278703678655663da55cec9398694400832d6af2426c057addc73438
efa016f6f9232735ee6b1a8

7. get_wallet_public_key: e040000015058000002c80000000800000000000000100000012
8. response: 41043f07a649a72651f10d5728b7f848ee879fb3b263ddd653b51b563a051f138fa3e35f5f6

d794a2621fbf0493d6af5c2b300734086fa0ebbe411f11017b1989bdd22313544706f636451707758655
57039436366324e7a394151396a4b7039553556645a9bf32153ef7f646d1d1991382932bc915d671ddc3
640ef8da3eb54877191e559

9. untrusted_hash_transaction_input_start: e0440000050100000002
10. response: 9000
11. untrusted_hash_transaction_input_finalize: e0460200482231476f634e5134513842747a616370

485169474c576b39764e70706f71364c683857000000000000d6d80000000000004508058000002c8000
0000800000000000000100000013

12. response: 4502d8d60000000000001976a914ad5a8ba5325b4b836c49b09797cbb83744a7a2f588ac146
b0c00000000001976a914f9bebf6735e688877e409cd494ad820b344dd76e88ac03040405121e47646f8
13e5dfd4fbc72e6698cc40a67a980bccbe7881c2e40ac6fec4fbcda20d980ec3a67445e48dad870ee58d
006745fdf953138be5fb0570e679f512c36ed

13. untrusted_hash_sign: e04800001f058000002c8000000080000000000000000000000c040406060200
00000001

14. response: 3044022033128d0d576487e2e0c5892c0915564a6a5f119e698c033262d660527943a16d022
009caa037703d9a3dbf7eec4cecca08bf33b3b9a18ef929a810f8faf6ab0f1c7a01

17

https://www.wired.com/2011/06/bitcoin-malware
https://www.wired.com/2011/06/bitcoin-malware
https://en.bitcoin.it/wiki/Wallet%5Fencryption
https://en.bitcoin.it/wiki

Steps APDU traces

Block the dongle • verify(p′): 02200000433333333
• verify(p′): 02200000433333333
• verify(p′): 02200000433333333

Replay a Setup Session • setup(p,s): e02000004c020a00050431343234 00408c3937fafb22e5f4979e90afe0b912cc05d
92b9910c622887f61b30d9814f714df2dd5ada8cc5cd663e998dec1cc55915377352cf6949a20ba4440
39219efd6900
• set_keyboard: e028000077000000000000000000000000760f00d4ffffffc7000000782c1e342
0212224342627252e362d3738271e1f202122232425263333362e37381f0405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d2f3130232d350405060708090a0b0c0d0e0f1011121314151617181
91a1b1c1d2f313035
• get_device_attestation: e0c200000861255ccee7f8c72d
• set_operation: e02600000102
. . .

Table 6: Attack a.4: Trace of disabling the second factor authentication during Setup

A.2 Active Attacks

a.4: Alter the Wallet Security Properties. The attack requires sending the wrong
pin p ′ three consecutive times and then tampering the set_operation command. A
sample trace with the breakdown of the steps and their corresponding commands is
given in Table 6; we underline the important pieces of the exchahge.
b.1-.b2: Transaction Attacks. The structure of untrusted_hash_transaction
_input_finalize is:

command e046020048
length of payment address 22
payment address addrp 314e3371757233596565334b664e74436a4677756e346f366f4c324

478686747796f
payment amount amountp 0000000000005305
fees feesp 0000000000001d60
change address BIP32 parameters 058000002c800000008000000000000001000000
second authentication status (true/false) 02

and the structure of the response data that we are interested in is:

payment amount amountp 03b1000000000000
hash160 of addrp f1253f0463e5877c5e8bb3f34e7abfb335023ee1
change c 0553000000000000
hash160 change address addrc e6e44d66125327341d6abb71e0702a4ea0537437

Depending on the attack we want to perform the corresponding data part needs to
be altered. For example, to change the payment address from 163WPEeTHjvFsUfx1U
bDPXK92eRmqXQrGA to 113biVTVQk73Eem1UYYn9YcrPVrxp6xeVc, we tamper the
original command:
e046020048223136335750456554486a7646735566783155624450584b393265526d715851724741000000000

00027100000000000001a9a058000002c80000000800000000000000100000000

to the command:
e046020048223131336269565456516b373345656d315559596e3959637250567278703678655663000000000

00027100000000000001a9a058000002c80000000800000000000000100000000

where we underline the relevant parts; similarly for the response.
Learning the Security Card. The attacker gains access to the keycard mappings,
secFR, via the untrusted_hash_sign command, e.g., e04800001f058000002c8
0000000800000000000000000000001040f090a02 0000000001.

18

	Low-Level Attacks in Bitcoin Wallets

