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Abstract. In this paper, we present quantitative and qualitative analysis

of the top retweeted tweets (viral tweets) pertaining to the US presidential

elections from September 1, 2016 to Election Day on November 8, 2016.

For everyday, we tagged the top 50 most retweeted tweets as supporting or

attacking either candidate or as neutral/irrelevant. Then we analyzed the

tweets in each class for: general trends and statistics; the most frequently

used hashtags, terms, and locations; the most retweeted accounts and

tweets; and the most shared news and links. In all we analyzed the 3,450

most viral tweets that grabbed the most attention during the US election

and were retweeted in total 26.3 million times accounting over 40% of the

total tweet volume pertaining to the US election in the aforementioned

period. Our analysis of the tweets highlights some of the differences

between the social media strategies of both candidates, the penetration

of their messages, and the potential effect of attacks on both.

Keywords: US elections, quantitative analysis, qualitative analysis, com-

putational Social Science.

Introduction

Social media is an important platform for political discourse and political cam-

paigns [27,32]. Political candidates have been increasingly using social media

platforms to promote themselves and their policies and to attack their opponents

and their policies. Consequently, some political campaigns have their own social

media advisers and strategists, whose success can be pivotal to the success of the

campaign as a whole. The 2016 US presidential election is no exception, in which

the Republican candidate Donald Trump won over his main rival Hilary Clinton.

In this work, we showcase some of the Twitter trends pertaining to the US

presidential election by analyzing the most retweeted tweets in the sixty eight

days leading to the election and election day itself. In particular, we try to answer

the following research questions:

1) Which candidate was more popular in the viral tweets on Twitter? What

proportion of viral tweets in terms of number and volume were supporting or

attacking either candidate?

2) Which election related events, topics, and issues pertaining to each candi-

date elicited the most user reaction, and what were their effect on each candidate?

Which accounts were the most influential?
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3) How credible were the links and news that were shared in viral tweets?

To answer these questions, we analyze the most retweeted (viral) 50 tweets per

day starting from September 1, 2016 and ending on Election Day on November

8, 2016. The total number of unique tweets that we analyze is 3,450, whose

retweet volume of 26.3 million retweets accounts for over 40% of the total

tweets/retweets volume concerning the US election during that period. We have

manually tagged all the tweets in our collection as supporting or attacking either

candidate, or neutral (or irrelevant). For the different classes, we analyze retweet

volume trends, top hashtags, most frequently used words, most retweeted accounts

and tweets, and most shared news and links. Our analysis of the tweets shows

some clear differences between the social media strategies of each candidate and

subsequent user responses. For example, our observations show that the Trump

campaign seems to be more effective than the Clinton campaign in achieving

better penetration and reach for: the campaign’s slogans, attacks against his rival,

and promotion of campaign activities in different US states. We also noticed that

the prominent vulnerabilities for each candidate were Trump’s views towards

women and Clinton’s email leaks and scandal. In addition, our analysis shows

that the majority of tweets benefiting Clinton were actually more about attacking

Trump rather than supporting Clinton, while for Trump, tweets in his favor had

more balance between supporting him and attacking Clinton. By analyzing the

links in the viral tweets, the tweets attacking Clinton had the most number of

links (accounting for 58% of the volume of shared links), where approximately

half were to highly credible sites and the remaining were to sites of mixed

credibility. We hope that our observations and analysis would aid political and

social scientists in understanding some of the factors that may have led to the

eventual outcome of the election.

Background

Social media is a fertile ground for developing tools and algorithms that can

capture the opinions of the general population at a large scale [13]. Much work has

studied the potential possibility of predicting the outcome of political elections

from social data. Yet, there is no unified approach for tackling this problem.

While Bollen et al. [4] analyzed people’s emotions (not sentiment) towards the

US 2008 Presidential campaign, the authors used both US 2008 Presidential

campaign and election of Obama as a case study. Sentiment typically signifies

preconceived positions towards an issue, while emotions, such as happiness or

sadness, are temporary responses to external stimulus. Though the authors

mentioned the feasibility of using such data to predict election results, they

did not offer supporting results. Using the same approach, O’Connor et al. [23]

discussed the feasibility of using Twitter data to replace polls. Tumasjan et al. [28]

provided one of the earliest attempts for using this kind of data to estimate

election results. They have used twitter data to forecast the national German

federal election, and investigated whether online interactions on Twitter validly

mirrored offline political sentiment. The study was criticized for being contingent

on arbitrary experimental variables [9, 10, 14, 21]. Metaxas et al. [21] argued
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that the predictive power of Twitter is exaggerated and it cannot be accurate

unless we are able to identify unbiased representative sample of voters. However,

these early papers kicked off a new wave of research initiatives that focus on

studying the political discourse on Twitter, and how this social platform can be

used as a proxy for understanding people’s opinions [22]. On the other hand,

many studies have questioned the accuracy, and not just the feasibility, of using

social data to predict and forecast [9, 10]. Without combining the contextual

information, together with social interactions, the results might lead to biased

findings. One of the main problems of studying political social phenomena on

Twitter is that users tend to interact with like-minded people, forming so-called

“echo chambers” [1,6, 18]. Thus, the social structure of their interactions will

limit their ability to interact in a genuinely open political space. Though the

literature on the predictive power of twitter is undoubtedly relevant, the focus

of this work is on performing post-election analysis to better understand the

potential strengths and weaknesses of the social media strategies of political

campaigns and how they might have contributed to eventual electoral outcomes.

A step closer to our politically motivated work, we find some studies that

focused on studying the US presidential election. For the 2012 US presidential

election, Shi et al. [26] analyzed millions of tweets to predict the public opinion

towards the Republican presidential primaries. The authors trained a linear

regression model and showed good results compared to pre-electoral polls during

the early stages of the campaign. In addition, the Obama campaign data analytics

system3, a decision-making tool that harnesses different kind of data ranging from

social media to news, was developed to help the Obama team sense the pulse of

public opinion and strategically manage the campaign. With an attempt to study

the recent US presidential election, early studies have showed promising results.

For example, Wang et al. [30] studied the growth pattern of Donald Trump’s

followers at a very early stage. They characterized individuals who ceased to

support Hillary Clinton and Donald Trump, by focusing on three dimensions of

social demographics: social status, gender, and age. They also analyzed Twitter

profile images to reveal the demographics of both Donald Trump and Hillary

followers. Wang et al. [31] studied the frequency of ‘likes’ for every tweet that

Trump published. More recently, Bovet et al. [5] developed an analytical tool

to study the opinion of Twitter users, in regards to their structural and social

interactions, to infer their political affiliation. Authors showed that the resulting

Twitter trends follow the New York Times National Polling Average.

Concerning disseminating information, recent research has focused on how

candidates engaged in spreading fake news and in amplifying their message

via the use of social bots, which are programmatically controlled accounts that

produce content and automatically interact with other users [7, 15]. Bessi and

Ferrara [3] investigated how the presence of social media bots affected political

discussion around the 2016 U.S. presidential election. Authors suggest that the

presence of social media bots can negatively affect democratic political discussion

rather than improving it, which in turn can potentially alter public opinion and

3 edition.cnn.com/2012/11/07/tech/web/obama-campaign-tech-team/index.html

edition.cnn.com/2012/11/07/tech/web/obama-campaign-tech-team/index.html
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endanger the integrity of the presidential election. In the same context, Giglietto

et al. [11] studied the role played by “fake-news” circulating on social media

during the 2016 US Presidential election. In this study, we provide a quantitative

and qualitative analysis of tweets related to the 2016 US presidential election. By

tapping into the wealth of Twitter data, we focus on analyzing and understanding

the possible factors underlying the success and failure of candidates. Our work

builds upon the aforementioned research in social and computer sciences to study

and measure the volume and diversity of support for the two main candidates

for the 2016 US presidential elections, Donald Trump and Hillary Clinton.

Data Collection and Labeling

To acquire the tweets that are relevant to the US presidential election, we obtained

the tweets that were collected by TweetElect.com from September 1, 2016 to

November 8, 2016 (Election Day). TweetElect is a public website that aggregates

tweets that are relevant to the 2016 US presidential election. It shows the most

retweeted content on Twitter including text tweets, images, videos, and links.

The site uses state-of-the-art adaptive filtering methods for detecting relevant

tweets on broad and dynamic topics, such as politics and elections [19, 20].

TweetElect used an initial set of 38 keywords related to the US elections for

streaming relevant tweets. Consequently, adaptive filtering continuously enriches

the set of keywords with additional terms that emerge over time [20]. The 38

seeding keywords included all candidate names and common keywords (including

hashtags) about the elections and participating parties. During the period of

interest, the total number of aggregated tweets per day (including retweets)

related to the US elections typically ranged between 200K and 600K. This

number increased dramatically after specific events or revelations, such as after

the presidential debates and Election Day, when the number of tweets exceeded

3.5 million tweets. The total number of unique tweets collected by TweetElect

between September 1 and November 8 was 6.8 million, while the full volume of

tweets including retweets was 65.8 million.

In this work, we are interested in analyzing the most “viral” tweets pertain to

the US presidential elections, as they typically express the topics that garnered

the most attention on Twitter [17]. Specifically, we constructed a set of the

most retweeted 50 tweets for everyday in the period of interest. Thus, our

collection contained 3,450 unique tweets that were retweeted 26.6 million times,

representing more than 40% of the total volume of tweets during that period. Out

of the 3,450 tweets in our collection, 700 were authored by the official account

of Donald Trump, accounting for 8.7 million retweets, and 698 were authored by

Clinton’s official account, accounting for 4.7 million retweets. Figure 1 shows the

distribution of the number of tweets collected by TweetElect in the US elections in

the period of study. The number of unique tweets, retweets volume, and retweets

volume of the top viral daily tweets are displayed. As shown, the volume of

tweets increased as election day approached. The biggest four peaks in the graph

represent the days following the presidential debates and the election day. As

it is shown, the retweet volume of the top 50 daily viral tweets correlates well
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Fig. 1. Volume of retweets the top 50 daily viral tweets on the US collection compared

to the full volume of tweets and retweets.

Label Tweet

attack Trump, sup-

port Clinton

Donald Trump is unfit for the office of president. Fortunately, there’s an exceptionally qualified

candidate @HillaryClinton

attack Trump, at-

tack Clinton

Donald Trump looks like what Hillary Clinton smells like

attack Clinton A rough night for Hillary Clinton ABC News.

attack Trump Trump to Matt Lauer on Iraq: I was totally against the war. Here’s proof Trump is lying:

https://t.co/6ZhgJMUhs3

neutral It s official: the US has joined the #ParisAgreement https://t.co/qYN1iRzSJk

Table 1. Example annotations

with the full retweet volume, with a Pearson correlation of 0.92, which indicates

nearly identical trend.

We calculated the daily coverage 𝐶𝑑𝑎𝑖𝑙𝑦 of the top 50 daily viral tweets to

the full tweet volume. The daily coverage ranged between 23% and 66%, with

the majority of the days having 𝐶𝑑𝑎𝑖𝑙𝑦 over 40%. This indicates that the top 50

viral daily tweets may offer good coverage and reasonable indicators for public

interaction with the US election on Twitter.

All tweets were labeled with one of five class labels, namely: “support Trump”,

“attack Trump”, “support Clinton”, “attack Clinton”, or “neutral/irrelevant”,

with tweets being allowed to have multiple labels if applicable. Support for a

candidate included praising or defending the candidate, his/her supporters, or

staff, spreading positive news about the candidate, asking people to vote for the

candidate, mentioning favorable polls where the candidate is ahead, promoting

the candidate’s agenda, or advertising appearances such as TV interviews or

rallies. Attacking a candidate included maligning and name calling targeted at

the candidate, his/her supporters, or staff, spreading negative news about the

candidate, mentioning polls where the candidates is behind, or attacking the

candidate’s agenda. Other tweets were labeled as neutral/irrelevant. Tweets were

allowed to have more than one label such as “support Trump, attack Clinton”.

The labeling was done by an annotator with strong knowledge of US politics. The

annotator was instructed to check the content of tweets carefully including any

images, videos, or external links to obtain accurate annotations. In addition, we

advised the annotator to check the profile of tweet authors to better understand

their position towards the candidates if needed. One of the authors took a

random sample of 50 tweets to verify the correctness of the annotation. In all,

both agreed fully on 90% of the sample, partially agreed on 8%, and disagreed

on the remaining 2%. The agreement between the annotator and the author,

as measured using Cohen’s Kappa, is 0.87, meaning nearly perfect agreement.

Table 1 shows few sample labeled tweets.

https://t.co/6ZhgJMUhs3
https://t.co/qYN1iRzSJk
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Class No. of Tweets % of Tweets No. of Retweets % of Retweets

Support Clinton 506 13.6% 3,205,303 11.5%

Attack Trump 712 19.1% 6,373,549 22.8%

Support Trump 848 22.8% 6,896,940 24.7%

Attack Clinton 1,458 39.2% 9,441,921 33.8%

Neutral/irrelevant 199 5.3% 1,978,784 7.1%

Table 2. Number of tweets and retweet volume per class.

Tweet Analysis

We analyze tweets in every class from different perspectives. Specifically, we

look at: user engagement with class over time, most viral events during election,

most discussed topics, most shared links and news, and most influential accounts

supporting them.

Popularity of Candidates on Twitter Table 2 shows the number of tweets

and their retweet volume for each label. For further analysis, we ignore tweets

that are labeled as neutral/irrelevant as they are not interesting to this work.

Figure 2 shows a break down for each label across all days. Table 2 shows that

the majority of the tweets and retweets volume were in favor of Trump (61.9%

of tweets, 58.6% of retweet volume), either by supporting him or attacking

Clinton, while those in favor of Clinton represent only (32.7% of tweets, 34.3%

of retweet volume) of the total, either supporting her or attacking Trump. It can

be observed that the retweet volume of tweets attacking Clinton outnumbered

the retweet volume of tweets supporting her by nearly a 3-to-1 margin, while

for Trump those supporting and attacking him were almost evenly matched.

Figure 2(a) shows the distribution of support/attack of each candidate over the

period of study. Figure 2(b) shows the relative per day retweet volume for tweets

supporting/attacking each candidate. As expected, large spikes in volume happen

in conjunction with major events such the presidential and vice presidential

debates, Election Day, the release of Trump’s lewd Access Hollywood tape, and

the FBI announcement concerning the reopening of the investigation of Clinton.

An interesting observation from Figure 2(b) is that tweets in favor of Trump

(either supporting him or attacking Clinton) were retweeted more than tweets in

favor of Clinton for 85% of the days, with the exception of a few days, especially

the day following the first presidential debate and following the release of Trump’s

lewd tape. This observation might be different to the trends in normal media,

where large number of articles were more negative towards Trump [29].

Table 3 lists the three days for every class when each class had the largest

percentage of tweet volume along with the leading topic. As can be seen, the

“support Clinton” class not only had the lowest average overall, but it also never

exceed 33% on any given day. All other classes had days when their volume

exceeded 60% of the total retweet volume, with the “attack Clinton” class reach-

ing nearly 73%. The relative volume of “support Clinton” retweets peaked after

public appearances (promotional video, debate, and TV interview). The “attack

Clinton” class peaked when her health came into question and after WikiLeaks

leaks questioned her integrity. For the “support Trump” class, it peaked after

polls showed he was ahead and after he announced the building of a wall with

Mexico. The “attack Trump” class peaked due positions on immigration and

women. The most frequent hashtags and terms reflect similar trends.
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Fig. 2. (a) Retweet volume for each label per day, and (b) Percentage of labels per day.

support Clinton

Date Leading topic %

11/5 release of a video promoting Clinton 32.9%

9/26 after first presidential debate 32.2%

9/22 interview w/ comedy program (two Ferns) 28.2%

attack Clinton

9/11 Clinton faints at 9/11 memorial 72.9%

10/31 WikiLeaks: Clinton got gifts from foreign governments 69.4%

10/19 WikiLeaks: Clinton got gift from Qatar 62.9%

support Trump

10/22 Trump leads in 3 national polls 60.2%

10/6 Trump leads in Virginia poll 50.7%

9/1 Trump says to build wall with Mexico 50.1%

attack Trump

9/16 Sanders attacks Trump on immigration 66.4%

9/15 Trump quoted: “pregnancy very inconvenient for business” 60.2%

10/7 Trump lewd tape released 55.5%

Table 3. Top 3 days when relative volume for each class peaked with leading topic

and percentage.

.

Most Frequent Hashtags In order to understand the most discussed topics

in the viral tweets, Table 4 shows the top hashtags that are used in attacking

or supporting either candidate divided into categories along with the volume in

each category. The top used hashtags for the different labels reveal some stark

contrasts between the two candidates. These include:

(i) The top most frequently appearing hashtags favoring Clinton were those

praising her debate performances and attacking Trump. On the Trump side, the

most frequently appearing hashtags were those iterating his campaign slogans,

encouraging people to vote, and spreading campaign news.

(i) Hashtags of Trump’s campaign slogans appeared nearly 200 times more than

Clinton’s campaign slogan (#IAmWithHer). In fact, Trump’s campaign slogans

category has the most frequently appearing hashtags.

(ii) Hashtags indicating “Get out of the vote” were 4 times more voluminous for

Trump than Clinton. Trump and his campaign were more effective in promoting

their activities (ex. #ICYMI – in case you missed it, #TrumpRally).

(iii) Hashtags pertaining to the presidential debate appeared for every class. The

support to attack hashtag volume ratio was roughly 3-to-2 for Clinton and 1-to-9

for Trump. Further, the debates were the number one category for the “support

Clinton” and the “attack Trump” classes. It seems that most users thought that

she did better in the debates than him.
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Support Clinton
Category #tag Freq. Hashtags

Debate performance 486,402 #DebateNight #Debate #SheWon #VPDebate #Debates2016 #NBCNews-

Forum
Attacking Trump 114,614 #TrumpTapes #ImVotingBecause #TangerineNightmare #Interro-

gateTrump #ImWithTacos #AlSmithDinner
Get out the vote 86,297 #ElectionDay #Election2016 #Voting #OHVotesEarly #Vote #Elec-

tions2016
Campaign Issues 15,055 #NationalComingOutDay #LatinaEqualPay

Campaign slogan 10,084 #ImWithHer

Attack Clinton
Corruption/lying 842,892 #DrainTheSwamp #CrookedHillary #BigLeagueTruth #GoldmanSach

#FollowTheMoney #PayToPlay
Wikileaks Releases 640,330 #PodestaEmails #Wikileaks #PodestaEmails{8,31,28,26,15} #SpiritCook-

ing #Podesta #DNCLeak #DNCLeak2 #FreeJulian #AnthonyWeiner
Debate performance 348,749 #Debates2016 #Debate #DebateNight #VPDebate #Debates

Health Care 113,318 #ObamaCare #ObamaCareFail #ObamaCareInThreeWords

Tension w/Sanders sup-

porters

86,333 #FeelTheBern #BasementDwellers

Media/Election Bias 78,511 #VoterFraud #RiggedSystem

Ben Ghazi attack 46,725 #BenGhazi

Clinton’s health 30,747 #HillarysHealth

Support Trump
Campaign slogans 2,089,162 #MAGA (Make America Great Again) #DrainTheSwamp #AmericaFirst

#MakeAmericaGreatAgain #ImWithYou #TrumpTrain #TrumpPence16
Get out the vote 349,078 #VoteTrumpPence16 #ElectionDay #VoteTrump #Vote #IVoted #Elec-

tionNight #TheHoodForTrump #Vote2016 #EarlyVote
Campaign news 183,031 #ICYMI (in case you missed it) #TrumpRally #Gettysburg (public speech)

Debate performance 74,808 #VPDebate #DebateNight #Debates #Debates2016

Attacking Clinton 66,318 #FollowTheMoney #DNCLeak #ObamaCareFailed #BigLeagueTruth

Attack Trump
Debate performance 776,956 #DebateNight #Debate #VPDebate #Debates #NBCNewsForum

Sexual misconduct 78,043 #TrumpTapes #NatashaStoynoff

General attacks and in-

sults

44,100 #ImVotingBecause #TangerineNightmare #Lunatic #DangerousMan #Un-

fit #Deceit #InterrogateTrump
Comedy attacks 26,980 #ACloserLook (segment on Seth Meyer comedy show) #AlSmithDinner

(charity dinner)
Attacking Trump’s

speech

21,117 #LoveTrumpsHate #NastyWoman

Table 4. Top hashtags attacking or supporting both candidates with their categories.

(iv) Attacks against Clinton focus on her character and on the WikiLeaks leaks,

which cover Clinton’s relationship with Wall Street (ex. #GoldmanSachs), alleged

impropriety in the Clinton Foundation (ex. #FollowTheMoney, #PayToPlay),

mishandling of the Ben Ghazi attack in Libya, Democratic Party primary race

against senator Sanders (ex. #BasementDewellers), the FBI investigation of

Clinton (#AnthonyWeiner), and accusation of witchcraft (#SpiritCooking).

(v) Attacks against Trump were dominated by his debate performance. The

frequency of hashtags for the next category pertaining to accusations of sex-

ual misconduct (ex. #TrumpTapes) is one order of magnitude lower than the

frequency of those about the debate. This suggests that accusations of sexual

misconduct against Trump were not the primary of focus of users.

(vi) Policy issues such as health care (ex. #ObamaCare, #LatinaEqualPay) were

eclipsed by issues pertaining to the personalities of the candidates and insults

(ex. #CrookedHillary, #TangerineNightmare).

Most Frequent Terms We look at the most frequent terms in the tweets to

better understand the most popular topics being discussed. Figure 3 shows

tag-clouds of the most frequent terms for the different classes, which exhibit

similar trends to those in the most frequent hashtags. For example, top terms in

the “attack Clinton” class include “crooked”, “emails”, “FBI”, “WikiLeaks”, and

“#DrainTheSwamp”. Similarly, “#DebateNight” was prominent in the “support

Clinton” and “attack Trump” classes. One interesting word in the “support Trump”

class is the word “thank”, which typically appears in Trump authored tweets

in conjunction with polls showing Trump ahead (ex. “Great poll out of Nevada-

thank you!”), after rallies (ex. “Great evening in Canton Ohio-thank you!”), or in
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(a) Support Clinton (b) Attack Trump 

  

(c) Support Trump (d) Attack Clinton 
 

Fig. 3. Tag-cloud of top frequent terms in each class support/attack Clinton/Trump.

response to endorsements (ex. “Thank you Rep. @MarshaBlackburn!”). Words of

thanks appeared in 167 “support Trump” tweets that were retweeted more than

1.5 million times compared to 15 “support Clinton” tweets that were retweeted

75 thousand times only. Another set of words that do not show in the hashtags

are “pregnancy” and “inconvenient” that come from two tweets that mention

that “Trump said pregnancy is very inconvenient for businesses”. One of these

tweets is the most retweeted in the “attack Trump” class.

Mentions of States One of the top terms that appeared in tweets supporting

Trump is “Florida”, Figure 3(c). This motivated us to analyze mentions of states

in the tweets of each class. The frequency of state mentions may indicate states

of interest to candidates and Twitter users. Figure 4 lists the number of times

each of the 15 most frequently mentioned states. To obtain the counts, we tagged

all tweets using a named entity recognizer that is tuned for tweets [25]. We auto-

matically filtered entities to obtain geolocations, and then we manually filtered

locations to retain state names and city and town names within states. Then,

we mapped city and town names to states (ex. “Grand Rapids” → “Iowa”). As

expected, so-called “swing states”, which are states that could vote Republican or

Democrat in any given election4, dominated the list. The only non-swing states

on the list are New York, Washington, and Texas. Interestingly, the number

of mentions in “support Trump” tweets far surpasses the counts for all other

classes. Most of the mentions of swing states were in tweets authored by Trump

indicating Trump rallies being held in these states. This suggests that the Trump

campaign effectively highlighted their efforts in these states, and there was signif-

icant interest from Twitter users as indicated by the number of retweets. Of the

swing states in the figure, Trump won the first six, namely Florida, Ohio, North

Carolina, Pennsylvania, Michigan, and Arizona, along with Iowa and Wisconsin.

Most Shared Links An important debate that surfaced after the US elections

was whether fake news affected the election results or not [11,16]. Thus, we analyze

the credibility of the websites that were most linked to in the tweets for each

4 https://projects.fivethirtyeight.com/2016-election-forecast/

https://projects.fivethirtyeight.com/2016-election-forecast/
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Support Clinton Attack Trump

Link Count Volume Leaning Credibility Link Count Volume Leaning Credibility

Hillaryclinton.com 63 363,153 Left – Hillaryclinton.com 65 236,126 Left –

Democrats.org 8 120,026 Left – WashingtonPost.com 23 102,179 -2 High

IWillVote.com 26 101,996 Left – IWillVote.com 11 95,126 Left –

SnappyTV.com 14 58,926 N/A Mixed SnappyTV.com 14 86,100 N/A Mixed

CNN.com 6 43,355 -3 High Democrats.org 3 67,843 Left –

WashingtonPost.com 10 27,264 -2 High Newsweek.com 11 55,663 -3 High

Medium.com 8 27,187 -2 Mixed NYTimes.com 9 37,993 -2 High

BusinessInsider.com 4 16,010 -2 High CNN.com 6 27,275 -3 High

NYTimes.com 6 15,886 -2 High Vox.com 4 13,992 -4 High

YouTube.com 2 11,564 N/A Mixed Facebook.com 2 11,973 N/A Mixed

Support Trump Attack Clinton

DonaldJTrump.com 77 503,375 right WikiLeaks.org 47 406,607 2 High

Facebook.com 25 164,995 N/A Mixed DailyCaller.com 22 195,695 4 Mixed

WashingtonPost.com 7 56,855 -2 Hight FoxNews.com 28 146,571 4 Mixed

Lifezette.com 3 49,132 4 Mixed YouTube.com 29 107,915 N/A Mixed

SnappyTV.com 4 36,663 N/A Mixed Breitbart.com 17 102,949 5 Mixed

Instagram.com 5 36,132 N/A Mixed Politico.com 11 93,165 -2 High

DailyCaller.com 3 35,474 4 Mixed NYPost.com 14 92,147 3 Mixed

NYPost.com 4 34,930 3 Mixed CNN.com 11 78,797 Right

Periscope.tv 3 22,596 N/A Mixed Vox.com 16 77,340 3 High

YouTube.com 5 20,046 N/A Mixed Facebook.com 9 63,896 3 High

Table 5. Top shared links per class – support/attack Clinton/Trump – with ideological

leaning (-5 extreme left to 5 extreme right) and credibility (high or mixed) according

to https://mediabiasfactcheck.com/

class. Our analysis shows that 29% of the viral tweets (21% of the full retweet

volume) contained external links. Table 5 shows the top 10 web domains that

were linked to in the tweets dataset along with ideological leaning and credibility

rating. Aside from the official websites of the campaigns (ex. HillaryClinton.com,

Democrats.org, and DonaldJTrump.com), the remaining links were to news

websites (ex. CNN and NYTimes) and social media sites (ex. Facebook, Insta-

gram, and YouTube). As Table 5 shows, the candidates’ official websites received

the most links. However, it is interesting to note the large difference in focus

between both. Clinton’s website attacked Trump than it supported Clinton, while

Trump’s website did the exact opposite. This again shows the differences in

strategies and trends between both candidates and their supporters. We checked

the leaning and credibility of the news websites on mediabiasfactcheck.com, a

fact checking website which rates news sites anywhere between “Extreme Left”

to “Extreme Right” and their credibility between “Very Low” and “Very High”

with “Mixed” being the middle point. We assumed social media sites to have

no ideological leaning with a credibility of “Mixed”. We opted for assigning

credibility to websites as opposed to individual stories, because investigating

the truthfulness of individual stories is rather tricky and is beyond the scope of

this work. Though some stories are easily debunked, such as the Breitbart story

claiming that “Hillary gave an award to a terrorist’s wife5”, other mix some truth

with opinion, stretched truth, and potential lies, such as the Breitbart story that

the “FBI is seething at the botched investigation of Clinton”.

Figure 4 aggregates all the number of retweets for each category for the

websites with credibility of “High” and “Mixed” – none of the sites had credibility

of “Very High”, “Low”, or “Very Low”. The aggregate number of links for all

categories to “High” and “Mixed” credibility websites was 1.04 million and 1.18

million respectively. The figure shows that a significantly higher proportion of

highly credible websites were linked to for the “support Clinton” and “attack

5 http://bit.ly/2d99lWD/ 6 http://bit.ly/2tEUxVw

https://mediabiasfactcheck.com/
HillaryClinton.com
Democrats.org
DonaldJTrump.com
mediabiasfactcheck.com
http://bit.ly/2d99lWD/
http://bit.ly/2tEUxVw
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Fig. 4. Mentions of states for each class. Fig. 5. Credibility of websites that are

linked to from each category

Trump” categories compared to mixed credibility sites. The opposite was true

for the “support Trump” category, where the majority of links used to support

Trump was from mixed creditability websites. This may indicate that Trump

supporters were more susceptible to share less credible sources compared to

Clinton supporters. High and mixed credibility sites were evenly matched for the

“attack Clinton” category. WikiLeaks was the foremost shared site for attacking

Clinton, which has high credibility. This again highlights the role of WikiLeaks in

steering public opinion against Clinton. It worth mentioning that “The Podesta

Emails6” was the most popular link. Thus, though lower credibility links were

used to attack Clinton, high credibility links featured prominently. For ideological

orientation, left leaning sources featured prominently in the “support Clinton”

and “attack Trump” classes, and right leaning sources featured prominently for

the two other classes. The only left leaning sources appearing on the “support

Trump” and “attack Clinton” lists were Washington Post and Politico.

Most Retweeted Tweets Table 6 lists the top 5 most retweeted7 tweets for

each class. They illustrate the trends to those exhibited in our previous analysis,

namely: “support Clinton” tweets are led by talk about debates and attacks

against Trump; the most retweeted “attack Clinton” tweets are from WikiLeaks;

Trump campaign slogans appear atop of “support Trump” tweets; and the most

retweeted attack Trump” tweets cover demeaning statements against women

and minorities and mockery of Trump. An interesting observation is that the

most retweeted tweet attacking Trump came from a Nigerian account with screen

name “Ozzyonce” who had less than 2,000 followers at the time when she posted

the tweet. Nonetheless, this tweet received over 150K retweets in one day.

Most Retweeted Accounts Table 7 lists the most retweeted accounts for each

class. As expected, the most retweeted accounts for “support” and “attack” classes

were those of the candidates themselves and their rivals respectively. Notably:

(i) Clinton authored 10% more “attack Trump” tweets (with 35% more volume)

6 https://wikileaks.org/podesta-emails/
7 The number of retweets in the table are taken in November 2016

https://wikileaks.org/podesta-emails/
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Date Author Text Count

support Clinton

9/27 Jerry Springer Hillary Clinton belongs in the White House. Donald Trump belongs on my show. 78,872

9/27 Hillary Clinton RT this if you re proud to be standing with Hillary tonight. #debatenight

https://t.co/91tBmKxVMs

72,443

10/10 Erin Ruberry Hillary is proof a woman can work hard rise to the top of her field still have to

compete against a less qualified man for the same job.

72,167

10/20 Hillary Clinton RT if you’re proud of Hillary tonight. #DebateNight #SheWon

https://t.co/H7CJep7APX

72,150

10/8 Richard Hine Trump: Don t judge me on the man I was 10 years ago. But please judge Hillary

on the man her husband was 20 years ago #TrumpTapes

66,817

attack Clinton

11/1 WikiLeaks No link between Trump Russia No link between Assange Russia But Podesta Clin-

ton involved in selling 20% of US uranium to Russia

51,311

10/14 WikiLeaks Democrats prepared fake Trump grope under the meeting table Craigslist employ-

ment advertisement in May 2016 https://t.co/JM9JMeLYet

45,348

10/3 WikiLeaks Hillary Clinton on Assange Can t we just drone this guy – report

https://t.co/S7tPrl2QCZ https://t.co/qy2EQBa48y

45,233

11/4 Donald J. Trump If Obama worked as hard on straightening out our country as he has trying to

protect and elect Hillary we would all be much better off!

42,331

11/8 Cloyd Rivers To everyone who wants to vote for Hillary just to keep Trump from becomin

President watch this... https://t.co/TuUpD7Qgcg

41,047

support Trump

11/8 Donald J. Trump TODAY WE MAKE AMERICA GREAT AGAIN! 352,140

11/5 Donald J. Trump MAKE AMERICA GREAT AGAIN! 60,718

10/8 Donald J. Trump Here is my statement. https://t.co/WAZiGoQqMQ 52,887

11/7 Immigrants4Trump If you make this go viral Trump will win. It s about 2 minutes that makes the

choice in this election crystal clear https://t.co/CqMY4CSJbp

43,627

10/10 Mike Pence Congrats to my running mate @realDonaldTrump on a big debate win! Proud to

stand with you as we #MAGA.

42,178

attack Trump

9/15 Ozzyonce Donald Trump said pregnancy is very inconvenient for businesses like his mother

s pregnancy hasn’t been inconvenient for the whole world.

152,756

10/26 Bailey Disler Good morning everyone especially the person who destroyed Donald Trump s walk

of fame star https://t.co/IcBthxMPd9

124,322

10/21 Stephen King My newest horror story: Once upon a time there was a man named Donald Trump

and he ran for president. Some people wanted him to win.

121,635

10/10 Kat Combs Trump writing a term paper: Sources Cited: 1. You Know It 2. I know It 3. Every-

body Knows It

105,118

10/8 Es un racista Anna for you to sit here call Trump a racist is outrageous Anna: OH?! Well lemme

do it again in 2 languages! https://t.co/nq4DO7bN7J

102,063

Table 6. Top retweeted tweets for each class – support/attack Clinton/Trump.

than “support Clinton”. In contrast, Trump authored 81% more “support Trump”

tweets (with 38% more volume) than “attack Clinton” tweets. This suggests that

Clinton expended more energy attacking her opponent than promoting herself,

while Trump did the exact opposite. Trump campaign staffers and accounts, such

as Kellyanne Conway, Dan Scavino Jr., and Official Team Trump, were slightly

more active in the “attack Clinton” class than the “support Trump” class.

(ii) Trump Campaign accounts featured prominently in “support Trump” and

“attack Clinton” classes, capturing 7 out of 10 and 4 out of 10 top spots for both

classes respectively. In contrast, Clinton campaign account captured 2 out of

10 and 1 out of 10 top spots for “support Clinton” and “attack Trump” classes

respectively. Top Clinton aides like Huma Abedin and John Podesta were absent

from the top list, suggesting a more concerted Trump campaign Twitter strategy.

(iii) Though Clinton authored 48% more tweets attacking her rival than tweets

Trump authored attacking her, his attack tweets led to 34% more retweet volume.

This suggests that his attacks were more effective than her attacks. Trump tweets

were more retweeted on average than Clinton’s tweets with an average of 11,195

and 6,120 retweets per tweet for both respectively. Highlighting WikiLeaks’ role

in the election, WikiLeaks was the second most retweeted account attacking

Clinton and had four times as much retweet volume than the next account.

Discussion

Our analysis contrasts differences in support for either candidate, namely:

Popularity: While Trump received more negative coverage than Clinton in
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support Clinton attack Trump

Account Count Volume Account Count Volume

Hillary Clinton 331 2,025,821 Hillary Clinton 363 2,698,209

President Obama 4 122,947 Bernie Sanders 11 304,860

Senator Tim Kaine 15 84,245 Ozzyonce 1 152,756

Jerry Springer 1 78,872 Bailey Disler 1 124,322

Erin Ruberry 1 72,167 Stephen King 2 121,635

Richard Hine 1 66,817 Kat Combs 1 105,118

Bernie Sanders 7 46,180 Es un racista 1 102,063

CNN 6 41,983 Rob Fee 1 99,401

Funny Or Die 1 27,909 Jerry Springer 1 78,872

Channel 4 News 1 27,409 Master of None 1 67,690

Support Trump attack Clinton

Donald J. Trump 446 4,992,845 Donald J. Trump 246 3,613,025

Kellyanne Conway 51 199,511 WikiLeaks 141 1,454,903

Mike Pence 36 195,824 Kellyanne Conway 92 349,025

Dan Scavino Jr. 40 181,601 Paul Joseph Watson 78 297,273

Official Team Trump 14 141,289 Official Team Trump 23 150,932

Donald Trump Jr. 20 112,835 Donald Trump Jr. 34 126,744

Eric Trump 8 79,387 Jared Wyand 19 85,742

Immigrants4Trump 4 52,256 Cloyd Rivers 7 84,063

Cloyd Rivers 2 45,493 Juanita Broaddrick 4 83,903

Paul Joseph Watson 10 38,474 James Woods 16 78,719

Table 7. Top retweeted accounts per class – support/attack Clinton/Trump. Accounts

of candidates and campaign affiliates are italicized.

mainstream media [24], Trump benefited from many more tweets that are either

supporting him or attacking his rival. In fact, 63% of the volume of viral content

on US election were in his favor compared to only 37% in favor of Clinton.

Similarly, on 85% of the days in the last two months preceding the election,

Trump had more tweets favoring him than Clinton. This observation shows the

gap between the trends of social media and traditional news media.

Positive vs negative attention: The volume of tweets attacking and support-

ing Trump were evenly matched, while the volume of tweets attacking Clinton

outnumbered tweets praising her by a 3-to-1 margin. Given the importance of

social media in elections, this may have been particularly damaging.

Support points: Trump campaign accounts featured more prominently in the

top retweeted accounts supporting their candidate. Support came in the form

of promoting his slogans, urging supporters to vote, and featuring positive polls

and campaign news. Conversely, Clinton support came mostly in the form of

contrasting her to her rival, praise for her debate performance against Trump,

and praise for her attacks on Trump. In fact, viral tweets from her campaign

account were attacking Trump more than promoting her. Unfortunately for her,

she was framed in reference to her rival, and research has shown that debates

have a dwindling effect election outcomes as the election day draws closer [2,8,12].

Consequently, her post-debate surges in volume of attacks against Trump eclipsed

surges of support for her.

Attack points: Both candidates were attacked on different things. Trump was

mainly attacked on his debate performance, eclipsing attacks related to his scan-

dals, such as the lewd Access Hollywood tape. Luckily for him, debates have

a diminishing effect on voters as election day draws near [2,8, 12]. Conversely

for Clinton, persistent allegations of corruption and wrongdoing triggered by

WikiLeaks and the FBI investigation of her emails dominated attacks against

her. These attacks may have led to her eventual loss, with polls suggesting that

“email define(d) Clinton”8.

8 gallup.com/poll/185486/email-defines-clinton-immigration-defines-trump.aspx

gallup.com/poll/185486/email-defines-clinton-immigration-defines-trump.aspx
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Message penetration: Trump’s slogan, “Make America Great Again”, had a

far greater reach than that of his rival, “Stronger Together”. Similarly, his policy

positions and agenda items, such as the proposal to build a wall with Mexico,

attracted significantly more attention than those of Clinton, where her proposed

policy positions received very little mention.

Geographical focus: Trump and his supporters effectively promoted his cam-

paign’s efforts in swing state, with frequent mentions of rallies and polls from

these states along with messages of thanks for people turning-out for his rallies.

The volume of tweets mentioning swing states and supporting Trump were typi-

cally two orders of magnitude larger than similar tweets supporting Clinton. This

might have contributed to the narrow victory he achieved in many of them.

Low credibility links: Trump supporters were more likely to share links from

websites of questionable credibility than Clinton supporters. However, WikiLeaks,

which has high credibility, was the most prominent source attacking Clinton.

To better understand the presented results, a few limitations that need to be

considered. First, the top 50 viral tweets do not have to be representative of the

whole collection. Nonetheless, they still represent over 40% of the tweets volume

on the US elections during the period of the study. Second, the results are based

on tweets collected from TweetElect. Although it is highly robust, the site uses

automatic filtering methods that are not perfect [19]. Therefore, there might be

other relevant viral tweets that were not captured by the filtering method. Lastly,

measuring support for a candidate using viral tweets does not have to represent

actual support on the ground for many reasons. Some of these reasons include

the fact that demographics of Twitter users may not match the general public,

more popular accounts have a better chance of having their tweets go viral, or

either campaign may engage in astroturfing, in which dedicated groups or bots

may methodically tweet or retweet pro-candidate messages [3].

Conclusion

In this paper, we presented quantitative and qualitative analysis of the top

retweeted tweets pertaining to the US presidential elections from September

1, 2016 to election day on November 8, 2016. For everyday, we tagged the

top 50 most retweeted tweets as supporting/attacking either candidate or as

neutral/irrelevant. Then we analyzed the tweets in each class from the perspective

of: general trends and statistics; most frequent hashtags, terms, and locations;

and most retweeted accounts and tweets. Our analysis highlights some of the

differences between the social media strategies of both candidates, the effectiveness

of both in pushing their messages, and the potential effect of attacks on both. We

show that compared to the Clinton campaign, the Trump campaign seems more

effective in: promoting Trump’s messages and slogans, attacking and framing

Clinton, and promoting campaign activities in “swing” states. For future work,

we would like to study the users who retweeted the viral tweets in our study to

ascertain such things as political leanings and geolocations. This can help map

the political dynamics underlying the support and opposition of both candidates.
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