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Abstract

Human sketches are unique in being able to capture
both the spatial topology of a visual object, as well as
its subtle appearance details. Fine-grained sketch-based
image retrieval (FG-SBIR) importantly leverages on such
fine-grained characteristics of sketches to conduct instance-
level retrieval of photos. Nevertheless, human sketches are
often highly abstract and iconic, resulting in severe mis-
alignments with candidate photos which in turn make sub-
tle visual detail matching difficult. Existing FG-SBIR ap-
proaches focus only on coarse holistic matching via deep
cross-domain representation learning, yet ignore explicitly
accounting for fine-grained details and their spatial con-
text. In this paper, a novel deep FG-SBIR model is pro-
posed which differs significantly from the existing models in
that: (1) It is spatially aware, achieved by introducing an
attention module that is sensitive to the spatial position of
visual details; (2) It combines coarse and fine semantic in-
formation via a shortcut connection fusion block; and (3) It
models feature correlation and is robust to misalignments
between the extracted features across the two domains by
introducing a novel higher-order learnable energy func-
tion (HOLEF) based loss. Extensive experiments show that
the proposed deep spatial-semantic attention model signifi-
cantly outperforms the state-of-the-art.

1. Introduction

With the proliferation of touch-screen devices, a num-
ber of sketch-based computer vision problems have at-
tracted increasing attention, including sketch recognition
[47, 36, 3, 32], sketch-based image retrieval [46, 24, 10],
sketch-based 3D model retrieval [39], and forensic sketch
analysis [14, 28]. Among them, using a sketch to retrieve a
specific object instance, or fine-grained sketch-based image
retrieval (FG-SBIR) [15, 46, 31] is of particular interest due
to its potential in commercial applications such as searching
online product catalogues for shoes, furniture, and hand-
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Figure 1. FG-SBIR is challenging due to the misalignment of the
domains (left) and subtle local appearance differences between a
true match photo and a visually similar incorrect match (right).

bags by finger-sketching on a smart-phone screen.
FG-SBIR is a very challenging problem and remains un-

solved. First, there is a large domain gap between sketch
and photo – a sketch captures mainly object shape/contour
information and contains no information on colour and very
little on texture. Second, FG-SBIR is typically based on
free-hand sketches which are drawn based on mental rec-
ollection of reference images shown moments before the
drawing stage, making free-hand sketches distinctly more
abstract than line tracings (human edgemaps). As a result,
a sketch and its matched photo could have large discrep-
ancies in shape and spatial misalignment both globally and
locally. Finally, as an object instance recognition problem,
given a query sketch, there are often many visually sim-
ilar candidate photos in the gallery; the correct match and
wrong matches may only differ subtly in some localised ob-
ject parts. Some of these challenges are illustrated in Fig. 1.

Existing FG-SBIR models focus primarily on closing
the semantic gap between the two domains whilst only
partially addressing or completely ignoring the latter two
challenges. Specifically, state-of-the-art FG-SBIR models
[46, 31] adopt a multi-branch deep convolutional neural net-
works (CNNs). Each domain has a corresponding branch
which consists of multiple convolutional/pooling layers fol-
lowed by fully connected (FC) layers. The final FC layer
is used as input to pairwise verification or triplet ranking
losses to align the domains. However, recent efforts [6, 22]
on visualising what each layer of a CNN actually learns
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show that higher-layers of the network capture more ab-
stract semantic concepts but not fine-grained detail, moti-
vating fine-grained recognition methods to work with con-
volutional feature maps instead [17]. After many pooling
and FC layers, the spatial fine-grained details is gone and
cannot be recovered. Thus existing deep FG-SBIR mod-
els are unable to tell apart visually similar photos based on
subtle differences.

In this paper, we introduce spatial-semantic attention
modelling in deep FG-SBIR. The architecture of the pro-
posed model is shown in Fig. 2. Although it is still essen-
tially a multi-branch CNN, there are a number of crucial
differences to existing models. First, we introduce attention
modelling in each branch of the CNN so that computation
for representation learning is focused on specific discrim-
inative local regions rather than being spread evenly over
the whole image. Due to the large misalignment between
the sketch and photo domains, directly taking the attended
feature map as input to the subsequent layers of the network
is too sensitive to misalignment. We thus introduce a short-
cut connection architecture [37, 8] to link the input directly
to the output of the attention module so that an imprecise at-
tention mask would not derail the deep feature computation
completely, resulting in robust attention modelling. Sec-
ond, we keep both coarse and fine semantic details through
another shortcut block to connect the attended feature map
with the final FC layer before feeding it to the loss.

Including fine-grained information in the CNN feature
output enables discrimination based on subtle details, but
has two risks: misalignment in the feature channels be-
tween the two branches, and greater feature noise due to
each fine-grained feature having less supporting cues. Ex-
isting pairwise verification or triplet ranking losses [46, 31]
are sensitive to misalignment. Specifically, these losses typ-
ically use Euclidean distance based energy function which
relies on element-wise distance computation. They thus
implicitly assume that the compared feature vectors are
perfectly element-wise aligned, an assumption that is vio-
lated in practice. To overcome these problems, we propose
a novel higher-order learnable energy function (HOLEF)
based loss. Using this energy function, when comparing
a sketch and photo, the outer subtraction between the two
feature vectors are computed, exhaustively measuring the
element-wise feature difference across the two domains.
This allows increased sensitivity without loosing robust-
ness, by accounting for common misalignments, via learn-
ing to exploit any systematic co-occurrences of feature ac-
tivations in both branches, and using correlated activations
to provide robustness to noise.

2. Related Work
Fine-grained SBIR Most existing SBIR works [23, 24,
9, 1, 2, 38, 11, 18, 13, 39, 10, 48] focus on category-

HOLEF
loss

CNN

Conv5/pool5

Attention
layer

Attention
m
ask

FC6

FC7
sketch

positive

negative

concatenationelement>wise product element>wise sum

spatial>semantic fusioncoarse-‐fine	  fusion	  

Figure 2. Architecture of the proposed model.

level sketch-to-photo retrieval. The problem of fine-grained
SBIR was first proposed in [15], which employed a de-
formable part-based model (DPM) representation and graph
matching. More recently, the FG-SBIR problem is tackled
by deep learning [46, 31] which aims to learn both feature
representation and cross-domain matching function jointly.
Both models in [46, 31] evaluated two-branch CNNs with
pairwise verification loss and three-branch CNNs with
triplet ranking loss and concluded that the latter is better.
They differ in whether the network is Siamese or heteroge-
neous. The model in [46] is Siamese as it takes as input
extracted edge maps for the photo branch, whilst the model
in [31] is heterogeneous without the edge extraction oper-
ation. Our network is also a three-branch CNN. But with
the introduced attention modelling, multi-scale coarse-fine
semantic fusion, and HOLEF loss, our model is much more
effective as validated by our experiments (see Sec. 4).

Attention Modelling Visual attention models have been
studied extensively in a wide range of vision problems in-
cluding image caption generation [44, 20], VQA [5, 26],
image classification [25, 34, 42] and particularly fine-
grained image recognition [34, 42]. Various types of atten-
tion models exist. Soft attention is the most commonly used
one because it is differentiable thus can be learned end-to-
end with the rest of the network. Most soft-attention mod-
els learn an attention mask which assigns different weights
to different regions of an image. Alternatively, the spatial
transformer network [12] generates an affine transformation
matrix which locates the discriminative region. Different
from soft attention, hard attention models only indicate one
region at each time. A hard attention model is not differen-
tiable so it is typically learned using reinforcement learning.
Interestingly, there is no prior SBIR (both category-level
and instance-level) work that models attention, perhaps be-
cause conventional attention models deployed in a cross-
domain match problem assume pixel-level alignment; they



thus become ineffective when this assumption is invalid as
in the case of SBIR. Our attention model is specifically de-
signed for FG-SBIR in that it is robust against spatial mis-
alignment through the shortcut connection architecture.
Shortcuts and Layer Fusion in Deep Learning The
shortcut architecture used in both the attention module and
the coarse-fine fusion block in our model serve to fuse mul-
tiple layers at different depths. Fusing different CNN lay-
ers in the model output has been exploited in many prob-
lems such as edge detection (e.g., [30, 43]), pose estima-
tion (e.g., [27]) and scene classification (e.g., [7, 45, 19].
The motivation is typically multi-scale (coarse to fine) fu-
sion rather than attended-unattended feature map fusion, as
in our first shortcut block. Various shortcut connection ar-
chitectures have been successfully deployed in a number of
widely used CNNs including GoogLeNet [37] and ResNet
[8]. Our shortcut connection architecture is similar to that of
the residual block in ResNet [8]. However, instead of mak-
ing the network deeper, we use it in the attention module to
make the attention module output robust against imprecise
attention mask caused by cross-domain feature misalign-
ment, as well as in the final CNN output layer to preserve
both coarse and fine-grained information in the learned rep-
resentation.
Higher-order Energy Function Loss functions for ver-
ification or ranking typically use an energy function, that
measures the (dis)similarity between two feature vectors.
For example, triplet loss is widely used in many deep ver-
ification [33, 29] or ranking [40, 46, 36, 31] networks. It
is adopted here to enforce the ranking between a query
sketch and a pair of positive and negative photos. In the
vast majority of cases [40, 46, 36, 31] Euclidean distance-
based, or other first-order energy functions are used in the
loss formulation. They are first order in the sense that only
element-wise comparisons are made, making it sensitive to
feature misalignment and meaning that no cross-feature cor-
relation can be exploited in the similarity. The proposed
HOLEF loss is a triplet loss with a 2nd-order energy func-
tion based on a weighted outer subtraction between a pair of
input vectors. Compared to first-order alternatives, our en-
ergy function is more robust against misalignment between
sketch and photo channels, and can accommodate better the
more detailed but noisier fine-grained feature map represen-
tation. Mahalanobis distance [41, 35] is another example of
a higher-order energy function in that it does O(N2) com-
parisons for N channels. However it is based on element-
wise difference followed by bilinear product so the effect
is to learn which dimension pairs are important to match,
rather than compensate for misalignment and noise between
the input vectors.
The Contributions of this work are as follows: (1) A novel
deep FG-SBIR model is proposed. The model learns dis-
criminative feature representation that is spatially attended

and includes both coarse and fine details. (2) A new higher-
order learnable energy function (HOELF) based loss is used
to make the model robust against feature misalignment and
noise between the sketch and photo domains. (3) A new
FG-SBIR dataset is introduced which has the biggest num-
ber of sketch-photo pairs for a single object category. Ex-
tensive experiments are carried out on three benchmarks.
The results show that the proposed model significantly out-
performs the state-of-the-art and both proposed novel com-
ponents contribute to the superior performance.

3. Methodology
3.1. Overview

The architecture of the proposed model is illustrated in
Fig. 2. It is a Siamese network with three CNN branches,
corresponding to a query sketch, a positive photo and a neg-
ative photo respectively. The positive-negative relation can
be defined by the matching relationship, e.g., if the true
match photo is the positive, any false match can be used
as the negative. Alternatively, if the sketches and photos
are annotated explicitly by similarity, relative similarity or-
dering can be used as supervision information. The CNNs
extract deep features from the three input images and feed
them to a triplet ranking loss to enforce the ranking order
(positive should be closer to the query than the negative
using the extracted feature). With the learned model, for
a given query sketch s and a set of M candidate photos
{pj}Mj=1 ∈ P , we need to compute the similarity between
s and pj and use it to rank the set of gallery photos in the
hope that the true match for the query sketch is ranked at the
top. The similarity measure is computed by the high order
distance function (detailed later), based on the domain in-
variant representations Fθ(·) produced by the three Siamese
CNN branches.

Similar to [46], the CNN base net is the Sketch-a-Net
[47] which was originally designed for sketch recognition.
We follow the same data preprocessing step to extract edge
maps from each photo image to narrow the domain gap. The
model is also pretrained on sketch recognition and category
level SBIR data following exactly the same procedure as in
[46]. The key differences are (1) an added attention mod-
ule, (2) coarse-fine fusion, and (3) HOELF loss, which will
described in details in the following sections.

3.2. Attention Modelling

A soft attention paradigm is adopted. Given a feature
map computed at any convolutional layer of a CNN, a soft
attention module will take it as input and generate an atten-
tion mask. This mask then used to re-weight the input fea-
ture map to get an attended feature map which is fed into the
next layer of the network. In our model, the attention mod-
ule is added to the output of the fifth convolutional+pooling



layer of the CNN in each branch (see Fig. 2).
We denote the input feature map as f ∈ RH×W×C

where H and W are the filter map size and C is the number
of feature channels. For the feature vector fi,j ∈ RC of the
feature map at the spatial location (i, j), we can calculate
its corresponding attention score si,j by

si,j = Fatt(fi,j ;W a),

αi,j = softmax(si,j),
(1)

where Fatt(·) is the mapping function learned by the at-
tention module and Wa are the weights/parameters of the
attention module. The final attention mask α = [αi,j ] is a
probability map obtained by normalising the score matrix
s = [si,j ] using softmax. In our model, the attention mod-
ule is a network consisting of two convolutional layers with
kernel size 1. However, it can be replaced with any net-
work. The attended feature map fatt = [fatti,j ] is computed
by element-wise product of the attention mask and the input
feature map

fatti,j = αi,j � fi,j . (2)

Taking a conventional attention modelling approach, the
attended feature map will be fed into the subsequent layer,
which is FC6. However, due to the severe spatial misalign-
ment of the query photo and either the positive or the nega-
tive photo, the attention mask could be somewhat imprecise
and the resultant attended feature map fatt could be (a) cor-
rupted by noise, and (b) loose any useful information in the
original feature map f . To overcome this problem, we in-
troduce a shortcut connection architecture to link the input
of the attention network directly to its output and combine
them with an element-wise sum. The final attended feature
map with shortcut connection is thus computed as

fatts = f +α� f , (3)

where ‘+’ is element-wise sum and ‘�’ is element-wise
product. In this way, both the original feature map and the
attended but imprecise feature map are combined and used
as input to the next layer of the network.

3.3. Coarse-fine Fusion

Although the final attended feature map fatts is spatially
aware and attentive to fine-grained details, these tend to
be lost going through multiple subsequent fully connected
layers, defeating the purpose of introducing attention mod-
elling. To keep both the coarse and fine-grained informa-
tion, a shortcut connection architecture is again employed
here. Specifically, we fuse the attended feature map fatts
with the output of the final FC layer (FC7) fFC7 to form
the final feature representation ffinal before it is fed into
the loss layer (Fig. 2). A simple concatenation operation
is used to fuse the two features. Before the fusion, we do
global average pooling (GAP) on the attended feature map
to reduce the dimension.

3.4. HOLEF Loss

Triplet Loss with a First-order Energy Function For a
given triplet t = (s, p+, p−) consisting of a query sketch s,
a positive photo p+ and a negative photo p−, a conventional
triplet ranking loss can be written as:

Lθ
(
s, p+, p−

)
= max(0,∆ +D

(
Fθ (s) , Fθ

(
p+
))

−D
(
Fθ (s) , Fθ

(
p−
))

),
(4)

where θ are the parameters of the CNN with attention net-
work, Fθ(·) denotes the output of the corresponding net-
work branch, i.e., ffinal, ∆ is the required margin of rank-
ing for the hinge loss, and D(·, ·) denotes a distance be-
tween the two input representations, typically Euclidean
distance. Considering D(·, ·) as a pairwise energy function,
it is a first-order one due to the use of Euclidean distance
which does element-wise subtraction of the feature. It does
not consider the pairs of non-corresponding elements, thus
implying alignment between the input feature representa-
tions, and not exploiting cross-channel correlation. It is thus
particularly suboptimal, once we include the fine-grained
attended feature map fatts in the feature representation.

Triplet Loss with a Higher-order Energy Function To
compare two misaligned and noisy feature inputs, we can
exploit higher order structural difference. To this end, we
propose to compute a 2nd order feature difference using
outer subtraction. Given two input feature vectors of k di-
mensions, the outer subtraction (	) of the two is a k × k
matrix. For example, when k = 3, we have:

Fθ(s)	Fθ(p) =

Fθ1(s)
Fθ

2(s)
Fθ

3(s)

	
Fθ1(p)
Fθ

2(p)
Fθ

3(p)


=

Fθ1(s)− Fθ1(p) Fθ
1(s)− Fθ2(p) Fθ

1(s)− Fθ3(p)
Fθ

2(s)− Fθ1(p) Fθ
2(s)− Fθ2(p) Fθ

2(s)− Fθ3(p)
Fθ

3(s)− Fθ1(p) Fθ
3(s)− Fθ2(p) Fθ

3(s)− Fθ3(p)


(5)

With outer subtraction, the difference between the elements
at any position of the two input vectors are exhaustively
computed, thus having the potential to deal with any form
of feature misalignment.

With this outer-subtraction operator, we can design a
2nd order distance/energy-function based on the sum of the
square of each element of the matrix. However, only a sub-
set of these comparisons are expected to be useful, so we
introduce a weighting factor to each element, resulting in
the following energy function:

DH(Fθ(s), Fθ(p)) =
∑

(Fθ(s)	Fθ(p))◦2�W , (6)

where ‘◦2’ is the element-wise square, and W is a k × k
weight matrix. W is a learnable weighting layer matrix.



We can now replace the standard Euclidean loss in triplet
ranking with our new energy function. Combined with ap-
propriate regularisers, this leads to our high-order learnable
energy function (HOELF) loss:

Lθ
(
s, p+, p−

)
= max(0,∆ +DH

(
Fθ (s) , Fθ

(
p+
))

−DH
(
Fθ (s) , Fθ

(
p−
))

) + λ‖W − I‖1
+ λ‖W − I‖F ,

(7)

where I ∈ Rk×k is the identity matrix and ||.||F denotes
the matrix Frobenious norm. Two regularisers are intro-
duced in our loss. These elastic-net [50] style regularisers
are designed to the keepW in the vicinity of I , but prevent
W − I from being extremely sparse, i.e. W becoming di-
agonal and the HOLEF loss degenerating into a first-order
loss. The weight λ for the two regularisers are set to 0.0005
in this work.

Ranking Score In the testing stage, given an query
sketch s, the ranking score between the query sketch and
each candidate photo pi from a gallery set is computed as

Rs(Fθ(s), Fθ(pi)) = −DH(Fθ(s), Fθ(pi)). (8)

The rank scores are then used to rank the gallery set. The
photo with the highest ranking score is the predicted match.

Alternative Higher-order Energy Function We are not
aware any outer subtraction based higher-order energy func-
tion used as a loss for deep model training. However, outer
product based ones are not uncommon. They have been
used mainly for multi-view fusion, for example, fusing the
text and image embeddings in visual question answering
[21] and zero-shot recognition [4]. Outer product based
distance is also used for formulating higher-order losses in
Mahalanobis metric learning [41, 35]. Given two vectors x
and y, a Mahalanobis distance is defined as:

DM (x,y) = (x− y)TM(x− y)

= xTMx+ yTMy − 2xTMy
(9)

whereM is a learnable matrix. Compare Mahalanobis dis-
tance to the proposed distance in Eq. 6, it is clear that al-
though both are 2nd order, there is a vital difference: In
Mahalanobis distance, one first computes the element-wise
subtraction x−y and then the 2nd order bilinear product of
the difference vectors. In other words, elements of different
positions in the two vectors are not directly compared. It is
thus not suitable for dealing with fine-grained feature mis-
alignment and using correlation to compensate for noise in
the sketch and photo feature vectors.

Figure 3. Examples of newly collected Handbag dataset.

4. Experiments
4.1. Datasets and Settings

Datasets We focus on the task of retrieving visually
similar object instances from the same category – a set-
ting resembling a real-world application where a customer
searches for a specific product, e.g., shoe or handbag. Few
FG-SBIR datasets are available publicly, and even fewer
have more than 100 sketch-photo pairs from the same cate-
gory to make the evaluation meaningful. We experiment on
three datasets. QMUL-Shoe and QMUL-Chair from [46]
contain 419 shoe and 297 chair sketch-photo pairs, respec-
tively. The photos are real product photos collected from
online shopping websites and the sketches are free-hand
ones collected via crowdsourcing. We use 304 and 200 pairs
for training and the rest for testing following the same splits
as in [46]. There are 13,680 and 9,000 human triplet annota-
tions which are used to train the triplet model. Handbag is
a new dataset collected by us following similar protocol as
the other two (photos from online catalogues and sketches
crowd-sourced), resulting in 568 sketch-photo pairs. Hand-
bags were specifically chosen to make the sketch-photo re-
trieval task more challenging, since handbags exhibit more
complex visual patterns and have more deformable bodies
than shoes and chairs. Among them, 400 are used for train-
ing and the rest for testing. The difference between this
dataset and the other two is that we only have pairing infor-
mation but not human triplet annotation. We thus generate
the triplets using only true and false matches, rather than
exhaustive similarity ranking. Following [46], we first ex-
tract edge maps from photos using the method of [49] and
use them as input for the photo branch of our model. All
images are resized to the same size of 256×256. Examples
of the new Handbag dataset can be seen in Fig. 3.
Implementation Details Our model is implemented on
TensorFlow. Each branch is pretrained in stages using a
sketch recognition dataset and ImageNet photo-edgemap
pairs, similarly to the procedure described in [46], before
fine-tuning on each FG-SBIR dataset. The initial learn-
ing rate is 0.001 and the mini-batch size is 128. During
training, we randomly crop a 225 × 225 sub-image as in-
put and we do flipping with 0.5 probability. The atten-



QMUL-Shoe acc.@1 acc.@10
HOG-BoW + rankSVM 17.39% 67.83%
Dense-HOG + rankSVM 24.35% 65.22%

ISN Deep + rankSVM 20.00% 62.61%
Triplet SN [46]∗ 52.17 % 92.17 %

Our model 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10
HOG-BoW + rankSVM 28.87% 67.01%
Dense-HOG + rankSVM 52.57% 93.81%

ISN Deep + rankSVM 47.42% 82.47%
Triplet SN [46]∗ 72.16 % 98.96 %

Our model 81.44% 95.88%

Our Handbag acc.@1 acc.@10
HOG-BoW + rankSVM 2.38% 10.71%
Dense-HOG + rankSVM 15.47% 40.48%

ISN Deep + rankSVM 9.52% 44.05%
Triplet SN [46]∗ 39.88% 82.14%

Our model 49.40% 82.74%

Table 1. Comparative results against baselines. ‘*’ The results of
Triplet SN [46] are the updated ones from their project webpage
which are higher than the published results due to parameter retun-
ing. The other baseline results are copied from [46] except those
on Handbag, which are based on our own implementation.

tion module consists of 2 convolutional layers, both with
kernel size 1 × 1. W in the HOLEF loss is learned as a
trainable layer. A detailed description of the network archi-
tecture can be found in the Supplementary Material. Both
our dataset and the trained model can be found at: http:
//sketchx.eecs.qmul.ac.uk/downloads/.

4.2. Comparative Results

Baselines Four baseline models are chosen for compar-
ison. Two are hand-crafted feature based models, namely
HOG-BoW+RankSVM and Dense-HOG+RankSVM.
HOG features are classic for sketch-recognition [16] and
SBIR [10] problem and it is the most commonly used hand-
crafted feature before the popularity of deep features. Dense
HOG is obtained by concatenating HOG features over a
dense grid. A RankSVM model is used with the features
to compute the final ranking score. Among the other two
baseline models, ISN Deep+RankSVM uses the deep fea-
tures extracted from Sketch-a-Net [47], which was trained
for sketch recognition. The prior state of the art model
Triplet SN was the first end-to-end deep model for SBIR
[46]. It has an identical base network architecture as ours
and differs in the lack of attention model and the use of
conventional first-order Euclidean triplet loss.1

Results We use the ratio of correctly predicting the true

1Further experimental results on the recently released Sketchy database
[31] can be found in Supplementary Materials.

QMUL-Shoe acc.@1 acc.@10
Base 52.17% 92.17%

Base + CFF 58.26% 93.04%
Base + HOLEF 56.52% 88.70%

Full: Base + CFF + HOLEF 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10
Base 72.16% 98.96%

Base + CFF 79.38% 95.88%
Base + HOLEF 74.23% 97.94%

Full: Base + CFF + HOLEF 81.44% 95.88%

Our Handbag acc.@1 acc.@10
Base 39.88% 82.14%

Base + CFF 48.21% 83.33%
Base + HOLEF 40.48% 83.93%

Full: Base + CFF + HOLEF 49.40% 82.74%

Table 2. Contributions of the different components.

match at top-1 and at top-10 (acc.@1 and acc.@10) as the
evaluation metrics. The performance of all compared mod-
els are reported in Table 1. The results suggest that (1) The
two end-to-end learned deep models are clearly superior to
the other baselines. (2) The proposed model significantly
outperforms all baseline models on all three datasets. The
improvement is particularly clear at top-1 – around 9% in-
crease in top-1 accuracy is obtained on all three datasets
against the second best model. For each query sketch, there
are typically a handful of visually very similar photos; the
lower-rank accuracy, especially at top-1, thus is a better in-
dication on how well the model is capable of distinguishing
fine-grained subtle differences between candidate photos.
Note that the drop of acc.@10 on Chair dataset can be ex-
plained by the introduction of the attention module. With
attention, our model is able to focus on discriminative local
parts. Yet, very occasionally the attention module locates
the wrong parts which happen to be shared by other objects
with globally very different appearance. This problem is
more acute for chair than shoe and handbag because part
sharing across different sub-categories is more common.

4.3. Ablation Study

Contributions of each Component We have introduced
two novel components in our model: the coarse-fine fu-
sion (CFF) to combine the attended convolutional feature
map with the final FC layer output and the HOLEF loss. In
order to evaluate the contributions of each component, we
compare our full model (Full: Base+CFF+HOLEF) with
three stripped-down versions: baseline model with coarse-
fine fusion (Base+CFF), baseline model with HOLEF loss
(Base+HOLEF) and baseline without either (Base) which
becomes the Triplet SN model [46]. Table 2 shows clearly
that each novel component improves the base model and

http://sketchx.eecs.qmul.ac.uk/downloads/
http://sketchx.eecs.qmul.ac.uk/downloads/


QMUL-Shoe with attention without attention
Base 54.78% 52.17%

Base + CFF 58.26% 57.39%
Base + HOLEF 57.39% 56.52%

Our model 61.74% 58.26%

QMUL-Chair with attention without attention
Base 74.23% 72.16%

Base + CFF 79.38% 75.25%
Base + HOLEF 75.26% 74.23%

Our model 81.44% 77.32%

Our Handbag with attention without attention
Base 41.07% 39.88%

Base + CFF 48.21% 47.02%
Base + HOLEF 40.48% 40.48%

Our model 49.40% 48.21%

Table 3. Effectiveness of the attention module (acc.@1).

QMUL-Shoe with shortcut without shortcut
Base + attention 54.78% 15.65%

Base + CFF 58.26% 26.96%
Our model 61.74% 27.83%

QMUL-Chair with shortcut without shortcut
Base + attention 74.23% 39.18%

Base + CFF 79.38% 48.45%
Our model 81.44% 49.48%

Our Handbag with shortcut without shortcut
Base + attention 41.07% 17.26%

Base + CFF 48.21% 24.40%
Our model 49.40% 23.81%

Table 4. Effect of shortcut connection in attention module
(acc.@1).

when both are combined we achieved the best performance
indicating that they are complementary to each other.
Contributions of the Attention Module Two experi-
ments are carried out. First, we evaluate how effective our
attention module is, not only to the final full model, but also
to the various stripped-down versions. Table 3 show that
almost invariantly each model variant benefits from having
an attention module to locate the most discriminative part
of the object to compare across the two domains. Second,
we evaluate the usefulness of the proposed shortcut connec-
tion architecture in the attention module which is designed
to deal with the potentially imprecise attention mask caused
by spatial misalignment between the compared sketch and
photo pair. Table 4 shows that having this shortcut connec-
tion architecture is vital: without the shortcut, i.e., having
a conventional soft attention module, the attended feature
map on its own is too noisy to be useful.
HOELF vs. other Alternative Triplet Losses To further

QMUL-Shoe acc.@1 acc.@10
Triplet loss with Euclidean 58.26% 93.04%

Triplet loss with Weighted Euclidean 58.26% 93.04%
Triplet loss with Mahalanobis 52.17% 89.57%

Our HOLEF 61.74% 94.78%

QMUL-Chair acc.@1 acc.@10
Triplet loss with Euclidean 79.38% 95.88%

Triplet loss with Weighted Euclidean 79.38% 95.88%
Triplet loss with Mahalanobis 78.35% 95.88%

Our HOLEF 81.44% 95.88%

Our Handbag acc.@1 acc.@10
Triplet loss with Euclidean 48.21% 83.33%

Triplet loss with Weighted Euclidean 48.81% 82.14%
Triplet loss with Mahalanobis 44.64% 79.76%

Our HOLEF 49.40% 82.74%

Table 5. Comparison on different losses.

shoes

chairs

handbags

Figure 4. Visualisation of attention masks of sample photo-sketch
pairs in all three categories.

validate the effectiveness of our HOLEF loss, we compare
with: (i) conventional triplet loss with Euclidean distance,
(ii) triplet loss with weighted Euclidean distance, and (iii)
triplet loss with Mahalanobis distance. The first two are
first order whilst the third is second order. The last two
have learnable weights while the first does not. All models
have the same base network and attention model as well as
CFF. They thus differ only in the loss used. The results are



Figure 5. Comparison of the retrieval results of our model and Triplet SN [46]. For each example, the top row is our retrieval result with
attention mask superimposed on the query sketch, and the bottom row is retrieval result of the same sketch using Triplet SN.

shown in Table 5. It can be seen that: (1) The proposed 2nd
order outer subtraction based HOLEF loss is the best. (2)
Even with learnable weights, both weighted Euclidean and
Mahalanobis distance in most cases cannot beat the conven-
tional triplet loss with Euclidean distance. (3) Even with a
2nd order energy function, the bilinear product of element-
wise subtraction used in Mahalonobis distance is ineffective
at dealing with the noise and feature misalignment of the
two domains.

4.4. Visualisation and Qualitative Results

Attention Processing In Fig. 4 we offer visualisations of
the attention maps learned using our model. It can be seen
that: (i) Across all three datasets, attention tends to be as-
sociated with salient parts of the object having complicated
and distinct visual pattern, e.g., shoelaces, wheels on chairs,
and bag buckles. (ii) Attention masks seem to align well
across sketch and photo domains, e.g., the cross pattern on
the back of the chair.
Qualitative Retrieval Results We further provide quali-
tative examples of our retrieval results in Fig. 5, compared
with those obtained using Triplet SN [46]. We observe
that our spatial-semantic attention model is better at disam-
biguating subtle visual details. For example, on the first

shoe example (left), attending to the shoelace region result-
ing in the correct shoe being retrieved as Rank 1. Similarly
on bags, attending to the stripe pattern resulted in the correct
bag being returned amongst bags whose overall shapes are
almost identical. For the sofa on the right, despite both mod-
els returning the correct top-1 match, our attended model
was able to filter out the sofa bed which was ranked 2nd by
Triplet SN.

5. Conclusion

We have proposed a novel deep spatial-semantic atten-
tion model for FG-SBIR. By introducing attention mod-
elling and shortcut connections, it is able to concentrate
on the subtle differences between local regions of a sketch
and photo images and compute deep features containing
both fine-grained and high-level semantics. However, fine-
grained noise and cross-domain feature channel misalign-
ment challenge energy functions for cross-domain match-
ing. We therefore introduced a novel HOLEF loss to make
the model robust against this. The effectiveness of the pro-
posed model has been validated by extensive experiments.
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