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Abstract. Estimation and forecasting of dynamic state are fundamental
to the design of autonomous systems such as intelligent robots. State-of-
the-art algorithms, such as the particle filter, face computational limita-
tions when needing to maintain beliefs over a hypothesis space that is
made large by the dynamic nature of the environment. We propose an
algorithm that utilises a hierarchy of such filters, exploiting a filtration
arising from the geometry of the underlying hypothesis space. In addition
to computational savings, such a method can accommodate the availabil-
ity of evidence at varying degrees of coarseness. We show, using synthetic
trajectory datasets, that our method achieves a better normalised error
in prediction and better time to convergence to a true class when com-
pared against baselines that do not similarly exploit geometric structure.

1 Introduction

Autonomous agents acting in dynamic environments need the capacity to make
predictions about the environment within which they are acting, so as to take
actions that are suited to the present world state. Traditionally, tools for state
estimation are geared to the case wherein uncertainty arises from noise in the
dynamics or sensorimotor processes. For example, the particle filter is a state
estimation method utilising a nonparametric representation of beliefs over the
state space, used extensively in robotics. However, in problems involving spatial
activity, e.g., robot navigation, the underlying dynamics are best described in a
hierarchical fashion, as movement is not just determined by local physical laws
and noise characteristics, but also by longer-term goals and preferences. This has
a few implications for predictive models: we require techniques that 1) accept
evidence at varying scales - from very precise position measurements to coarser
forms of knowledge, e.g. human feedback, and 2) make predictions at multiple
scales to support decision making. These form the primary focus of this paper.

Early models of large-scale spatial navigation [5] considered ways in which
multiple representations, ranging from coarse and intuitive topological notions of
connectivity between landmarks to a more detailed metrical and control level de-
scription of action selection, could be brought together in a coherent framework

? At the time of this study, the first author was with The University of Edinburgh.



and implemented on robots. Other recent methods, e.g. [1, 3], propose ways in
which control vector fields could be abstracted so as to support reasoning about
larger-scale tasks. While these works provide useful inspiration, the hierarchy in
these methods is often statically defined by the designer, while in many appli-
cations it is of interest to learn it directly from data, e.g. to enable continual
adaptation over time. Also, these approaches are often silent on how best to
integrate tightly with Bayesian belief estimates, such as within a particle filter.

There is indeed prior work on the notion of hierarchy in state estimation with
particle filters. For instance, Verma et al. [11] define a variable resolution particle
filter for operation in large state spaces, where chosen states are aggregated to
reduce the complexity of the filter. Brandao et al. [2] devise a subspace hierar-
chical particle filter wherein state estimation can be run in parallel with factored
parallel computation. Other ways to factoring computation exist, e.g. [6, 10], and
a hierarchy of feature encodings can be used [13]. However, to the best of our
knowledge, no prior method allows tracking a process on multiple scales at once
and accepts evidence with variable resolutions.

In this paper, we learn a spatial hierarchy directly from input trajectories,
using which we devise a novel construction of a bank of particle filters - one at
each scale in a geometric filtration - which maintain consistent beliefs over the
trajectories as a whole and, through that, over the state space. We present an
agglomerative clustering scheme [7] using the Fréchet distance between trajec-
tories [4] to compute a tree-structured representation of trajectory classes that
correspond to incrementally-coarser partitions of the underlying space. This is
inspired by persistent homology on trajectories [8, 9] whose output is also such a
hierarchical representation. We then define a linear dynamics model at each of
the levels of the hierarchy based on the subset of trajectories they represent, and
show how that can be used with a stream of observations to provide updates to
the probability that the system is following the dynamics associated with each
of the abstracted trajectory classes. This construction of the filter allows us to
fluently incorporate readings of varying resolution if they were accompanied by
an indication of the coarseness with which the observation is to be interpreted.

We show that our proposed method performs better than baselines both in
terms of normalised error in prediction with respect to the ground truth, and in
terms of the time taken for the belief to converge to the true trajectory of a class
(where convergence is defined with respect to the resolution of the prediction
being considered). We perform experiments with synthetic datasets which brings
out the qualitative behaviour of the procedure in a visually intuitive manner.

2 Multiscale Hierarchy of Particle Filters

The Multiscale Hierarchy of Particle Filters (MHPF) is a bank of consistent
particle filters defined over abstractions of the state space induced by example
trajectories. The lowest level of this hierarchy consists of the complete set of
trajectories with cardinality equal to the size of the trajectory dataset, while
each other abstract level has coarser descriptions of the trajectory shape defined



by equivalence class of similar trajectories for increasing thresholds. With a
particle filter defined at each level, this inclusion property of the representation
allows evidence at various degrees of coarseness to be incorporated into the full
bank of filters while maintaining consistency across all levels, see Fig. 2.

Construction To create a filtration of spatial abstractions from trajectories
we consider agglomerative hierarchical clustering [12] by means of a trajectory
distance measure. In this paper, we use the discrete Fréchet distance [4]: for two
discretised d-dimensional trajectories τ1 : [0,m] → Rd and τ2 : [0, n] → Rd,
the distance δF (τ1, τ2) = infα,β maxj≤m+n δE(τ1(α(j)), τ2(β(j))), where α and
β are discrete, monotonic re-parametrisations α : [1 : m + n] → [0 : m], β :
[1 : m + n] → [0 : n] which align the trajectories to each other point-wise,
and δE(., .) is Euclidean distance. Thus, δF corresponds to the maximal point-
wise distance between optimal reparameterisations of τ1 and τ2, which can be
computed efficiently using dynamic programming in O(mn) time [4].

Let D be the distance matrix of the input trajectories, Di,j = Dj,i =
δF (τi, τj). A single-linkage hierarchical agglomerative clustering of D results in a
tree T of trajectory clusters in which the leaves are the single trajectories, while
every other tree layer is created when the pair with the smallest distance from
the previous layer combine together (Fig. 2). If τi and τj are such a pair, we call
the new cluster τij a parent to its constituents and write τij = ρ(τi) = ρ(τj).
Let the birth index b be that minimum distance that indexes the creation of a
layer (e.g., bij = Di,j for τij), and the death index d be the distance at which a
cluster is subsumed to its parent (e.g., di = dj = Di,j for τi and τj). Let C be
the set of all clusters in T . A class ci ∈ C is alive at some index x if bi ≤ x < di.
A level in the tree Cx ⊆ C at index x contains all the classes that are alive at x.
Fig. 1 (Left) illustrates an example clustering.

(a) (b)

Fig. 1: (Left) Trajectory clusters with increasing birth indices of a tree of 14 trajectories using hier-
archical single-linkage agglomerative clustering with Fréchet distance. (Right) The intuition behind
the probability operations in a toy example 2D domain, where (a) three classes merge into two (b).

Thus, a cluster c ∈ C is a collection of qualitatively similar trajectories at
some level of resolution (index) b. The class of behaviour that c represents could
be modelled as a generative model P(z′|z, c), z, z′ ∈ Rd. With the assumption of
no self-intersecting trajectories, we can approximate the dynamics of c at some
arbitrary point z ∈ Rd using a weighted average of velocity at local points of
c in an ε-ball around z: Bε(z) = {z′ ∈ c : δE(z′, z) < ε}, where ε relates to

the density or sparsity of the trajectories. Hence, ż = 1
η

∑
z′∈Bε(z)

ż′

δE(z,z′) , with

normalisation η =
∑
z′∈Bε(z)

1
δE(z,z′) . Thus, z′ ∼ z + ż + γ(κ), where γ(κ) is a

noise term related to dynamics noise κ.
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Fig. 2: An overview of the approach. Trajectories are hierarchically clustered into a filtration of
spatial abstractions (classes), organised in a tree structure by birth indices. Shaded areas on the
tree show levels of the hierarchy, with C0 being the finest level with single trajectory classes. Inset
(a) shows an example particle set and how the tree structure enforces the consistency of class
probabilities. The distributions on the right show an example of a consistent estimate across the
tree maintained by a bank of particle filters. Inset (b) shows an example of a coarse observation
received at one level, and how updates propagate throughout the tree to maintain consistency.

At each level of the tree Cb we define a particle filter where a particle xt

represents a weighted hypothesis of both the class of behaviour c ∈ Cb and the
position zt ∈ Rd at time t. We write (xt(zt, c), wt) where wt is a weight that
reflects to what extent the hypothesis of the particle is compatible with evidence.
We denote by Xb the set of all particles of the filter at Cb. There are two kinds of
observations in MHPF: 1) position observations zt+γ(ψ), where γ(ψ) is a noise
term related to the observation noise parameter ψ; and 2) coarse observations
which provide qualitative evidence regarding the underlying process. Here, we
assume that coarse observations can be identified to one of the classes in C.

Algorithm 1 presents the full MHPF procedure. First, the particle set X0

of the filter at C0 is created by sampling N particles from a prior over initial
positions and class assignment from C0 (individual trajectories) with uniform
weights. Denote by Ni the number of particles of class ci, such that

∑
ci∈C0 Ni =

N . The prior probabilities of the classes ci ∈ C0 can be computed as Ni/N . These
probabilities propagate recursively upwards in the tree by additivity: a parent’s
probability is the sum of its children’s probabilities, Pt(c̄) =

∑
c=ρ−1(c̄) P

t(c).
By the same principle, the children of a class proportionally inherit their par-
ent’s probability when moving down the tree. For the sake of intuition, consider
the simple example in Fig. 1 (Right), where a cluster of trajectories can be un-
derstood spatially as the union of Voronoi cells of trajectory discretisation. The
corresponding probability of this class is the probability of the agent being in
that region. Then, when classes merge at some level of resolution their corre-
sponding regions merge, and thus their probabilities are added up. This simple
technique guarantees consistency of the filters by design.

With the class probabilities specified, the same number of particles as as-
signed to the children are sampled for parents, Nc̄ =

∑
c=ρ−1(c̄)Nc, and this is



Algorithm 1 Multiscale Hierarchy of Particle Filters

Require: Prior over particles, number of basic particles N , the depletion parameter
v, tree structure T

1: Create X0: sample N particles from a prior over C0 ×Rd with equal weights.
2: for each time step t > 0 do
3: Build the tree probabilities up from X0 and C0 (Algorithm 2).
4: for parents c̄ of C0 classes recursively to the root of T do
5: Sample Nc̄ particles; Nc̄ =

∑
c=ρ−1(c̄) Nc, with equal weights

6: end for
7: Sample a new position per particle, zt ∼ P(z|zt−1, c)
8: Receive observation ξt.
9: if fine observation then

10: Cξ = C0.
11: update X0 weights with Euclidean distance to ξt: wt ∝ − log(δE(., ξt)).
12: else if coarse observation at tree level bξ then
13: Find all alive classes at bξ: Cξ = {ci ∈ C : bi ≤ bξ < di}.
14: Compute tree distance δT (c, ξt), for all c ∈ Cξ.
15: Update weights in Xc, c ∈ Cξ relative to distance: wt ∝ − log(δT (c, ξt)).
16: end if
17: Rebuild the tree probabilities from Cξ and Xξ (Algorithm 2).

18: Update particle weights in X \Xξ : wt = wt−1 Pt(c)

Pt−1(c)

19: Update X0: resample N (1− v) particles from X0 based on new weights wt, and
N v particles uniformly randomly from C0.

20: end for

Algorithm 2 Tree Probability Rebuild

Require: Tree structure T , tree level Cb, particle set Xb

1: Update the probabilities of ci ∈ Cb from Xb weights: Pt(ci) =
∑
c(x)=ci

wt(x)∑
x∈Xb

wt(x)

2: for children of Cb classes recursively to the leaves of T do

3: Update child c probability relative to its parent c̄: Pt(c) = Pt−1(c) Pt(c̄)

Pt−1(c̄)

4: end for
5: for parents of C0 classes recursively to the root of T do
6: Update parent c̄ probability relative to its children c: Pt(c̄) =

∑
c=ρ−1(c̄) P

t(c)
7: end for

repeated recursively to the top of the tree. Note that, any arbitrary level Cb of the
tree would have exactly N particles with a proper probability distribution. The
last stage of the tree construction is to sample new positions for the particles.
Note that the class assignment of a particle does not change due to sampling.

Updates A coarse observation ξ ∈ C with resolution bξ targets all the particles
from classes that are alive at Cξ = {ci ∈ C| bi ≤ bξ < di}. To update these
particles, we use the tree distance between classes δT (., .) which we define as
the birth index of the youngest shared parent of the two classes in the tree.
This measures how large the ε-balls around the points of one class need to be to
include the other. For example, in Fig. 2, δT (e, g) = δT (c, e) = bg. The weight of



a particle is updated relative to the distance of the observation from the particle’s
class c, w ∝ − log(δT (ξ, c)). A position observation ξ ∈ Rd, on the other hand,
updates a particle relative to the Euclidean distance between the observation
and the particle’s position z, w ∝ − log(δE(ξ, z)).

After updating all particles in Xξ, the probabilities of the corresponding
classes in Cξ are recomputed as the sum of their particles’ normalised weights,
then propagate to the rest of the tree as in Algorithm 2. Here, children classes
of Cξ are updated first recursively relative to their parents’ new probabilities,

Pt(c) = Pt−1(c) Pt(c̄)
Pt−1(c̄) , ∀c = ρ−1(c̄), then the updates propagate upwards

to update all the remaining parents Pt(c̄) =
∑
c=ρ−1(c̄) P

t(c). Then, particle

weights are updated to reflect the updated class probabilities, wt = wt−1 Pt(c)
Pt−1(c) ,

∀x ∈ X \ Xξ. The final step is to sample N particles from X0 with uniform
weights to get the posterior particle set after incorporating the evidence ξ. To
guard against particle depletion, we replace the classes of a small percentage v
of all particles uniformly randomly to classes from C0.

3 Experiments

We evaluate the performance of MHPF with N = 100 particles in two synthetic
2-dimensional navigation domains, one representing a 2-dimensional configura-
tion space with 33 trajectories, and the other with 13 trajectories (Fig. 3 (Left)).
We compare the performance to particle filters without access to the hierarchical
structure: BL1 is a basic particle filter with N = 100 particles, each follows the
dynamics of a single trajectory (classes c ∈ C0); and BL2 is a particle filter with
N = 100 particles which all follow the averaging dynamics of the trajectories
together with κ noise (Note that BL1 is equivalent to the filter at the bottom
layer of MHPF stack, and BL2 is equivalent to the filter at the top layer.) We
use as metrics: 1) the mean squared error of the filter’s point prediction, 2) the
tree distance of the filter’s predicted class to the ground truth, and 3) the time to
convergence to the true class. Each experiment is run with 10 randomly-selected
ground truth trajectories, reporting averaged scores of 25 repetitions. Trajecto-
ries are uniformly discretised, and the length of a trial depends on the number of
trajectory points. Observation at time t is generated from the discretised ground
truth zt ∈ R2 and the observation noise ψ. A fine observation is defined as zt+γ
where γ ∈ [0, ψ]×[0, ψ], while a coarse observation is selected by sampling n = 10
points from N (zt, ψ2) then finding the class that is most likely to generate these
samples. We use the localised dynamics model as in Section 2 with ε = bc for
some coarse class c and the noise parameter κ. At the end of every step, v = 1%
of the particles is changed randomly.

In the configuration space dataset, we compute the filter’s predicted position
at time t as the w-weighted average of the particle positions when using fine
observations only, and report the average mean squared error (MSE) of the
ground truth over time. MHPF achieved a mean of 0.27 (standard deviation
of 0.04), beating BL1 0.38(0.14) and BL2 0.53(0.13). Fig. 3 (Right) illustrates



the kind of multi-resolution output MHPF can produce, showing the maximum
a posteriori (MAP) class in time at different levels of the tree.

(a) (b)

T
im

e

Coarseness

Fig. 3: (Left) Datasets used. (Right) Evolution of MHPF prediction. The columns show levels across
the tree with the finest at the left, and rows show time steps with the first at the top. Each panel
shows the trajectories of the alive classes. The opacity of the line reflects the probability of the class.

Next, we compare MHPF with BL1 using the 13 trajectory dataset in a situ-
ation where fine observations are consistently generated, but coarse observations
are produced stochastically 50% of the time. We analyse the benefit of this ad-
ditional knowledge by plotting, in Fig. 4a, the average tree distance of the MAP
prediction to the ground truth, with noise parameters (κ = 30%, 50%, 75%) and
(ψ = 1%, 5%). Finally, when fine observations are only provided for a lead-in
period of 5%/ 7.5% of trial length followed by only coarse observations, we show
in Fig. 4b the time needed for the tree distance to converge within the 33%-ball
of the ground truth with noise parameters ψ = 1% and κ = 30%, 75%.

(a) Tree distance of the ground truth to
MAP prediction. Coarse instructions were
provided stochastically 50% of the time.
The plot shows robustness against noise as
dynamics noise varies between 30% (Left)
to 75% (Right) of range, and observation
noise ranges between 1% (Bottom) to 5%
(Top). MHPF converges to a better solu-
tion than the baseline (statistically signif-
icant at p-value= 0.004).

(b) Time needed to reach within
33% of convergence. Fine observa-
tions are provided for a lead-in pe-
riod (5% (Top) and 7.5% (bottom) of
trial time). The plot shows the benefit
of coarse observations to convergence
time. Dynamics noise ranges from 30%
(Left) to 75% (Right), and observation
noise is set to 1%. MHPF converges
faster to the correct solution than the
baseline (statistically significant at a
p-value = 0.02).

Fig. 4: Performance results comparing MHPF (red) and BL1 (blue) - lower is better.



4 Conclusion

We propose an estimation and forecasting approach utilising a filtration over
trajectories and a correspondingly hierarchical representation of probability dis-
tributions over the underlying state space so as to enable Bayesian filtering. A
key benefit of our methodology is the ability to incorporate ‘coarse’ observations
alongside the basic ‘fine’ scale signals. This approach to seamlessly handling
inhomogeneity in scale is a benefit in many robotics and sensor networks appli-
cations. We demonstrate the usefulness of this technique with experiments that
show performance gains over a conventional particle filtering scheme that does
not similarly exploit the geometric structure in the hypothesis space.
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