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Abstract—The model-driven development of systems involves
multiple models, metamodels and transformations, and relation-
ships between them. A bidirectional transformation (bx) is usually
defined as a means of maintaining consistency between “two (or
more)” models. This includes cases where one model may be
generated from one or more others, as well as more complex
(“symmetric”) cases where models record partially overlapping
information. In recent years binary bx, those relating two models,
have been extensively studied. Multiary1 bx, those relating more
than two models, have received less attention. In this paper we
consider how a multiary consistency relation may be defined
in terms of binary consistency relations, and how consistency
restoration may be carried out on a network of models and
relationships between them. We relate this to megamodelling and
discuss further research that is needed.

I. INTRODUCTION

Model-driven development (MDD) has achieved some suc-
cess; but it has not yet transformed software development, and
a transformation is sorely needed. The demand for software,
and especially for changes to software, outstrips the availabil-
ity of skilled software engineers who can build the software
and effect the changes. Communication between stakeholders
(who know what changes are required) and software engineers
(who can effect the changes) is a bottleneck which today’s
agile development methods cannot fully overcome.

MDD’s key aim is the separation of concerns into models, so
that people can work with models that record all and only the
information they need to make their decisions. These models
are related by model transformations. Because circumstances
do not usually permit finishing work on one model before
starting work on another, these often have to be bidirectional
transformations (bx). Here, despite the name which indicates
where most attention has so far been directed, a bidirectional
transformation may in fact relate any number of models; it
is a means of restoring consistency between them. (The term
model synchronisation is also used, although sometimes this is
reserved for the case that both of two models are changed [1],
[2].) Note that restoring consistency typically requires using
information about the current state of all the models, not just
regenerating one. In most formalisms, a bx may be used in
several modes, e.g. to check whether models are consistent,
or to hold a given collection of models fixed while restoring
consistency by modifying the rest. The ideal is that a single

1An unusual word, but has the advantage over n-ary that it makes clear
there is no fixed arity n

artefact (e.g. a triple graph grammar (TGG) [3] or a QVT-
R transformation [4]) records the bx developer’s decisions
about how to carry out all of these tasks, so as to avoid
duplicating information. Much research has been done on the
properties that a bx should have, such as how to ensure that
the way it carries out its several tasks is coherent. The most
basic of these properties are correctness (when a bx restores
consistency, the resulting models are, indeed, consistent) and
hippocraticness (if the models are already consistent, then
restoring consistency changes nothing).

Let us imagine a world in which the Bx community has
achieved its aims. We have developed powerful, usable bx
languages which are well-supported by tools, and are taught
to every undergraduate. Mainstream software is typically de-
veloped by cooperating groups of experts in all relevant fields.
Each group of experts works with a model precisely adapted
to their needs: it records all and only the information they need
to have in mind to make their decisions. Ultimately, deployed
software is produced automatically from these models.

What kind of bx do we have in such a setting, and how
tightly must an organisation control exactly when the bx are
used to restore consistency between models? If there are n
models (including the deployed software system itself), we
may argue, consistency is ultimately an n-ary relation: but
we are unlikely to specify it as such, because to do so is
tantamount to designing the complete software, and if we knew
how to do that, we would not need the models in the first
place. More likely, what we will have is a network of bx –
some bought off-the-shelf, others developed for the project –
each relating some of the models.

This, however, raises many questions which have not yet
been addressed. The aim of the paper is to begin to make
progress on them (though we will not finish!). They include:
• Do we limit the notions of consistency that can be

expressed, if we insist that consistency of a collection of
models is expressed in terms of consistency of pairs of
those models? Under what assumptions? Does it matter?

• How can we talk about a collection of models, connected
by bx? What does it mean to restore consistency of such
a collection?

• Under what circumstances can we restore consistency of
a collection of models related by bx? How?

• What flexibility do we have in varying our consistency
restoration procedure? When are we guaranteed to get the
same result, regardless of how we do it?



UML metamodelUML model

Code Tests

Safety model

Fig. 1: Models with informal relationships

• What if we cannot fully restore consistency to the col-
lection of models after one set of changes, before more
changes begin to happen?
Paper organisation: After an example (Section II), Sec-

tion III discusses how the desired consistency between models
is expressed, and the implications of limiting ourselves to
expressing consistency between just two models at a time.
Before we turn to how consistency is restored, Section IV
suggests we sometimes need to tolerate inconsistency; Sec-
tions V, VI discuss networks of bx and consistency restoration
in them. Section VII discusses how this work fits with ideas
of megamodelling. We discuss much related work along the
way, but Sections VIII and IX mention further relevant work.
Section X concludes.

Notation: We use R, S, etc. (sometimes subscripted) both
for consistency relations and (later) for bx. Model sets are
denoted M, N . . . or A, B, . . . . (These may be the sets of
all models in appropriate modelling languages, but in this
paper we do not need to concern ourselves with modelling
languages.) Models are denoted by lower case versions of the
same letter, e.g. model n in model set N; for a collection, or
tuple, of models we write m, or 〈mk〉 if we need to talk about
the individual models.

II. MOTIVATING EXAMPLE

We have alluded to a grand vision of how bx might be used
in the future to move decisions about software wholesale out
of the hands of software developers into those of stakeholders.
Here, though, we use a more familiar example. Figure 1 shows
what we may regard as a (small) megamodel, such as may
arise in today’s development. All the relationships may be
formalised as bx. The UML model is consistent with the
UML metamodel iff it conforms to it; the relationship between
the UML model and the code is standard roundtripping. The
relationship between the code, the tests and the safety model is
more interesting, and illustrates a case where megamodels may
use non-binary relationships. Suppose that the safety model
records (among other things) whether the system is considered
safety critical; suppose that if it is, there is a coverage criterion
that must be satisfied. That is, the relationship between the
code and the tests depends on the safety model, or to put it
another way, the consistency relationship between tests, code
and safety model is ternary.

Remark
1) We do not necessarily expect that all the relationships

between the models are recorded in the diagram: it is
likely that there are also non-automated dependencies.

2) This example illustrates that models cannot necessarily
be seen as simply views onto the eventual implemented
system: the models may matter even beyond their
influence on which systems are allowed. Here, it is
possible for the system to be correct in its behaviour,
yet unacceptable because it is not adequately tested for
the safety criticality level.

III. EXPRESSING MULTIARY CONSISTENCY RELATIONS

There are strong practical reasons for considering the con-
sistency of models pairwise wherever possible: cognitively, it
is hard enough to think about a binary consistency relation in
order to specify it correctly. Does this impose unacceptable
limits on expressivity? For a given, natural, multiary notion
of consistency, and the restriction of this notion to pairs of
models, it is easy to construct examples where any pair from
three models is consistent but the collection of three is not
(there is one in Appendix A of [5] for example). This might
lead us to give up and conclude that binary consistency is
not expressive enough, and that it will be essential for future
bx languages to permit the expression of multiary consistency
and its restoration. However, this may be deceptive, since in
practical use of bx the bx developers have some flexibility in
how to define the notion(s) of consistency, and may also have
the option of adding additional models.

A. Pessimistic view

First let us lay out the sense in which binary (consistency)
relations are not enough. Let {Mi : i ∈ I} be a (finite and
ordered, for convenience, though nothing will depend on this)
collection of model sets, R a relation on all these model sets i.e.
a subset of ∏i Mi (to be thought of as a consistency relation),
and {Ri j : i < j ∈ I} a set of binary relations on each distinct
pair of model sets, Ri j ⊆Mi×M j.

Definition 1. R is binary-defined by {Ri j : i < j ∈ I} if for
every I-tuple m we have

(∀i, j.Ri j(mi,m j))⇔ R(m).

R is binary-definable if it is binary-defined by some set of
binary relations {Ri j : i < j ∈ I}.

Not every relation is binary-definable; here is a ternary
counterexample.

Example 1. Let a,a′ be distinct elements of model
set A, and similarly for B, C. Then consider R =
{(a,b,c′),(a,b′,c),(a′,b,c)}. R is not binary-definable. For
suppose it were binary-defined by RAB, RBC, RAC. We would
have (a,b) ∈ RAB because (a,b,c′) ∈ R, and similarly (b,c) ∈
RBC and (a,c) ∈ RAC. But then (a,b,c) ∈ R, which is a
contradiction.



A given binary-definable multiary relation can of course
be binary-defined by many different sets of binary relations:
the pairs that are projections from consistent tuples are forced
to be in the binary relations, but other pairs can be added
(e.g. adding (a,b) will make no difference to the resulting
multiary relation, provided there’s no c such that (a,c) and
(b,c) are both in the respective relations). To formalise this, fix
a collection {Mi : i∈ I} of model sets. Partially order multiary
relations on ∏i Mi by subset inclusion, writing R⊆ S. Partially
order sets of binary consistency relations pointwise, writing
{Ri j : i < j ∈ I} v {Si j : i < j ∈ I} iff for every i < j ∈ I we
have Ri j ⊆ Si j. It turns out that these orders are intimately
related. Recall (e.g. from [6]2) the standard definition

Definition 2. A (monotone) Galois connection between par-
tially ordered sets (A,≤) and (B,�) is a pair of monotone
functions L : A→ B and U : B→ A such that for every a ∈ A
and b ∈ B we have L(a)� b iff a≤U(b).

L is the lower adjoint, U the upper adjoint. An order
isomorphism is a Galois connection in which L and U are
inverse bijections.

Many pleasant consequences follow from the existence of
a Galois connection; the most immediately useful to us is that
UL : A→ A is a closure operator, i.e. for any a,a′ ∈ A, we have

• a≤UL(a) (extensive)
• a≤ a′⇒UL(a)≤UL(a′) (increasing) and
• UL(UL(a)) =UL(a) (idempotent).

Dually LU : B→ B is a kernel operator.

Theorem 1. We have a Galois connection (but not an order
isomorphism) between multiary consistency relations and sets
of binary consistency relations, as follows:

• given R ⊆ ∏i Mi, define a set gR of binary consistency
relations {(gR)i j : i < j} by (gR)i j(mi,m j) iff there exists
m extending (mi,m j) such that R(m);

• given a set {Ri j ⊆Mi×M j : i < j ∈ I}, define a multiary
consistency relation f ({Ri j}) by f ({Ri j})(m) iff for all
i < j, we have Ri j(mi,m j).

Here f is the upper adjoint, g the lower. Thus g f is a kernel
operator and f g a closure operator; the closed multiary con-
sistency relations are exactly those that are binary-definable,
viz., those in the image of f .

Proof: Straightforward, omitted for space reasons.

Example 2. Returning to the example from Section II, let us
say concretely that A is a set of Java systems, and B a set of
JUnit test suites. Suppose the basic idea is that implementation
a ∈ A is consistent with b ∈ B iff a passes all the tests in b.
The safety model could be as simple as C = {>,⊥} recording
whether or not the system is deemed safety-critical; suppose
that if it is, then the relationship between systems and test
suites needs to be more stringent: as well as all tests that

2or from Wikipedia: https://en.wikipedia.org/wiki/Galois connection

FeatureSpec

name : String
mandatory : bool

Feature

name : String

Fig. 2: Metamodels for a product specification (left) and
configuration (right), from [7]

: FeatureSpec

name = “engine”
mandatory = true

: FeatureSpec

name = “sunroof”
mandatory = false

: FeatureSpec

name = “satnav”
mandatory = false

Fig. 3: Product line P

exist having to pass, it is also required that there are enough
tests to satisfy some coverage criterion.

Recording all this as a ternary consistency relation R, we
may have R(a,b,⊥) but not R(a,b,>), because tests b do not
give enough coverage of a in the safety-critical case; while at
the same time, perhaps tests b are adequate for some other
implementation even in the safety-critical case, and a can, in
the safety-critical case, be adequately tested by some other test
suite. The upshot is that (a,b), (a,>) and (b,>) all appear in
the relevant binary relations of gR, and therefore (a,b,>) ∈
f gR. Thus R is not closed, and hence not binary-definable.

Now, in this example, one potential solution is obvious:
development might proceed using the precautionary principle,
imposing the coverage criterion in case it is required. We may
ask: is this approach always reasonable? Our next example is
borrowed from [7] (we will consider their paper in more detail
in Section IX).

Example 3. This example concerns a highly simplified product
line. Figure 2 shows metamodels for product line specifications
and product configurations respectively: a product line (e.g. P
in Figure 3) specifies some features, which may be mandatory
or not, while a configuration (e.g. (a), (b) or (c) in Figure 4)
has some features. Consistency is defined over one specifica-
tion and an arbitrary number of configurations; this collection
of models is deemed consistent if all and only the mandatory
features appear in all the configurations. Thus, the collection
of models 〈P,(a),(b)〉 is consistent, since the mandatory
feature engine is the only one to occur in all (both)
configurations; however, the collection of models 〈P,(a),(c)〉
is not, because the non-mandatory feature sunroof occurs
in all configurations, and therefore, according to our notably
artificial rule, should be mandatory in the specification.

Instantiating the Galois connection definitions, we see that
the closure of the given multiary consistency relation is that
in which the products in a tuple include at least the features
that are mandatory in the specification. However, unlike in
the previous example, there is no natural closed (i.e. binary-
definable) consistency relation contained in the one we really
want, against which we could develop. For as soon as we
can express specifications with two different sets of mandatory
features, one contained in the other (A⊂ B say), together with



: Feature

name = “engine”

: Feature

name = “sunroof”

(a)

: Feature

name = “engine”

: Feature

name = “satnav”

(b)

: Feature

name = “engine”

: Feature

name = “satnav”

: Feature

name = “sunroof”

(c)

Fig. 4: Models 〈P,(a),(b)〉 consistent; 〈P,(a),(c)〉 inconsistent

all tuples of configurations that are permitted by each of those
specifications, it will follow that our closed relation will also
permit specification A together with tuples of products that all
have the larger set B of mandatory features.

B. Optimistic view

Approach 1: add extra models: A related question has
long been studied by the constraint satisfaction problem (CSP)
community, under the name of constraint networks. Here,
in place of our model sets, we take variables (each with a
domain of allowed values), and in place of our consistency
relations, we take constraints (which may have any arity,
that is, constrain any number of variables; but two is a
special case of considerable interest). The constraint network
problem is: given a set of variables and a set of constraints,
find an assignment of values to the variables that satisfies
all the constraints. It is a classic result [8] that any non-
binary constraint network can be translated into a binary one
with additional variables. There are two standard ways to do
this, known as the dual translation and the hidden variable
translation. We refer to [9] for a detailed description and com-
parison of these approaches. In outline, the dual translation,
which originates in the database community, produces a binary
constraint network with one variable for each constraint in
the original network. We call these c-variables to distinguish
them from the variables of the original network. The allowed
domain for the c-variable is precisely the set of tuples of
values for the constrained variables that satisfy the constraint.
Two c-variables are connected with a binary constraint if they
have any constrained variables in common. In this case, the
constraint says that they must agree on their shared variables.
The hidden variable translation produces a constraint network
that has more variables, but which can be more tractable
because it involves a bipartite graph. It produces a network
whose variable set is the union of the original set of variables
and the set of new c-variables, as in the dual translation.
Instead of adding constraints between c-variables, the hidden
variable translation adds constraints between a c-variable and
each of its constrained variables. These constraints say that
the value of the original variable must agree with the value in
the tuple of the c-variable.

The CSP community has done considerable work to under-
stand the relative merits of these and other translations and
algorithms on them. These may repay study. However, it does
not follow that the bx problem is solved, for two reasons.
First, it will often be impractical or unhelpful to add the extra
models. In the limiting case of a single multiary consistency
relation, either translation involves building a model set whose
values are the correct tuples of all the original models; it is
illusory that this would help. On the other hand, it might be
a practical way to avoid working with, say, ternary relations
on closely related models. Second, the aims of the two fields
differ. In CSP, as in bx, the first task is to express a multiary
consistency relation (constraint) in terms of binary ones. In
CSP, however, the resolution task is to find a solution, by any
means. If, in a bx world, we wish to insist that the resolution
be effected by means of the consistency restoration functions
of binary bx – which we may well wish to do, in order to
permit the bx programmer to ensure appropriate least change
properties, for example, and thus limit the surprise that a
developer may experience when their model is changed by a
bx [10] – this limits the resolution possibilities. We shall return
to this point after introducing bx networks: see Example 5.

Approach 2: vary the consistency definition: In other
contexts, we are comfortable with the idea that early decisions
made about the development process may render some soft-
ware systems – that would in fact meet their requirements –
inaccessible via the chosen development process. For example,
it might be perfectly possible to meet the requirements using
functional programming, but if we settle instead on object
oriented design, we thereby exclude that collection of correct
solutions. Indeed, the development process can be seen as
whittling down the solution space, repeatedly excluding some
unsatisfactory solutions but perhaps also some satisfactory
ones, until we end up at one, satisfactory, solution.

It is arguable, therefore, that the requirement to find a set
of binary consistency relations such that every correct n-tuple
arises from the conjunction of them is too stringent. We might
instead ask for a binary-implementable consistency relation:

Definition 3. R is binary-implemented by {Ri j : i < j ∈ I} if
for every I-tuple m we have

(∀i, j.Ri j(mi,m j))⇒ R(m).

That is, we allow the binary relations to forbid pairs of
models, even though these pairs could, in fact, be completed
to entirely correct system implementations. We do this in order
to “be on the safe side” because of not knowing what else is
going on in the system. In Example 2, for example, we might
decide to use the relation between Java systems and JUnit test
suites that insists on the coverage criterion as well as on all
tests passing, just in case it turns out that the system is safety
critical according to the third model.

Our confidence that this might be a useful weakening of
binary-definable, explaining how to represent a larger class of
multiary relations in terms of binary relations, is shaken by the
observation that every R may be binary-implemented by some



set of binary relations, and that not all sets of implementing
binary relations are useful for development – indeed any
multiary relation is implemented by any unsatisfiable set of
binary relations!

We next wonder whether we can make progress by ex-
cluding such pathological cases. The next theorem attempts
to capture the intuition that this will not help: we will be vul-
nerable to back-forming the implementing binary consistency
relations from a single tuple satisfying the multiary relation. In
order to make the attempt, we make the relationship between
the multiary consistency relation and the development process
more explicit. We consider the requirements on the eventually
implemented system as a predicate on equivalence classes
of such systems; using equivalence classes assures us that
the requirements are insensitive to whatever notion of trivial
detail is appropriate. Other pathologies we exclude are that the
chosen collection of models might be unsuitable or too weak
to specify the eventual implemented system meaningfully.

Theorem 2. Let S be a set of equivalence classes of systems,
Φ⊆S be those deemed to satisfy the requirements, and {Mi}
be a collection of model sets such that partial function f :
∏i Mi ⇀ S satisfies f (〈mk〉) = S⇔ ∀k.S |= mk. That is, our
collection of models is sufficiently expressive to determine the
system, up to our chosen notion of equivalence. Write R(m) for
f (m)∈Φ: then R is our desired multiary consistency relation.

Suppose further that the requirements are satisfiable via
the model sets, in the sense that f (∏i Mi)∩Φ 6= /0; that is,
R is satisfiable. Then R can be binary-implemented by a
set of binary consistency relations {Ri j ⊆ Mi×M j} that are
simultaneously satisfiable.

Proof: Pick g = 〈gk〉 ∈ R and define Ri j(mi,m j) to be true
iff mi = gi and m j = g j. These satisfy the condition, because
the antecedent is only true of g! These Ri j are simultaneously
satisfiable (by g).

Is this a feature, or a bug? On the positive side, this
result suggests that, given any requirements expressible as
a multiary consistency relation, we can indeed replace the
multiary relation by a set of binary relations and develop to
these, which is convenient. On the negative side, being able
to find some set of binary relations that fit the definition is
not the same as being able to find a practically useful set to
develop against, as Theorem 2’s proof demonstrates.

Moreover, an essential consequence of being prepared to
give up some development flexibility for the convenience of
using binary relations is that we could end up – through
simultaneous work being done on the various models – with a
complete collection of models that is indeed correct according
to the multiary relation, but which does not satisfy all of the
implementing binary relations we chose. In bx terminology
this may show up as the analogue of a hippocraticness failure:
if the automated consistency restoration is done in terms of
binary bx whose consistency relations do not all hold, then
restoring consistency will change the models, even though no
change is actually required.

Taken as a whole, this exploration justifies the decision not

to start with a multiary consistency relation and derive from
it a set of binary consistency relations to develop against,
but rather, to trust that we can produce a sensible collection
of binary consistency relations, which binary-define a good-
enough closed multiary consistency relation via Theorem 1.
The rest of the paper will be concerned with how the con-
sistency restoration functions of the binary bx can be used to
restore consistency in a network of models related by such
binary bx.

IV. HOW DO WE BEST MANAGE AND TOLERATE
INCONSISTENCY?

We will shortly go on to consider networks of models
connected by bx and how we may restore consistency in
such a network. But first, a disclaimer is in order. From a
theoretical point of view it is tempting to imagine that each
time a change is made to a model, all other models are
instantaneously brought into consistency with the changed
model, so that at any moment all models are consistent,
being views of a notional Ur-model. But this will not do:
even in the case of just two models, it is too disruptive to
people working with a model to have it changed under their
noses. As soon as the task of consistency maintenance is
distributed, temporary inconsistency is unavoidable. Moreover
inconsistency between models is understood to be valuable
in many ways; it may record as-yet-unresolved conflicts in
the real world, for example, or it may be a consequence of
not acting prematurely on changes that are being made to a
model speculatively in the process of actually doing design.
There is a literature on this topic; in [5] for example, the
authors argue persuasively, based on case studies at NASA,
that inconsistency management should be a core activity in
software development, and that the main danger arises not
from inconsistency between models but from unrecognised
inconsistency. Space precludes going further here.

V. NETWORKS OF BX

Imagine a (hyper)graph with model sets (thought of as
types) as nodes and consistency relations (later: bidirectional
transformations) as (hyper)edges.

Definition 4. A transformation context C is a (hyper)graph
whose nodes N ∈N represent model types and whose labelled
(directed or undirected) (hyper)edges represent relations be-
tween them. Self-loops and multiple (hyper)edges between the
same node sets, even with the same labels, are not excluded
(they may be needed to talk about relations between several
models of the same type, for example). A network or instance
I in a transformation context is a (hyper)graph in which
nodes represent models, typed with model types from N ,
and (hyper)edges can only exist between models whose types
have (hyper)edges between them with the same label. (That
is, there is a (hyper)graph morphism I −→ C preserving
labels.) An (hyper)edge between some models labelled with a
relation (binary case: n T←→m) is consistent if the models are
consistent according to the relation. An instance is consistent
if all its (hyper)edges are consistent.



An authority instance provides, further, a non-empty subset
of the models (the authority set) which are to be deemed
authoritative, i.e. must not be changed. If I is an authority
instance then instance J is a resolution of I if every authori-
tative model is the same in both, and J is consistent.

Having a set of models that must not be changed generalises
the usual sitation in binary bx, in which the two consistency
restoration functions each hold one model fixed and modify the
other to restore consistency. This is, arguably, easier to manage
than the alternative framing where both (all) models may
be modified simultaneously – especially when consistency
restoration is to be done automatically, without a human to
resolve conflicts. In the general setting, the same network
might have different authority sets at different times, e.g.,
a model that has just been reviewed might be placed in the
authority set so that it is not changed, while others that are
to be reviewed in future, after consistency restoration, are not.
Or the authority set might be fixed, e.g. if there is a fixed
workflow of consistency restoration.

A. Focusing on binary networks of relational bx

Now we are in a position to think about how resolutions are
found. To make any progress on what is and is not possible,
we will need to make some assumptions about what kind of
steps can be taken towards resolving a network.

Therefore, although it is interesting to consider networks
including bx that synchronise two or more models by mod-
ifying them all, for the rest of the paper we shall limit
ourselves to networks of ordinary binary state-based relational
bx. That is, each edge in a transformation context, and hence
in a network, will be labelled with a bx defined as usual by
three components: R : M −�−� N is defined by a consistency
relation R ⊆ M×N (by the usual slight abuse of notation),
and two consistency restoration functions

−→
R : M×N→N and←−

R : M×N→M. These will always be assumed to be correct
and hippocratic.

If an edge is directed, M R−→N, this means that the direction
of consistency restoration along this edge has been decided.
Note this is not to say that R is a unidirectional transformation
– the result of applying it will be to change the value of
the target model, but the resulting value may depend on the
previous values of the models at both ends of the edge.
However, a unidirectional transformation f : M → N may
indeed be seen as a special case of this ( f (m,n) iff n = f (m),−→
f (m,n) = f (m),

←−
f undefined, which is not a problem as

the notation indicates we have already decided not to use
it), and we can include these without needing to notate them
differently.

We assume that as part of the definition of the graph, each
edge has a fixed ordering of its ends corresponding to the
argument order of its bx: note this can be different from the
chosen direction of application.

Definition 5. To orient an edge is to choose a direction of
application; to orient an authority instance is to do this for
every edge.

A B C
R S

Fig. 5: Not all authority instances have resolutions

Definition 6. Let I be an authority instance. A resolution step
is (e,d), where e is an edge in I and d ∈ {→,←} a direction,
compatible with the orientation of e (if any). It modifies one
node of I by applying the bx represented by edge e in direction
d: we write (e,d) : I 7→ I′. It is required to be permitted by I’s
authority set, that is, not to modify an authority model.

A resolution path is a sequence of resolution steps I 7→ . . .J
such that J is consistent. We may identify a resolution path by
giving a list 〈(ei,di)〉.

Definition 7. I is resolvable if there exists a resolution path
I 7→ J.

Definition 8. I is confluent if it is resolvable and moreover
any two resolution paths I 7→ J and I 7→ J′ must have J′ = J.

We give confluence as a property of the instance, not just
of two paths, because the practical concern is how much man-
agement control over the exercise of consistency restoration is
required. If the instance is confluent individual developers can
use individual bx to restore consistency “locally” as and when
they like – the order in which bx are used will not matter to
the global result.

Unfortunately, while it is easy to define these properties, it
is far from easy to cause them to hold. We will have to impose
further conditions in order to ensure any of these (increasingly
stringent) desirable properties of an authority instance hold:

• it has a resolution (i.e. there is some collection of models
that satisfies all the relations);

• it is resolvable (i.e. starting from the given collection
of models, some resolution path, i.e. some order of
application of the bx’s consistency restoration functions,
leads to a consistent collection of models);

• it is confluent (i.e. there is a unique consistent result of
any resolution path).

We will use blob diagrams to illustrate authority instances;
black filled circles will represent models that are in an author-
ity set, i.e. may not be changed, and white circles will represent
models that may be changed. We will always lay them out so
that the first argument to the bx is above and/or to the left
of the second argument; an arrow on the edge represents that
a particular consistency restorer has been chosen. Note that
edges out of nodes in the authority set will need to be directed
out of those nodes, since by definition the authority set nodes
cannot be altered.

Example 4. Figure 5 will represent an authority instance with
no resolution, if {b ∈ B : R(a,b)}∩{b ∈ B : S(b,c)}= /0.

The next example demonstrates how it may be impossible
to resolve a bx network using the bx consistency restoration
functions, even though a consistent set of models exists. Such
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examples explain why the bx problem is not merely a sub-
problem of the constraint network problem.

Example 5. Consider the network shown in Figure 6(a).
Let A= {a}, B= {b1,b2}, C = {c1,c2,c3}. Suppose that the

current states of the models are (a,b1,c1), and that {a : A} is
the authority set. Define R, S and T as follows:

R(a,b1), ¬R(a,b2);
−→
R (a, ) = b1

S(a,c1), S(a,c2), ¬S(a,c3);
−→
S (a, ) = c1

T (b1,c2), T (b1,c3), T (b2,c1),
¬T (b1,c1), ¬T (b2,c2), ¬T (b2,c3);−→
T (b1, ) = c3,

−→
T (b2, ) = c1←−

T ( ,c1) = b2,
←−
T ( ,c2) = b1,

←−
T ( ,c3) = b1

Here stands for any model, e.g.
−→
R with first argument a

returns b1 regardless of its second argument. Note that
←−
R and←−

S are not relevant, so we have not defined them; since a is
authoritative we could not apply them.

Now, there is a resolution, viz. (a,b1,c2). However, it is easy
to see that there is no resolution path that reaches this (or
any other) solution: since R(a,b1) and S(a,c1) already hold,
the only consistency restorers that make any difference are

−→
T

and
←−
T . Applying

−→
T will break the consistency according to

S, and the only way to fix this will return us to the original
state. Applying

←−
T will break the consistency according to R,

and similarly, the only next step is back to where we started.

Supposing that a network is resolvable, it is also clear
that only in rather special circumstances will it be confluent;
generally the presence of non-bijective transformations will
preclude this. Indeed it is easy to construct on Figure 6(a) an
example where the choice between using

−→
T and

←−
T prevents

confluence, and on Figure 5 an example where the choice of
which edge to use first does so.

A possible reaction to all this is to give up on allowing bx
developers to specify how consistency is restored: we could
allow them only to express what consistency relation must
hold, and then adapt, from the CSP community, techniques
for restoring these constraints as necessary. Such an approach
has been explored (see for example [11], [12], and from a
different angle, [13]). However, developers care not only about
consistency but also about how it is restored, and we know [10]
that simple notions of which restoration is best are not always
correct. Perhaps interesting hybrid approaches are available;
but here we will assume that consistency must be restored

using the consistency restorers that are defined as parts of the
binary bx that specify consistency.

B. Non-interference

Informally, non-interfering transformations do not care
about3 the same aspects of their common target model, so
their applications commute. Consider a fragment of a network
as illustrated in Figure 6(b).

Definition 9. Consistency restorers
−→
R : A×C→ C and

−→
S :

B×C→C are non-interfering if for all a ∈ A,b ∈ B,c ∈C we
have −→

S (b,
−→
R (a,c)) =

−→
R (a,

−→
S (b,c))

This is a strong condition – too strong to expect it to hold for
every pair of transformations with a common target – but does
nevertheless arise. Let us first look at a trivial algebraic case,
and some formal consequences, before returning to consider
another class of situations where we may be able to take
advantage of this property.

Trivially, if C can be factored into CA×CB such that
−→
R

only modifies CA (in a way depending only on CA) and
−→
S

only modifies CB (in a way depending only on CB), then
−→
R

and
−→
S are non-interfering.

Non-interference gives by correctness and hippocraticness

Lemma 1. Whenever
−→
R and

−→
S are non-interfering and

R(a,c), then for all b we have R(a,
−→
S (b,c)) (“once consistent,

always consistent”). It follows that for any a ∈ A and b ∈ B
there exists c ∈C such that both R(a,c) and S(b,c) hold. �

One may informally think of the common target of non-
interfering consistency restorers as being able to be factored
into two separate parts for the two transformations; but as in
practice this factoring might not be reasonable to present, it
may be more useful to be able to work the other way. Non-
interference allows us to stick the two transformations together
into one, thereby reducing the number of edges in our network.

Lemma 2. Suppose we have correct and hippocratic R : A −�−� C
and S : B −�−� C with

−→
R and

−→
S non-interfering, as before.

We can define RS : A×B −�−� C by
• RS((a,b),c) iff R(a,c)∧S(b,c)
•
−→
RS((a,b),c) =

−→
R (a,

−→
S (b,c)) =

−→
S (b,

−→
R (a,c)) by non-

interference.
•
←−
RS((a,b),c) = (

←−
R (a,c),

←−
S (b,c))

Then RS is correct and hippocratic. �

Moreover we may do this in the context of a network of bx,
gluing edges that were incident on A or B to the new A×B and
adjusting their bx in the obvious way, and this preserves other
non-interference relations as we would hope: the only point
to be careful of is that if T : D −�−� C then

−→
T needs to be non-

interfering with both
−→
R and

−→
S , in order to be non-interfering

with
−→
RS. Details omitted.

3This is the informality: it turns out that care is needed not to confuse the
aspect of the model that the bx’s behaviour depends on, and the aspect it
modifies, which might not be the same.



(The converse is false, however: given correct and hippo-
cratic RS : A×B −�−� C we might not be able to factor it into
correct and hippocratic R : A −�−� C and S : B −�−� C, because RS
might have “twisting” behaviour on A×B.)

A pragmatic case of non-interference: Note that the
definition of non-interference is (of course) sensitive to the
amount of choice there is for the instantiating models – that
is, to the model sets – as well as to the actual behaviour of the
consistency restorers. In some important cases, there is some
discretion over how these sets are chosen and formalised. In
the example of Section II, consider the question of whether
there is interference between the two consistency restorers
which target the UML model. The consistency relation be-
tween the UML model and the UML metamodel is confor-
mance; if the UML metamodel changes, restoring consistency
in the direction of the UML model is updating the model
for the new metamodel version (presumably, making minimal
semantic changes). But what is the model set from which the
UML metamodel is drawn, and hence, the set of values of
that type that must be considered in the definition of non-
interference?

If we take this to be, say, the set of all models conforming
to MOF, then these two consistency restorers will not be non-
interfering. For, however clever the UML model updater is,
there will be some ways in which the UML metamodel could
be replaced by a different MOF metamodel which will require
the meaning of the UML model to change, in the sense that
a previously consistent value of the Code will no longer be
consistent with the updated UML model. That is, these two
consistency restorers will interfere.

However, we might pragmatically take the point of view
that, even though it is desirable to have the UML metamodel
as part of our megamodel and be able to make use of a
consistency restorer to update the UML model if we have to
accept a new UML metamodel version, we can predict that all
future versions of the UML metamodel will be very similar
to the current one. That is, when we think about the domain
of the consistency restorer between the UML metamodel and
the UML model, we might be content to have in mind a very
small space of possible values for the metamodel – so small,
perhaps, that we predict any resulting updates to the UML
model will have no effect on the semantics of that model in
terms of its consistency with the code. That is precisely what
is needed to say that these consistency restorers would be non-
interfering.

On the other hand, turning to the two consistency restorers
that target the Code, one having the UML model as source and
one having the Tests as source, it does not seem to be possible
to make such an argument. Intuitively, these two consistency
restorers will interfere.

We will explore the implications of these situations in
Section VI.

VI. RESOLVING NETWORKS

Suppose we have a network of binary bx and a (connected)
authority instance we wish to resolve. We have already shown

that there might not be a solution; that if there is it might not
be reachable via the consistency restoration functions of the
bx; and that if a solution is reachable in that way, it might not
be unique. What positive results can we find?

It is natural to turn our thoughts towards trees. We will
need a root from which to start the resolution process. If our
network includes any already-oriented edges (e.g. arising from
unidirectional transformations or from decisions already made
about which direction should be used), there may be models
that (though not initially designated authoritative) cannot be
modified and need special treatment:
Step 0: If any node is not reachable, from any authority model,
by a path in the network (respecting any oriented edges), add
it to the authority set.

Next we simplify the situation by creating a single root, the
supersource:
Step 1: If the authority set contains more than one node, add
a single authority node which is connected (by an edge with
a notional universal consistency relation) to each node in the
authority set.
Step 2: Check any edges between two nodes in the authority
set. If any of these are not consistent, give up. If any edge
between two nodes in the original authority set is inconsistent,
of course, there is no resolution.

Now, if the resulting network is a tree, the situation is
particularly pleasant. Step 3 then applies:
Step 3: If the network (after Steps 0-2) is a tree, then orient
it, always away from the root towards the leaves.

Lemma 3. If Step 3 applied, its result is resolvable.

Proof: Start at the root and apply the bx in turn until all
leaves are reached.

However, note that it is still not necessarily confluent. For
there are resolution paths that do not apply the bx system-
atically starting from the root, and these will not necessarily
give the same result. For example, consider the fragment of
the Section II example comprising the UML model, the Code
and the Tests, with consistency restoration functions in that
direction (model to code to tests), and suppose the UML model
is in the authority set. Suppose that in the initial state, the UML
model includes, and the Tests test, a class Foo which (perhaps
because it has been deleted) does not appear in the Code.

If we restore consistency first by updating the Code with
respect to the UML model, and then by updating the Tests
with respect to the Code, the expected outcome is that class
Foo reappears in the Code and (under natural assumptions)
corresponding tests remain in the Tests.

However, if instead we first restore consistency between
Code and Tests toward Tests, presumably tests of Foo will
be deleted. If we go on to restore consistency between UML
model and Code, towards Code, then class Foo will be
reinstated in the Code; but even when we go on to restore
consistency (again, having changed Code) towards Tests, the
original tests that mentioned class Foo cannot be fully restored,
because information about them that was only present in the
Tests has been lost.
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This is a familiar problem: the consistency restoration
between Code and Tests is not history ignorant.

Definition 10. −→R is history ignorant if for all a,a′ ∈ A,b ∈ B,
we have

−→
R (a,

−→
R (a′,b)) =

−→
R (a,b). Dually for

←−
R .

Finally we get a positive result on confluence:

Lemma 4. If Step 3 applied, and all the bx in the network
have history ignorant consistency restoration functions in the
relevant direction of orientation, then the network is confluent.

Proof: Induction on branch length, making use of cor-
rectness and hippocraticness as well as history ignorance.

Note that outside this special setting, it is also not reasonable
to expect to find a (non-exhaustive) algorithm that guarantees
that if there is a resolution path, the algorithm finds it. For the
existence of such a path might be dependent on a quirk of the
behaviour of any one of the bx, such that finding it required
applying that particular bx at a particular stage.

We can use non-interference, where available, to give us
positive results beyond trees. Suppose we carried out Steps
0-2 but Step 3 did not apply.
Step 3′: Identify any nodes n that are not leaves, but have
the property that all the consistency restoration functions that
the network permits to be directed at n are non-interfering. If
there is a set S of such nodes, such that deleting the nodes in
S would turn the network into a tree, then pick one and colour
the nodes in S.

Lemma 5. If Step 3′ applies, then the network is resolvable.
Moreover if all the bx are history ignorant, then the network
is confluent.

Proof: Orient the network as in Step 3, and resolve the
network as in Lemma 3, treating the coloured nodes as though
they were leaves. Non-interference ensures (via Lemma 1) that
performing all consistency restorations towards the coloured
nodes does restore all the consistency relations, and moreover
that it does not matter in which order these are carried out.

Figure 7 informally illustrates, on the assumption that
the restoration functions into Model are non-interfering, as
discussed earlier.

There is more that could be done in this direction; in
particular if removing nodes with non-interfering edges does
not result in a tree as required by Step 3′, one could consider
unfolding the network into a tree by duplicating the ongoing

section of the graph. This is delicate and beyond the scope of
this paper, however.

VII. MEGAMODELLING

Megamodelling is a term applied first by Bézivin et al. to
the practice of regarding models themselves, and their rela-
tionships, as objects of study. They write “A megamodel is
a model of which at least some elements represent and/or
refer to models or metamodels” [14]. Megamodelling is better
seen as a mental discipline than as a technology. Megamodels
are often, in practice, informal: one draws a diagram whose
nodes are models, and adds (usually binary) relationships
between the models, whose nature is explained in natural
language (often stylised, with relationships taken from a fixed
set e.g. “conforms to”, “instance of”, but usually not given a
formal definition). It is possible, without loss of generality, to
interpret these relationships as consistency relationships, as in
our example: the current state of one model is consistent with
the current state of the other model, if and only if the desired
relationship does in fact hold. E.g., if a model is related to
a metamodel via “conforms to”, we may interpret this as a
consistency relation between the set of possible models and
the set of possible metamodels, where a model is consistent
with a metamodel if and only if it conforms to it.

Within this discipline we may conceive multiary transforma-
tions, and especially work on the resolution of networks of bx,
as a contributing technology. For example, the megamodelling
notation used in [15] has relationships between models that
include “equals”, “contains” and, most tellingly, “overlaps”.
“Overlaps” represents what we see as a general consistency
relation; it is defined as “the content of both artifacts is
overlapping, but might be represented differently; for example
the word document overlaps in content with the HTML table”.
One small part of the megamodel described there (Fig. A13
of [15]) includes nine models, all related to one another by
one or more binary “overlaps” relationships.

VIII. MULTIARY VARIANTS OF TRIPLE GRAPH GRAMMARS

In [16] Königs and Schürr introduced the notion of multi-
graph grammars (MGGs), a variant on the more familiar triple
graph grammar (TGG) idea in which two graphs are related
via a correspondence graph, and the coevolution of all three
graphs is specified by a collection of TGG rules. The MGG is
a straightforward extension of the TGG idea; the MGG rules
specify how all the graphs, including a single correspondence



graph, evolve simultaneously. The authors point out that this is
impractical, and show how to derive binary operational rules
from the MGG. They do not discuss, though, the semantic
relationship between the derived rules and the original, or the
issues that may arise from applying them over a network of
models as we have considered here.

Trollmann and Albayrak build on this and other work to
propose an extension to TGGs based on graph diagrams [17],
[18]. A graph diagram is in our terms essentially a consistent
network, but expressed in categorical terms which we did not
need, in order to interoperate with the TGG literature. This
interoperation is the main contribution of the work: the authors
point out that they have not yet addressed many of the matters
that concern us here.

IX. OTHER RELATED WORK

A different approach, related to the CSP work discussed in
Section III-B, is to take a program repair view of consistency
restoration. Here constraints are expressed over all models,
any of which may be modified; see for example [19].

Garcia [20] used a bidirectionalization approach based
on [21] to define what he called a Declarative Model-View-
Controller architecture. Macedo et al. [7] considered some
issues that arise in taking seriously QVT-R’s claim [4] to be
able to maintain multiary consistency relations. As remarked,
our Example 3 is borrowed from their paper. They note that
QVT-R’s insistence on a semantics in which for all valid
bindings in all but one of the models, there must exist a
valid binding in the one remaining (“target”) model leads
to expressivity restrictions, essentially because the for all
antecedent may be trivially satisfied in the case where there is
no valid binding of the other models. To remedy this, they give
extra expressivity by introducing “checking dependencies”:
basically a way to say that one model depends on a subset
(not all) of the other models. That is, they widen the class of
multiary consistency relations expressible to those definable
by a Horn-clause-like set of subrelations.

A pragmatic approach to pairwise model-merging is de-
scribed in [22], where a set of models is merged by repeatedly
identifying and merging the most similar pair; might this be
useful in bx more generally? It would be interesting to explore
resolving a network by identifying the closest to consistent
edges and fixing these first. It will not always give the best
result, in the same way that a naive metric-based least-change
property is not always desirable [10]; e.g. when a single model
is out of line, it may either be in error, or be a desirable first
step towards a better consistent state.

There are several large areas of mathematics and computer
science from which we might be able to learn, beyond what we
have touched on here. One is the study of flow networks and
transportation algorithms (as covered at undergraduate level
in [23] for example). From that field we picked up the useful
basic tool of adding a supersource, in Section VI. Perhaps
thinking of changes as flowing round a network has more to
offer. Returning to the issue of tolerating inconsistency, we
note that we have not addressed what happens if, while we

are in the process of restoring consistency across a network,
further changes to models are taking place. Distributed algo-
rithms experts understand such situations [24]. Perhaps the
ideas of partial transformations with a well-founded partial
order of consistency levels, as in [25], could play a role.

X. CONCLUSION

This paper has attempted to demonstrate some of the
consequences of using bx in the large, to relate more than two
models; we wanted to show how, eventually, bx may be an
important tool in the automated management of development
described by megamodels. This seems essential if MDD is to
have a transformative effect on software development.

We started by considering carefully the senses in which
multiary bx, are or are not, formally required in order to be
able to express consistency of sets of more than two models;
this is a topic that has caused some confusion in the Bx
community. We hope to have clarified it by demonstrating that
one obtains different answers to the question depending on
one’s assumptions about, for example, whether it is permitted
to add extra models. In the process, we made some connections
with the mature field of constraint solving. We went on to
consider the difficult question of how consistency may be
restored in a network of binary bx. Here our findings were
mostly negative: this suggests that in practice, it will usually
be necessary to manage the consistency restoration process,
e.g. specify a resolution path not just an authority instance,
rather than relying on confluence. However, we provided an
algorithm and positive results for special cases. Finally we
related the work to megamodelling and other parts of the
literature, and pointed at some further possibly fruitful areas.

Aficionados of bx will have noticed that this paper has not
discussed trace links, deltas or related issues: we have written
in terms of the simplest, state-based relational, notion of bx
as consistency restorers. There are several reasons for this.
First, the simplicity of this approach enables us to get started.
Second, in a megamodelling environment, which by its nature
involves a disparate collection of tools, assumptions about
tools maintaining information beyond the models themselves
may be difficult to sustain, at least in a uniform way. Most
importantly, however, once we work in a network setting, we
can reframe a more expressive relationship between models,
embodied in a witness structure such as a set of trace links,
as a multiary relationship between the models and a trace
model, where these are themselves related by simple relational
consistency. Thus, we may argue, at bottom, everything can
be seen as state-based and relational. This does not preclude,
of course, value being obtained from working away from the
bottom in some cases.
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