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Abstract
In this paper, we propose a new energy-based probabilistic
model where a restricted Boltzmann machine (RBM) is ex-
tended to deal with complex-valued visible units. The RBM
that automatically learns the relationships between visible units
and hidden units (but without connections in the visible or the
hidden units) has been widely used as a feature extractor, a gen-
erator, a classifier, pre-training of deep neural networks, etc.
However, all the conventional RBMs have assumed the visible
units to be either binary-valued or real-valued, and therefore
complex-valued data cannot be fed to the RBM.

In various applications, however, complex-valued data is
frequently used such examples include complex spectra of
speech, fMRI images, wireless signals, and acoustic intensity.
For the direct learning of such the complex-valued data, we
define the new model called “complex-valued RBM (CRBM)”
where the conditional probability of the complex-valued visible
units given the hidden units forms a complex-Gaussian distribu-
tion. Another important characteristic of the CRBM is to have
connections between real and imaginary parts of each of the
visible units unlike the conventional real-valued RBM. Our ex-
periments demonstrated that the proposed CRBM can directly
encode complex spectra of speech signals without decoupling
imaginary number or phase from the complex-value data.
Index Terms: restricted Boltzmann machine, deep learning,
complex-valued data, speech encoding

1. Introduction
Deep learning is one of the recent hottest topics in wide research
fields such as artificial intelligence, machine learning, and sig-
nal processing including image classification, speech recogni-
tion, etc[1]. Many models have been proposed so far as a tool
of deep learning; one of the most widely-used and famous mod-
els is a deep belief-net (DBN) [2] that stacks multiple restricted
Boltzmann machines (RBMs) layer-by-layer. The RBM, which
is a probabilistic model that consists of visible and hidden units,
has often been used alone as a feature extractor, a generator,
and a classifier as well as a pre-training scheme of deep neural
networks, and many extensions of the RBM have been also pro-
posed [3, 4, 5, 6]. Although the RBM has been used in so many
tasks, the RBM traditionally assumed visible units to be either
binary-valued or real-valued [2, 7, 8].

Concerning speech signal processing, representations based
on amplitude spectra of speech such as MFCC and mel-cepstra
are normally used as input features of speech recognition or out-
put features of speech synthesis, because it is known that the
amplitude spectra are more effective and relevant to our audi-
tory field than phase spectra in such tasks. However, these fea-

tures theoretically lack phase information. More specifically,
the use of the amplitude-based features only cannot represent
the original complex values correctly. In other signal process-
ing as well, there are many cases where we have to deal with
complex-valued actual data such as fMRI images, wireless sig-
nals, acoustic intensity, etc. Other machine learning models,
that is neural networks, Boltzmann machines, and non-negative
matrix factorization (NMF) [9], have their extensions proposed
to represent complex-valued data [10, 11, 12].

In this paper, we newly propose an extension of the
RBM that deals with complex-valued data, and evaluate its
effectiveness through experiments using artificial data and
speech spectra. The proposed model called “complex-valued
RBM (CRBM)” consists of complex-normal visible units and
Bernoulli hidden units.

The CRBM has important characteristics of having no con-
nections across dimensions in the same layers but having con-
nections between real and imaginary parts of each of the vis-
ible units unlike the conventional RBM. Therefore, it is easy
to estimate the parameters using Gibbs sampling or contrastive
divergence [2], and it is expected to aggregate the information
propagated from the complex-valued visible units into the hid-
den units. Such characteristics can not be seen in an extension
of Boltzmann machine (directional-unit Boltzmann machine
(DUBM) [11]) that feeds complex-valued data having connec-
tions across dimensions, which makes the parameter estimation
difficult. Another difference between the proposed CRBM and
the DUBM is the form of complex-valued visible units; the vis-
ible units in the CRBM are in rectangular form having real and
imaginary components, while those in the DUBM are in po-
lar form having phase components with amplitude components.
Since the conditional probability of visible units given hidden
units in the CRBM form a complex-normal distribution, which
makes the real and imaginary components Gaussian-distributed,
respectively, we can generate samples from the distribution
straightfowardly.

This paper is organized as follows: In Section 2 we
overview the conventional real-valued RBM. In Section 3 we
define the proposed Complex-valued RBM and show its param-
eter estimation algorithm. In Section 4 we show our experimen-
tal results and conclude our findings in Section 5.

2. Preliminary
A restricted Boltzmann machine (RBM [2, 13]), one of the
most-widely used energy-based models, is convenient for rep-
resenting latent features that are cannot be observed but surely
exist in the background. An RBM was originally introduced
as an undirected graphical model that defines the distribution
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Figure 1: Graphical representation of a complex-valued RBM.

of binary visible variables with binary hidden (latent) variables,
and was later extended to deal with real valued-data known as
a Gaussian-Bernoulli RBM (GB-RBM) [2]. It has been, how-
ever, reported that the original GB-RBM had some difficulties
because the training of the parameters was unstable. Later, an
improved learning method for a GB-RBM has been proposed by
Cho et al. [13] to overcome the difficulties1. In the modeling
using an RBM, the joint probability p(v,h) of real-valued vis-
ible units v ∈ RI and binary-valued hidden units h ∈ {0, 1}J
(I and J indicate the numbers of dimensions in the visible and
hidden units, respectively) is defined as follows:

p(v;θ) =
∑
h

p(v,h;θ) (1)

p(v,h;θ) =
1

U(θ)
e−E(v,h;θ) (2)

E(v,h;θ) =
1

2
v>Σ−1v − b>Σ−1v − c>h− v>Σ−1Wh

(3)

U(θ) =

∫ ∑
h

e−E(v,h;θ)dv (4)

where θ = {b, c,W,σ} indicates a set of parameters, which
contains bias parameters of the visible units b ∈ RI , bias pa-
rameters of the hidden units c ∈ RJ , the connection weight
parameters between visible-hidden units W ∈ RI×J , and
the standard deviation parameters associated with the dimen-
sion independent Gaussian visible units σ ∈ RI that defines
Σ , ∆(σ2) (the function ∆(·) returns a diagonal matrix whose
diagonal vector is the argument). From the above definition, the
conditional probabilities p(v|h) and p(h|v) form simple distri-
butions as:

p(v|h) = N (v; b+ Wh,Σ) (5)

p(h|v) = B(h;f(c+ W>Σ−1v)) (6)

where N (·;µ,Σ), B(·;π), and f(·) indicate the multivariate
Gaussian distribution with the mean µ and the covariance ma-
trix Σ, the multi-dimensional Bernoulli distribution with the
success probabilities π, and an element-wise sigmoid function,
respectively.

1In the remaining of this paper, we refer to the improved GB-RBM
just as an RBM.

3. Complex-valued RBM
3.1. Definition

In this section, we will define an extension of the RBM
(complex-valued RBM; CRBM) that can feed complex-valued
data but has a real-valued probability distribution (cost function
used in parameter estimation) like the conventional RBM. In
the CRBM, we will give a “restriction” where there are no con-
nections between visible units or hidden units, which enables
easy estimation of parameters just as an RBM does; however,
in order to capture the relationships between the real and imag-
inary parts of each complex-valued visible unit, we will allow
the model to have connections between the real and imaginary
parts.

Based on the above extension, we formulate the CRBM that
has I-dimensional complex-valued visible units z ∈ CI and J-
dimensional binary-valued hidden units h ∈ {0, 1}J as follows
in this paper:

p(z;θ) =
∑
h

p(z,h;θ) (7)

p(z,h;θ) =
1

U(θ)
e−E(z,h;θ) (8)

E(z,h;θ) =
1

2

[
z
z̄

]H
Φ−1

[
z
z̄

]
−
[
b
b̄

]H
Φ−1

[
z
z̄

]
− 2c>h

−
[
z
z̄

]H
Φ−1

[
W
W̄

]
h

(9)

U(θ) =

∫ ∑
h

e−E(z,h;θ)dz, (10)

where ·̄ and ·H denote complex-conjugate and Hermitian-
transpose, respectively. b ∈ CI , c ∈ RJ , and W ∈ CI×J

are bias parameters of the visible units and the hidden units,
and the biased connection weights between visible and hidden
units, respectively. In order to make the restrictions, the ex-
tended covariance matrix Φ consists of a covariance matrix Γ
and a pseudo-covariance matrix C, both of which are diagonal
matrices, as

Φ ,

[
Γ C
CH ΓH

]
(11)

and

Γ , ∆(γ), γ ∈ R+I

C , ∆(δ), δ ∈ CI (12)

where γ and δ are variance and pseudo-variance parameters of
the complex-valued visible units, respectively. To summarize,
the set of parameters of the CRBM is θ = {b, c,W,γ, δ}.

Introducing two vectors p and q defined as

p ,
γ

γ2 − |δ|2 ∈ RI (13)

q , − δ

γ2 − |δ|2 ∈ CI (14)

where the fraction bar denotes element-wise division, we can



rewrite the energy function in Eq. (9) as follows:

E(z,h;θ) =

zH∆(p)z + <(zH∆(q)z̄)− 2<(zH∆(p)b)

− 2<(zH∆(q)b̄)− 2c>h− 2<(zH∆(p)W)h

− 2<(zH∆(q)W̄)h,

(15)

which confirms that 1) the above energy function E and the
probability distribution are real-valued, and that 2) there are
connections between the complex-valued visible units and their
conjugates for each dimension but no connections between dif-
ferent dimensions.

Furthermore, when we use unbiased parameters:

b′ , ∆(p)b+ ∆(q)b̄ (16)

W′ , ∆(p)W + ∆(q)W̄, (17)

the energy function E becomes

E(z,h;θ) =

1

2
zH∆(p)z +

1

2
z̄H∆(p)z̄ + zH∆(q)z̄

+ z̄H∆(q̄)z − zHb′ − z̄H b̄′ − 2c>h

− zHW′h− z̄HW̄′h,

(18)

which indicates that z and z̄ are symmetric to each other as
shown in Figure 1.

From the above definition, the conditional probabilities
p(z|h) and p(h|z) can be derived as follows:

p(z|h) = CN (z; b+ Wh,Γ,C) (19)

p(h|z) = B(h;f(2c+ 2<(W′Hz))) (20)

where CN (·;µ,Γ,C) is a multivariate complex normal distri-
bution a mean vector µ, a covariance matrix Γ, and a pseudo-
covariance matrix C:

p(z) =
1

πD
√

det(Γ)det(Q)

· exp

{
−1

2

[
z − µ
z̄ − µ̄

]H [
Γ C
CH ΓH

]−1 [
z − µ
z̄ − µ̄

]}
(21)

Q = Γ̄−CHΓ−1C. (22)

3.2. Parameter estimation

In this paper, we estimate the parameters of the CRBM θ us-
ing complex-valued gradient ascend so as to maximize the log-
likelihood of the complex-valued training data z:

L(θ) = log p(z;θ) (23)

= log
∑
h

p(z,h;θ) (24)

= log
∑
h

e−E(z,h;θ) − log

∫ ∑
h̃

e−E(z̃,h̃;θ)dz̃. (25)

The complex-valued gradient ascend iteratively updates each
parameter with a learning rate α > 0 as:

θ(new) ← θ(old) + α · 2∂L
∂θ̄

, (26)

where the partial gradients in Eq. (26) are the Wirtinger deriva-
tive:

∂L

∂θ
=

1

2

(
∂L

∂<(θ)
− i ∂L

∂=(θ)

)
. (27)

The partial gradients of each parameter include the expectations
of the partial gradients to the energy function along the training
data and the model, which can be approximated and easily cal-
culated with contrastive divergence (CD) [2] in a similar way to
the conventional RBM because of the restriction of the CRBM.

The partial gradients of each parameter to the energy func-
tion can be derived as:

−∂E
∂b

= ∆(p)z̄ + ∆(q̄)z (28)

−∂E
∂c

= h (29)

− ∂E

∂W
= (∆(p)z̄ + ∆(q̄)z)h> (30)

−∂E
∂γ

= (p2 + |q|2) ◦ ∂E
∂p

+ 2<(p ◦ q ◦ ∂E
∂q

) (31)

−∂E
∂δ

= p2 ◦ ∂E
∂q

+ q̄2 ◦ ∂E
∂q̄

+ 2p ◦ q̄ ◦ ∂E
∂p

, (32)

where ◦ and | · | denote element-wise product and absolute, re-
spectively, and

∂E

∂p
=

1

2
|z|2 −<(z ◦ (b̄+ W̄h)) (33)

∂E

∂q
=

1

2
z̄2 − z̄ ◦ (b̄+ W̄h). (34)

The gradients of variance and pseudo variance tend to be larger
than those of the other parameters. For stable training, we re-
place the parameters as γ , er and δ , es, and update using
the gradients of r and s, respectively.

4. Experiments
4.1. Evaluation using artificial data

In order to evaluate the effectiveness of the proposed CRBM,
we first conducted an experiment using one-dimensional
complex-valued artificial data (N = 2000). The artificially
created data is illustrated in Figure 2 as black dots, which has
correlations between the real and imaginary parts. In this ex-
periment, we compared the CRBM with a GB-RBM having two
visible units; one is for the real part, another is for the imagi-
nary part. We trained both models with two hidden units using
stochastic gradient ascend (SGD) with a learning rate of 0.01, a
momentum of 0.1, a batch size of 20, and a number of epochs as
200. After the training, we randomly generated samples from
the models; the samples from the CRBM and the GB-RBM are
shown as red dots on the above and on the below of Figure 2, re-
spectively. As shown in Figure 2, we can see that the proposed
CRBM could represent the distribution of the complex-valued
artificial data more accurately than the GB-RBM. This is be-
cause the CRBM can capture the relationships between the real
and imaginary parts while GB-RBM does not capture the cor-
relations between them.

4.2. Evaluation using speech data

Second, we conducted an encoding-and-decoding experiment
using speech data from the Repeated Harvard Sentence Prompts
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Figure 2: Artificially created 1D complex-valued data (black
dots) and random samples (red dots) generated from the trained
models: the proposed CRBM (above) and the conventional GB-
RBM (below).

(REHASP) corpus2. From the corpus, we randomly selected
30 repeats of 30 sentences, processed the short-time Fourier
transform (STFT) with a windows length of 256 with overlap-
ping 64 samples, and trained the CRBM with 200 hidden units
(i.e., I = 129 and J = 200). For evaluation, we first esti-
mated hidden units from the test data that was different from
the training data (encoding), and then reconstructed the visible
units from the hidden units (decoding). The performance of the
encoding-and-decoding was evaluated using an objective crite-
ria of mean-squared error (MSE) between the original data and
the reconstructed one. In this experiment, we trained the model
with a learning rate of 0.01, a momentum of 0.1, a batch size
of 100, and a number of epochs as 500. For comparison, we
also trained a GB-RBM with doubled visible units, that is a su-
per vector having the real and imaginary parts of the complex-
valued spectra, with the same configuration.

Figure 3 shows an example of the reconstruction using the
CRBM. As shown in Figure 3, the reconstructed spectra was
fairly closed to the original spectra. Figure 4 shows MSE calcu-
lated during the training, comparing the proposed CRBM with
the GB-RBM. We notice from Figure 4 that the CRBM con-
verged more quickly than the GB-RBM, and the MSE in con-
vergence (at around 100 epochs) of the CRBM is much smaller
than that of the GB-RBM. For the test data, we also obtained the
MSE of 51.9 from the CRBM, which outperformed the MSE of
54.1 from the GB-RBM.

2http://datashare.is.ed.ac.uk/handle/10283/561

Figure 3: Amplitude spectra of the original speech (above) and
of the reconstructed one from the CRBM (below).
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Figure 4: MSE during the training of the CRBM (red line) and
the GB-RBM (blue line).

5. Conclusion
In this paper, we proposed an extension of restricted Boltz-
mann machine (RBM) that can feed complex-valued visible
units, called complex-valued RBM (CRBM). We formulated
the model and showed that the conditional probability of visible
units given hidden units formed a complex-valued normal dis-
tribution. To evaluated the performance of the proposed CRBM,
we conducted experiments using artificial complex-valued data
and complex spectra of speech. Through the experiments,
we conclude that the model would be effective to represent
complex-valued data especially when the real and imaginary
parts are correlated with each other. In the future, we would
like to fully investigate the performance of the CRBM when
using speech data in terms of subjective criteria, and to apply
the model to represent other complex-valued actual data in the
real world. Future work also includes extensions of the CRBM;
e.g., the model stacking multiple hidden layers layer-by-layer
like deep Boltzmann machine (DBM) [3], and the model hav-
ing complex-normal hidden units instead of Bernoulli hidden
units so as to extract complex-valued latent features.
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