

Edinburgh Research Explorer

Leeway: Addressing Variability in Dead-Block Prediction for
Last-Level Caches

Citation for published version:
Faldu, P & Grot, B 2017, Leeway: Addressing Variability in Dead-Block Prediction for Last-Level Caches. in
2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT). pp. 180-
193, 26th International Conference on Parallel Architectures and Compilation Techniques, Portland, United
States, 9-13 September. DOI: 10.1109/PACT.2017.32

Digital Object Identifier (DOI):
10.1109/PACT.2017.32

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/PACT.2017.32
https://www.research.ed.ac.uk/portal/en/publications/leeway-addressing-variability-in-deadblock-prediction-for-lastlevel-caches(38b5c79a-e332-4d6e-be05-d62b16969cfd).html

In Proceedings of the 26th International Conference on Parallel Architectures and Compilation Techniques (PACT’17)

Leeway: Addressing Variability in Dead-Block Prediction for Last-Level Caches

Priyank Faldu, Boris Grot

Institute for Computing Systems Architecture (ICSA)
School of Informatics, University of Edinburgh

{priyank.faldu, boris.grot}@ed.ac.uk

Abstract— The looming breakdown of Moore’s Law and the
end of voltage scaling are ushering a new era where neither
transistors nor the energy to operate them is free. This calls for
a new regime in computer systems, one in which every tran-
sistor counts. Caches are essential for processor performance
and represent the bulk of modern processor’s transistor budget.
To get more performance out of the cache hierarchy, future
processors will rely on effective cache management policies.

This paper identifies variability in generational behavior of
cache blocks as a key challenge for cache management policies
that aim to identify dead blocks as early and as accurately as
possible to maximize cache efficiency. We show that existing
management policies are limited by the metrics they use to
identify dead blocks, leading to low coverage and/or low
accuracy in the face of variability. In response, we introduce
a new metric – Live Distance – that uses the stack distance to
learn the temporal reuse characteristics of cache blocks, thus
enabling a dead block predictor that is robust to variability in
generational behavior. Based on the reuse characteristics of an
application’s cache blocks, our predictor – Leeway – classifies
application’s behavior as streaming-oriented or reuse-oriented
and dynamically selects an appropriate cache management
policy. By leveraging live distance for LLC management,
Leeway outperforms state-of-the-art approaches on single- and
multi-core SPEC and manycore CloudSuite workloads.

Keywords-variability; last-level cache; dead-block prediction;

I. INTRODUCTION

The microprocessor industry has enjoyed four decades of
exponentially growing transistor budgets, enabling complex
core microarchitectures, multicore processors, and cache
capacities reaching into tens of MBs. The looming reality,
however, is that Moore’s law is nearing its limits both in
terms of physics and economics. Combined with the end of
voltage scaling, the semiconductor industry is about to enter
a new phase where transistors become a limited resource
and a new technology generation cannot be counted on to
double them.

Caches are an essential feature of modern processors. As
out-of-order cores have reached the limits of complexity
scaling due to a combination of wire delays and power den-
sity limitations, caches have been instrumental in providing
performance gains across processor generations via ever-
larger capacities. In the future, however, further increases
in cache capacity may become a difficult proposition for
reasons above.

Dead Block Predictors (DBPs) have been shown to be
effective in improving cache performance through better uti-
lization of existing capacity. These schemes all rely on some
metric of temporal reuse to make their decisions regarding
the end of a given block’s useful life. Previous work has
suggested hit count [1], last-touch PC [2], and number of
references to the block’s set since the last reference [3],
among others, as metrics for determining whether the block
is dead at a given point in time. By identifying and evicting
dead blocks in a timely and accurate manner, these schemes
allow other blocks (that have not exhausted their useful life)
to persist in the cache and see further hits.

The task of a DBP is complicated by the fact that
applications exhibit variability in the re-reference patterns
of cache blocks touched by them. The sources of variability
are numerous, stemming from microarchitectural noise (e.g.,
speculation), control-flow variation, cache pressure from
other threads, etc. The variability manifests itself as an in-
consistent behavior of the individual cache blocks from one
cache lifetime, or generation, to the next. This inconsistency
challenges DBPs in reliably identifying the end of a block’s
useful lifetime, thus resulting in lower prediction accuracy,
coverage, or both.

The thesis of this paper is that DBPs require metrics and
policies that can tolerate inconsistencies. To that end, we
propose live distance – a metric of temporal reuse based
on stack distance. For a given cache block, live distance
is the largest observed stack distance in a generation (from
allocation to eviction). Live distance is an efficient way to
represent a block’s range of temporal use and, as we argue
in Sec. II-C, has a number of useful properties that make it
attractive for dead block prediction in the face of variability.

We introduce Leeway, a new DBP that uses live distance
as a metric for prediction. Leeway uses code-data correlation
to associate live distance for a group of blocks with a PC
that brings the block into the cache. While live distance as a
metric provides a high degree of resilience to variability, the
per-PC live distance values themselves may fluctuate across
generations. To correctly train live distance values in the face
of fluctuation, we observe that individual applications’ cache
behavior tends to fall in one of two categories: streaming
(most allocated blocks see no hits) and reuse (most allocated
blocks see one or more hits). Based on this simple insight,

we design a pair of corresponding policies that steer updates
in live distance values either toward zero (for bypassing) or
toward the maximum recently-observed value (to maximize
reuse). For each application, Leeway picks the best policy
dynamically based on the observed cache reuse behavior.

To avoid the need to access specialized external structures
(e.g, prediction tables) upon each LLC access, Leeway em-
beds its prediction metadata (i.e., live distance) directly with
cache blocks. This is in contrast with prior predictors [2],
[4]–[6], which need to access a dedicated predictor table
upon every single LLC access. Because modern multicore
processors feature distributed last-level caches, accesses to
dedicated prediction tables introduce detrimental latency and
energy overheads in traversing the on-chip interconnect to
query such structures.

We study cache management policies on traditional
singlethread and multiprogrammed SPEC workloads as well
as manycore scale-out server workloads, and make the
following contributions:

• We propose Live Distance as a metric to track a block’s
useful lifetime in a cache, which enables dead block
prediction with both high coverage and high accuracy
even in presence of variability.

• We introduce Leeway, an adaptive DBP that leverages
Live Distance for predictions. To further increase pre-
diction accuracy and coverage under variability, Leeway
deploys novel reuse-aware update policies that steer live
distance values to maximize either bypass or reuse oppor-
tunities based on application preference.

• We compare Leeway to prior cache management tech-
niques for LLC, demonstrating that Leeway consistently
provides good performance that generally matches or
exceeds that of state-of-the-art approaches. In the presence
of a data prefetcher, Leeway achieves a geomean speed-
up of 5.1% (up to 45%) on singlethread applications
versus 3% for prior techniques. It also achieves geomean
weighted speed-up of 5% (up to 19%) in 100 multi-
programmed mixes versus 3.3% for prior techniques.

II. MOTIVATION

A. Variability in Block Reuse Behavior

DBPs aim to improve cache behavior by identifying dead
blocks and discarding them shortly after their last use,
thereby providing an opportunity for blocks with long tem-
poral reuse distances to persist. Effectiveness of dead block
prediction hinges on stability of application behavior with
respect to the metric used for determining whether the block
is dead. Naturally, the more consistent the reuse behavior
across the block’s lifetimes (also called generations) in the
cache, the more accurate the predictions.

In practice, there are many reasons for why a block’s live
time may vary across generations, including:

Control flow variation: When the memory reference in-
struction is predicated on a condition whose behavior varies
at runtime, the corresponding cache block might be refer-
enced a different number of times across generations based
on the predicate.
Microarchitectural noise: This includes references on a
mispredicted control flow path and hits in lower-level caches
due to conflicts in higher cache levels.
Shared data: When a block is shared by multiple threads,
it might see different reference patterns due to runtime
dynamics and scheduler decisions.
Cache pressure: Application behavior may be consistent
but due to cache pressure in the presence of co-running ap-
plications, a block may be prematurely evicted. As a result,
the block would observe fewer references in a prematurely
terminated generation than it would otherwise.

Our insight is that the ability of a DBP to tolerate in-
consistency across generations hinges on the choice of
the metric used for making the prediction. Spurred by the
observation, we next use a simple taxonomy to understand
the space of metrics.

B. Metrics for Dead Block Prediction

Fundamentally, all DBPs require a metric for determining
when a block has reached the end of its useful life. Existing
metrics can be classified broadly into two categories: direct
and indirect.

Direct metrics: Also known as event-based metrics, these
relies on monitoring accesses to the block in order to detect
the final access based on previously observed behavior. Ref-
erence count [1], trace signature of instructions referencing
a block [7], and last PC [2] are all examples of direct
metrics used by previously proposed DBPs. An advantage of
direct metrics is that a block’s fate is determined exclusively
by accesses to itself, thereby shielding the decision-making
mechanism from noise due to accesses to other blocks.

The downside of direct metrics is their inflexibility in
the face of inconsistent behavior, which we define as any
variation from one lifetime of a block to the next. Consider
a simple code snippet below, which shows a reference to a
cache block holding the variable X, followed by a predicated
second reference to X.

PCi: Ld X
. . .
PCv: Beq cond, SKIP
PCw: Ld X
SKIP:

Assuming that the second reference occurs only a fraction
of the time due to the data-dependent nature of the predicate,
predictors that rely on direct metrics are faced with three
choices: 1) predict the block dead after the first reference,
incurring a miss if the predicate resolves to False; 2) predict
the block dead after the second reference, which may never

2

0 50 100 150 200 250
Cache References in Time

Not-a-Last-Access

Last-Access

Figure 1: Variability for a PC being the last touch or not in h264ref

occur; or 3) not make a prediction. Alas, none of the options
are satisfying, as they reduce either coverage or accuracy.

Fig. 1 demonstrates such behavior for the last-PC met-
ric [2] in h264ref for a PC responsible for 37% of the misses.
The behavior captured in the figure is representative of the
entire execution; for clarity, however, the figure shows only
a sample of 250 consecutive cache references by that PC
(X axis). For each reference, the Y axis shows whether the
reference is, indeed, the last access to the block or not under
an LRU replacement policy. For the last-PC metric to be
useful in identifying dead blocks upon a last access to them,
this behavior should be consistent, with all points falling
on either the Last-Access (indicating dead blocks) or Not-
a-Last-Access (indicating live blocks) line. Meanwhile, the
fluctuation shown in the figure indicates that the predictor
using last-PC metric may struggle to accurately determine
the end of the useful lifetime for blocks touched by this PC.

Indirect metrics: Also known as age-based metrics, these
rely on an external reference signal to inform the prediction
mechanism of the block’s age. When the block’s age matches
the learned value, the block is considered dead, while hits
to the block will reset its age. The age can be computed in
cycles, number of accesses to the cache [8], or number of
accesses to the set [1], [3].

A major advantage of indirect metrics is their inherent
ability to tolerate uncertainty in a block’s behavior. Coming
back to the code snippet above, a carefully chosen age may
allow the block to stay in the cache long enough to see
the second hit, if any, while ensuring that the block won’t
greatly overstay its likely useful lifetime.

The drawback of indirect metrics is their imprecision and
susceptibility to noise. Because the prediction is made based
on events unrelated to the block itself (e.g., the count of
all accesses to the block’s set), the age used for deciding
whether the block is dead must have some tolerance to
fluctuation built into it. This tolerance inevitably increases
the block’s dead time, even for highly predictable blocks,
potentially causing the block to stay in the cache long
after its last access while waiting for the age to reach the
previously learned value.

C. Toward a Better Metric

Stack distance is defined as the number of accesses to
unique blocks made since the last reference to a given
block [9]. Stack distance provides a useful way to reason
about a block’s reuse behavior: blocks that have short reuse
intervals will have short stack distances, while blocks with

long reuse intervals will see larger stack distances over their
lifetime in the cache. In practice, a short stack distance
means that a block is likely to experience a hit when it
is near the top of the LRU stack (i.e., close to the MRU
position). Conversely, a long stack distance means that a hit
may come near the LRU position, or – if the stack distance
exceeds the associativity of a cache – will result in a miss
to the block. By predicting dead blocks early, DBPs aim
to keep blocks with long stack distances in the cache long
enough for them to see a hit.

We make the observation that stack distance can be turned
into a powerful metric for dead block prediction. Fig. 2
provides the intuition. The figure shows the observed stack
distances for a sample of 250 cache references for all blocks
allocated by a single PC which is responsible for highest
number of LLC misses in GemsFDTD. Blocks that do not
see any hits are shown having stack distance of zero. The
key take-away is that despite significant variability across
references, the stack distance is largely confined to 4.

Based on this insight, we define live distance as the
maximum observed stack distance during a block’s residency
in the cache. Live distance is a good indicator of the block’s
temporal reuse limit, so when the block’s position within
an LRU stack exceeds its known live distance, the block
is unlikely to be referenced and can be predicted dead.
To obtain stack distance values, we exploit the fact that
LRU-based policies implicitly track stack distances of cache-
resident blocks. In true LRU, when a block hits, its current
LRU stack position corresponds to its stack distance. For
policies that deviate from true LRU, such as multi-bit NRU
(see Sec. III-C for details), a block’s stack position upon a hit
only approximates the true stack distance. Nevertheless, it
provides an efficient heuristic to approximate stack distance
and, correspondingly, live distance.

Table I demonstrates how stack and live distance is
determined for a block X for various reference patterns in
a 4-way set. In this example, the largest observed stack
distance is 3, yielding a live distance of 3 and indicating
that X can be predicted dead after the reference to C in ref
pattern #5.

Live distance combines the best properties of both direct
and indirect metrics, making it more effective than “pure”
approaches. Specifically, to determine if a block is dead,
live distance uses an indirect signal, which is the block’s
place within an LRU chain. This signal is indirect, since
the block ages as a result of hits to other blocks within
the set. Crucially, however, live distance for a block X is
trained only upon hits to X (same as direct metrics), which
demarcate the range of the block’s temporal reuse within
the LRU stack. Because of this combination, live distance
can naturally tolerate variability across generations as long
as the reuse interval for the block falls within a previously
observed range. At the same time, live distance provides an
efficient mechanism for rapidly identifying blocks that have

3

0 50 100 150 200 250
Cache References in Time

0
4
8

12
16

S
ta

ck
 D

is
ta

n
ce

Figure 2: Stack Distances for one PC in GemsFDTD

Ref Reference Stack Live Cache
pattern distance distance event
1 X A X 2 2 Hit
2 X A B X 3 3 Hit
3 X A B B B A X 3 3 Hit
4 X F X 2 3 Hit
5 X A B C F .. ∞ (>4) 3 Miss

Table I: Stack Distance & Live Distance for block X in 4-way set

exceeded their typical reuse window and can therefore be
predicted dead.

Compared to other indirect metrics, live distance has an
additional attractive property. By relying on stack distance,
which only grows as a result of hits to unique blocks,
live distance provides a degree of dampening to noise
resulting from variability in access patterns to recently-
accessed blocks. Because most-recently accessed blocks are
the ones likely to receive future hits, suppressing variability
in these hit counts is beneficial [10]. For instance, consider
reference patterns #2 and #3 in Table I. When trying to learn
the reuse distance for X, counting the number of accesses
to the set between references to X as proposed in prior
work [3] produces an inconsistent distance. In contrast, the
stack distance for X in both reference patterns is unaffected
by variability in the number of accesses to blocks A and B,
resulting in a consistent live distance.

III. LEEWAY DESIGN

We introduce Leeway, a DBP that uses live distance as
its underlying metric. We first explain the Leeway basics
and features that make it robust against variability in the
context of LLC. We then show how Leeway works with
a low-cost 2-bit NRU replacement policy. We then discuss
microarchitectural details and compare its cost and com-
plexity with prior techniques. Later we extend Leeway to
a multicore setup.

A. Overview

The baseline Leeway policy uses a full LRU stack and
records the maximum observed hit position (i.e., live dis-
tance) during a block’s residency in the cache. At eviction
time, the live distance is recorded in a separate structure,
Live Distance Predictor Table (LDPT), for subsequent recall
when the block is allocated again. Leeway uses the live
distance learned in the block’s previous generations to infer
when the block may have exceeded its useful lifetime and
predicts it dead. To avoid the prohibitive storage costs
of tracking individual cache blocks in the LDPT, Leeway

0 50 100 150 200 250
Cache Generations in Time

0
4
8

12
16

Li
v
e
 D

is
ta

n
ce

Figure 3: Variability in live distance with a bias of streaming for
a PC in mcf. A Live Distance of 0 indicates a bypass opportunity.

0 50 100 150 200 250
Cache Generations in Time

0
4
8

12
16

Li
v
e
 D

is
ta

n
ce

Figure 4: Variability in live distance with a bias of reuse for a PC
in calculix

exploits code-data correlation and associates all cache blocks
allocated by a given PC with one PC-indexed LDPT entry.

The functionality of Leeway can be divided into three
categories - Learning, Prediction and Update. Learning is
a continuous process for cache-resident blocks that involves
checking a block’s position in the LRU stack upon each
hit and, if the current position exceeds the past maximum,
updating the live distance. Prediction is triggered during
victim selection on a miss to a set. Any block that has moved
past its predicted live distance in an LRU stack is predicted
dead. Update occurs upon a block’s eviction from the cache,
propagating the new live distance to the LDPT. To effectively
handle variability in live distance across generations of a
given block and across blocks tracked by a single PC-
indexed LDPT entry, the update process is conditional as
explained in the next section.

Leeway implements set-sampling, similar to [11], to learn
the blocks’ live distances by observing their behavior in a
small number of sample sets. The reason for sampling is
two-fold: 1) it helps filter out some of the noise in observed
live distances; 2) it significantly reduces Leeway’s storage
requirement as only blocks belonging to the sample sets need
to be augmented with storage and logic needed for learning.

B. Adapting to Variability

As explained in Sec. II-A, a block’s observed reuse
behavior may fluctuate in time even if its fundamental reuse
characteristics are not changing. While the live distance
metric provides a degree of protection from intra-generation
noise, Leeway must contend with inevitable fluctuation in
live distance across generations and across different blocks
allocated by the same PC. In particular, it must separate
unrepresentative live distance values from actual shifts in
reuse behavior. This observation points to the need for an
intelligent update policy for Leeway’s live distance values.

To design a variability-tolerant update policy, we study
both SPEC and scale-out server workloads (CloudSuite)
to understand their reuse behavior. Our workload analysis

4

reveals that applications tend to fall in one of two categories
in terms of their reuse behavior affecting LLC management.

The first category is dominated by streaming accesses that
do not observe any LLC hits and should be bypassed. For
example, in mcf, over 90% of cache blocks are not reused
after allocation in LLC under LRU. In many cases, however,
we find that blocks allocated by certain streaming PCs will
occasionally observe one or more hits. Fig. 3 shows one
such PC responsible for 21% of the misses in mcf. Moreover,
such behavior sometimes occurs in clusters, forcing a shift
in cache management policy from bypassing to keeping
blocks on chip. Such a shift is generally undesirable, as the
behavior tends to quickly revert back to streaming. A multi-
bit hysteresis threshold may be effective in delaying a shift
in policy; however, the high threshold is counter-productive
when the behavior reverts back to streaming as it will lead
to blocks being allocated in LLC rather than be bypassed.

The second category of applications is dominated by
blocks that do see reuse prior to being evicted from the LLC.
For example, in calculix more than 60% blocks are reused
at least once after their allocation in LLC under LRU. We
observe considerable variability in live distance for many
PCs that allocate blocks exhibiting reuse. Fig. 4 shows one
such PC responsible for 29% of the misses in calculix. This
observation is consistent with prior work that observed that
blocks with reuse are more prone to variability in inter-
generational behavior than streaming blocks, thus posing
a challenge for DBPs [12]. Given the uncertainty in reuse
behavior, such blocks should be kept longer to maximize
opportunity for reuse.

The two types of behavior naturally lead to a pair of
policies designed to maximize bypass opportunities for
streaming workloads and reuse for workloads that exhibit
it.
Bypass-Oriented: This policy seeks to maximize opportu-
nities for bypass by being slow to increase the live distance
and fast in dropping it back towards 0. An incoming block
with a predicted live distance of 0 is bypassed, unless it
maps to a sampler set (see Sec. III-D2 for details).
Reuse-Oriented: To maximize reuse opportunities for allo-
cated blocks when there is fluctuation in live distance values,
this policy is quick to increase the live distance and slow to
decrease it. Since Leeway does not evict blocks that have
not reached their live distance value in the LRU or multi-bit
NRU stack, a larger live distance enables a longer temporal
window for uncovering reuse.

Enabling the policies: The two policies call for diametri-
cally opposite behavior: whereas the Bypass-Oriented policy
is slow to increase the live distance values in LDPT but
fast to decrease them, the Reuse-Oriented policy is fast to
increase live distance values but slow to decrease them. To
satisfy the demand for separate policies in increasing and
decreasing live distance in the LDPT, Leeway deploys two
Variability Tolerance Thresholds (VTTs) that control the rate

Figure 5: Schematic of Leeway for LLC

at which live distance values are adjusted based on workload
behavior and the direction of change in live distance.

In order to choose the preferred policy for a running appli-
cation, Leeway leverages Set Dueling [11] and implements
both policies (Bypass- and Reuse-Oriented) simultaneously
on separate sampler sets. The rest of the cache follows the
policy that minimizes the misses.

C. Leeway with Cost-Efficient NRU

So far, we have considered Leeway on top of true LRU,
which may be unattractive for highly-associative caches. In
this section, we explain the minimal modifications required
to make Leeway work with a low-cost multi-bit Not Recently
Used (NRU) family of policies.

Multi-bit NRU uses two or more bits per cache block to
indicate a partial relative order of LRU stack positions. For
instance, a 2-bit NRU policy keeps blocks in a set in one of
four equivalence classes as a function of their relative stack
positions, with class 1 for MRU blocks and class 4 for LRU
ones. During victim selection, a block in class 4 is evicted
(ties are broken through random selection). If no block is
found in class 4, every block is moved to the next class and
the process is repeated. Both RRIP [13] and SHiP [14] use
2-bit NRU.

Leeway implementation over multi-bit NRU, Leeway-
NRU, relies on the partial relative order maintained by NRU
to make dead block predictions. It uses a block’s NRU value
to approximate its stack distance, and in turn, live distance.
It cannot differentiate between the relative order of blocks
in the same recency class.

In general, Leeway can be implemented with any base
policy which maintains 1) a partial relative order of blocks
based on their relative reference time and 2) a monotonically
non-decreasing order for a given block’s position between
re-references or until eviction.

D. Microarchitecture

1) Physical Fields and Structures: Fig. 5 summarizes key
elements of the design.

LDPT: Each PC-indexed LDPT entry contains a stable-
live-distance field that indicates the current live distance
based on most recent history. Updates to stable-live-distance
are controlled by VTTs and two additional LDPT fields:
1) variance-count is a counter for tracking the number of
consecutively evicted cache lines whose live distance differs

5

from the stored value, and 2) variance-direction is a bit
indicating the direction of the difference. Once the count
matches the value of a VTT for a given direction, the
value of stable-live-distance is updated. To avoid additional
storage for transient live distance values, the new stable-live-
distance value is taken from the evicted block that triggers
the update.

VTTs: To enable Bypass- and Reuse-Oriented policies,
Leeway uses a pair of Variability Tolerance Thresholds that
control the rate at which stable-live-distance values are
updated (Sec. III-B). Empirically, we find that a 3-bit VTT
is sufficient, and use the maximum value for the slow update
(i.e., requiring 7 consecutive evictions with a live distance
different, and in the same direction, from the stable-live-
distance) and a value of 1 for the aggressive threshold.
Thus, the two valid VTT configurations are either {7,1} (for
the Bypass-Oriented policy, with a slow increase and fast
decrease) and {1,7} (for the Reuse-Oriented policy with a
fast increase and slow decrease).

LLC: Leeway requires all LLC blocks to carry a field,
predicted-live-distance, which is read from the LDPT at
block allocation time and is subsequently used for dead
block prediction. Sampler sets carry two additional fields:
live-distance & hash-pc. These are used for learning, al-
lowing evicted blocks to index the LDPT and, if necessary,
update its fields as explained above.

2) Leeway in Action:
Cache Miss: On an LLC miss, the LDPT is indexed

using a hash of the miss PC to recall the stable-live-distance,
which is then transferred to the incoming block’s predicted-
live-distance field. If predicted-live-distance is 0, the block
is expected to have no reuse and is bypassed to higher
level cache. Since bypassed blocks have no opportunity to
retrain, Leeway inserts them into the sampler sets with a
small probability (1-3%) to enhance learning.

Cache Hit (Learning): On a hit to a sampler set, the
block’s live-distance is updated if its stack position is greater
than the value of the live-distance field. No action for other
cases.

Eviction (Prediction and Update): To find victim, Lee-
way searches for a dead block by comparing each block’s
LRU or NRU position to its predicted-live-distance field. If
more than one dead block is found, a victim is picked at
random. If no block is predicted dead, the LRU block is
evicted. If the evicted block resides in the sampler set, its
live-distance and hash-pc is forwarded to the LDPT for a
potential update.

3) Mechanism for Policy Selection: To dynamically
choose between Bypass- and Reuse-Oriented policies, Lee-
way relies on set dueling [11]. Thus, two separate groups
of sampler sets are used, with each group implementing one
of the two policies. To support simultaneous implementation
of policies, the LDPT must be extended to support two sets
of {stable-live-distance, variance-count, variance-direction}

Technique Base Overhead Total When is Predictor
(KB) (KB) (KB) Table accessed?

SDBP 16 22.75 38.75 Hits + Misses
SHiP 8 9.75 17.75 Misses
Hawkeye 12 19 31 Hits + Misses
Leeway 16 52.5 68.5 Misses
Leeway-NRU 8 36 44 Misses

Table II: Cost for 16-way 2MB LLC and 16K-entry Predictor Table

fields per entry. While the sampler sets always access their
dedicated fields based on a static mapping, the rest of the
sets read the stable-live-distance from the winning policy.

To determine the winning policy, Leeway maintains two
saturating miss counters, one for each policy. The counters
are incremented on a miss and decremented on a hit to a
sampler set of a respective policy. Periodically, the miss
counters are sampled and the winning policy is selected
based on the counter with the lowest value.

Often, the winning policy remains the same throughout
the application’s execution. In some cases, however, the win-
ning policy may change due to changes in the application’s
phase or its co-runner(s). In theory, a policy change requires
reloading predicted-live-distance for all cache blocks using
the stable-live-distance of the new winning policy in LDPT.
In practice, we find that policy change is infrequent, indicat-
ing that the simplest way to deal with it is to leave existing
blocks untouched, potentially incurring a handful of poor
decisions but minimizing microarchitectural complexity.

E. Cost and Complexity Analysis

Cost: We analyze storage requirements for a 16-way 2MB
LLC with 64B blocks. We find that a 16K-entry LDPT per
core is sufficient and is not affected by destructive aliasing,
thus affording a tagless design. For each of two Leeway
policies, each LDPT entry has 8 bits: 4 for stable-live-
distance, 3 for variance-count and 1 for variance-direction.
The resulting cost of LDPT is thus 32KB.

We use a 64-set sampler per policy. Each block in the sam-
pler carries a 4-bit live-distance and 14-bit hash-pc fields,
requiring 4.5KB of storage in total. All cache blocks, in-
cluding the sampler, include a 4-bit predicted-live-distance,
totaling 16KB. The total storage overhead of Leeway is thus
52.5 KB, or ∼1.8% of the LLC storage. Using 2-bit NRU
instead of LRU further reduces the overhead by ∼31% to
36KB by lowering live distance storage costs from 4 to 2
bits.

Table II compares the storage requirements of Leeway to
those of prior techniques. SHiP [14], an insertion policy,
has the lowest storage cost at the expense of not predicting
blocks that are reused. Among DBPs that also predict reused
blocks, the preferred Leeway NRU configuration requires
44KB of storage in total (including NRU bits), compared
to 38.75KB for Hawkeye [5] and 31KB for SDBP [2],
considering same number of sample sets and predictor table
entries for all techniques. While Leeway is slightly more

6

expensive, we observe that the storage requirements for all
techniques are in a similar range of several tens of KBs.
Such modest storage requirements are dwarfed by the size
of the LLC.

Complexity: Operations performed by Leeway at various
stages are limited to simple addition and comparisons,
which are quite hardware friendly. Additionally, Leeway
embeds the metadata necessary for the prediction (i.e., live
distance) with the cache blocks. As a result, LLC hits and
replacement decisions never access remote metadata. The
only time Leeway accesses its prediction table (LDPT) is
upon cache misses, when stable-live-distance is read and
possibly updated. These accesses are entirely off the critical
path, since they do not involve state updates to a live cache
block.

In contrast, state-of-the-art DBPs, such as SDBP [2] and
Hawkeye [5], use a PC-indexed prediction table that is
probed on every LLC access (including hits) to inform
the block’s eviction priority. For example, Hawkeye incurs
∼2.3x more accesses to its prediction table when compared
to Leeway (SPEC average). Such frequent accesses to the
prediction table are particularly undesirable in a modern
multicore CPU with a NUCA LLC, as each LLC hit requires
state-of-the-art DBPs to access the PC-indexed prediction
table located elsewhere on a chip, incurring latency, energy,
and traffic overheads due to the need to traverse the on-
chip network.

F. Leeway for Multicore

Leeway can be naturally extended to multicore deploy-
ments. The only notable difference is in determining the
winning policy for each individual core. When extended to
multicore, the sampler sets for a given core, referred to
as the owner core, are shared with other follower cores
that will use them as followers of their respective (and
potentially different) policies. Because the choice of a policy
used by each core affects other cores, we study trade-offs in
policy selection through three different strategies – Greedy,
Cumulative and Democratic.

The Greedy selection strategy tries to minimize the misses
for an application executing on a given core without regard
to performance of other applications sharing the cache. The
core may select a winning strategy which works better for
its own application but may hurt applications on other cores.

In the Cumulative strategy, the cache policy for each core
seeks to minimize the total misses across all applications.
A core may select a policy which may not work best for its
own application but reduces overall misses.

Finally, the Democratic selection strategy seeks to benefit
the highest number of applications regardless of their contri-
bution to total misses. Thus, applications with high number
of misses do not single-handedly control the outcome.
Voting ties are resolved via the Cumulative strategy.

Core Model OoO: 4-wide pipeline, 128-entry ROB
L1 Caches Private, Split, 8-ways 32KB
L2 Cache Private, Unified, 8-ways 256KB
L3 Cache Shared, Unified, 16-ways 2MB per core
Memory 200-cycle access latency

Table III: System parameters for SPEC simulations

Core Model UltraSPARC III ISA, 16 cores
OoO: 4-wide pipeline, 128-entry ROB

L1 Caches Private, Split, 8-ways 32KB
L2 NUCA Shared, Unified, 16-way, 256KB/core (4MB total)
Interconnect 4x4 2D mesh, 3 cycles/hop
Memory 200-cycle access latency

Table IV: System parameters for CloudSuite simulations

Microarchitectural extensions: For all multicore strate-
gies, LDPT is implemented as a single logical structure
which is dynamically shared by all cores. LDPT entry is
indexed by a combination of PC and CoreID. Additionally,
the various strategies require a set of saturating counters for
tracking misses, as follows. Both Greedy and Cumulative
strategies require two saturating counters (one each for
Bypass- and Reuse-Oriented policies) for each core to count
misses in a sampling interval. These counters are updated
only by the owner core for the Greedy strategy and by all
cores (including follower cores) for the Cumulative strategy.
In the Democratic strategy with N cores, each core requires
a pair (one each for Bypass- and Reuse-Oriented policies) of
N saturating counters, one for each core. These counters are
updated by their respective cores exclusively. At the end of
a sampling interval, values of these counters reflect how the
implementation of both policies by the owner core affects
all cores.

IV. METHODOLOGY

A. Workloads and Simulation Infrastructure

SPEC CPU 2006: We evaluate the performance of
SPEC CPU 2006 benchmarks using a modified version of
CMP$im [15] provided with the JILP Cache Replacement
Championship [16] and used in prior research in dead
block prediction [2], [4], [5], [14]. Table III summarizes the
features of the simulated processor.

We use SimPoint [17] to identify up to six simpoints of
one billion instructions each representing a different phase
of a workload. Note that prior work in this space has used
only a single simpoint in their evaluation [2], [5], [14]. We
use SimPoint tool to generate the weights for each simpoint
that are then used to calculate the overall performance. Each
program is run with the first ref input provided by runspec
command. For each run, the simpoint is used to warm
microarchitectural structures for 500M instructions, then it
measures and reports the result for the subsequent one billion
instructions. The result reported for each benchmark is the
weighted average of the results for the individual simpoints.

For multicore workloads, we use ten workload mixes
used in prior work [2] on dead block prediction, which

7

allows us to compare the effectiveness of various techniques
on each mix. To generalize the results, we also evaluate
100 randomly-generated multiprogrammed workloads. For
each workload in the mix, we use the highest weighted
simpoint. Each mix is run on quad-core system for 1 billion
instructions following a warmup of 500 million instructions.
Workloads which finish before others are restarted to main-
tain the cache pressure until the slowest one has finished.
We report the weighted speed-up over LRU. To compute it,
we run every thread in isolation with 8MB LLC with LRU
replacement to calculate SingleIPCi. We then calculate
Weighted IPC as

∑N
i=1 IPCi / SingleIPCi, where IPCi

is the workload’s IPC in the presence of co-runners.
CloudSuite [18] is a collection of contemporary scale-

out server workloads, which have been shown to have
fundamentally different characteristics than traditional desk-
top and parallel applications [19]. We evaluate CloudSuite
on Flexus [20], a Simics-based, full-system multiprocessor
simulator. We model a 16-core CMP with core models
loosely based on ARM-Cortex A72 [21]. Table IV lists the
system parameters.

For performance evaluation, we use the SimFlex multi-
processor sampling methodology [20], which extends the
SMARTS sampling framework [22]. Our samples are col-
lected over 10-30 seconds of workload execution. For each
measurement point, we start the cycle-accurate simulation
from checkpoints with warmed architectural state and run
100K cycles of cycle-accurate simulation to warm up the
queues and the interconnect state, then collect measurements
from the subsequent 200K cycles. We use ratio of the num-
ber of application instructions to the total number of cycles
(including the cycles spent executing operating system code)
to measure performance. This metric has been shown to
accurately reflect the overall system throughput [20].

B. Evaluated Prediction Schemes

Sampling Dead Block Predictor (SDBP) [2] is a dead
block predictor that correlates “last touch” to the block with
the PC of the memory instruction making the touch. We use
source code from the Championship website for SDBP. We
use default settings provided for SPEC workloads except for
increasing the number of sampler sets from 32 to 128.

Signature based Hit Predictor (SHiP) [14] is an inser-
tion policy which builds on RRIP [13]. It learns and records
whether block is re-referenced after insertion and uses this
information to guide insertion placement. We implement
SHiP with 2-bit RRIP as a baseline policy and 14-bit
PC signature. Each predictor table entry contains a 3-bit
saturating counter which is updated by the 128 sampled sets.

Hawkeye [5] learns a block’s behavior by simulating
Belady’s optimal algorithm [23] and trains the predictor
that, on each cache access, updates the block’s eviction
priority. The authors kindly provided the source code of their
technique, which we use for evaluation of SPEC workloads.

Leeway: We evaluate Leeway with LRU and NRU. For
learning, we use 64 sets per core for each policy. We use
set dueling to find the preferred policy (Sec. III-D3). Miss
counters for both polices are sampled every 100M cycles.
The LDPT has 16K entries for singlecore and 64K shared
entries for multicore.

V. EVALUATION

A. Singlethreaded SPEC Applications

To better understand the effects of all cache policies, we
classify SPEC applications into three categories: 1) High
opportunity, if performance improves by at least 10% over
LRU with any one policy; 2) No opportunity if performance
doesn’t vary by more than 0.5% for all policies; 3) Mix
opportunity for the rest. We do not show individual results
for the No opportunity applications (gamess, namd, gobmk,
dealII, povray, sjeng and lbm) and do not include them in
the geomean.

1) Miss Reduction: Fig. 6 (top) shows the reduction in
LLC misses compared to the default LRU for High and
Mix opportunity applications. All prior techniques are very
effective on High opportunity workloads, with miss reduc-
tion ranging from 22.2% (SDBP) to 26.9% (SHiP). Leeway
is the most effective technique, reducing misses by 29.7%.
Leeway achieves the highest miss reduction on five out of
six High opportunity workloads coming in second only on
cactusADM (32% vs 32.7% for Hawkeye). Leeway-NRU is
the second-best policy (after Leeway) with an average miss
reduction of 28%.

On Mix opportunity workloads, Hawkeye and SHiP are
the most effective prior techniques, reducing misses by an
average of 7.6% and 10%, respectively. Interestingly, SDBP
increases average misses by 8.4%, mainly due to extremely
poor performance on calculix. Leeway and Leeway-NRU
outperform prior techniques, averaging 10.6% and 9.8%
respective miss reduction. While Leeway increases misses in
gcc, zeusmp and calculix, the increase is generally smaller
than with prior techniques. For instance, zeusmp suffers an
increase in misses of 24.8% with SHiP, compared to less than
1% with Leeway. On calculix, all predictors increase misses
by 29% to 283% as compared to under 11% in Leeway.
On both, omnetpp and tonto, Leeway and Leeway-NRU are
able to reduce misses (by 4-9%), whereas SDBP and SHiP
increase misses by 1-5%.

We note that on some of the Mix opportunity workloads
(e.g., leslie3d, GemsFDTD), Leeway’s miss reduction trails
Hawkeye despite achieving similar prediction coverage and
accuracy for both techniques. The reason is that Leeway
does not predict blocks dead until they have passed their live
distance, which in some cases lead to an increased dead time
in the cache. The upside of Leeway’s conservative strategy is
that it minimizes premature evictions under high variability
in reuse behavior. For instance, on calculix, all techniques
increase misses over LRU. However, Leeway’s increase is

8

High Opportunity

0
10
20
30
40
50

mcf

cactusADM

soplex
astar

sphinx3

xalancbmk

amean (h
igh)

M

P
K

I
R

e
d

u
ct

io
n

 (
%

)

Mix Opportunity

-40

0

40

perlb
ench

bzip2
gcc

bwaves
milc

zeusmp

gromacs

leslie
3d

calculix

hmmer

GemsFDTD

lib
quantum

h264ref
tonto

omnetpp
wrf

amean (m
ix)

amean

0

10

20

30

40

50

mcf

cactusADM

soplex
astar

sphinx3

xalancbmk

gmean (h
igh)IP

C
 I

m
p

ro
ve

m
e

n
t

(%
)

-10

-5

0

5

10

perlb
ench

bzip2
gcc

bwaves
milc

zeusmp

gromacs

leslie
3d

calculix

hmmer

GemsFDTD

lib
quantum

h264ref
tonto

omnetpp
wrf

gmean (m
ix)

gmean

SDBP SHiP Hawkeye Leeway Leeway-NRU

Figure 6: MPKI reduction (top) and IPC improvement (bottom) over unmanaged cache on SPEC applications

the smallest thanks to its higher accuracy of 71.1% vs 50%
in Hawkeye and less for others.

2) Performance Improvement: Fig. 6 (bottom) shows the
impact of cache management policies on performance with
respect to an unmanaged cache. The performance of all
techniques generally correlates well with miss reduction.1

Performance improvement for all High opportunity ap-
plications is substantial. SDBP, Hawkeye & SHiP improve
performance by 20.3%, 23.4% & 24.9% respectively. Lee-
way & Leeway-NRU deliver the highest IPC improvement
of 28.5% & 26.7% respectively with Leeway significantly
outperforming five out of six applications coming in second
only in astar (14.8 vs 15% in SHiP). On Mix opportunity
workloads performance gains are more modest as expected.
Performance improvement is less than 1.4% for SHiP and
SDBP. Hawkeye improves performance by 3% as compared
to 2.7% & 2.6% for Leeway & Leeway-NRU, respectively.
However, Hawkeye’s maximum slowdown is 2.1%. In con-
trast, Leeway and Leeway-NRU limit performance degrada-
tion to 0.7% and 1.1% in the worst case, demonstrating their
ability to effectively adapt to adversarial scenarios.

Across all of SPEC, Leeway and Leeway-NRU deliver
a geomean speed-up of 9.2% and 8.7%, respectively, ver-
sus 8.2% and 7.4% for the top performing prior pro-
posals (Hawkeye, SHiP). Both Leeway variants not only
outperform prior schemes, but also slowdown the fewest
applications.

1It should be noted that prior works [2], [5], [14] used just one simpoint
per application for their evaluations versus up to six in ours. A single
simpoint cannot capture different phases in programs whose LLC behavior
varies considerably across phases. For instance, Leeway achieves a 17%
speed-up over LRU for one simpoint of xalancbmk but less than 5%
for other simpoints. Based on the weight of each simpoint, normalized
improvement is 13.5%. Because of this difference in methodology, per-
formance numbers reported in this paper are different (often, smaller) as
compared to those reported elsewhere. For example, authors of Hawkeye
report a speed-up of over 25% for GemsFDTD using a single-simpoint
methodology [5]. Meanwhile, using the same source code provided to us by
the authors and the same infrastructure, we achieve a more modest speed-up
of 7.1% using the multi-simpoint methodology. Overall, we believe that by
evaluating multiple simpoints for each applications, our simulations more
closely tracks realistic behavior.

Performance with Prefetcher: We also evaluate all pre-
dictors in the presence of a stream prefetcher. By itself, the
prefetcher improves the performance of SPEC applications
by 44.2%, on average. Improvement over the prefetcher is
shown in Fig. 7. In general, prefetching reduces the op-
portunity for all techniques. Among prior techniques, SHiP
provides the maximum improvement with geomean speed-
up of 3%. Surprisingly, Hawkeye performs relatively poorly
(2% speed-up), in stark contrast to its performance without
the prefetcher.2 Leeway & Leeway-NRU deliver the highest
gain of 5.1% and 5%, respectively. On High opportunity
workloads, both Leeway variants improve performance by
over 14%, compared to 10.2% for SHiP and less for others.

To understand the drop in performance for Hawkeye,
we analyzed the prediction coverage and accuracy for all
techniques and compared them with the corresponding data
without prefetch. We found that, unsurprisingly, accuracy
drops for all techniques, including Leeway, by 3-5% when
the data prefetcher is enabled. In the case of Hawkeye,
coverage also drops significantly (average 69.9% with versus
80.8% without prefetch), indicating that Hawkeye identifies
fewer lines as cache averse in the presence of prefetcher-
induced variability.

B. Multiprogrammed SPEC

Fig. 8 illustrates weighted IPC improvement for various
policies on SPEC application mixes. We use the Democratic
selection strategy for Leeway, as we found it to be the best-
performing policy achieving weighted speed-up of 15.1%
when compared to Greedy(12%) and Cumulative(12.8%).
This is expected as both Greedy and Cumulative strategies
make decisions that favor individual workloads but may be
detrimental to others. In contrast, the Democratic strategy
ensures that the majority of applications benefit, which
improves both fairness and performance.

Among prior techniques, Hawkeye delivers the highest
performance improvement of 13.1%, matching the single-
core trend. Leeway & Leeway-NRU outperform all prior

2Hawkeye’s evaluation [5] did not consider a data prefetcher.

9

techniques, improving performance by 15.1% & 15.0%, re-
spectively. In general, performance trends across techniques
vary for different mixes based on the cache access patterns
generated by their complex interactions in the shared LLC.
To provide some insight into the trends, we explain perfor-
mance of Leeway and Hawkeye for two mixes in detail.

In mix1, three applications are sensitive to cache man-
agement, out of which Leeway outperforms Hawkeye on
two (mcf & hmmer) whereas Hawkeye outperforms Leeway
on omnetpp. Leeway’s improvement on mcf is significant
due to a massive reduction in misses (48.5% vs 23.6%
for Hawkeye), which drives the weighted IPC in favor
of Leeway. Leeway correctly selects the Bypass-Oriented
Policy for mcf, which reduces pollution by bypassing many
streaming blocks directly to higher level cache. Overall,
Leeway achieves prediction coverage of 95.6% for the whole
mix vs 87.6% for Hawkeye with roughly similar accuracy.

In mix4, two applications are sensitive to cache man-
agement and both Hawkeye and Leeway are effective in
reducing misses and improving performance when compared
to baseline LRU. Whereas Leeway reduces more misses
than Hawkeye in soplex, Hawkeye reduces more misses in
cactusADM. Overall, the total number of misses reduced by
Leeway is higher than that by Hawkeye; however, the miss
reduction in soplex translates to a more modest improvement
in performance as compared to that on cactusADM by
Hawkeye. Because of this, Hawkeye outperforms Leeway.

Performance with Prefetcher: In a multicore setup with
prefetching, Leeway and Leeway-NRU deliver 7.9% and
7.4% weighted speed-up, compared to 6.1% or less for
prior techniques (Fig. 7). We note that the opportunity for
cache management increases with multiple cores due to
increased pressure on the LLC. We also observe that pre-
fetching and cache pressure due to multiple cores introduce
further variability to the LLC’s access and eviction stream,
which impedes learning. As in the singlecore case, Hawkeye
continues to perform poorly under the prefetch induced
variability.

To generalize the results, we evaluated these techniques
for 100 randomly chosen mixes generated from all 29 SPEC
applications (Fig. 9). We observe that the relative trends in
the presence of prefetcher hold, with SHiP outperforming
Hawkeye and achieving a geomean weighted speed-up of
3.3%. While Hawkeye is generally superior to LRU, it
struggles in the face of variability as noted above. Leeway
and Leeway-NRU deliver the highest performance of 5%
and 4.4%, respectively. Both Leeway variants reduce most
overall misses, with 17% and 13.9% reduction, on average,
as compared to 12.9% reduction for SHiP and less than 6%
for others.

C. Understanding Leeway’s Performance

1) Coverage and Accuracy: In this section, we analyze
the effectiveness of Leeway and other predictors by means

0

5

10

15

High Opportunity Mix Opportunity ALL Multiprogrammed

IP
C

 I
m

p
ro

v
e

m
e

n
t

(%
)

SDBP SHiP Hawkeye Leeway Leeway-NRU

Figure 7: Speed-up with data prefetcher on SPEC applications

0

10

20

30

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10 gmean

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 (

%
)

SDBP SHiP Hawkeye Leeway Leeway-NRU

Figure 8: Weighted speed-up on multi-programmed SPEC mixes

-5

0

10

20

1 10 20 30 40 50 60 70 80 90 100

Workload Mixes (Sorted by IPC)

W
e
ig

h
te

d
 S

p
e
e
d
u
p
 (

%
)

SDBP SHiP Hawkeye Leeway

Figure 9: Speed-up with data prefetcher on SPEC mixes

of their prediction coverage and accuracy. The coverage of
a DBP is defined as the number of dead blocks predicted as
a fraction of total evictions, while accuracy is the number
of correct predictions as a fraction of successful predic-
tions. Fig. 10 shows the standard box-and-whiskers plot
for coverage and accuracy for SDBP, SHiP, Hawkeye and
Leeway (Leeway-NRU is not shown for brevity). The box is
plotted from 75th to 25th percentile (y-axis), forming a core
range representing 50% of the distribution. The whiskers
are extended up to 1.5 times of this range in each direction.
The points not covered by the range of whiskers are plotted
individually as circles.

Coverage data shows that SHiP has the lowest coverage
overall, which is not surprising as SHiP limits predictions
only to the time of insertion. Leeway has higher overall
coverage than SDBP and Hawkeye. For instance, Leeway’s
box, which captures 50% of the distribution, shows coverage
ranging from 94.7% to 85.3% versus 92.4% to 73.4% for
Hawkeye. The higher coverage in Leeway can be explained
as follows: 1) In face of variability, other predictors fall back
to not making predictions (Sec. II-B) while Leeway can
continue making predictions by adjusting live distance to
match the highest observed stack distance; 2) On workloads
characterized by low reuse in the LLC, Leeway achieves
much higher coverage than prior techniques thanks to its
Bypass-Oriented policy that drives live distance quickly
towards zero in face of variability.

Accuracy for prior predictors fall in a similar range,

10

0

20

40

60

80

100

SD
BP

SH
iP

Ha
wk
ey
e

Le
ew
ay

SD
BP

SH
iP

Ha
wk
ey
e

Le
ew
ay

Coverage Accuracy

Figure 10: Coverage(left) and Accuracy(right) of various predictors

0

10

20

30

40

50

pe
rlb

en
ch m

cf

ca
ct
us

AD
M

hm
m

er

lib
qu

an
tu

m

h2
64

re
f

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

bz
ip
2

gc
c

ze
us

m
p

le
sl
ie
3d

so
pl
ex

ca
lc
ul
ix

G
em

sF
D
TD

om
ne

tp
p

gm
ea

n

IP
C

 I
m

p
ro

v
e
m

e
n
t
(%

) Bypass Oriented Leeway

Reuse Oriented Leeway

Dynamic Leeway

Static Leeway

Figure 11: Effect of reuse-aware policies on Leeway’s performance

0

10

20

m
ed

ia
 s
tre

am
in
g

w
eb

 s
er

vi
ng

w
eb

 s
ea

rc
h

so
ftw

ar
e

te
st
in
g

da
ta

 s
er

vi
ng

m
ap

 re
du

ce

am
ea

n

M
P

K
I

R
e

d
u

c
ti
o

n
 (

%
)

0

5

10

15

m
ed

ia
 s
tre

am
in
g

w
eb

 s
er

vi
ng

w
eb

 s
ea

rc
h

so
ftw

ar
e

te
st
in
g

da
ta

 s
er

vi
ng

m
ap

 re
du

ce

gm
ea

n

U
IP

C
 I

m
p

ro
v
e

m
e

n
t

(%
)

SDBP
SHiP
Leeway
Leeway-NRU

Figure 12: Miss-reduction and Speed-up on CloudSuite workloads

with Hawkeye slightly better than SDBP or SHiP. The box
for Hawkeye ranges from 99.1% to 59.8%. In comparison,
Leeway has a much tighter accuracy range of 98% to
73.4%. For workloads preferring the Bypass-Oriented policy,
Leeway’s prediction accuracy is comparable to Hawkeye
(recall from above that Leeway’s coverage is higher for these
workloads). For workloads that prefer the Reuse-Orientated
policy, Leeway has superior accuracy stemming from it
quickly increasing the live distance under variability, hence
maximizing opportunities for additional hits via prolonged
live time.

2) Adaptivity in Leeway:
Reuse-Aware Update Policies: To understand the effect

of Leeway’s policy choice, we compare the performance
of individual static policies (Bypass- and Reuse-Oriented)
with an adaptive scheme (Dynamic Leeway or simply
Leeway) that dynamically chooses a policy at runtime
(Sec. III-B). Dynamic Leeway was used throughout the
evaluation. Fig. 11 presents the results. The applications
whose performance does not depend on the choice of policy
are not shown for clarity.

Applications benefiting more from Bypass-Oriented pol-
icy are shown on the left group of Fig. 11. Such applications
include all high opportunity applications (except soplex)
and several mixed opportunity ones. For these applications,

the Reuse-Oriented policy conservatively increases the live
distance in face of variability. However, the access pattern is
dominated by bypassable blocks and predicting higher live
distance for such blocks only contributes to higher dead time
and in turn, lower cache efficiency.

Right side of Fig. 11 shows applications benefiting more
from the Reuse-Oriented policy. On most of these applica-
tions, none of the techniques are very effective. The culprit
is high incidence of blocks with reuse and inter-generational
variability. In the case of Leeway, the Reuse-Oriented policy
generally proves beneficial by steering the live distance
toward the recently-observed maximum in order to boost
opportunity for reuse. For instance, this proves particularly
beneficial on omnetpp, on which Leeway and Leeway-NRU
are the only techniques to avoid a slowdown (see Fig. 6).

Finally, Fig. 11 shows that by choosing the preferred
policy at runtime, Leeway can effectively adapt to all ap-
plications. Moreover, Leeway can adapt to phase behavior
within a single application, as demonstrated on astar and
xalancbmk, both of which have distinct cache behavior
across phases. On these applications, dynamic Leeway out-
performs the best static policy by over 2%.

Reuse-Unaware Static Leeway: To isolate the perfor-
mance due to only dead block predictions using live distance
from the choice of dynamic policy, we evaluate Static
Leeway, which employs a static VTT value of 7 in both
directions and thus does not require set-dueling for policy
selection.

Fig. 11 shows the effectiveness of Static Leeway on SPEC
applications. Overall, Static Leeway provides a geomean
speed-up of 8.1%; however, due to its reuse-unaware design,
it underperforms the preferred dynamic policy (Bypass- or
Reuse-Oriented) for almost all applications, thus justifying
the adaptivity of the reuse-aware Dynamic Leeway design.

D. CloudSuite Applications

Figure 12 compares the performance of both Leeway
variants against SDBP and SHiP on scale-out multithreaded
CloudSuite workloads. Overall, we find that these work-
loads have low sensitivity to LLC size, corroborating prior
work [19], [24]. While cache management delivers only
modest benefits, the relative performance trends across tech-
niques follow those on SPEC. SHiP outperforms SDBP
(4.5% vs 2.5%). Leeway & Leeway-NRU outperform both,
with a speed-up of 5.4% and 4.7% respectively. To put this
result in perspective, doubling the LLC size with the baseline
policy improves performance by 7.3%. The largest gains
are recorded by Leeway on data serving and map reduce
applications, with a performance improvement of 12.3% and
14%, respectively. For other applications, Leeway reduces
misses by 6 to 9%, yielding a modest performance gain of
1.2% to 2.5%.

The reason for the modest speed-ups on these workloads
is their low MPKI. While data serving and map reduce have

11

Rank 1 2 3 4
SPEC Leeway Leeway-NRU Hawkeye SHiP
SPEC-MC Leeway Leeway-NRU Hawkeye SHiP
SPEC(P) Leeway Leeway-NRU SHiP Hawkeye
SPEC-MC(P) Leeway Leeway-NRU SDBP SHiP
Cloudsuite(LLC) Leeway Leeway-NRU *SHiP SDBP

Table V: Top performers for various configurations.
Legends MC: multicore, P: prefetch; *Hawkeye not evaluated;

MPKI of 4.8 and 5.0, thus benefitting the most from cache
management, others have MPKI in the range of 1.4 to 3.7.

E. Summary

Table V summarizes the effectiveness of various tech-
niques under different setups. Leeway and Leeway-NRU
consistently provide the best performance due to robustness
stemming from their use of live distance as a metric and
a reuse-aware variability-tolerant update policies. Both Lee-
way variants also enjoy lower implementation complexity,
thanks to embedded prediction metadata, as compared to
state-of-the-art dead block predictors (Sec. III-E).

VI. RELATED WORK

Duong et. al introduced a DBP based on the notion of
Protected Distance (PD) [3]. PD leverages reuse distance, an
indirect metric that counts non-unique references to a set. A
single PD is used for an entire application. If a block is not
referenced beyond the application’s PD, it is predicted dead.
While conceptually PD sounds similar to Leeway, Leeway
has two key advantages over PD. First, PD maintains a
single Protected Distance for an entire application, whereas
Leeway maintains a Live Distance per PC that is contin-
uously trained throughout the application’s execution. This
maximizes Leeway’s adaptivity while minimizing dead time
of blocks prior to prediction. Secondly, Live Distance relies
on stack distance, and such naturally “filters” non-unique
references to the set. In contrast, PD counts all references
to the set, which can inflate PD values and lead to increased
dead time for cache blocks. Indeed, our evaluation of PD
shows that it is generally inferior to both Leeway and other
recent cache management schemes. On SPEC, Leeway’s
average performance improvement is 9.2% versus 6.2% for
PD without the data prefetcher, and 5.1% versus 1.6% (in
favor of Leeway) with the prefetcher.

Others have also suggested using stack distance or reuse
distance for cache replacement or modeling [3], [25]–[29].
Doing so requires maintaining a Reuse Distance Distribu-
tion (RDD) for an application, which itself can be storage
intensive as it involves keeping separate counter for different
reuse distances maintained. Further, turning this RDD into a
useful metric is challenging and computationally intensive.
For example, [3] proposes dedicated compute logic while
[27] relies on a software framework that runs on a core.
In contrast, Leeway monitors the readily-available stack
position within a set, which is already maintained by the

base replacement policy. Deriving a blocks live distance is
then as simple as taking the max of observed stack positions
upon hits in its lifetime. Thus, live distance fundamentally
enables a very efficient hardware implementation within this
general class of metrics.

Teran et. al [6] proposed perceptron learning based predic-
tor for LLC. Instead of correlating cache block behavior with
just a single feature like load-PC, it proposes to combine
multiple features for predicting block’s reuse behavior. To
do so, it maintains a separate predictor table for each feature,
for a total of six tables. Each of these predictor tables need
to be accessed on every cache access (including hits) which
makes this design difficult to scale for multicore processors
as explained in Sec. III-E.

Contrary to the traditional recency stack, Pseudo-
LIFO [30] manages the LLC as a fill stack. The approach
dynamically learns the preferred eviction positions within
the fill stack, and prioritizes the blocks close to the top of
the stack for eviction. It learns the preferred positions for an
application based on the combined behavior of all the cache
blocks, lacking fine-granularity adaptation that state-of-the-
art approaches, including Leeway, use.

Finally, Albericio et. al [31] proposed the reuse cache that
allocates data only for reused lines to reduce the effective
capacity of the LLC data array. The design is driven by the
observation that most blocks in the LLC are dead and thus
not storing data for such blocks will not hurt performance.

VII. CONCLUSION

In the absence of exponential growth in transistor count,
future microprocessors will rely on cache management
strategies to improve performance. Complicating the task is
variability in reuse characteristics in the applications’ work-
ing sets. This paper argues for variability-tolerant metrics
and strategies for cache management. As a step in that
direction, we introduce Leeway, a dead block prediction
scheme leveraging live distance - a new metric for capturing
temporal reuse behavior using stack distance. By augment-
ing live distance with a reuse-aware update policies, Leeway
achieves good performance across a variety of workloads
and deployment scenarios.

ACKNOWLEDGMENT

We thank Daniel Jimnez for providing us with simpoint
traces of SPEC’06 applications. We thank the PARSA group
at EPFL for providing us with disk images of CloudSuite ap-
plications and Onur Koberber & Javier Picorel for their help
in setting up these images on Flexus. We thank Akanksha
Jain for providing us with the source code of Hawkeye for
evaluation. We thank Artemiy Margaritov, Amna Shahab,
Arpit Joshi, Cheng-Chieh Huang, Mainak Chaudhuri, Vijay
Nagarajan and the anonymous reviewers for their valuable
feedback on earlier drafts of this work. Finally, we thank
Ron K. Cytron for shepherding this paper.

12

REFERENCES

[1] M. Kharbutli and Y. Solihin, “Counter-Based Cache Re-
placement and Bypassing Algorithms,” IEEE Transactions on
Computers, vol. 57, no. 4, pp. 433–447, April 2008.

[2] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling Dead
Block Prediction for Last-Level Caches,” in Proceedings of
the International Symposium on Microarchitecture, December
2010, pp. 175–186.

[3] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and
A. V. Veidenbaum, “Improving Cache Management Policies
Using Dynamic Reuse Distances,” in Proceedings of the
International Symposium on Microarchitecture, December
2012, pp. 389–400.

[4] E. Teran, Y. Tian, Z. Wang, and D. A. Jimenez, “Minimal
Disturbance Placement and Promotion,” in Proceedings of
the International Symposium on High Performance Computer
Architecture, March 2016, pp. 201–211.

[5] A. Jain and C. Lin, “Back to the Future: Leveraging Belady’s
Algorithm for Improved Cache Replacement,” in Proceedings
of the International Symposium on Computer Architecture,
June 2016, pp. 78–89.

[6] E. Teran, Z. Wang, and D. A. Jimenez, “Perceptron Learning
for Reuse Prediction,” in Proceedings of the International
Symposium on Microarchitecture, October 2016, pp. 1–12.

[7] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block Prediction
& Dead-block Correlating Prefetchers,” in Proceedings of
the International Symposium on Computer Architecture, June
2001, pp. 144–154.

[8] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in
the Memory System: Predicting and Optimizing Memory
Behavior,” in Proceedings of the International Symposium on
Computer Architecture, May 2002, pp. 209–220.

[9] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM Sys-
tems Journal, vol. 9, no. 2, pp. 78–117, June 1970.

[10] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache Bursts: A
New Approach for Eliminating Dead Blocks and Increasing
Cache Efficiency,” in Proceedings of the International Sym-
posium on Microarchitecture, November 2008, pp. 222–233.

[11] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A
Case for MLP-Aware Cache Replacement,” in Proceedings of
the International Symposium on Computer Architecture, June
2006, pp. 167–178.

[12] P. Faldu and B. Grot, “LLC Dead Block Prediction Consid-
ered Not Useful,” in International Workshop on Duplicating,
Deconstructing and Debunking, June 2016.

[13] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
Performance Cache Replacement Using Re-reference Interval
Prediction (RRIP),” in Proceedings of the International Sym-
posium on Computer Architecture, June 2010, pp. 60–71.

[14] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely, Jr., and J. Emer, “SHiP: Signature-based Hit Predictor
for High Performance Caching,” in Proceedings of the Inter-
national Symposium on Microarchitecture, December 2011,
pp. 430–441.

[15] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMP$im:
A Pin-Based On-The-Fly Multi-Core Cache Simulator,” in
Proceedings of the Workshop on Modeling, Benchmarking
and Simulation, June 2008.

[16] A. R. Alameldeen, A. Jaleel, M. Qureshi, and
J. Emer, JILP Workshop on Computer Architecture
Competitions: Cache Replacement Championship, June
2010, http://www.jilp.org/jwac-1.

[17] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using SimPoint for Accurate and Efficient
Simulation,” in Proceedings of the International Conference
on Measurement and Modeling of Computer Systems, June
2003, pp. 318–319.

[18] CloudSuite: The Benchmark Suite of Cloud Services, Parallel
Systems Architecture Lab, EPFL, http://cloudsuite.ch/.

[19] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the Clouds: A Study of Emerging Scale-
out Workloads on Modern Hardware,” in Proceedings of the
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, March 2012,
pp. 37–48.

[20] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe, “SimFlex: Statistical Sampling of
Computer System Simulation,” IEEE Micro, vol. 26, no. 4,
pp. 18–31, July 2006.

[21] M. Demler, “Cortex-A72 Takes Big Step Forward,” Micro-
processor Report, February 2015.

[22] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe, “SMARTS: Accelerating Microarchitecture Simulation
via Rigorous Statistical Sampling,” in Proceedings of the
International Symposium on Computer Architecture, June
2003, pp. 84–97.

[23] L. A. Belady, “A Study of Replacement Algorithms for
a Virtual-storage Computer,” IBM Systems Journal, vol. 5,
no. 2, pp. 78–101, June 1966.

[24] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocber-
ber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer,
and B. Falsafi, “Scale-out Processors,” in Proceedings of
the International Symposium on Computer Architecture, June
2012, pp. 500–511.

[25] R. Sen and D. A. Wood, “Reuse-based Online Models for
Caches,” in Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, June 2013,
pp. 279–292.

[26] C. Ding and Y. Zhong, “Predicting Whole-program Locality
Through Reuse Distance Analysis,” in Proceedings of the
Conference on Programming Language Design and Imple-
mentation, May 2003, pp. 245–257.

13

[27] N. Beckmann and D. Sanchez, “Modeling Cache Performance
Beyond LRU,” in International Symposium on High Perfor-
mance Computer Architecture (HPCA), March 2016, pp. 225–
236.

[28] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache Re-
placement Based on Reuse-Distance Prediction,” in Interna-
tional Conference on Computer Design, October 2007, pp.
245–250.

[29] S. Das, T. M. Aamodt, and W. J. Dally, “Reuse Distance-
Based Probabilistic Cache Replacement,” ACM Transactions

on Architecture and Code Optimization, vol. 12, no. 4, pp.
33:1–33:22, October 2015.

[30] M. Chaudhuri, “Pseudo-LIFO: The Foundation of a New
Family of Replacement Policies for Last-level Caches,”
in Proceedings of the International Symposium on Micro-
architecture, December 2009, pp. 401–412.

[31] J. Albericio, P. Ibanez, V. Vinals, and J. M. Llaberia, “The
Reuse Cache: Downsizing the Shared Last-level Cache,”
in Proceedings of the International Symposium on Micro-
architecture, December 2013, pp. 310–321.

14

