

Edinburgh Research Explorer

Constrained Type Families

Citation for published version:
Morris, JG & Eisenberg, RA 2017, Constrained Type Families. in 22nd ACM SIGPLAN International
Conference on Functional Programming.. vol. 1, 42, ACM, 22nd ACM SIGPLAN International Conference
on Functional Programming, Oxford, United Kingdom, 3-9 September. DOI: 10.1145/3110286

Digital Object Identifier (DOI):
10.1145/3110286

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
22nd ACM SIGPLAN International Conference on Functional Programming.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3110286
https://www.research.ed.ac.uk/portal/en/publications/constrained-type-families(6b017a8e-aaa8-4ee1-b12d-71e04ed5e986).html

42

Constrained Type Families

J. GARRETT MORRIS, �e University of Edinburgh and �e University of Kansas

RICHARD A. EISENBERG, Bryn Mawr College

We present an approach to support partiality in type-level computation without compromising expressiveness

or type safety. Existing frameworks for type-level computation either require totality or implicitly assume it.

For example, type families in Haskell provide a powerful, modular means of de�ning type-level computation.

However, their current design implicitly assumes that type families are total, introducing nonsensical types

and signi�cantly complicating the metatheory of type families and their extensions. We propose an alternative

design, using quali�ed types to pair type-level computations with predicates that capture their domains. Our

approach naturally captures the intuitive partiality of type families, simplifying their metatheory. As evidence,

we present the �rst complete proof of consistency for a language with closed type families.

CCS Concepts: •�eory of computation → Type structures; •So�ware and its engineering → Func-
tional languages;

Additional Key Words and Phrases: Type families, Type-level computation, Type classes, Haskell

ACM Reference format:
J. Garre� Morris and Richard A. Eisenberg. 2017. Constrained Type Families. PACM Progr. Lang. 1, ICFP,

Article 42 (September 2017), 28 pages.

DOI: 10.1145/3110286

1 INTRODUCTION
Indexed type families (Chakravarty et al. 2005; Schrijvers et al. 2008) extend the Haskell type system

with modular type-level computation. �ey allow programmers to de�ne and use open mappings

from types to types. �ese have given rise to further extensions of the language, such as closed

type families (Eisenberg et al. 2014) and injective type families (Stolarek et al. 2015), and they have

many applications, including encoding units of measure in scienti�c calculation (Muranushi and

Eisenberg 2014) and extensible variants (Bahr 2014; Morris 2015).

Nevertheless, some aspects of type families remain counterintuitive. Consider a unary type

family F with no de�ning equations. A type expression such as F Int should be meaningless—quite

literally, as there are no equations for F to give it meaning. Nevertheless, not only is F Int a type,

but there are simple programs (such as divergence) that demonstrate its inhabitation. �is apparent

paradox has both practical and theoretical consequences. For example, we de�ne a closed type

family Equ such that Equ τ σ should be True i� τ and σ are the same type:
1

type family Equ a b :: Bool where
Equ a a = True
Equ a b = False

1
We use here the promoted Bool kind, as introduced by Yorgey et al. (2012).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. 2475-1421/2017/9-ART42 $

DOI: 10.1145/3110286

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:2 J. Garre� Morris and Richard A. Eisenberg

�e type family application Equ a [a] does not reduce. �is surprising fact stems from the use

of in�nitary uni�cation during closed type family reduction (Eisenberg et al. 2014, §6.2). �is

explanation raises more questions, however: Haskell does not have in�nite types, so why use

in�nitary uni�cation? Again, type families play a role. Consider the following:

type family Loop ::?

type instance Loop = [Loop]

�e type family application Loop will never rewrite to a ground type. But, Equ Loop [Loop] is

equal to Equ [Loop] [Loop], and thus to True, justifying not rewriting Equ a [a] to False.

�e complexity in this example arises from an underlying inconsistency in the notion of type

families. Type families are used identically to other type constructors; that is, uses of type families

come with an unstated assumption of totality, regardless of the equations in the program. For

example, Loop will never reduce to any ground (i.e., type family-free) Haskell type, but still must be

treated as a type for the purposes of reducing Equ a [a]. In essence, Loop is treated as a total 0-ary

function on types, even though its de�nition makes it partial. Similar problems arise in injective

type families and in interpreting de�nitions using open type families (§3).

We propose a re�nement of indexed type families, constrained type families, which explicitly

captures partiality in the de�nition and use of type families. In our design, partial type families be

de�ned associated with type classes. �us, the domain of a type family is naturally characterized

by its corresponding type class predicate. We further insist that uses of type family be quali�ed

by their de�ning class predicates, guaranteeing that they be well-de�ned. Non-terminating, or

otherwise unde�nable, type family applications will be guarded by unsatis�able class predicates,

assuring that they cannot be used to violate type safety.

�e introduction of constraints simpli�es the metatheory of type families, separating concerns

about partiality from the machinery of rewriting. We demonstrate this by formally specifying

a calculus with constrained closed type families and showing it is sound, relying on neither

in�nitary uni�cation nor an assumption of termination, in contrast to previous work on type

families (Eisenberg et al. 2014). In terms of our earlier example, this means that we could safely

rewrite Equ a [a] to False without risking type safety.

In summary, this paper contributes:

• An analysis of di�culties in the evolution of type families, including the need for in�nitary

uni�cation in the semantics of closed type families and the inexpressiveness of injective

type families. �ese warts on the type system belie a hidden assumption of totality (§3).

• �e design of constrained type families (§4), which relaxes the assumption of totality by

using type class predicates to characterize the domains of de�nition of partial type families.

• �e design of closed type classes (§5), a simpli�cation of instance chains (Morris and Jones

2010). Closed type classes enable partial closed type families and increase the expressiveness

of type classes, subsuming many uses of overlapping instances (Peyton Jones et al. 1997).

• A core calculus with constrained type families (§6), together with a proof of its soundness

that requires neither an assumption of termination nor in�nitary uni�cation. �is is a novel

result for a calculus supporting type families with non-linear pa�erns. Even with in�nitary

uni�cation, prior work (Eisenberg et al. 2014) was unable to fully prove consistency.

• A design that allows existing Haskell code to remain well typed, so long as it does not

depend on the behavior of unde�ned type family applications (§7).

Although this paper is primarily concerned with Haskell, our work is applicable to any partial

language that supports type-level computation. We hope that our work, among others’, will

encourage other languages to join in the type-level fun.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:3

2 TYPE FAMILIES IN HASKELL
Associated type synonyms (Chakravarty et al. 2005) are a feature of the Haskell type system that

allows the de�nition and use of extensible maps from types to types. �ey address many of the

problems that arise in the use of multi-parameter type classes. One example is a class of collection

types, Collects. In de�ning the Collects methods for a type c, we naturally need access to the types

of its elements. To capture the types of collection elements, we could de�ne the Collects class to

have an associated type Elem:

class Collects c where
type Elem c ::?

empty :: c
insert :: Elem c → c → c

�is declares both the Collects class and the type family Elem. Instances of the Collects class, must

also specify instances of the Elem type family:

instance Collects [a] where
type Elem [a] = a
empty = []

insert = (:)

While associated types provide a natural syntactic combination of class and type family de�-

nitions, the class and type family components can actually be speci�ed and formalized entirely

separately (Schrijvers et al. 2008). Instead of using an associated type synonym, we could have

de�ned Elem as a distinct top-level entity.

type family Elem c ::?

class Collects c where
empty :: c
insert :: Elem c → c → c

While there would then be no syntactic requirement to combine instances of the class and type

family, it is easy to see that class instances would be unde�nable without corresponding type

family instances, while type family instances would be unusable without corresponding type class

instances.

type instance Elem [a] = a
instance Collects [a] where

empty = []

insert = (:)

�ese de�nitions are entirely equivalent to the original de�nitions; while it may be impractical to

use a type family instance Elem τ without a corresponding instance Collects τ , it is not an error in

either approach to do so.

Type families can express many type-level computations. However, some useful type-level

functions cannot be expressed using open type families. One is the type family Equ a b, as appeared

in the introduction. We might hope to characterize Equ using the following equations:

type family Equ a b :: Bool
type instance Equ a a = True
type instance Equ a b = False

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:4 J. Garre� Morris and Richard A. Eisenberg

However, type family instances are interpreted without any ordering, arising either from their

source locations or from their relative generality. In this case, both equations apply to a type family

application such as Equ Int Int but give di�erent results, and so they are rejected as inconsistent.

Closed type families (Eisenberg et al. 2014) address this problem by allowing ordered overlap among

the instances in a type family de�nition, so long as the family cannot be further extended. We could

write the equality function using a closed type family, as we did in the introduction. Closed type

families cannot be extended later, even if their de�nitions do not cover all possible applications.

For example, consider the following de�nition:

type family OnlyInt a :: Bool where
OnlyInt Int = True

�e type family application OnlyInt Bool does not rewrite to any ground type (i.e., type without

type family applications), but the programmer is still prevented from adding further equations to

OnlyInt .
In general, type families need not be injective. However, there are cases in which it would be

useful to capture the natural injectivity of type-level de�nitions. For example: session types, which

provide static typing for communication protocols, depend on a naturally injective notion of duality.

We would expect that if the duals of two session types are equal, then the session types themselves

are equal as well. Injective type families (Stolarek et al. 2015) can express such cases; duality could

be characterized by the following type family:

type family Dual s = r | r → s

where the s → r annotation denotes the injectivity of duality. �e compiler validates that the

injectivity condition is upheld by the type family’s de�ning equations.

�e most recent version of the Glasgow Haskell Compiler, GHC 8.0, accepts all the varieties of

type families described above.

3 THE TOTALITY TRAP
Recent developments in the theory and implementation of type families (Eisenberg et al. 2014;

Stolarek et al. 2015) have relied on increasingly technical and confusing constraints, impeding their

use in practice. In this section, we argue that these problems arise from a single source: an implicit

assumption of totality for type families.

3.1 The Assumption of Totality
Type families are open and extensible, and so suggesting that they are assumed total seems

counterintuitive. However, we can rephrase the question as follows. Suppose that we have a type

family F with no equations. Is F Bool a type? It seems absurd that it should be—a�er all, the

meaning of a type family is given by its equations, and F has no equations. Yet we can observe that

it is:

type family F a ::?

f x = fst (x, undefined :: F Bool)

�is is a well-typed de�nition: f has type a→ a and behaves like the identity function. So F Bool
must be a type, even if all we can observe about it are properties true of all Haskell types (such

as pointedness, or de�nition of seq). While it is possible that F Bool will be de�ned later in the

program, this program would be equally valid were F replaced by a closed type family, such as

OnlyInt (above), in which case we could say with con�dence that OnlyInt Bool would never become

de�ned.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:5

�is illustrates that our intuitive understanding of type families is �awed. Rather than thinking

of type families as partial functions on types, where individual instances extend the de�nition of the

type family, a type family declaration should be thought of as initially introducing an in�nite family

of distinct types, one for each possible application of the type family, and individual instances as

equating previously distinct types. But does this distinction cause actual problems? Consider the

following de�nition:

g x = x : x

We might expect this de�nition to be ill-typed: x must have both type τ and type [τ], a seeming

contradiction. But recall type family Loop (§1). If we must assume that Loop is a type, then it

is clearly a satisfying instantiation of the constraint τ ∼ [τ], and so we can assign g the type

Loop → Loop. But worse, we expect Haskell terms to have principal types, and since g makes

no reference to Loop, Loop→ Loop cannot be its principal type. Instead, we conclude that g has

principal type a ∼ [a]⇒ a→ a.

Now the true consequences of the totality assumption are revealed. It is not only a gap between

the intuitive and actual meanings of type families, nor just an incompleteness in speci�cations of

type checking and type inference with type families. Rather, we are le� with a type system which

must accept some (but not all) apparently erroneous de�nitions: we can reject Int ∼ Bool, even

if we must accept a ∼ [a]. �e speci�cation of principal types for this system remains an open

question.

It might seem that the problems illustrated here are not to do with the totality assumption itself,

but rather in its interaction with the accepted equations for Loop, and therefore should be �xed

simply by rejecting Loop (and other non-terminating type family de�nitions). However, this would

burden the programmer with satisfying some termination checking algorithm, and does not re�ect

the realities of either type family practice or research (where signi�cant e�ort has been devoted to

accounting for non-terminating type families). Instead, we propose (§4) an approach that restores

the intuitive interpretation of type families, preserves their current uses, and avoids introducing

new constraints, such as termination checking.

3.2 Closed Type Families and the Infinity Problem
We have seen that assuming totality of type families introduces a variety of theoretical problems.

With the development of closed type families, the totality assumption began causing practical

problems as well, as demonstrated above in the unpleasant interaction between Equ and Loop.

Closed type families rely on a notion of apartness to determine when an equation cannot apply

to a particular type family application. Intuitively, two types are apart if they have no common

instantiations; for example, Equ Int Bool is apart from Equ a a, while Equ a b is not apart from

Equ a a. �is intuition can be formalized in terms of uni�cation: two types are apart if they have

no most general uni�er. �e problems with Loop arise from the apartness of Equ a [a] and Equ a a:

while these instances do not have any most general uni�er in the typical sense, considering them

apart leads to the unsoundness above. �is problem is addressed in closed type families by de�ning

apartness in terms of in�nitary uni�cation. As there is an in�nite (i.e., non-idempotent) uni�er of

Equ a [a] and Equ a a (namely {[a]/a}) Equ a [a] does not rewrite to False until a is instantiated

to some concrete type.

While the interaction between closed and in�nite type families may seem like a theoretical

concern, the solution causes confusion in practice. Programmers discovering that Equ a [a] does

not rewrite to False consider this a bug in the implementation rather than an expected behavior

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:6 J. Garre� Morris and Richard A. Eisenberg

of the type system.
2

It can also result in programs that use closed type families to require more

complex type signatures than similar programs expressed using older techniques, like overlapping

instances (Peyton Jones et al. 1997) or instance chains (Morris and Jones 2010).

3.3 Explosive Injectivity
We have seen that the totality assumption causes both theoretical and practical problems in the

ongoing development of type families. �ese problems have depended on the interaction of other

type system features with non-terminating type families. �is might seem like a corner case, and

one that programmers would not expect to encounter in practice. Recent work on injective type

families bring the problems caused by the totality assumption into starker relief, without relying

on non-terminating type families.

Some families of types are naturally injective; examples include duality relationships (Lindley

and Morris 2016; Pucella and Tov 2008) or the pairing between mutable and immutable vectors

types in the vector library.
3

However, because type families are not injective in general, expressing

such examples required either the introduction of additional constraints to assure involutiveness or

the use of either proxy arguments or type applications (Eisenberg et al. 2016) to �x type parameters.

Injective type families (Stolarek et al. 2015) introduce annotations on type family declarations that

characterize their injectivity. For example, the duality function for session types could be declared

by

type family Dual s = r | r → s

�is declaration di�ers from traditional type family declarations in two ways: �rst, the result is

named (r), and second, the annotation r → s speci�es Dual’s injectivity: its result determines its

argument.

Unfortunately, injective type families require seemingly arcane restrictions to preserve type

safety. For example, consider the following apparently innocuous de�nitions:

type family ListElems a = b | b → a
type instance ListElems [a] = a

ListElems is clearly injective: if a ∼ b then [a] ∼ [b]. Nevertheless, this example is su�cient to de-

rive a violation of type safety: by the de�nition of ListElems, we have that ListElems [ListElems Int]

∼ ListElems Int , and then by injectivity, we have that [ListElems Int] ∼ Int , an impossibility. In

the previous sections, di�culties stemmed from the type family application Loop, which does

not correspond to any ground type. In this case, problems arise from the type family application

ListElems Int , which similarly cannot correspond to any ground type. Suppose that we could prove

that ListElems Int ∼ τ for some type τ ; as, from the de�nition of ListElems we also have that

ListElems [τ] ∼ τ , the injectivity of ListElems has been violated.

De�nitions like that of ListElems are ruled out by strict restrictions on the right-hand sides of

injective type family equations; for example, the RHS of an injective type family equation cannot (in

most cases) be a type variable or another type family application. �ese restrictions are necessary

to assure the safety of injective type families, but have not yet been shown to be su�cient. �ey

2
See, among others:

• h�ps://ghc.haskell.org/trac/ghc/ticket/9082: Unexpected behavior involving closed type families and repeat

occurrences of variables

• h�ps://ghc.haskell.org/trac/ghc/ticket/9918: GHC chooses an instance between two overlapping, but cannot

resolve a clause within the similar closed type family

3
See h�ps://github.com/haskell/vector/issues/34: Add immutable type family.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

https://ghc.haskell.org/trac/ghc/ticket/9082
https://ghc.haskell.org/trac/ghc/ticket/9918
https://github.com/haskell/vector/issues/34

Constrained Type Families 42:7

are also a signi�cant limitation in expressiveness, especially in comparison with older approaches,

such as functional dependencies (Jones 2000).

4 CONSTRAINING TYPE FAMILIES
In the previous section, we have seen that indexed type families are implicitly assumed to be de�ned

at all their applications—that is, they represent total functions on types. We have seen how this

totality assumption introduces practical and theoretical obstacles, both in preserving totality (such

as in injective type families) or in accounting for its violations (such as in the interaction between

non-terminating and closed type families).

We propose a new approach, constrained type families, which treats type families as partial

maps between types. Our key observation is that Haskell already supplies a mechanism to limit

the domain of polymorphism: quali�ed types with type classes. So we can capture partiality by

associating each type family with a type class that characterizes its domain of de�nition. We

will show that this approach naturally resolves the practical and theoretical issues with type

families and restores their intuitive meaning, while adding li�le new complexity for programmer

or implementer.

�is section describes constrained open type families; we discuss the extension of our approach

to closed type families in the following section.

4.1 Constrained Type Families
Our goal is a system of partial type families that sacri�ces neither the expressiveness nor the

ease of use of present type families. �is introduces two challenges. First, we must retain the

applicative syntax of type families, while taking their domains of de�nition into account. �at

is, a type family application such as F τ should be constrained by the domain of F . In particular,

whether a type family application that contains type variables, such as F a, is well-de�ned depends

on the instantiation of the type variable a. Second, we must keep type families easy to de�ne, while

simultaneously characterizing their domains of de�nition.

We address each of these problems using features already present in modern Haskell. Haskell

already has a mechanism suited to capturing this kind of constrained polymorphism: quali�ed types

and type classes (Wadler and Blo� 1989). �ali�ed types are currently used to track when type class

methods are de�ned; for example, the equality operator is de�ned at all types a→ a→ Bool such

that the class predicate Eq a is satis�able. Our intention is to reuse the quali�ed types mechanism

to account for partiality in type families as well. Haskell also supports a mechanism that combines

type classes and type families: associated type synonyms. Our intention is to rely on associated

types to simultaneously de�ne type families and characterize their domains.

We propose combining these mechanisms to give an account of partial type families that matches

both the intuitions and usage of type families in Haskell today. In doing so, we make two changes to

the surface language. First, we require that type families be de�ned by associated types, disallowing

free-standing type family declarations. �is means that the well-de�nedness of type family instances

follows from the satis�ability of the corresponding class predicates. In our previous example (§2),

the type family application Elem τ is de�ned precisely when the predicate Collects τ is satis�able.

Second, we require that all uses of type families be well-de�ned, as enforced by their corresponding

class predicates. �at is, uses of the type family Elem τ must occur in a context that is su�cient to

prove Collects τ (either because Collects τ is assumed or provable from the instances).

Our approach captures the natural interpretation and use of open type families. Open type

families are already primarily useful in combination with type class constraints—we have no way

to use a value of type Elem τ unless we have some additional information about that type, captured

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:8 J. Garre� Morris and Richard A. Eisenberg

by the class constraint Collects τ . �us, our requirements do not reduce the expressiveness of the

language. �e remainder of the section demonstrates informally that our approach addresses the

di�culties and confusion with type families.

We begin with the behavior of unde�ned, or “stuck”, type family instances (§3.1). As before, We

de�ne a type family, F2, now associated with a class C2:

class C2 t where
type F2 t ::?

Instances of the F2 type family can be added only by adding instances to the C2 class:

instance C2 Int where
type F2 Int = Bool

Now, recall our function de�nition:

f x = fst (x, undefined :: F2 Bool)

Is this de�nition still well-typed? �e use of F2 Bool requires that C2 Bool be satis�able to assure

that it is well de�ned. However, without any instances of C2 Bool in scope, the constraint would be

unsatis�able, so the de�nition would be rejected. �is account extends naturally to polymorphism.

Suppose that we had some function g that used F2, with the following type:

g :: C2 a⇒ a→ F2 a

(Note the requisite C2 a constraint.) Now, we could de�ne an alternative version of f as follows:

f’ x = fst (x, g x)

�e de�nition of f’ is not ill-typed, but its type, C2 a ⇒ a → a, includes the C2 a constraint to

assures that the type of g x is well-de�ned.

�e complications with closed type families arose from their interaction with non-terminating

type families. We can already see how non-terminating type family de�nitions would play out in

our system. As before, we de�ne a type family Loop, but now as an associated type to a type class

Loopy :

class Loopy where
type Loop ::?

As Loop is a 0-ary type family, Loopy is a 0-ary type class. �is is not problematic; in particular,

there are two canonical 0-ary type classes, one whose predicates are trivially true and another

whose predicates are unsatis�able. Now, suppose we want to add the equation Loop ∼ [Loop]. We

would need to do so via an instance of Loopy . However, we cannot add the instance

instance Loopy where
type Loop = [Loop]

as the use of Loop on the right-hand side of the type de�nition does not have a corresponding

constraint. We can add the instance

instance Loopy ⇒ Loopy where
type Loop = [Loop]

but it is clear that the Loopy constraint cannot be satis�ed. �us, any a�empt to use this Loop
equation must be guarded by an unsatis�able Loopy constraint, and so cannot compromise type

safety.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:9

α ∈ Γ ` P | Γ ctx

P | Γ ` α type
ST Var

P | Γ,α ` τ type

P | Γ ` ∀α .τ type
ST Forall

P ,π | Γ ` τ type

P | Γ ` π ⇒ τ type
ST �al

P | Γ ` τi type
i<n

(H : n) ∈ Σ ` P | Γ ctx

P | Γ ` H τ type
ST TyCon

(C ⇒ F : n) ∈ Σ ` P | Γ ctx

P | Γ ` τi type
i<n

P
 C τ

P | Γ ` F τ type
ST Family

Fig. 1. Well-formedness rules for types

Finally, we can give an informal description of constrained injective type families. We return to

the ListElems example, now de�ning it by an associated type synonym:

class Listy t where
type ListElems t = u | u → t

instance Listy [t] where
type ListElems [t] = t

Notice that we could not add an instance Listy Int , as that would require adding a corresponding

instance to the type family and any such instance would be rejected for violating the injectivity con-

straint of ListElems. Consequently, inconsistencies arising from uses of the type family application

ListElems Int must be guarded by the unsatis�able class constraint Listy Int .
Constrained type families are not, in their simplest form, backward compatible. We will return

to the question of compatibility with existing Haskell programs, and show how we can infer

the requisite constraints to transition from current usage to the explicit use of constrained type

families (§7).

4.2 Validating Constrained Type Families
In the previous section, we introduced an intuitive characterization of constrained type families.

Later (§6), we will formalize a core calculus with constrained type families. However, our formal-

ization will di�er from Haskell-like surface languages in several signi�cant ways. �is section

bridges the intuition of constrained type families and our core language, in the context of a simple,

Haskell-like type system.

Figure 1 gives the syntax and formation rules for our surface type system. We omit kinds from

our account, as they are an orthogonal concern from the use of type classes and type families.

Our well-formedness judgment takes the form P | Γ ` σ type, in which σ is a surface-language

type, Γ is a type variable environment, and P is a predicate context. As we have omi�ed kinds, the

environment Γ is simply a list of type variables. �e form of the judgment and use of context P
should be familiar from other formulations of quali�ed types (Jones 1994).

Our types include type variables (α), quanti�ed types (∀α .τ), quali�ed types (π ⇒ τ), and appli-

cations of type constructors (H τ) and type families (F τ). �e rules for variables, quanti�ers, and

quali�ers should all be unsurprising. Leaf nodes depend on an auxiliary well-formedness judgment

` P | Γ ctx on contexts, which is entirely unsurprising. Our treatments of type constructors and

type families depend on an ambient signature Σ, representing the top-level declarations. Arity n
type constructors are captured by entries (H : n) ∈ Σ; the typing rule for constructors assures that

they have the correct number of arguments. �e interesting case is for type families. Constrained

type families are represented by assertions (C ⇒ F : n) ∈ Σ; this denotes that type family F has

arity n, and is associated with class C . Uses of the type family application F τ , then, should occur

in a context strong enough to prove C τ . �is is captured by ST Family, in which we insist that the

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:10 J. Garre� Morris and Richard A. Eisenberg

context P is strong enough to prove C τ ; we omit the details of the standard type class entailment

relation ·
 ·. For a simple example, suppose that F is a unary type family declared in class C, and

class D is a subclass of C. �en we could prove any of the following judgments:

C τ | ∅ ` F τ type D τ | ∅ ` F τ type ∅ | ∅ ` C τ ⇒ F τ type

but, absent other instances of C, we could not prove ∅ | ∅ ` F τ type.

5 ACHIEVING CLOSURE
Closed type families are one of the most fruitful extensions of indexed type families. �ey allow type

families to be speci�ed by ordered sequences of overlapping equations, capturing many pa�erns of

type-level computation that were previously inexpressible or required intricate indirect encodings.

In this section, we discuss the extension of constrained type families to include closed type families.

�is introduces two challenges. First, there is no existing feature of type classes that mirrors closed

type families. We introduce closed type classes, a simpli�cation of instance chains (Morris and

Jones 2010), and show how they can be used to constrain closed type families. Second, closed

type families may be total, and so could be used without constraints. We discuss approaches to

recognizing and supporting total closed type families. Finally, we illustrate the simpli�cation our

approach provides over previous formulations of closed type families.

5.1 Closed Type Classes
Closed type classes are our novel approach to introducing and resolving overlap among class

instances. �ey closely follow the design of closed type families: just as closed type families allow

type families to be de�ned by ordered sequences of overlapping equations, closed type classes

allow type classes to be de�ned by ordered sequences of overlapping instances. Instance resolution

begins with the �rst instance in the sequence, and proceeds to subsequent instances only if the

�rst instance cannot match the goal predicate. In the next section, we will show that closed type

classes can characterize the domain of de�nition of closed type families. We begin, however, by

considering closed type classes as a feature on their own.

As an example, we consider heterogeneous lists, following the approach of Kiselyov et al. (2004).

We begin by introducing data types to represent heterogeneous lists:

data HNil = MkHNil
data HCons e l = MkHCons e l

For example, the declaration

hlst = MkHCons True (MkHCons ’c’ MkHNil)

de�nes a heterogeneous list hlst with type HCons Bool (HCons Char HNil). Kiselyov et al. describe

a number of operations on heterogeneous lists, and show how they can be used to build more

complex data structures, such as extensible records. We will limit ourselves to some of the simpler

operations. One such operation is hOccurs, which projects all elements of a given type from a

heterogeneous list. We can de�ne hOccurs using a closed type class as follows:

class HOccurs e l where
hOccurs :: l → [e]

instance HOccurs e HNil where
hOccurs MkHNil = []

instance HOccurs e l ⇒ HOccurs e (HCons e l) where
hOccurs (MkHCons e l) = e : hOccurs l

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:11

instance HOccurs e l ⇒ HOccurs e (HCons e’ l) where
hOccurs (MkHCons l) = hOccurs l

HOccurs is a closed type class, as indicated by the sequence of instances inside the class dec-

laration. �e second two instances are overlapping—for example, both apply to the predicate

HOccurs Char (HCons Char HNil)—but the ordering indicates that the �rst instance should apply

in the common cases. Depending on its expected return type, hOccurs hlst could evaluate to [True],

[’c’], or [].

Closed type classes bear a close resemblance to overlapping instances (Peyton Jones et al. 1997), a

well-established extension of the Haskell class system. However, whereas the order of instances in

closed type families is explicit in their declaration, overlapping instances have an implicit ordering,

�xed by the compiler. �is means that overlapping instances can lead to unintended ambiguity. For

example, in Swierstra’s (2008) encoding of extensible variants, he relies on a data type of functor

coproducts:

data (f ⊕ g) e = Inl (f e) | Inr (g e)

He de�nes a class of polymorphic injectors, as follows:

class f � g where
inj :: f e → g e

instance f � f where
inj = id

instance f �(f ⊕ g) where
inj = Inl

instance f � h⇒ f �(g ⊕ h) where
inj = Inr ◦ inj

�e intuition here is simple: these instances describe a recursive search of (right-grouped) coproduct

types, in which the �rst two instances provide base cases and the third instance provides the

recursive case. However, there is actually an unresolved overlap among the instances: the predicate

(f ⊕ g) �(f ⊕ g) could be resolved by either the �rst or third instance, and neither is more speci�c

than the other. Consequently, GHC will report an error if such a predicate is encountered. An

implementation of this class using closed type class (wri�en simply by indenting the instance
declarations to �t within the class body) would be unambiguous, and the predicate (f � g) �(f ⊕ g)
would be resolved using the �rst instance.

5.2 Constrained Closed Type Families
Combining closed type classes and associated types gives us a way to introduce closed type families

while accurately characterizing their domains of de�nition.

For an example, we turn again to the heterogeneous lists of Kiselyov et al. (2004). Our new goal is

to de�ne an operation hDelete, which will remove all values of a given type from a heterogeneous

list. In doing so, we must simultaneously de�ne a mapping on types describing the type of the

resulting list. We do this by de�ning an associated type HWithout such that, if l is a heterogeneous

list type, then HWithout e l is the same list without any occurrences of element type e. �us, we

arrive at the following closed type class de�nition.

class HDelete e l where
type HWithout e l ::?

hDelete :: Proxy e → l → HWithout e l

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:12 J. Garre� Morris and Richard A. Eisenberg

instance HDelete e HNil where
type HWithout e HNil = HNil
hDelete MkHNil = MkHNil

instance HDelete e l ⇒ HDelete e (HCons e l) where
type HWithout e (HCons e l) = HWithout e l
hDelete ep (MkHCons l) = hDelete ep l

instance HDelete e l ⇒ HDelete e (HCons e’ l) where
type HWithout e (HCons e’ l) = HCons e’ (HWithout e l)
hDelete ep (MkHCons e’ l) = MkHCons e’ (hDelete ep l)

�e class HDelete e l has the hDelete method and the HWithout associated type synonym; to

disambiguate the type of hDelete, we capture the type e using a Proxy argument. �e HDelete
class has three instances, following the same recursion scheme we used for HOccurs; again, the

�nal two instances overlap. Like conventional closed type families, the associated type synonym

equations are checked in the order in which they appear in the type class de�nition. For example,

we have that HWithout Char (HCons Bool (HCons Char HNil)) ∼ HCons Bool HNil. Note that

HWithout is not total: while it is de�ned for arbitrary e, it is only de�ned for l that are properly

formed heterogeneous list types.

5.3 Closed Type Families and Totality
Unlike open type families, closed type families can be total.

4
For example, we could implement

addition for type-level naturals using constrained closed type classes as follows:

data Nat = Z | S Nat
class PlusC (m :: Nat) (n :: Nat) where
type Plus m n ::?

instance PlusC Z n where
type Plus Z n = n

instance PlusC m n⇒ PlusC (S m) n where
type Plus (S m) n = S (Plus m n)

�is formulation behaves roughly as we expect: Plus M N evaluates to the sum of the naturals

M and N , while the predicate PlusC M N is satis�ed for arbitrary naturals M and N . However, in

this case, the PlusC M N predicates are unnecessary: Plus M N is de�ned for arbitrary naturals M
and N . Furthermore, the requirement to include these predicates could signi�cantly complicate

de�nitions using polymorphic recursion. For a simple example, consider the de�nition of the

append function for length-indexed vectors. We might hope to write it as follows:

data Vec (a ::?) (n :: Nat) where
Nil :: Vec a Z
Cons :: a→ Vec a n→ Vec a (S n)

append :: PlusC m n⇒ Vec a m→ Vec a n→ Vec a (Plus m n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

4
Open type families might also be total, with the right equations. Any such open type family can, however, be wri�en as a

closed family. We thus consider all open type families to be partial.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:13

However, the type signature given here is not strong enough: in the second case, where we know

that m is S m’ for some m’, we also need to know that PlusC m’ n holds. But this does not follow

from the assumption PlusC (S m’) n. It would seem that we would have to de�ne append itself via

a type class:

class PlusC m n⇒ Append m n where
append :: Vec a m→ Vec a n→ Vec a (Plus m n)

instance Append Z n where
append Nil ys = ys

instance Append m n⇒ Append (S m) n where
append (Cons x xs) ys = Cons x (append xs ys)

But this is verbose, and complicates what should be a simple de�nition. It also complicates uses of

append , which will now have to include the Append constraint instead of the PlusC constraint or

(even be�er) just an application of the Plus type family.

In essence, having recognized that most type families are partial, some are total, and users should

be able to take advantage of this fact. If we could recognize Plus as total, then we could allow the

following, much simpler de�nition of append :

append :: Vec a m→ Vec a n→ Vec a (Plus m n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

�is de�nition needs no constraints, as the type-checker is aware that Plus is total, with no

possibility for a usage outside its domain of de�nition.

We now have a new, challenging question: how do we know when a type family is total?

Totality checking of functional programs is a hard problem, one we do not propose to solve here.

�is problem is well studied both in the context of dependently-typed programming
5

and partial

evaluation (Lee et al. 2001; Sereni and Jones 2005). In practice, an implementation of our ideas

would use a totality checker to discover or check the totality of type families. Users could also

have the capability to (unsafely) assert the totality of functions that lie beyond the abilities of the

checker.

We can extend our type formation rules (§4.2) to take account of total type families. Intuitively,

we can think of a total type family as a constrained type family for which the constraint is trivially

provable. To formalize this notion, we extend our top-level environment Σ to include total type

families > ⇒ F : n as well as partial type families C ⇒ F : n. �en, we can add a new rule that

allows total type families regardless of the context:

(> ⇒ F : n) ∈ Σ ` P | Γ ctx P | Γ ` τi type
i<n

P | Γ ` F τ type
ST TFamily

While this rule is super�cially similar to the rule for type constructors, it will have a di�erent

elaboration into our core calculus, which must explicitly account for the totality of F .

5.4 Simplifying Apartness
As introduced above (§3.2), closed type family reduction critically relies on a notion of apartness

on types. �e existing de�nition of apartness (Eisenberg et al. 2014, §3.3) is subtle, requiring

both in�nitary uni�cation and a �a�ening operation to account for the possibility of type family

5
E.g., h�ps://coq.inria.fr/cocorico/CoqTerminationDiscussion

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

https://coq.inria.fr/cocorico/CoqTerminationDiscussion

42:14 J. Garre� Morris and Richard A. Eisenberg

applications in the arguments to another type family. Because type families cannot appear directly

as arguments to other type families, the �a�ening operation—whose details thankfully no longer

concern us—becomes redundant. In addition, because we require the caller of a function to provide

the ground type to which a type family reduces at every call site, we no longer have to worry

about in�nite types and in�nitary uni�cation. �us, we can de�ne apartness very simply: as the

inverse of uni�ability. Indeed, our formal development (§6) no longer contains a �rst-class notion

of apartness, using uni�cation directly.

6 TYPE SAFETY OF CONSTRAINED TYPE FAMILIES
For over a decade, GHC has compiled its variant of Haskell into System FC (Sulzmann et al. 2007),

a variant of System F (Girard et al. 1989; Reynolds 1974) that supports explicit coercions, or proofs

of equality between types. As type family instances introduce new such equalities (via axioms),

type families are integrated into FC. Accordingly, proving the type safety of System FC requires

careful reasoning about type family reduction. As the safety of Haskell itself rests on the safety of

FC,
6

we must now show that our extension of constrained type families retains soundness.

Indeed we go further: by adding constrained type families and a new treatment of axioms, we

can now prove that all type family reduction chains in System FC terminate, thus closing the gap

in the proof presented by Eisenberg et al. (2014), which was unable to cope with the interaction of

non-linear pa�erns and non-terminating type families.

�is section presents an overview of our formalism and a sketch of our proofs. �e full de�nitions

and proofs can be found in our evaluated proof artifact.

6.1 System CFC
We will study a simpli�ed version of System FC, called CFC (“constrained FC”). �e grammar

for the language is presented in Figure 2 and is checked by the judgments in Figures 3–7. Broadly

speaking, CFC is like System F, but with explicit coercions witnessing equality between types and

usable in type conversions (see rule E Cast, Figure 4). �e features in this system beyond those in

System F are all driven by these coercions. Before describing the novelty of CFC, we take a quick

tour of the grounds. Novel components are indicated in the following discussion; the rest of System

CFC follows previous work (e.g., (Breitner et al. 2016; Eisenberg et al. 2014)).

Types in CFC are like those in System F, but with three additions: H τ is a fully applied type

constant H (allowing partial application would require reasoning about kinds), ϕ ⇒ τ is a type

τ quali�ed by an equality assumption ϕ, and F τ is a fully applied type family F . Perhaps unex-

pectedly, classes are not included. �e novel constrained nature of type families arises from CFC’s

di�erentiation between pretypes (any production of metavariable τ) and types (as validated by

Γ ` τ type, Figure 3); proper types may mention type families only in a proposition ϕ. Examine

the judgment Γ ` ϕ prop (Figure 3). Its rule P Types allows the proposition to relate two proper

types, while the rule P Family allows a saturated type family application to be related to a type.

�us, in CFC, we would write insert :: ∀a c. Elem c ∼ a ⇒ a → c → c instead of the more

typical insert :: ∀c.Collects c ⇒ Elem c → c → c. In e�ect, the type family equality assumption

Elem c ∼ a takes the place of the class constraint Collects c: both assert that Elem c can evaluate

to a proper (type family-free) type.

�e language omits any consideration of kinds, as the complexity of kinds does not illuminate

the invention of constrained type families.

6
We are unaware of a precise semantics for the surface Haskell language that accounts for all the features of modern

GHC/Haskell.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:15

Metavariables.
α type variables x term variables

c coercion variables ξ axioms

F type families H type constants

K term constants (constructors)

Notations.
• Substitutions application: τ [θ]

• Substitutions composition: θ = θ1 ◦ θ2

• F : n stands for either F :6> n or F :> n
• Free variables of constructs: fv (·)
• tvs(χ): bound type variables of χ
• Domains of contexts are denoted dom(Γ)

Grammar.
τ ,σ , ρ ::= H τ | τ1 → τ2 | α | ∀α .τ | ϕ ⇒ τ | F τ types

ϕ ::= τ1 ∼ τ2 constraints

γ ,η ::= 〈τ 〉 | symγ | γ1 # γ2 | H γ | γ1 → γ2 | ∀α .γ coercions

| γ1 ∼ γ2 ⇒ γ3 | F γ | nthi γ | γ@τ | c | ξi τ q
e ::= x | K | λx : τ .e | e1 e2 | Λα .e | e τ expressions

| λc : ϕ .e | eγ | e . γ | assume χ in e
v ::= K | λx : τ .e | Λα .e | λc : ϕ .e values

χ ::= (α |c : F τ ∼ α) evaluation assumption

q ::= (τ |γ) evaluation resolution

E ::= ∀α χ .F τ ∼ τ0 type family equations

Σ ::= ∅ | Σ, F :6> n | Σ, F :> n | Σ, ξ : E signatures

δ ::= α | c:ϕ | x:τ bindings

Γ ::= ∅ | Γ,δ typing contexts

θ ::= ∅ | θ ,τ/α | θ ,γ/c | θ , e/x substitutions

V ::= . . . sets of variables

C[·] ::= . . . one-hole type contexts

Fig. 2. System CFC Design

Expressions e are checked by the judgment Γ ` e : τ (Figure 4). �ere are two leaf forms, for

variables x and constants (such as data constructors) K . In addition to System F’s two forms of

abstraction and application (over expressions and types), CFC contains abstraction and applica-

tion over coercions. Accordingly, a function may assume an equality proposition ϕ relating two

types. �e feature can be seen in the rules E CLam and E CApp (Figure 4). �ough this language

omits datatypes, generalized algebraic datatypes (GADTs) can be encoded using coercion abstrac-

tions (Sulzmann et al. 2007, §3.2). Coercions are used in casts e . γ , which use the coercion to

change the type of an expression (E Cast, Figure 4). Lastly, expressions also contain a novel form

assume χ in e used in our account of total type families (§6.3).

�e small-step operational semantics (Figure 4) provides the relation e −→ e′. �e de�nition for

−→ contains congruence forms to allow evaluation in applications and casts, β-reductions over the

three application forms, and four push rules (counting S Trans as a push rule for casts). �e push

rules allow us to move casts around when they get in the way—for example when a cast prevents

us from reducing an applied λ-expression. �ough somewhat intricate, these rules are derived

straightforwardly simply by making choices in order to have the output expression preserve the

type of the input expression. �e novel rule S Resolve is discussed with assume (§6.3). Values in

CFC are unsurprisingly constants and abstractions.

Of the main productions in the grammar, we are le� with coercions γ , checked by the judgment

Γ ` γ : ϕ (Figure 5). A coercion is a witness of type equality; thus, the rules for coercion formation

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:16 J. Garre� Morris and Richard A. Eisenberg

Γ ` τ type Type validity

H : n ` Γ ctx

Γ ` τi type
i<n

Γ ` H τ type
T TyCon

Γ ` τ1 type
Γ ` τ2 type

Γ ` τ1 → τ2 type
T Arrow

α ∈ Γ
` Γ ctx

Γ ` α type
T Var

Γ,α ` τ type

Γ ` ∀α .τ type
T Forall

Γ ` ϕ prop Γ ` τ type

Γ ` ϕ ⇒ τ type
T �al

Γ ` ϕ prop Proposition validity

Γ ` τ1 type Γ ` τ2 type

Γ ` τ1 ∼ τ2 prop
P Types

F : n ∈ Σ Γ ` τi type
i<n

Γ ` σ type

Γ ` F τ ∼ σ prop
P Family

` Γ ctx Context validity

` ∅ ctx
G Nil

` Γ ctx
α # Γ

` Γ,α ctx
G TyVar

Γ ` ϕ prop
c # Γ

` Γ, c:ϕ ctx
G CoVar

Γ ` τ type
x # Γ

` Γ, x:τ ctx
G Var

Fig. 3. Type validity judgments

determine the equality relation underlying the type system.
7

�e critical property of this relation is

consistency—that we can never prove, for example, that Int equals Bool. We return to consistency

and our proof thereof later in this section (§6.4). �e equality relation as witnessed by these

coercions has several properties:

• Our equality relation is indeed an equivalence, as witnessed by coercion forms for re�exivity

(〈τ 〉), symmetry (symγ), and transitivity (γ1 # γ2).

• Equality is congruent, as witnessed by a coercion for each recursive type form.

• Equality can be decomposed via the nthi γ and γ@τ coercions. �e former extracts equali-

ties from applied type constants (C Nth), function arrows (C NthArrow), and quali�ed

types (C Nth�al). �e la�er instantiates an equality between polytypes (C Inst), giving

us an equality between the two polytype bodies.

• Equality can be assumed, as witnessed by coercion variables c.
• Crucially, equality witnesses the reduction of type families through the form ξi τ q and the

rule C Axiom, as discussed in the next subsection.

Unlike in other developments of System FC, this system does not support a coercion regularity

lemma; that is, Γ ` γ : ϕ does not imply that Γ ` ϕ prop. In other words, the two types related

by a coercion may mention type families at arbitrary depths. �e lemma was used primarily for

convenience in prior proofs; its omission here does not bite.

6.2 Type Family Axioms and Signatures
Following prior work on System FC (initially that of Sulzmann et al. (2007)), we use axioms ξ to

witness type family reductions. �at is, if there is an equation type F Int = Bool in scope, then

7
In a similar system that leaves coercions out but has a conversion rule, the rules for Γ ` γ : ϕ would correspond to rules

for de�nitional equality, o�en rendered with ≡.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:17

Γ ` e : τ Expression typing

x:τ ∈ Γ ` Γ ctx

Γ ` x : τ
E Var

K : H τ ` Γ ctx

Γ ` K : H
E Const

Γ, x:τ1 ` e : τ2

Γ ` λx : τ1.e : τ1 → τ2

E Lam

Γ,α ` e : τ

Γ ` Λα .e : ∀α .τ
E TLam

Γ, c:ϕ ` e : τ

Γ ` λc : ϕ .e : ϕ ⇒ τ
E CLam

Γ ` e1 : τ1 → τ2

Γ ` e2 : τ1

Γ ` e1 e2 : τ2

E App

Γ ` e : ∀α .τ
Γ ` σ type

Γ ` e σ : τ [σ/α]

E TApp

Γ ` e : ϕ ⇒ τ
Γ ` γ : ϕ

Γ ` eγ : τ
E CApp

Γ ` e : τ1 Γ ` γ : τ1 ∼ τ2

Γ ` τ2 type

Γ ` e . γ : τ2

E Cast

F :> n ∈ Σ Γ ` τi type
i<n

Γ,α , c:F τ ∼ α ` e : σ α < fv (σ)
Γ ` assume (α |c : F τ ∼ α) in e : σ

E Assume

e −→ e′ Small-step operational semantics

e1 −→ e′
1

e1 e2 −→ e′
1
e2

S App

e −→ e′

e τ −→ e′ τ
S TApp

e −→ e′

eγ −→ e′γ
S CApp

e −→ e′

e . γ −→ e′ . γ
S Cast

(λx : τ .e1) e2 −→ e1[e2/x]

S Beta

(Λα .e) τ −→ e[τ/α]

S TBeta

(λc : ϕ .e) γ −→ e[γ/c]
S CBeta

v = λc : ϕ .e0 η0 = nth0 η
η1 = sym (nth1 η) η2 = nth2 η

(v . η) γ −→ v (η0 # γ # η1) . η2

S CPush

v = λx : τ .e0

γ1 = sym (nth0 γ) γ2 = nth1 γ

(v . γ) e −→ v (e . γ1) . γ2

S Push

v = Λα .e
γ ′ = γ@τ

(v . γ) τ −→ v τ . γ ′
S TPush

(v . γ1) . γ2 −→ v . (γ1 # γ2)
S Trans

χ = (α |c : F τ ∼ α) F τ ⇓ q
assume χ in e −→ e[q/χ]

S Resolve

Fig. 4. Expression judgments

we have an axiom ξ that proves F Int ∼ Bool. An expression can then use this axiom to cast an

expression of type Bool to one of type F Int .
In System CFC, axioms exist in an ambient signature Σ (which, more formally, should appear

in every judgment; we omit this to reduce clu�er). Signatures contain both declarations for type

families F : n and axiom declarations ξ : E. �e former has two forms: F :6> n declares a partial
type family F that takes n arguments, and F :> n declares a total type family. �e di�erence is in

the treatment of the assume construct (§6.3).

An axiom ξ is classi�ed by a list of equations E, where each equation has the form ∀α χ .F τ ∼ τ0.

Using a list of equations, as opposed to only one equation, is necessary to support closed type

families, with their ordered lists of equations. However, the intricacies of closed type families do not

a�ect our main contribution to this formalism (i.e., the constraining of type family applications via

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:18 J. Garre� Morris and Richard A. Eisenberg

Γ ` γ : ϕ Coercion validity

Γ ` τ type

Γ ` 〈τ 〉 : τ ∼ τ
C Refl

Γ ` γ : τ1 ∼ τ2

Γ ` symγ : τ2 ∼ τ1

C Sym

Γ ` γ1 : τ1 ∼ τ2

Γ ` γ2 : τ2 ∼ τ3

Γ ` γ1 # γ2 : τ1 ∼ τ3

C Trans

H : n ` Γ ctx Γ ` γi : τi ∼ σi
i<n

Γ ` H γ : H τ ∼ H σ
C App

Γ ` γ1 : τ1 ∼ σ1 Γ ` γ2 : τ2 ∼ σ2

Γ ` γ1 → γ2 : (τ1 → τ2) ∼ (σ1 → σ2)
C Fun

F : n ∈ Σ ` Γ ctx Γ ` γi : τi ∼ σi
i<n

Γ ` F γ : F τ ∼ F σ
C Fam

Γ,α ` γ : τ1 ∼ τ2

Γ ` ∀α .γ : (∀α .τ1) ∼ (∀α .τ2)
C Forall

Γ ` γ1 : τ1 ∼ σ1 Γ ` γ2 : τ2 ∼ σ2 Γ ` γ3 : τ3 ∼ σ3

Γ ` γ1 ∼ γ2 ⇒ γ3 : (τ1 ∼ τ2 ⇒ τ3) ∼ (σ1 ∼ σ2 ⇒ σ3)
C �al

Γ ` γ : H τ ∼ H σ

Γ ` nthi γ : τi ∼ σi
C Nth

Γ ` γ : (τ0 → τ1) ∼ (σ0 → σ1)

Γ ` nthi γ : τi ∼ σi
C NthArrow

Γ ` γ : (τ0 ∼ τ1 ⇒ τ2) ∼ (σ0 ∼ σ1 ⇒ σ2)

Γ ` nthi γ : τi ∼ σi
C Nth�al

Γ ` γ : (∀α .σ1) ∼ (∀α .σ2)
Γ ` τ type

Γ ` γ@τ : σ1[τ/α] ∼ σ2[τ/α]

C Inst

c:ϕ ∈ Γ
` Γ ctx

Γ ` c : ϕ
C Var

ξ : E ∈ Σ Ei = ∀α χ .F τ ∼ τ0 ` Γ ctx

Γ ` σj type
j

Γ ` q : χ[σ/α] ∀n < i, no conflict(E, i,σ , n)
Γ ` ξi σ q : F τ [σ/α] ∼ τ0[σ/α , q/χ]

C Axiom

Γ ` q : χ Evaluation resolution validity

` Γ ctx

Γ ` ∅ : ∅
A Nil

Γ ` σ type Γ ` γ : F τ ∼ σ Γ ` q : χ[σ/α]

Γ ` (σ |γ), q : (α |c : F τ ∼ α), χ
A Cons

Fig. 5. Coercion validity judgments

the distinction between pretypes and types). We will thus consider only singleton lists of equations

E for now. We return to the full generality of closed type families below.

In an equation E, the types τ and the type τ0 are proper types, with no type family applications;

the lack of type family application on the right-hand side (τ0) is new in this work. As in prior work

on type families, equations can be quanti�ed over type variables α ; this allows the equations to

work at many types. For example, the equation F (Maybe a) = a is quanti�ed over the variable a.

Also novel in this work is quanti�cation over evaluation assumptions χ . �e form for χ is

(α |c : F τ ∼ α), read “α such that c witnesses that F τ reduces to α”. �anti�cation over evaluation

assumptions is necessary to support type families that reduce to other type families. For example,

we might have F (Maybe a) = G a; such an equation would compile to ∀a (b | c : G a ∼
b). F (Maybe a) ∼ b. Because of evaluation assumptions, we can continue to support equations

such as F (Maybe a) = G a even while disallowing type families on the right-hand sides of

axioms. �e assumptions in a type family equation bind a coercion variable c, though this variable

is not used; the use of χ here (instead of a construct that does not bind c) is for simplicity and

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:19

` Σ ok Signature validity

` ∅ ok
D Nil

` Σ ok

` Σ, F :6> n ok
D Partial

` Σ ok

` Σ, F :> n ok
D Total

F : n ∈ Σ ` Σ ok
∀ i :

Ei = ∀α χ .F τ ∼ τ0

α ` τj type
j∈1..n

α , tvs(χ) ` τ0 type
α ` χ assumps

` Σ, ξ : E ok
D Axiom

Γ ` χ assumps Evaluation assumptions validity

Γ ` ∅ assumps
X Nil

F : n ∈ Σ
Γ ` τi type

i∈1..n

Γ,α ` χ assumps

Γ ` (α |c : F τ ∼ α), χ assumps
X Cons

Fig. 6. Signature validity

compat(E1, E2) Equation compatibility

E1 = ∀α1 χ 1
.F τ 1 ∼ τ01

E2 = ∀α2 χ 2
.F τ 2 ∼ τ02

unify(τ 1; τ 2) = Justθ
τ01[θ ◦ subst (χ

1
)] = τ02[θ ◦ subst (χ

2
)]

compat(E1, E2)
Co Coinc

E1 = ∀α1 χ 1
.F τ 1 ∼ τ01

E2 = ∀α2 χ 2
.F τ 2 ∼ τ02

unify(τ 1; τ 2) = Nothing

compat(E1, E2)
Co Distinct

no conflict(E, i,τ , j) Check for equation con�icts

Ei = ∀α1 χ 1
.F τ 1 ∼ τ01

Ej = ∀α2 χ 2
.F τ 2 ∼ τ02

unify(τ 2; τ 1[σ/α1]) = Nothing

no conflict(E, i,σ , j)
NC Apart

compat(Ei, Ej)

no conflict(E, i,σ , j)
NC Compatible

Fig. 7. Closed type family auxiliary judgments

parallelism with the χ in the assume construct. Note that evaluation assumptions are more speci�c

than arbitrary equality assumptions ϕ, requiring a type family on the le� and requiring that the

right-hand side be a fresh type variable. �is restrictive form is critical in proving that type family

reduction is con�uent (§6.4).

Signatures, with their type family equations, are validated by the judgment ` Σ ok and its

auxiliary judgment Γ ` χ assumps, both in Figure 6.

�e use of an axiom ξ to form a coercion has the form ξi τ q, supplying the index i of the

equation to use (for now, i will always be 0), a list of types τ used to instantiate the type variables

α , and a list of evaluation resolutions q used to instantiate the evaluation assumptions χ . An

evaluation resolution q has the form (τ |γ), where the type τ can instantiate the type variable α

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:20 J. Garre� Morris and Richard A. Eisenberg

in (α |c : F τ ∼ α), and the coercion γ proves the equality and instantiates the c. We write q/χ to

mean a substitution that maps the type and coercion, respectively.

To understand the daunting rule C Axiom, let’s �rst simplify it to eliminate the possibility of

multiple equations for the given axiom. Here is the simpli�ed version:

ξ : ∀α χ .F τ ∼ τ0 ∈ Σ ` Γ ctx

Γ ` σj type
j

Γ ` q : χ[σ/α]

Γ ` ξ0 σ q : F τ [σ/α] ∼ τ0[σ/α , q/χ]

C Axiom (simplified)

�e rule looks up the axiom in the signature, checks to make sure the σ are proper (type family-

free) types and that the q satisfy the assumptions χ (using the auxiliary judgment Γ ` q : χ ,

Figure 5). �e Γ ` q : χ judgment is straightforward, matching up the q with the corresponding χ
and checking that the coercions in q prove the correct propositions.

Let’s now generalize to full closed type families with an ordered list of equations.
8

Here is the

full rule for axioms:

ξ : E ∈ Σ Ei = ∀α χ .F τ ∼ τ0 ` Γ ctx

Γ ` σj type
j

Γ ` q : χ[σ/α] ∀n < i, no conflict(E, i,σ , n)
Γ ` ξi σ q : F τ [σ/α] ∼ τ0[σ/α , q/χ]

C Axiom

Compared to the rule above, this rule uses the index i to look up the right equation; it also adds

an invocation of the no conflict judgment (Figure 7). �is check is substantively identical to the

existing check for closed type families but with our simpli�ed notion of apartness (see (§5.4)); the

two necessary judgments appear in Figure 7. �e only change from prior work is in the use of

the substoperator in the premise to Co Coinc. �is rule detects when two type family equations

are compatible. Recalling Eisenberg et al. (Eisenberg et al. 2014), two equations are compatible

if, whenever they are both applicable to the same type, they will yield the same result. �is can

happen in two ways: if the two equations’ le�-hand sides are uni�able, then the right-hand sides

coincide under the unifying substitution (Co Coinc); or the two equations’ le�-hand sides have

no overlap (Co Distinct). In the former case, we must be careful, as the true right-hand sides

of the equations may mention type families; we thus use subst to generate a substitution over

the evaluation assumptions χ , expanding out the variables bound in the χ to the type family

applications they equal.

6.3 Totality and Assumptions
�e challenge to totality in CFC is best understood by example. Consider again the append operation

on length-indexed vectors (§5.3), repeated here:

append :: Vec a m→ Vec a n→ Vec a (Plus m n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

In CFC, the type of append would be rewri�en to become

append :: Plus m n ∼ p⇒ Vec a m→ Vec a n→ Vec a p

8
�e inclusion of closed type families in the formalization is to support our claim of a consistency proof in the presence

of closed type families. However, the treatment of these families here is not novel, and our contributions have a minimal

impact on the presentation of closed type families—it is the metatheory that is a�ected, not the theory. �e intricacies of

closed type families may therefore be skipped by readers not interested in reproducing our proof.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:21

But now we have a problem. In the Cons case, we have learned that m ∼ Succ m’ for some m’; xs
has type Vec a m’. When we make the recursive call to append , we must provide a p’ such that

Plus m’ n ∼ p’. However, there is no way to get such a p’ from the information to hand.

�e solution to this problem is the assume construct. �e idea of assume χ in e is that we are

allowed to assume that arbitrary applications of a total type family reduce to proper types. Indeed,

that’s what total means!

Let’s now examine the typing rule for assumptions:

F :> n ∈ Σ Γ ` τi type
i<n

Γ,α , c:F τ ∼ α ` e : σ α < fv (σ)
Γ ` assume (α |c : F τ ∼ α) in e : σ

E Assume

�is rule requires that the type family be total, according to the > subscript in the F :> n ∈ Σ
premise. It then checks the body e in a context where we have a type α and coercion c, as bound

by χ . Finally, α is essentially existential, so the rule also does a skolem escape check to assure that

α does not leak into the type of e.
Discharging such assumptions is straightforward:

χ = (α |c : F τ ∼ α) F τ ⇓ q
assume χ in e −→ e[q/χ]

S Resolve

When an assume construct is ready to reduce, we are in an empty context—meaning that all type

variables have concrete values. At this point, we simply evaluate the type family application at the

concrete values. We are sure that this evaluation is possible, due to the totality of the type function.

�e F τ ⇓ q operation does the work for us, as de�ned in this property of total type families:

Property 6.1 (Total type families). For all F :> n ∈ Σ and all τi i<n such that ∅ ` τi type, there
exists q such that ∅ ` q : (α |c : F τ ∼ α). De�ne F τ ⇓ q to witness the above fact.

�is property must hold for any total type family, as accepted by any totality checker.

6.4 Metatheory: Consistency of Equality
System CFC admits the usual preservation and progress theorems.

Theorem 6.2 (Preservation). If ∅ ` e : τ and e −→ e′, then ∅ ` e′ : τ .

Theorem 6.3 (Progress). If ∅ ` e : τ , then either e is a value v, e is a coerced value v . γ , or
e −→ e′ for some e′.

�e proof of preservation is uninteresting. �e hardest part is verifying that the push rules are

correct, but the only challenge is a�ention to detail. �e unusual choice to make the context empty

in this proof is to support the S Resolve rule, whose premise F τ ⇓ q is well-de�ned only in an

empty context, according to Property 6.1.

On the other hand, proving progress requires reasoning about the consistency of our equality

relation. �is need arises in the case, among others, for E App:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

E App

We use the induction hypothesis to say that e1 is a value v1, a coerced value v1 .γ , or steps to e′
1
. In

the case where e1 = v1 . γ , we then wish to use S Push to show that the overall expression can

step. However, this rule requires that v1 have the form λx : τ .e0. �e only way to show this is that

the coercion γ relates two functions.

�e consistency lemma is what we need:

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:22 J. Garre� Morris and Richard A. Eisenberg

τ1 > τ2 Type family application reduction

ξ : E ∈ Σ τ = σ [ρ/α]

∅ ` ρk type
k

Ei = ∀α χ .F σ ∼ σ0

τ ′ = σ0[ρ/α , ρ ′/tvs(χ)]
∀ j < i, no conflict(E, i, ρ, j)

∀n : χn = (α ′ |c′ : F ′ σ ′ ∼ α ′)
∅ ` ρ ′n type

θn = ρ/α , ρ ′m/tv (χm)
m∈1..n−1

F ′ σ ′[θn] > ρ ′n

F τ > τ ′
RTop

τ1 τ2

Type reduction

F τ > τ ′

C[F τ] C[τ ′]
Red

Fig. 8. Non-deterministic type reduction

Lemma 6.4 (Consistency). If ∅ ` γ : τ1 ∼ τ2, ∅ ` τ1 type, and ∅ ` τ2 type, then τ1 = τ2.

In an empty context and when two types are type family free, if they are related by a coercion,

then they must be the same. Using the following regularity lemma about expression typing, we

can use consistency in the proof of progress to �nish the E App case, among others.

6.4.1 The route to consistency. Broadly speaking, we prove consistency in the same manner as

in previous work.
9

First, we must restrict the set of available axioms to obey the following syntactic

rules:

Assumption 6.5 (Good signature). We assume that our implicit signature Σ conforms to the
following rules, adapted from Eisenberg et al. (2014, De�nition 18):

(1) For all ξ : E ∈ Σ where Ei = ∀α i χ i .Fi τ i ∼ τ0 i , there exists F such that, for all i , Fi = F. �at
is, every equation listed within one axiom is over the same type family F.

(2) For all ξ : E ∈ Σ where Ei = ∀α i χ i .Fi τ i ∼ τ0 i , for all i, fv (τ i) = α i . �at is, every quanti�ed
type variable in an equation is mentioned free in a type on the equation’s le�-hand side.

(3) For all ξ : E ∈ Σ, if length(E) > 1 and the equations are over type family F, then no other
axiom ξ ′ : E

′
∈ Σ is over the same type family F. �at is, all axioms with multiple equations

are for closed type families.
(4) For all ξ1 : E1 ∈ Σ and ξ2 : E2 ∈ Σ (each with only one equation), if E1 and E2 are over the

same type family F, then compat(E1, E2). �at is, equations for open type families are all
pairwise compatible.

�e conditions above are identical to the conditions in Eisenberg et al. (2014, De�nition 18), but

with one change: we here do not need to restrict the le�-hand types of equations not to mention

type families, because of the Γ ` τi type
i<n

premise to D Axiom describing the validity of axioms

in the signature. Type family applications are not types.

�en, we de�ne a non-deterministic rewrite relation on types τ1 τ2 and prove both of the

following:

Lemma 6.6 (Completeness of the rewrite relation). If ∅ ` γ : τ1 ∼ τ2, then there exists τ3

such that τ1 ∗ τ3 ∗ τ2.

Lemma 6.7 (Proper types do not reduce). If Γ ` τ type, then there exists no τ ′ such that τ τ ′.

Taken together, these quickly prove the consistency lemma.

9
�e best point of comparison is with Eisenberg et al. (2014), as that proof considers closed type families, as does ours here.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:23

6.4.2 Type reduction relation. �e type reduction relation is captured by the judgments in

Figure 8. Rule Red says that a type σ can reduce by reducing a type family application occurring

anywhere within σ . (�e metavariable C denotes one-hole type contexts.) �e intimidating RTop

rule matches up with C Axiom. �e complication in the rule is in dealing with the evaluation

assumptions χ in a given type family equation; each needs to be satis�ed with an evaluation

resolution of a type paired with a coercion. �e premises under the ∀n : roughly simulate the

Γ ` q : χ judgment.

Unlike in prior proofs of the consistency of versions of System FC, when τ1 τ2, there must

be precisely one fewer type family application in τ2 than in τ1. �is fact is borne of the use of

evaluation assumptions χ to model type family applications in the right-hand side of a type family

equation instead of using type families there directly. It leads to this critical lemma:

Lemma 6.8 (Termination). For all types τ , there exists a type σ such that τ ∗ σ and σ cannot
reduce.

�e fact that the reduction relation terminates means that we can use Newman’s Lemma to

prove con�uence via local con�uence, a necessary precursor to the proof of the completeness of

the rewrite relation (Lemma 6.6):

Lemma 6.9 (Local confluence). If τ1 τ0 τ2, then there exists τ3 such that τ1 ∗ τ3 ∗ τ2.

Lemma 6.10 (Confluence). If τ1 ∗ τ0 ∗ τ2, then there exists τ3 such that τ1 ∗ τ3 ∗ τ2.

Eisenberg et al. (2014) also prove con�uence via local con�uence, but that proof must assume

termination. �e formulation here allows us to prove termination instead of assume it. �e local

con�uence proof in the current work is also a simpli�cation over the previous proof, as the location

of occurrences of type family applications is restricted.

Conclusion. By using evaluation assumptions in our treatment of type families, we can easily

prove the termination of type reduction and simplify the proof of con�uence. �e intricate de�nition

of apartness from Eisenberg et al. (2014) is gone, as well. In short, our approach leads to a substantial

simpli�cation to the metatheory of type families.

7 PRACTICALITIES
We believe that constrained type families provide signi�cant bene�ts compared to the previous

approach to type families, with its underlying, implicit assumption of totality. As we are changing

the type system of a language, not all current Haskell code is immediately supported in our design.

For example, existing code may make use of non-associated open type families, or use incomplete

type families as if they were total. In this section, we describe an approach for inferring constrained

type families, and the corresponding constraints, from current declarations and uses of indexed

type families. �is is intended to allow a transition from current practice to the explicit use of

constrained type families.

7.1 Inferring Type Family Constraints
We �rst consider uses of type families in types. Here, our approach is to read the well-formedness

restrictions for constrained type families (§4.2) as inference rules rather than as a checking relation.

Because the typing rules are syntax directed, given type environments Σ and Γ (known in advance),

and a type τ , we can follow the rules to generate a P such that P | Γ ` τ type, if such a P exists.

While there is not necessarily a unique P such that the derivation exists, it is easy to pick a minimal

one such that it does. (In essence, we view the well-formedness rules as an a�ribute grammar,

in which Σ, Γ and τ are given, and P is synthesized.) �en, we interpret each quali�ed type σ

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:24 J. Garre� Morris and Richard A. Eisenberg

in context Γ in the program as instead denoting the type P ⇒ σ where P is the minimal set of

additional constraints such that P | Γ ` σ type. Note that some programs may still fail to type check

under this approach, if they explicitly make use of unde�ned type family applications. However,

we view this as an acceptable trade-o�, as those programs arguably already contained (admi�edly

unreported) type errors.

7.2 Making Associations
We must also interpret top-level type family syntax in terms of constrained type families. Type

family declarations themselves can be straightforwardly interpreted as declarations of constrained

type families; for example, the declaration

type family F t u ::?

would be interpreted as

class CF t u where
type F t u ::?

where any other kind restrictions in the original declaration of F can be transferred straightfor-

wardly to the declaration of CF . Connecting F to the compiler-generated CF would be a new

special form (class F), entirely equivalent to CF .

Instance declarations are more interesting. For example, consider the instance declaration

type instance F Int (Maybe t) = G Int t

where we assume that G is a binary type family. We could not simply interpret this as the instance

declaration

instance CF Int (Maybe t) where
type F Int (Maybe t) = G Int t

as the use of type family G lacks a suitable guarding constraint. Again, however, we can rely on

interpreting the well-formedness rules for types to infer the necessary constraints. In this case, we

would interpret the type instance as denoting the instance declaration

instance P ⇒ CF Int (Maybe t) where
type F Int (Maybe t) = G Int t

where P is the minimal set of constraints such that P | t ` G Int t type holds. Again, so long as the

original type instance declaration did not rely on unde�ned type family applications, the resulting

instance declaration will be well-formed.

Finally, we turn to closed type families. Given a closed type family declaration, we initially check

its totality (§5.3). If it is not total, we can then interpret it as a constrained closed type family,

following the same approach as for open type families. For example, consider the following closed

type family declaration:

type family F t ::?where
F (Maybe Int) = Bool
F (Maybe t) = G t

�is declaration is clearly not total. We would interpret this as a closed type family declaration:

class CF t where
type F t ::?

instance CF (Maybe Int) where

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:25

type F (Maybe Int) = Bool

instance P ⇒ CF (Maybe t) where
type F (Maybe t) = G t

where P is the minimal set of constraints such that P | t ` G t type holds.

�e decision of whether or not to treat a top-level closed type family as constrained is based

on the output from the totality checker. We expect users will want to override the compiler’s

decision in this ma�er, as any totality checker will be incomplete. We propose the new syntax

type family total F a where... to denote that F is intended to be total. Such a declaration would

still be checked, but would never be packaged into an enclosing class. (A non-total de�nition would

be reported as an error.) �e user could additionally add a pragma {-# TOTAL F #-} to (unsafely)

assert that F is total, circumventing the totality checker.

7.3 Runtime E�iciency
Constrained type families may also seem to have a non-trivial e�ciency impact. For a simple

example, suppose we have a type family F , and consider an existentially-packaged type family

application:

data FPack a where
FPack :: F a→ FPack a

We might expect an FPack a value to contain exactly a value of type F a. With constrained type

families, however, the declaration above would be incorrect; we would need to add a predicate for

its constraining class, say C:

data FPack1 a where
FPack1 :: C a⇒ F a→ FPack a

Now, a value of type FPack1 a does not just contain an F a value, but must also carry a C a
dictionary, and uses of FPack1 will be responsible for constructing, packing, and unpacking these

dictionaries. Over su�ciently many uses of FPack1, this additional cost could be noticeable.

�is e�ciency impact can be mitigated, however. �is issue can crop up only when we have

a value of type F a (or other type family application) without an instance of the associated class

C a. But in order for the value of type F a to be useful, parametricity tells us that C a, or some

other class with a similar structure to the equations for F a must be in scope. Barring this, it must

be that F a is used as a phantom type. In this case, we would want a “phantom dictionary” for

C a, closely paralleling existing work on proof irrelevance in the dependently-typed programming

community (e.g., Barras and Bernardo (2008); Eisenberg (2016); Mishra-Linger and Sheard (2008);

Tejiščák and Brady (2015)): the C a dictionary essentially represents a proof that will never be

examined. While we do not propose here a new solution to this problem, we believe that existing

work will be applicable in our case as well.

8 RELATEDWORK
�e literature on type-level computation and the type system of Haskell is extensive; here, we

summarize those parts most relevant to our work.

Type classes and functional dependencies. Partial type-level computation in Haskell was arguably

�rst introduced with Jones’s notion of functional dependencies (Jones 2000), which extended type

classes with a notion of determined parameters. Indeed our treatment of requiring a class constraint

to use type-level computation is inspired by functional dependencies. Functional dependencies build

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

42:26 J. Garre� Morris and Richard A. Eisenberg

on Jones’s theory of improvement for quali�ed types (Jones 1995), which allows the satis�ability of

predicates to in�uence typing. While Jones’s work does not focus on the computational interpre-

tation of functional dependencies, many early examples highlighted it, such as those of Hallgren

(2000) or Kiselyov et al. (2004). Morris and Jones (2010) later introduced instance chains—closely

related to our closed type classes—which combined functional dependencies with explicit notions

of negation and alternatives in class instances.

Associated types and type families. Chakravarty et al. (2005) introduced associated type synonyms

to provide a more intuitive syntax for type-level computation in Haskell, while also addressing

infelicities in the implementations of functional dependencies. �eir type system requires that

associated types appear only in contexts where their class predicates can be satis�ed, matching

our approach. However, this requirement was never implemented; GHC’s translation to Sys-

tem FC (Sulzmann et al. 2007) showed that the constraint was never used at runtime and was thus

deemed super�uous. �e class constraints—that is, instance dictionaries (Hall et al. 1996)—are not

needed at runtime, in contrast to ordinary class method invocation. Our work does not refute this

conclusion, but instead observes that the design of type families and their metatheory are greatly

simpli�ed when we require the class constraint.

Recent work has focused on extending the expressiveness of type families themselves. Eisenberg

et al. (2014) introduced closed type families, which allow overlapping equations in type family

de�nitions, and Stolarek et al. (2015) introduced injective type families, recovering additional

equalities from applications of injective type families. �ese features, particularly closed type

families, have seen signi�cant practical application.

Type classes and modules. An alternative approach to supporting type classes directly is to

encode them using modules (Dreyer et al. 2007) or objects (Oliveira et al. 2010). �ese approaches

replace class predicates with module (or object) arguments, and use mechanisms for canonical

values or implicit arguments to simulate instance resolution. Associated types arise naturally in

these approaches, as type members of modules, and, as in our approach, can only appear when a

suitable module is in scope. However, these approaches require signi�cantly di�erent underlying

formalisms, and so it is not apparent how well they would accommodate other extensions, like

closed and total type families, or closed classes.

Partial functions in logic. An interesting—and unexpected—parallel to our work arises in Sco�’s

examination of identity and existence in intuitionistic logic (Sco� 1979). Sco� considers the cases in

which (�rst-order) terms in a logic may not be de�ned for arbitrary instantiations of their variables.

For example, the term 1/a is not de�ned if a is instantiated to 0. Sco� addresses this problem by

introducing an additional predicate E (·) to track the existence of �rst-order terms, which plays a

similar role to our requirement that uses of constrained type families mention their de�ning class

predicates.

9 CONCLUSIONS
We have presented a new approach to type-level computation, relevant to any partial language, in

which we permit partiality in types by using quali�ed types to capture their domains of de�nition.

We have applied our approach to indexed type families in Haskell, showing that it aligns naturally

with the intuitive semantics of type families and that it resolves many of the complexities in recent

developments of type families. We have formalized our approach, and given the �rst complete

proof of consistency for Haskell with closed type families.

Since their introduction, the theory and practice of functional dependencies and type families

have diverged, although some uses of functional dependencies continue to seem more expressive

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

Constrained Type Families 42:27

than similar uses of type families. Our current work reunites type families with type classes. We

believe it should provide an impetus to re-examine the role of functional dependencies. In particular,

the use of equality constraints in our core language to prove that type families applications are

well-de�ned is evocative of the role that class predicates would play in a core calculus based on

functional dependencies.

ACKNOWLEDGMENTS
�anks to the anonymous referees for their helpful feedback. Morris was funded by EPSRC grant

number EP/K034413/1.

REFERENCES
Patrick Bahr. 2014. Composing and decomposing data types: a closed type families implementation of data types à la carte.

In Proceedings of the 10th ACM SIGPLAN workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31,
2014, José Pedro Magalhães and Tiark Rompf (Eds.). ACM, 71–82.

Bruno Barras and Bruno Bernardo. 2008. �e Implicit Calculus of Constructions as a Programming Language with Dependent

Types. In Foundations of So�ware Science and Computational Structures (FOSSACS 2008), Roberto Amadio (Ed.). Springer

Berlin Heidelberg, Budapest, Hungary, 365–379.

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. 2016. Safe Zero-cost Coercions for

Haskell. J. Funct. Program. 26 (2016), 1–79.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon L. Peyton Jones. 2005. Associated type synonyms. In Proceedings of
the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn, Estonia, September 26-28,
2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM, 241–253.

Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller. 2007. Modular type classes. In Proceedings
of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’07). ACM, Nice,

France, 63–70.

Richard A. Eisenberg. 2016. Dependent Types in Haskell: �eory and Practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type Families with

Overlapping Equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, San Diego, California, USA, 671–683.

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In Programming
Languages and Systems - 25th European Symposium on Programming, ESOP 2016 (Lecture Notes in Computer Science), Peter

�iemann (Ed.), Vol. 9632. Springer, 229–254.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press, New York, NY, USA.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type Classes in Haskell. ACM Trans.
Program. Lang. Syst. 18, 2 (March 1996).

�omas Hallgren. 2000. Fun with functional dependencies, or (dra�) types as values in static computations in Haskell.

h�p://www.cse.chalmers.se/∼hallgren/Papers/wm01.html. (2000).

Mark P. Jones. 1994. �ali�ed Types: �eory and Practice. Cambridge University Press.

Mark P. Jones. 1995. Simplifying and improving quali�ed types. In Proceedings of the seventh international conference on
Functional programming languages and computer architecture (FPCA ’95). ACM, La Jolla, California, USA, 160–169.

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Proceedings of the 9th European Symposium on
Programming Languages and Systems (ESOP ’00). Springer-Verlag, Berlin, Germany, 230–244.

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. In Proceedings of the 2004
ACM SIGPLAN workshop on Haskell (Haskell ’04). ACM Press, Snowbird, Utah, USA, 96–107.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. �e size-change principle for program termination. In

Conference Record of POPL 2001: �e 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001, Chris Hankin and Dave Schmidt (Eds.). ACM, 81–92.

Sam Lindley and J. Garre� Morris. 2016. Embedding session types in Haskell. In Proceedings of the 9th International
Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016, Geo�rey Mainland (Ed.). ACM, 133–145.

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. In Foundations of So�ware
Science and Computational Structures (FoSSaCS). Springer.

J. Garre� Morris. 2015. Variations on variants. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell (Haskell ’15),
Ben Lippmeier (Ed.). ACM, Vancouver, BC, 71–81.

J. Garre� Morris and Mark P. Jones. 2010. Instance chains: Type-class programming without overlapping instances. In

Proceedings of the 15th ACM SIGPLAN international conference on Functional programming (ICFP ’10). ACM, Baltimore,

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

http://www.cse.chalmers.se/~hallgren/Papers/wm01.html

42:28 J. Garre� Morris and Richard A. Eisenberg

MD.

Takayuki Muranushi and Richard A. Eisenberg. 2014. Experience report: Type-checking polymorphic units for astrophysics

research in Haskell. In Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September 4-5,
2014, Wouter Swierstra (Ed.). ACM, 31–38.

Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type classes as objects and implicits. In Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, William R. Cook, Siobhán Clarke, and Martin C. Rinard

(Eds.). ACM, 341–360.

Simon Peyton Jones, Mark P. Jones, and Erik Meijer. 1997. Type classes: An exploration of the design space. In Proceedings
of the 1997 workshop on Haskell (Haskell ’97). Amsterdam, �e Netherlands.

Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with (almost) no class. In Proceedings of the 1st ACM SIGPLAN
Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008. ACM, 25–36.

John C. Reynolds. 1974. Towards a theory of type structure. In Paris Colloquium on Programming. Springer-Verlag, 408–423.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. 2008. Type checking with open type

functions. In Proceeding of the 13th ACM SIGPLAN international conference on Functional programming (IFCP ’08). ACM,

Victoria, BC, Canada, 51–62.

Dana Sco�. 1979. Identity and existence in intuitionistic logic. In Applications of Sheaves: Proceedings of the Research
Symposium on Applications of Sheaf �eory to Logic, Algebra, and Analysis, Durham, July 9–21, 1977, Michael Fourman,

Christopher Mulvey, and Dana Sco� (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 660–696.

Damien Sereni and Neil D. Jones. 2005. Termination Analysis of Higher-Order Functional Programs. In Programming
Languages and Systems, �ird Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings (Lecture
Notes in Computer Science), Kwangkeun Yi (Ed.), Vol. 3780. Springer, 281–297.

Jan Stolarek, Simon L. Peyton Jones, and Richard A. Eisenberg. 2015. Injective type families for Haskell. In Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, Ben Lippmeier

(Ed.). ACM, 118–128.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. 2007. System F with type equality

coercions. In Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, Nice, France, January 16, 2007, François Po�ier and George C. Necula (Eds.). ACM, 53–66.

Wouter Swierstra. 2008. Data types à la carte. JFP 18, 04 (2008), 423–436.

Matúš Tejiščák and Edwin Brady. 2015. Practical Erasure in Dependently Typed Languages. (2015). h�p://eb.host.cs.

st-andrews.ac.uk/dra�s/dtp-erasure-dra�.pdf Dra�.

Philip Wadler and Stephen Blo�. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’89). ACM, Austin, Texas, USA, 60–76.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon L. Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012. Giving Haskell a promotion. In Proceedings of TLDI 2012: �e Seventh ACM SIGPLAN Workshop on Types in
Languages Design and Implementation, Philadelphia, PA, USA, Saturday, January 28, 2012, Benjamin C. Pierce (Ed.). ACM,

53–66.

PACM Progr. Lang., Vol. 1, No. ICFP, Article 42. Publication date: September 2017.

http://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
http://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf

	Abstract
	1 Introduction
	2 Type Families in Haskell
	3 The Totality Trap
	3.1 The Assumption of Totality
	3.2 Closed Type Families and the Infinity Problem
	3.3 Explosive Injectivity

	4 Constraining Type Families
	4.1 Constrained Type Families
	4.2 Validating Constrained Type Families

	5 Achieving Closure
	5.1 Closed Type Classes
	5.2 Constrained Closed Type Families
	5.3 Closed Type Families and Totality
	5.4 Simplifying Apartness

	6 Type Safety of Constrained Type Families
	6.1 System CFC
	6.2 Type Family Axioms and Signatures
	6.3 Totality and Assumptions
	6.4 Metatheory: Consistency of Equality

	7 Practicalities
	7.1 Inferring Type Family Constraints
	7.2 Making Associations
	7.3 Runtime Efficiency

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

