

Edinburgh Research Explorer

Timing analysis of synchronous programs using WCRT Algebra:
Scalability through abstraction

Citation for published version:
Wang, J, Mendler, M, Roop, PS & Bodin, B 2017, 'Timing analysis of synchronous programs using WCRT
Algebra: Scalability through abstraction' ACM Transactions on Embedded Computing Systems. DOI:
10.1145/3126520

Digital Object Identifier (DOI):
10.1145/3126520

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Embedded Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3126520
https://www.research.ed.ac.uk/portal/en/publications/timing-analysis-of-synchronous-programs-using-wcrt-algebra-scalability-through-abstraction(53070031-bde1-41d1-91c5-ef5b834b6728).html

0

.
Timing analysis of synchronous programs using WCRT
Algebra: Scalability through abstraction

JIAJIE WANG, University of Auckland
MICHAEL MENDLER∗, University of Bamberg
PARTHA ROOP†, University of Auckland
BRUNO BODIN, University of Edinburgh

Synchronous languages are ideal for designing safety-critical systems. Static Worst-Case Reaction
Time (WCRT) analysis is an essential component in the design flow that ensures the real-time
requirements are met. There are a few approaches for WCRT analysis, and the most versatile of all
is explicit path enumeration. However, as synchronous programs are highly concurrent, techniques
based on this approach, such as model checking, suffer from state explosion as the number of threads
increases. One observation on this problem is that these existing techniques analyse the program
by enumerating a functionally equivalent automaton while WCRT is a non-functional property.
This mismatch potentially causes algorithm-induced state explosion. In this paper, we propose a
WCRT analysis technique based on the notion of timing equivalence, expressed using WCRT algebra.
WCRT algebra can effectively capture the timing behaviour of a synchronous program by converting
its intermediate representation Timed Concurrent Control Flow Graph (TCCFG) into a Tick Cost
Automaton (TCA), a minimal automaton that is timing equivalent to the original program. Then
the WCRT is computed over the TCA. We have implemented our approach and benchmarked it
against state-of-the-art WCRT analysis techniques. The results show that the WCRT algebra is 3.5
times faster on average than the fastest published technique.

Additional Key Words and Phrases: WCRT analysis, synchronous languages, timing algebra

ACM Reference format:
JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin. 2017. Timing analysis of synchronous
programs using WCRT Algebra: Scalability through abstraction. ACM Trans. Embedd. Comput.
Syst. 0, 0, Article 0 (2017), 21 pages.
https://doi.org/0000001.0000001

∗The author is supported under grant PRETSY2 by the German Research Foundation DFG-1427/6-2.
†The author was supported under under grant PRETSY2 by the German Research Foundation DFG-1427/6-2
and research and study leave from Auckland University

This article was presented in the International Conference EMSOFT 2017 and appears as part of the
ESWEEK-TECS special issue.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing
Machinery.
1539-9087/2017/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

1 INTRODUCTION
Safety-critical embedded systems require both functional and timing correctness. Synchronous
languages have been a paradigm of choice for the design of such applications, particularly
in aviation. This paper considers the recently developed Precision Timed C (PRET-C)
language [5], which combines a subset of C with synchronous constructs, in order to
guarantee determinism, reactivity, and thread-safe communications.

In synchronous languages, time progresses in logical discrete instants called ticks. These
identify synchronisation points between threads and events. In each tick, the environment is
sampled at the beginning, then the computation takes place, and the results are emitted at
the end. Thus, the length of a tick defines the system’s reaction time to external events. To
guarantee that a system will always react on time, we need to ensure this reaction time is
short relative to the environment. This necessitates the computation of the worst-case tick
length, also known as Worst-Case Reaction Time (WCRT) analysis.

WCRT analysis is no trivial task. The most commonly used approach is implicit path
enumeration [8, 11, 16]. This approach abstracts explicit program execution as sets, which
subsequently enables the program to be modelled using Integer Linear Programming (ILP).
This abstraction greatly enhances the scalability of the approach. However, it is also
conventionally known to be less precise than other approaches.

In contrast, explicit path enumeration preserves the semantics of programs during the
analysis. The advantage of this approach is that it can be easily extended for value tracking,
thus computing a precise WCRT, which is very difficult to achieve with implicit path
enumeration. All existing model checking and reachability based techniques follow this
approach [4, 10]. However, with explicit path enumeration there is a high risk of state
explosion when concurrent threads are considered.

There is also a hybrid approach which attempts to strike a balance between implicit
and explicit path enumeration [9, 13]. The idea is to use ILP as a baseline and use model
checking [13] or reachability [9] analysis to enhance the precision. However, the results
are not very promising since the analysis time is mostly dominated by the explicit path
enumeration.

Apart from actual techniques, there are also theories developed for WCRT analysis.
Recently a timed semantics of synchronous programs is developed in [12] for the timing
analysis of an intermediate-level representation of the SCCharts language [15], called input-
output boolean tick cost automata (IO-BTCA). This theoretical work addresses the use of min-
max-plus algebra for obtaining sound abstractions of IO-BTCA, ranging from modelling of
exact signal-dependent behaviour to fully signal-abstract models. However, [12] only treats flat
parallel compositions of IO-BTCAs. It cannot handle hierarchy and preemption. Furthermore,
it also lacks methodologies for transforming between the Control Flow Graph (CFG) and
IO-BTCAs, which is necessary for an actual implementation.

In this paper, we propose a novel and practical WCRT analysis technique which combines
the benefits of the explicit path enumeration approach with those of the algebraic setting.
Existing explicit path enumeration techniques compute the WCRT by first constructing a
functionally equivalent automaton from the program, and then enumerating its states [4,
9, 10]. While this is intuitive, it suffers from the state explosion problem. In the proposed
technique, we exploit the abstraction power of timing equivalence in min-max-plus algebra
in order to reduce the effects of state space explosion significantly.

The contributions of this work are the following:

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:3

• We propose Tick Cost Automata (TCA) for WCRT analysis based on the idea of timing
equivalence and formalise their behavioural semantics using min-max-plus algebra,
which we term WCRT algebra. This provides a sound and more direct mathematical
formulation of WCRT analysis.

• We develop a transformation of Timed Concurrent Control Flow Graph (TCCFG)
into Tick-Cost Automaton (TCA), which allows the TCA to be generated in a fully
structural manner along the hierarchy of the program.

• We implemented a timing simulation based on the WCRT algebra and experimen-
tally compared its performance with the state-of-the art model checking [4] and ILP
based [16] WCRT analysis techniques. On our benchmarks, the results show that our
implementation of WCRT algebra is as precise as the other techniques whilst being
considerably faster.

The remainder of this paper is organised as follows: We first introduce a motivating
example in Sec. 2, then present a brief overview of the intermediate format used for analysis,
called TCCFG, in Sec. 3. Following that, we show our formalisations of TCA and the
proposed WCRT algebra in Sec. 4. The experimental results are reported in Sec. 6. Finally,
we make concluding remarks in Sec. 7.

2 MOTIVATION
The idea of WCRT analysis is to model the program mathematically; in our case, using
automata. For the same program, the automata can be different depending on the per-
spective of the modelling. Since WCRT is a timing property, we model a program from
a timing perspective. The execution of a synchronous program can be considered as a
sequence of ticks {Tick1, Tick2, Tick3, . . . }, and in each tick i the program has a set
of possible execution times {CTicki_1, CTicki_2, . . . } corresponding to different branches
in the program. The maximum execution time of tick i can be defined as CTicki =
max{CTicki_1, CTicki_2, . . . }, and the WCRT is the largest execution time of all the ticks
WCRT = max{CTick1, CTick2, CTick3, . . . }. When programs are executed in parallel, assum-
ing an interleaved (multi-threaded) execution, the timing costs are added to give the cost of
a tick for the composite program. The fact that the maximum over sums is not the same as
the sum over the maxima creates the crucial precision vs efficiency trade-off that we propose
to handle using TCAs. In this section, we will illustrate the idea of TCA using a motivating
example and compare it with the existing techniques.

A1

A2 A3

A4

B1

B2 B3

B4

TA TB

Fig. 1. Motivating example for comparing the proposed and the existing techniques.

Let us consider a synchronous program with two concurrent threads TA∥TB as shown
in Fig. 1. For simplicity, the two threads are identical in structure. Each thread has four
states, with the initial states A1 and B1 respectively. In each tick, threads take exactly one

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:4 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

transition, then wait for each other. The WCRT of this program is the maximal possible
timing cost in any reachable tick in the execution of TA∥TB. We write this timing value as
WCRT(TA∥TB).

For Fig. 1 we can break down the computation of WCRT using the operators maximum ⊕
and addition ⊙, where X⊕Y = max(X,Y) and X⊙Y = X+Y . The operator ⊙ can distribute
over ⊕, e. g., X ⊙ (Y ⊕ Z) = X +max(Y,Z) = max(X + Y,X + Z) = (X ⊙ Y)⊕ (X ⊙ Z).
However, ⊕ cannot distribute over ⊙. E. g., 15⊕ (5⊙ 10) = 15 and (15⊕ 5)⊙ (15⊕ 10) = 30.
This is known as min-max-plus algebra, which will be presented in more detail in Sec. 4.

A1,B1

A2,B2 A2,B3 A3,B2 A3,B3

A4,B4

Fig. 2. Existing technique flatten the functional composition to obtain a single automaton.

• Existing techniques based on explicit path enumeration. The existing techniques compute
the WCRT by flattening the functional composition into a single automaton R ∼= TA∥TB
and then computing WCRT(R) from it. This flattened automaton R is shown in Fig. 2. It
captures all the possible reachable execution states. Initially, the program executes A1 and
B1 concurrently. Thereafter, and the program reaches one of four possible states. Finally, the
program executes A4 and B4, and repeats. Computing WCRT(R) is to find the reachable
program state which has the longest execution time:

WCRT = (A1⊙B1)⊕ (A2⊙B2)⊕ (A2⊙B3)⊕ (A3⊙B2)⊕ (A3⊙B3)⊕ (A4⊙B4).

(1)

For this example, existing techniques require 11 operations to compute the WCRT, and
the number of operations increases exponentially with the number of threads. This is a
well-known aspect of explicit path enumeration. If we extend the motivating example with n
threads of identical structure, the number of required operations is n2n + 2n− 1.

• The existing max-plus approach. The state explosion is a result of the concurrent
composition of threads. This can be mitigated by abstracting the threads before composing
them. One well-known technique is the max-plus approach [6], which abstracts the threads
into a single value before composition, i. e., estimating WCRT(TA∥TB) as WCRT(TA) +
WCRT(TB). The computation is:

WCRT = (A1⊕A2⊕A3⊕A4)⊙ (B1⊕B2⊕B3⊕B4). (2)

While this abstraction greatly reduces the number of operations (4n− 1 for n threads), the
modelling accuracy is also reduced. For example, if WCRT(TA) = A1 and WCRT(TB) = B2,
then WCRT(TA∥TB) is estimated as A1⊙B2. As shown in Fig. 2, this combination of states
is infeasible. Thus, it is an overestimate of WCRT(TA∥TB). This phenomenon of infeasible
states induced by the program structure is known as the tick alignment problem [4].

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:5

• The proposed technique using TCAs. It is a good idea to abstract threads before
composition, however, the problem is how to preserve sufficient tick alignment to determine
the exact value of WCRT(TA∥TB). We propose to achieve this by considering the execution
of a thread from a timing perspective.

An automaton is WCRT equivalent to the original program if it produces exactly the
same timing sequence {CTick1, CTick2, CTick3, . . . }. Therefore, we can construct a minimal
WCRT equivalent automaton of the program, and compute the WCRT from it. We call
this automaton a Tick-Cost Automaton (TCA). A TCA representation can be smaller and
simpler than the control flow of the program, since only one state is needed for each tick,
therefore the computation of WCRT can be much quicker.

A1

A2 A3

A4

B1

B2 B3

B4

Fig. 3. Converting TA and TB into TCAs, and composing them to compute the WCRT.

The TCA of a thread can be derived using simple algebra. Fig. 3 shows the TCAs of the
threads TA and TB. Each TCA has three states, with costs shown inside. If we compose
these two TCA using state-wise additions, we obtain the TCA of the program, which also
has three states. The WCRT computation using TCA is as follows:

TA TB TA ∥ TB
Tick 1 A1 B1 A1⊙B1
Tick 2 A2⊕A3 B2⊕B3 (A2⊕A3)⊙ (B2⊕B3)
Tick 3 A4 B4 A4⊙B4

. . . (Repeat) (Repeat) (Repeat)

WCRT = (A1⊙B1)⊕ ((A2⊕A3)⊙ (B2⊕B3))⊕ (A4⊙B4). (3)

By analysing the program from a timing perspective, we observe that the timing repeats
itself every three ticks. The proposed technique can compute the WCRT from the TCA
using only seven operations. More importantly, compared to the existing techniques, we do
not lose any precision. If we expand the parentheses of the second term in Computation (3)
using the distribution law, we obtain the exact same value as Computation (1). Finally, if
we extend the example with n threads of identical structure, the number of operations is
4n− 1, which is the same as Computation (2).

2.1 Limitations
The motivating example demonstrates how the proposed technique can be as fast as the
max-plus approach while being mathematically equivalent to the more precise explicit
path enumeration. However, it has two limitations. First, the efficient composition of
concurrent threads relies on abstracting signals. Signals are a common mechanism used in

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:6 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

many synchronous languages for communication between threads. Most existing explicit
path enumeration techniques are capable of modelling signals. At this stage, the proposed
technique falls short in this regard. However, even with signal abstraction, the tick alignment
problem is still challenging enough for the existing technique to achieve practical analysis
time, as shown in [16] and by our benchmarking in Sec. 6.

The second limitation is that the proposed technique does not solve the state explosion
problem for all cases. If two TCAs cycle through a prime number of states, their composition
is the multiplication of the two prime numbers, which will result in the same number of
operations as the existing techniques. For example, consider two TCAs with three and five
states respectively. In this case, this composed TCA will have 15 states, i. e., every state
of TCA1 will align with every other states in TCA2. Hence, the number of the required
operations will be equal to that of the existing techniques. However, we believe such cases
are rare in normal programs, thus we can benefit from the abstraction most of the time.

ReactiveInput(int ,In1 ,0);
ReactiveInput(int ,In2 ,0);

void T1(){
EOT;
foo_B8 ();

}
void T2(){

do{
EOT;
foo_B10 ();
EOT;

} while(In1);
}

void main (){
// Box_abort
abort{

EOT;
// Box_fork
PAR(T1 , T2);

} when(In2);
EOT;
foo_B16 ();

}

Fig. 4. A PRET-C example.

3 TIMED CONCURRENT CONTROL FLOW GRAPH
WCRT algebra is formulated for PRET-C [5] and its intermediate format Timed Concurrent
Control Flow Graph (TCCFG) [14]. Fig. 4 shows an example of a PRET-C program. PRET-C
extends the C language with three major synchronous statements: The End Of Tick (EOT)
statement which marks the state boundaries, the PAR statement for spawning concurrent
threads and the abort statement for preemption. The main thread in Fig. 4 consists of
a strong abort. When the environment input In2 is true, everything enclosed inside the
abort body is preempted immediately. The abort itself terminates when both T1 and T2
terminate (i. e., join) or when the preemption In2 takes place.

The TCCFG in Fig. 5 reflects the control flow of the PRET-C program of Fig. 4, with
annotated timing information. A TCCFG has the following types of nodes: conventional
start, end, computation and condition nodes, with additional abort-start and abort-end nodes
for preemption, fork and join nodes for concurrency, and EOT nodes for the pauses (i. e.,
state boundaries). Each node is annotated with an execution cost in processor clock cycles.
In our case, these costs are derived using the technique presented in [7]. The intuitive
semantics of PRET-C is illustrated using the execution traces in Table 1. We assume the

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:7

B1

B2

B14

B6

B7 B9

B11

B10

B13

B8

B3

B4

B15

B16

B17

B5

B12

False

True

T0

CheckA

ABody

T1 T2 Boxfork

Boxabort

10

10

25

5

10

5

15

10

25

10

30

10

22

12

Start / End

Abort start

Abort end

Fork

Join

EOT

Computation

Condition

Start / End

Abort start

Abort end

Fork

Join

EOT

Computation

Condition

10

20

Fig. 5. A TCCFG running example. Used for demonstrating the formulations of WCRT algebra. The
TCCFG is divided into boxes based on the hierarchy.

preemption condition is false unless stated otherwise in the event column. Threads in a
PRET-C program execute in a static order, from left to right in the TCCFG representation.
The execution only switches to the next thread when it reaches an EOT node. The tick
count advances when all the active threads have reached their respective EOT nodes.

Table 1. Tick snapshots of the running example.

Tick count Execution path Events tick Tick cost
1 B1 → B2 → B3 → B4 → B5 Entering abort 50
2 B3 → B4 → B6 → B7 → B9 Forking T1 and T2 70
3 B3 → B4 → B8 → B10 → B11 T1 terminates 100
4a B3 → B4 → B12 → B13 → B14 → B15 T2 terminates, joining 89
4b B3 → B14 → B15 Preemption 45
5 B16 → B17 Program finishes 25

Execution begins from the start node B1, and subsequently reaches the abort-start node
B2. An abort consists of two concurrent threads in a TCCFG: CheckA for checking the abort
condition and the abort body ABody . For a strong abort, CheckA has a higher priority than
ABody and vice versa for a weak abort. These two threads are spawned when the abort start

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:8 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

node executes. The preemption takes place when either of the threads reaches the abort end
node B14. In our simulation of Table 1, in tick 1 CheckA and ABody pause at their EOT
nodes B4 and B5 respectively. In tick 2, the execution resumes from these EOT nodes. The
thread ABody spawns T1 and T2 using the fork node B6 and suspends itself. In tick 3, T1
terminates as it reaches the join node B13, and T2 pauses at the EOT node B11. In tick 4,
we present two scenarios. If preemption does not take place (tick 4a), T2 terminates and
activates the join at B13 whereupon the EOT node B15 is reached. However, if preemption
takes place (tick 4b), CheckA reaches the abort-end node B14, preempting all threads in the
abort body, and the program pauses at B15. In either case, the program finishes in tick 5
by reaching the end node B17.

4 THE WCRT ALGEBRA
Our WCRT analysis of TCCFGs is based on explicit path enumeration using tick cost
automata (TCA) whose timing is captured by formal power series in min-max-plus algebra.
We first present the mathematical structure of min-max-plus algebra in Sec. 4.1, then use it
to define TCA in Sec. 4.2 and subsequently in Sec. 4.3–4.6 compute the TCA by recursion
on the structure of the TCCFG.

4.1 Mathematical structure
Min-max-plus algebra (N∞, ∧, ⊕, ⊙, 1, 0) is defined over the set N∞ =df N ∪ {−∞} of
execution times, where −∞ is used to denote inactive transitions or unreachable states. The
three operators in the algebra are minimum ∧, maximum ⊕, and ⊙ is addition. All three
operators are commutative and associative. The notations ⊙ and ⊕ are chosen to highlight
their multiplicative and additive nature. The constants of the algebra are 1 =df 0 and 0
=df −∞. The element 0 is absorbant for the operator ⊙ and neutral for ⊕, e. g., X ⊙ 0 = 0
and X ⊕ 0 = X. The element 1 is neutral for ⊙, e. g., X ⊙ 1 = X. The element 0 is also
absorbant for the operator ∧, e. g., X ∧ 0 = 0. The ∧ operator can be used to abstract a
number X ∈ N∞ into a boolean X ∧ 1 ∈ {0,1}, e. g., X ∧ 1 = 0 when X = 0 and X ∧ 1 = 1
when X ≥ 1. Powers are Xn = Xn−1 ⊙X for n ∈ N \ {0} and X0 = 1.

4.1.1 Formal power series. We capture the infinite sequence of ticks in a program as formal
power series. A formal power series is a polynomial function with an infinite number of terms,
which has a general form of f(X) =

⊕
i≥0 aiX

i. For a succinct presentation, the ⊙ between
the coefficient ai and Xi is often omitted. Each coefficient represents the timing of a tick.
We can extract the coefficients from a formal power series using the notation ai = [Xi]f(X).

A TCCFG does not have instantaneous loops and there is no dynamic creation of threads.
Thus, the number of statements executed in any tick, and hence the maximal possible
timing cost [Xi]f(X) in any tick i ≥ 0 is statically bounded by the TCCFG. Moreover, the
number of reachable programs states is finite. Hence, the coefficient sequence of f(X) must
be ultimately periodic (e. g., Fig. 3). Thus, we can write a formal power series for some
0 ≤ n ≤ m as follows:

f(X) = a0 ⊕ a1X ⊕ . . .⊕ an−1X
n−1 ⊕

⊕
i≥0

(
anX

i(m−n+1)+n ⊕ . . .⊕ amXi(m−n+1)+m
)
(4)

= a0 : a1 : . . . : an−1 : (an : . . . : am)ω,

where the exponent ω denotes infinite repetition and the colon : is used as a compact way of
writing finite sums of Xi-weighted coefficients ai as a list. The first n+ 1 coefficients occur

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:9

only once in the execution. Then the coefficients repeat from an+1 to am. For instance, the
TCCFG TA in Fig. 3 generates the coefficient sequence⊕

i≥0

(A1X3i ⊕ (A2⊕A3)X3i+1 ⊕A4X3i+2) = (A1 : (A2⊕A3) : A4)ω

which is an instance of (4) with n = 0, m = 2 and coefficients a0 = A1, a1 = A2⊕A3 and
a2 = A4.

The WCRT is the largest coefficient of f(X), which can be computed by setting X to 1.
This effectively removes all the variable terms Xn since 1n = 1 and leaves the ⊕ operator
to compute the maximum coefficient:

f(1) = a0 ⊕ (a1 ⊙ 1)⊕ . . .⊕ (an ⊙ 1n)⊕ ((an+1 ⊙ 1n+1)⊕ . . .⊕ (am ⊙ 1m))ω

= a0 ⊕ a1 ⊕ . . .⊕ an ⊕ (an+1 ⊕ . . .⊕ am)ω = max(a0, a1, . . . am).

Instead of f(1) we will also write f |X=1 for the evaluation of the series f(X) at X = 1.

4.1.2 Operations on formal power series. We will construct the timing equivalent TCA
from a TCCFG G hierarchically based on the structure of G by algebraic operations on
formal power series. A useful class of operations are the coefficient-wise variants of the binary
operators ∧ and ⊙, denoted ∧̃ and ⊙̃ , respectively, and the operator ⊕ which is naturally
coefficient-wise:

f1(X)⊕ f2(X) =
⊕
i≥0

([Xi]f1(X)⊕ [Xi]f2(X))Xi

f1(X) ∧̃ f2(X) =
⊕
i≥0

([Xi]f1(X) ∧ [Xi]f2(X))Xi

f1(X) ⊙̃ f2(X) =
⊕
i≥0

([Xi]f1(X)⊙ [Xi]f2(X))Xi.

Scalar multiplication with a constant C is given by

C ⊙ (f(X)) = C ⊙ (a0 ⊕ a1X ⊕ a2X
2 ⊕ . . .)

= (C ⊙ a0)⊕ (C ⊙ a1)X ⊕ (C ⊙ a2)X
2 ⊕ . . .

=
⊕
i≥0

(C ⊙ ai)X
i = Cω ⊙̃ f(X),

where Cω =
⊕

i C Xi is the constant power series with an infinite repetition of coefficient C.

4.1.3 Shifting the coefficients. When computing the WCRT, the timing of the current tick
may depend on the timing in the previous tick. For example, the outflow of an EOT node
depends on whether the EOT node is reachable in the previous tick. We use the pre(f(X))
function to produce a one-tick-delay variant of a formal power series f(X). This allows us
to access the timing in the previous tick mathematically. The computation of pre(f(X)) is
as follows:

pre(f(X)) = (0 ⊕ (f(X)⊙X)) ∧̃ 1ω.

In this function, the term 0 is added to the series as the X0 coefficient, while the ∧̃
operator and 1ω series reduces the coefficients of the series to be 1 or 0. For example,
pre(10 : 3 : (0 : 43)ω) = 0 : 1 : 1 : (0 : 1)ω.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:10 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

4.2 Tick Cost Automata (TCAs)
From a timing stand point, the program execution is a sequence of ticks, and each tick
has two possible outcomes. The program can either pause at an EOT node and resume
in the next tick, or reach the end node and terminate. TCAs capture timing based on
this perspective. A TCA is formed of a sequence of states, and at each state there are two
transitions: one leads to the next state denoting the cost to reach the next tick, and one
leads to the end state denoting the cost to exit. Since the sequence is ultimately periodic, it
will eventually loop back to one of the intermediate state. Fig. 6 shows the general form of a
TCA.

Enda1 ...

b1

am

am-1

bm

an ...

bn

Fig. 6. The general form of a TCA.

Mathematically, we define a TCA τ as two formal power series: τ = (tick, exit), where
tick captures the cost for reaching the next state (i. e., pausing at an EOT node), and exit
captures the cost for reaching the end node. Given Fig. 6, these are:

τ =

{
tick = a1 : a2 : . . . : an−1 : (an : . . . : am)ω

exit = b1 : b2 : . . . : bn−1 : (bn : . . . : bm)ω.

4.3 Worst Case Reaction Time Analysis
TCAs are the unit of composition in WCRT algebra. Accordingly, the WCRT of a synchronous
program is obtained by constructing the TCA representation of its TCCFG. We compute
the WCRT from this TCA. Given a TCA τ = (tick, exit), the WCRT is

WCRT(τ) = tick|X=1 ⊕ exit|X=1. (5)

The equation (5) takes the maximum of the time cost, over all ticks, to reach a pause (i. e.,
tick|X=1) or to terminate (i. e., exit|X=1). The computation of the TCA associated with
a TCCFG follows the hierarchical structure of the TCCFG. A TCCFG is a single (main)
thread. A thread is a sequential control flow of nodes and boxes. A box consists itself of
concurrent threads, thus generating a multi-level hierarchy. For instance, the main thread of
the TCCFG in Fig. 5 has nodes B1, B2, B14–B17 and the box Boxabort, which comprises
the threads CheckA and ABody . Thread ABody has nodes B5, B6, B13 and box Boxfork.
We call Boxabort an abort box and Boxfork a fork box.

We define a translation function TCA(Φ) which traverses this structure by recursive
descent and maps each thread or box Φ into a timing equivalent TCA. The common feature
making this possible is that each thread or box has a single start and a unique end point
relative to which the timing can be measured out by a TCA. If G is a TCCFG and Tmain(G)
is the main thread, the WCRT of G is

WCRT (TCA(Tmain(G))). (6)

In the following subsections, we first define the transformation of a simple thread into a
TCA. Then we describe the flattening of fork and abort boxes.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:11

4.4 Modeling the TCA of a thread
A thread can be converted into a TCA only if it has no boxes. If not, the boxes are flattened
into a sequence of nodes using the techniques described in Sec. 4.5 and 4.6 later.

B7 B9

B11

B10B8

B12

T1start

T1end

T2start

T2end

10

25

10

30

10

12

0

0T1vEOT

T2vEOT
0

0

Fig. 7. TCCFG section Boxfork: concurrent threads T1 and T2 with virtual start, virtual end and EOT
nodes.

B6

B13

B3

B4

B5
10

10

25

15

CheckAstart

CheckAend

ABodystart

ABodyend

22

20

65

22

40 12

0

12

Fig. 8. TCCFG section Boxabort: the check abort threads CheckA and abort body ABody with virtual
start and virtual end nodes. The box Boxfork is replaced with a WCRT equivalent graph of TCA(Boxfork)
indicated by the dashed box

.

When a thread T belongs to a fork box or an abort box (as opposed to the main thread), it
is incomplete in the sense that it is a fragment of the TCCFG with no start and end nodes to
mark the beginning and the termination of its execution. To make these threads self-contained,

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:12 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

we add virtual start and end nodes to them. They are defined as N start(T) = Tstart and
Nend(T) = Tend , respectively, see Fig. 7 and 8.

Additionally, when a thread belongs to a fork box, we add a virtual EOT node after its
virtual end nodes to mimic the functionality of the join node. A thread terminates when
its control flow reaches the end node. However, the joining does not have to take place at
the same tick when this happens since sibling threads may still be active. This virtual EOT
node serves as a memory of the termination, which is required for formulating the TCA of
the box. This is a special EOT node which we denote as NvEOT (T). Those virtual nodes
have 0 cost, thus they do not contribute to the WCRT (see Fig. 7).

When threads belong to an abort box, virtual EOT are not required since preemption
takes place instantaneously. An abort box always has two threads, one for checking the abort
condition, and one for the abort body. The execution priority of these two threads depends
on the type of the abort: strong or weak. We have developed a formulation that can handle
both. In our formulation, we refer to the higher priority thread priority as T high and the
lower priority thread as T low . E. g., Boxabort = {T high , T low}, where T high = CheckA and
T low = ABody.

4.4.1 Start node. A node is an atomic unit in a TCCFG, and its execution can be captured
as a TCA. The start node N start(T) of a thread T (e. g., N start(T1) = T1start in Fig. 7)
has the following TCA:

tick(N start(T)) = 0ω

exit(N start(T)) = 1 : 0ω.

This is a generic formulation for a start node. Since the execution of a synchronous
program cannot pause at the start node, its formal power series tick constantly produces 0s
across all ticks. The start node is the initiator of the program execution. Thus, in the first
tick, it produces an execution cost of 1 in exit (i. e., the execution cost of the program is 1
by the time the control flow leaves the start node). Then, the start node remains 0 for the
rest of the execution, i. e., no control flow leaves the start node.

4.4.2 Transient nodes. Transient nodes are computation, condition and end nodes. During
execution, transient nodes contribute towards the execution cost when the control flow
reaches them, and then they immediately pass on the control flow without pausing (i. e.,
the control flow exits the transient node in the same tick). Let precede(N) be the set of
predecessors of a node N and CN the associated cost of N . The TCA of a transient node N
then is:

tick(N) = 0ω

exit(N) = CN ⊙
(⊕

{exit(Np) | Np ∈ precede(N)}
)
.

The control flow of the program cannot pause at transient nodes, thus the series tick(N)
always produces 0. The exit cost of a transient node is the maximum cost received from its
preceding nodes plus its own cost.

4.4.3 EOT nodes. The EOT nodes are the state boundaries of program execution, which
take one tick to execute. When the control flow reaches an EOT node, it pauses, and exits

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:13

in the next tick. The TCA of an EOT node N is defined as follow:

tick(N) = CN ⊙
(⊕

{exit(Np) | Np ∈ precede(N)}
)

exit(N) = pre(tick(N)).

The series tick(N) denotes the maximum execution cost to pause at an EOT node, which
is equal to the maximum cost from the preceding nodes plus the cost CN of the EOT
node itself. The series exit(N) denotes the exiting of the control flow, which is essentially
a one-tick-delayed tick(N) with an execution cost of 1. If an EOT node is reachable in
a tick, i. e., [Xn]tick(N) ≥ 1, then its exit in the next tick is [Xn+1]exit(N) = 1, thereby
resetting the execution cost to 0 at the beginning of a tick. If an EOT node is not reachable
in a tick, i. e., [Xn]tick(N) = 0, then the exit will not be produced in the next tick, i. e.,
[Xn+1]exit(N) = 0.

Virtual EOT in fork boxes. When a thread terminates in a fork box, the virtual EOT
node is activated by receiving the control flow from the end node, and it remembers the
termination through a self-loop. In other words, the virtual EOT nodes are the terminated
states of the threads. Let us define NEOT (T) to be the set of EOT nodes of a thread T and
sibling(T) the sibling threads of T, that is the thread which share the same box. The TCA
of the virtual EOT nodes N of a thread T in a fork box B is defined thus:

tick(N) = CN ⊙
(⊕

{exit(Np) | Np ∈ precede(N)}
)

exit(N) = pre(tick(N)) ⊙̃
(⊕

{pre(tick(Ns)) | Ns ∈ NEOT (Ts),Ts ∈ sibling(T)}
)
.

The formulation is different from a normal EOT node as we have added a condition
in exit(N) to constrain the self-looping behaviour. The self-loop is useful when a thread
terminates, while its sibling threads are still in the process of reaching their end nodes and
have to pause at an EOT in this tick. The terminated state is remembered for a join in
the future. The self-looping should become unreachable (i. e., 0) again if none of the sibling
threads can pause at an EOT node in the previous tick (i. e.,

⊕
pre(tick(Ns)) = 0 in the

formulation). The self-loop is active only if, in the previous tick, the virtual EOT node was
reachable (i. e., [Xn]pre(tick(N)) = 1) and at least one sibling thread could reach an EOT
node (i. e.,

⊕
[Xn]pre(tick(Ns)) = 1). This prevents generating the TCA state where all

the concurrent threads are self-looping at the virtual EOT node and no thread is actually
executing.

EOT in abort boxes. In the case of an abort box B = {T high , T low}, EOT nodes are
modeled differently depending on whether they belong to the T high or T low thread.

• For the EOT nodes Ni ∈ NEOT (T high) in T high we have

tick(Ni) = CNi ⊙
(⊕

{exit(Np) | Np ∈ precede(Ni)}
)

exit(Ni) = pre(tick(Ni)) ⊙̃ pre(tick(T low)),

where we added a condition in exit to monitor the status of T low . Thread T high resumes its
execution from an EOT node only if in the previous tick (1) the EOT node was reachable (i. e.,
pre(tick(Ni))) and (2) T low can reach an EOT node (i. e., pre(tick(T low))). If T low cannot
reach an EOT node in the previous tick n, then T low must have reached the abort-end node,
preempting T high . Thus, T high must not continue its execution in tick n+ 1.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:14 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

• For all EOT nodes Ni ∈ NEOT (T low) in T low ∈ B we define

tick(Ni) = CNi ⊙
(⊕

{exit(Np) | Np ∈ precede(Ni)}
)

exit(Ni) = pre(tick(Ni)) ⊙̃ (tick(T high) ∧̃1ω)

and for the start node of T low :

tick(N start(T low)) = 0ω

exit(N start(T low)) = (1 : 0ω) ⊙̃ (tick(T high) ∧̃1ω).

Similar to the formulations for T high , we have added a condition in the exit of the EOT and
start nodes in T low . The difference is that, here, we check the status of T high in the current
tick. T low can resume/initiate its execution from an EOT/start node only if T high can reach
an EOT node in the current tick (i. e., [Xn](tick(T high) ∧̃1ω) = 1). If T high cannot reach
an EOT node, then it must reach the abort-end node, preempting T low immediately; Thus,
T low cannot execute after T high in the same tick.

4.4.4 TCA of threads. Finally, the TCA for a thread T is simple. The series tick(T) is the
maximum execution cost to reach and pause at an EOT node, and exit(T) is the maximum
execution cost to reach the end node and exit:

tick(T) =
⊕

{tick(Ni) | N i ∈ NEOT (T)}
exit(T) = exit(Nend(T)).

4.5 Modeling the TCA of a fork box
When the threads making a fork box B are all reduced as TCAs, we can then use them to
express the TCA of the fork box itself. This captures forking, concurrent execution and the
joining of threads:

tick(B) =
⊙̃

{tick(Ti)⊕ tick(NvEOT (Ti)) | Ti ∈ B}

exit(B) =
(⊙̃

{tick(NvEOT (Ti)) | Ti ∈ B}
)

⊙̃
(

1ω ∧̃
⊕

{exit(Ti) | Ti ∈ B}
)
.

The series tick(B) denotes the timing of concurrent execution, where the control flow pauses
in the box. The coefficients are computed by summing up the maximum execution time
of all the threads. Here, the virtual EOT nodes are included in the calculation, hence the
maximum execution time of a thread is tick(Ti)⊕ tick(NvEOT (Ti)). This is because if the
control flow pauses in the box (i. e., no joining), reaching an end node is equivalent to pausing
at an EOT node (e. g., tick 3 in Table. 1).

The series exit(B) denotes the timing of joining, where the control flows from the concurrent
threads merge and exit the box. This formulation has two parts. The first part is the
computation of the cost

⊙̃
tick(NvEOT (Ti)). A joining takes place when all the threads

have terminated, hence the joining cost is computed by summing up the costs for reaching
the virtual EOT nodes (i. e., terminated states). If any thread is not yet terminated, that
is, [Xn]tick(NvEOT (Ti)) = 0, the joining cost [Xn]exit(B) is 0. The second part of the
formulation is a condition for joining: 1ω ∧̃

⊕
exit(Ti). A joining takes place when the

last child thread terminates, where at least one thread should be able to exit in that
tick ([Xn]exit(Ti) ≥ 1). The term

⊕
exit(Ti) is 0 if no thread can exit. This condition

prevents a join from occurring when all the virtual EOT nodes are self-looping but no thread

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:15

can reach the end node. This second part is a boolean series, where the ∧̃ operator and
1ω reduce the coefficients to 1 or 0. Therefore, the second part does not contribute to the
WCRT. Finally, we compose the two parts using the ⊙̃ operator so that [Xn]exit(B) = 0 if
either part is 0.

As an example, here is a part of the equation system that describes the TCA of Boxfork
in Fig. 7:

tick(B12) = 0ω

exit(B12) = CB12 ⊙ exit(B11)

tick(B9) = CB9 ⊙ (exit(T2start)⊕ exit(B12))
exit(B9) = pre(tick(B9))

tick(T2EOT) = exit(T2end)⊕ exit(T2EOT)

exit(T2EOT) = pre(tick(T2EOT)) ⊙̃ pre(tick(B7))

tick(T2) = tick(B9)⊕ tick(B11)
exit(T2) = exit(T2end)

tick(Boxfork) = (tick(T1)⊕ tick(T1EOT)) ⊙̃ (tick(T2)⊕ tick(T2EOT))

exit(Boxfork) = tick(T1EOT) ⊙̃ tick(T2EOT) ⊙̃ (1ω ∧̃ (exit(T1)⊕ exit(T2))).

4.6 Modeling the TCA of an abort box
The TCA of an abort box B is defined as follows:

tick(B) = tick(T high) ⊙̃ tick(T low)

exit(B) = exit(T high)⊕ (tick(T high) ⊙̃ exit(T low)).

The series tick(B) captures the timing when no preemption occurs. It sums up the execution
time of T high and T low as they execute concurrently. If either thread terminates in a tick (i. e.,
[Xn]tick(T high) = 0 or [Xn]tick(T low) = 0), this triggers a preemption and [Xn]tick(B) = 0.
The series exit(B) obtains the timing when preemption occurs. T high and T low trigger a
preemption differently. When T high triggers a preemption, the exit cost of the box is the
exit cost of T high (i. e., exit(T high)), since T low is preempted. However, when T low triggers a
preemption, it implies T high had executed and reached an EOT node, as T high has a higher
execution priority. Thus, the exit cost in this case is tick(T high) ⊙̃ exit(T low). Overall, the
exit cost of the box is the maximum of the two cases.

As an example, here is a part of the equation system that describes the TCA of Boxabort.
Note that the WCRT analysis has first flattened the ABody thread by substituting the box

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:16 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

Boxfork with a WCRT equivalent graph derived from its TCA.

tick(B4) = CB4 ⊙ exit(B3)

exit(B4) = pre(tick(B4)) ⊙̃ pre(tick(ABody))

tick(B5) = CB5 ⊙ exit(ABodystart)

exit(B5) = pre(tick(B5)) ⊙̃ (1ω ∧̃ tick(CheckA))

tick(ABodystart) = 0ω

exit(ABodystart) = (1 : 0ω) ⊙̃ (1ω ∧̃ tick(CheckA))

tick(CheckA) = tick(B4)
exit(CheckA) = exit(CheckAend)

tick(Boxabort) = tick(CheckA) ⊙̃ tick(ABody)

exit(Boxabort) = exit(CheckA)⊕ (tick(CheckA) ⊙̃ exit(ABody)).

5 IMPLEMENTATION
We have implemented our timing simulation using Python. The core is to flatten a TCCFG
box to TCA. Given a box as input, we first generate the equation system that describes
the control flow of the box with respect to timing. The TCA of the box is generated by
repeatedly expanding the equations. Each iteration of expansion produces one of the TCA
states, and the analysis finishes when the TCA loops back to an explored state, or reaches
the end state. The worst-case complexity of this algorithm is exponential with the size of the
TCCFG. However, as our evaluation shows, on typical TCCFGs from PRET-C programs,
this worst-case does not occur.

6 EVALUATION
In this section, we present an experimental evaluation of WCRT algebra through bench-
marking, and compare it with the state-of-the-art model checking based [4] and ILP based
techniques [16]. The benchmarking was conducted in two phases. The first phase evaluates
performance using a set of PRET-C programs taken from [4, 17, 18]. The second phase
examines the theoretical properties of WCRT algebra using a set of synthetic TCCFGs.

6.1 Benchmark settings
The benchmarking was carried out on a Windows based computer, with a i5-6300U processor
and has 8GB of RAM. Both of the model checking based and ILP based techniques used
pre-existing tool implementations that could be adapted to TCCFG without modification to
the algorithms. The benchmarking process is to apply all three techniques over the same set
of TCCFGs, and record the computed WCRTs and their analysis times. In the sequel, we
refer to our timing simulation in WCRT algebra as ‘WA’, to the model checking approach
as ‘MC’ and to the ILP approach as ‘ILPn’.

6.1.1 Model checking based approach. The model checking based approach (MC) is based
on UPPAAL [2]. The technique first transforms the TCCFG into a functionally equivalent
UPPAAL model, with an additional variable to track the execution time. This variable is
incremented each time a transition takes place and is reset when advancing to the next tick.
The WCRT is computed through a query on the maximum value of the variable.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:17

MC is a more capable technique than the other two in the sense that it can optionally track
variable values at the expense of a longer analysis time. For a meaningful comparison, in this
benchmarking, we configure the model checking approach to analyse for tick alignment only.

6.1.2 ILP based approach. The ILP based approach (ILPn) [16] uses iterative narrowing
to tackle the tick alignment problem without sacrificing scalability. An ILP model is used as
the baseline, and its outcome is verified for tick alignment in each iteration using an ILP
based verification technique. If the verification fails, the baseline model is refined using the
verification results, and the analysis continue to the next iteration. This continues until the
verification is passed. In ILPn, the Gurobi Optimiser [1] is used for solving ILP.

6.2 Existing benchmark programs
The details of the benchmark programs and the analysis results from the three techniques
are summarised in Table 2. The benchmark programs cover a range from small to large
problem sizes. For example, the largest program is WaterMonitor which has 3204 lines of C
code generated from the PRET-C specification consisting of 40 threads. All the techniques
produce the same WCRT estimate, which cross-checks the correctness of all three techniques.

Table 2. Benchmarking results for model checking (MC), ILPn and WCRT algebra (WA).

Name LOC Thd Analysis Time (s) WCRTMC ILPn WA (states)
ChannelProtocol 591 7 2.63 0.10 0.13 (25) 997

Flasher 816 7 3.22 0.11 0.28 (23) 617
RobotSonar 962 7 6.51 0.63 0.48 (23) 1874
Synthetic 1 1287 7 12.00 4.55 0.51 (21) 2218
Synthetic 2 1293 7 12.6 2.10 0.56 (21) 2514
DrillStation 1094 15 5.30 2.80 0.18 (49) 2751

CruiseControl 2302 25 N/A 0.72 0.43 (29) 1931
RailroadCrossing 2713 30 N/A 1.05 0.57 (37) 4472
WaterMonitor 3204 40 N/A 0.65 0.50 (24) 4631

The analysis time of MC increases exponentially as the number of program states increases.
Eventually, it is not able to finish the analysis for the three largest programs after two
minutes due to insufficient memory. This is a typical behaviour for explicit path enumeration,
which is the reason that the approach is deemed to be unsuitable for timing analysis. In
comparison, ILPn, which is based on implicit path enumeration, is much more scalable. On
average, ILPn only takes 1.41 seconds, with a peak of 4.55 seconds.

However, WA is even faster than ILPn, which breaks the conventional belief about timing
analysis: explicit path enumeration does not scale well. The average analysis time of WA
is 0.4 second, which is 3.5 times faster than ILPn. Moreover, the current implementation
of WA involves a disk access delay as it writes programs to disk, and then reads them to
execute. If we exclude the disk access delay, the actual analysis time of WA can be considered
instantaneous.

The prime factor for the short analysis time is the number of TCA states generated.
The total number of accumulated TCA states, that is the sum of all TCA states for boxes
and the main thread, is shown in parenthesis after the analysis time of WA. We observe

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:18 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

that these accumulated TCA states are very small, some of them being even less than the
number of threads in the program (i. e., less than one state per thread). This indicates that
for realistic synchronous program structure the state explosion problem does not occur
and that WA is able to benefit from this well-behaved structure. On the other hand, MC,
which generated millions of states, though working at the same abstraction level, runs into a
(algorithm-induced) combinatorial explosion.

6.3 Theoretical properties
WCRT algebra has demonstrated exceptional performance on our benchmark programs, and
we believe this is because the state explosion is mitigated by the synchronous composition
of TCAs.

1

5

1

10

1

10

1

5

T1a T1b

...

Fig. 9. Synthetic A.

T1 T2 T3

5

5

5

5

5

5

5

5

5

5

5

Fig. 10. Synthetic B.

To evaluate this hypothesis, we benchmarked the techniques using a set of highly symmet-
rical TCCFGs shown in Fig. 9. The number of threads is incremented by replicating T1a
and T1b alternatively. This set of synthetic TCCFGs is taken from [16] which was originally
designed to stress ILPn.

The results for the first set of synthetic benchmarks are shown in Fig. 11. As expected,
WCRT algebra only has to generate three TCA state to compute the WCRT regardless
of number of threads. Thus, it results in an analysis time constantly below 0.1 second.
In contrast, MC exhibits the same exponential trend as before, and ILPn also increases
exponentially in this case.

On the other hand, how can we see combinatorial explosion in our timing simulation in
WCRT algebra? This happens in cases where the parallel TCAs are highly decoupled in
terms of tick alignment. The corner case that triggers the worst-case scenario for WA is
shown in Fig. 10. The synthetic TCCFGs have an increasing number of threads, and each
thread is a sequence of EOT nodes executing in a loop. The key here is the number of EOT
nodes, which are prime numbers, starting from 2, then 3, 5 and so on. The total TCA states
generated by simulation is the product of the prime numbers, which is the same as the
state-space considered by the MC approach.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

WCRT Algebra: Scalability through abstraction 0:19

0.0001

0.001

0.01

0.1

1

10

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
n

al
y
si

s
ti

m
e

(s
)

Number of threads

Model checking WCRT algebra ILPn

Fig. 11. Results of the model checking, ILPn and timing simulation in WCRT algebra with Synthetic A.

0.001

0.01

0.1

1

10

100

2 3 4 5 6 7 8 9

A
n

al
y
si

s
ti

m
e

(s
)

Number of threads

Model checking WCRT algebra ILPn

Fig. 12. Results of the model checking, ILPn and timing simulation in WCRT algebra with Synthetic B.

The results of this second phase is shown in Fig. 12. The analysis times of WA and MC
grow exponentially as the number of threads (i. e., program states) increases. However, WA
is significantly worse than MC. WA is only able to analyse up to five threads, while MC
can analyse up to eight threads. WA may seem faster for the first four benchmarks, but the
differences are negligible. This difference in performance is a result of the implementation.
The Python implementation of WA is much slower than the native binary of the UPPAAL
model checker used in MC. Also, we believe the Python implementation is less optimised.
On the other hand, ILPn exhibits the typical behaviour of implicit path numeration, which
scales well with respect to program states.

7 CONCLUSIONS
Conventional experience is that explicit path enumeration gives precise results but scales
poorly as the number of concurrent threads increases. Thus, it is rarely used for WCRT
analysis of synchronous programs. The problem is that the existing approach tries to compute

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:20 JiaJie Wang, Michael Mendler, Partha Roop, and Bruno Bodin

the WCRT, a non-functional property, based on functionally equivalent automata. In this
paper, we presented a new analysis via pairs of formal power series in min-max-plus algebra,
called TCAs, which is based on the idea of timing equivalence. We simplify threads as
WCRT equivalent TCAs before composing them, which greatly reduces the search space.
We could show empirically that WCRT algebra, on the given benchmark examples, is much
faster than the most widely used existing approaches.

Currently, our work is restricted to TCCFG execution structures obtained from PRET-C
source programs. We plan to extend the algorithm to cover signals and additional types
of preemption operators in order fully to model languages like Esterel, SCCharts or Safe
State Machines. At the same time, there is potential to improve both the efficiency and the
precision of our analysis.

Regarding efficiency, we plan to use specialised algebraic transformations to deal with
“hard” programs like Synthetic B. Specifically, we conjecture that the tick expressions in the
ILPn approach [16] can be solved analytically in our algebraic approach. In [3] we sketch a
technique based on tick expression (an abstract form of frequency domain modeling) that
reduces the computation of WCRT for parallel compositions to the maximum weighted
clique problem for so-called tick alignment graphs. We expect this to help us recover in
WCRT algebra some of the efficiency of the ILPn method exhibited in Fig. 12. Also, the
Python implementation leaves ample room for optimisations.

Regarding precision, the main limitation is the lack of data-dependency in our modelling.
It is known that signals and boolean data an be expressed in min-max-plus algebra, too,
using the negation operator [12]. Exploiting this, we plan to extend our approach to permit
tracking of data/signal variables to capture state invariants like in [13].

REFERENCES
[1] 2016. Gurobi optimiser. (Nov. 2016). http://www.gurobi.com
[2] 2016. UPPAAL model checker. (Nov. 2016). http://www.uppaal.org
[3] J. Aguado, M. Mendler, J.J. Wang, B. Bodin, and P. Roop. 2017. Compositional Timing-Aware

Semantics for Synchronous Programming. In Forum on Specification and Design Languages (FDL’2017).
Verona, Italy.

[4] Sidharta Andalam, Partha S. Roop, and Alain Girault. 2011. Pruning infeasible paths for tight WCRT
analysis of synchronous programs. In Design, Automation Test in Europe Conference Exhibition (DATE).
1–6.

[5] Sidharta Andalam, Partha S. Roop, Alain Girault, and Claus Traulsen. 2014. A Predictable Framework
for Safety-Critical Embedded Systems. IEEE Trans. Comput. 63, 7 (July 2014), 1600–1612.

[6] Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. 2008. Compilation and worst-case reaction
time analysis for multithreaded Esterel processing. EURASIP Journal on Embedded Systems (2008),
594129.

[7] Reinhold Heckmann and Christian Ferdinand. 2005. Verifying safety-critical timing and memory-usage
properties of embedded software by abstract interpretation. In Proceedings of the Design, Automation
Test in Europe Conference Exhibition (DATE). 618–619.

[8] Lei Ju, Bach Khoa Huynh, Samarjit Chakraborty, and Abhik Roychoudhury. 2009. Context-sensitive
timing analysis of Esterel programs. In Proceedings of the Design Automation Conference (DAC).
870–873.

[9] Lei Ju, Bach Khoa Huynh, Abhik Roychoudhury, and Samarjit Chakraborty. 2012. Performance
Debugging of Esterel Specifications. Real-Time System 48, 5 (Sept. 2012), 570–600.

[10] Matthew Kuo, Roopak Sinha, and Partha S. Roop. 2011. Efficient WCRT analysis of synchronous
programs using reachability. In Proceedings of the Design Automation Conference (DAC). 480–485.

[11] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of embedded software using implicit
path enumeration. In Proceedings of Languages, Compilers and Tools for Real-time Systems (LCTES),
Vol. 30. ACM, 88–98.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

http://www.gurobi.com
http://www.uppaal.org

WCRT Algebra: Scalability through abstraction 0:21

[12] Michael Mendler, Partha S. Roop, and Bruno Bodin. 2016. A Novel WCET Semantics of Synchronous
Programs. In International Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS). Springer, 195–210.

[13] Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Fabienne Carrier, and Mihail Asavoae.
2015. Timing analysis enhancement for synchronous program. Real-Time Systems 51, 2 (2015), 192–220.

[14] Partha S. Roop, Sidharta Andalam, Reinhard von Hanxleden, Simon Yuan, and Claus Traulsen. 2009.
Tight WCRT analysis of synchronous C programs. In Compilers, Architecture, and Synthesis for
Embedded Systems (CASES). 205–214.

[15] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín
Aguado, Stephen Mercer, and Owen O’Brien. 2014. SCCharts: Sequentially Constructive Statecharts for
Safety-critical Applications: HW/SW-synthesis for a Conservative Extension of Synchronous Statecharts.
In Programming Language Design and Implementation (PLDI). ACM, 372–383.

[16] Jia Jie Wang, Partha S. Roop, and Sidharta Andalam. 2013. ILPc: A novel approach for scalable timing
analysis of synchronous programs. In Compilers, Architecture, and Synthesis for Embedded Systems
(CASES). 1–10.

[17] Li Hsien Yoong, Partha S. Roop, and Zoran Salcic. 2013. Implementing constrained cyber-physical
systems with IEC 61499. In ACM Transactions on Embedded Computing Systems (TECS). Number 1.
ACM.

[18] Li Hsien Yoong and Gareth D. Shaw. 2010. Auckland Function Block Benchmark. University of
Auckland. (2010). pretzel.ece.auckland.ac.nz/files/iec61499-benchmarks.zip

Received April 2017; revised May 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

pretzel.ece.auckland.ac.nz/files/iec61499-benchmarks.zip

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations

	3 Timed Concurrent Control Flow Graph
	4 The WCRT Algebra
	4.1 Mathematical structure
	4.2 Tick Cost Automata (TCAs)
	4.3 Worst Case Reaction Time Analysis
	4.4 Modeling the TCA of a thread
	4.5 Modeling the TCA of a fork box
	4.6 Modeling the TCA of an abort box

	5 Implementation
	6 Evaluation
	6.1 Benchmark settings
	6.2 Existing benchmark programs
	6.3 Theoretical properties

	7 Conclusions
	References

