
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beyond Playing to Win: Diversifying Heuristics for GVGAI

Citation for published version:
Guerrero-Romero, C, Louis, A & Perez-Liebana, D 2017, Beyond Playing to Win: Diversifying Heuristics for
GVGAI. in 2017 IEEE Conference on Computational Intelligence and Games (CIG). DOI:
10.1109/CIG.2017.8080424

Digital Object Identifier (DOI):
10.1109/CIG.2017.8080424

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2017 IEEE Conference on Computational Intelligence and Games (CIG)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jun. 2018

http://dx.doi.org/10.1109/CIG.2017.8080424
https://www.research.ed.ac.uk/portal/en/publications/beyond-playing-to-win-diversifying-heuristics-for-gvgai(ba47c1ae-17ae-48b6-b537-6054d5ff73ae).html


Beyond Playing to Win:
Diversifying Heuristics for GVGAI

Cristina Guerrero-Romero
University of Essex

Colchester, UK
cris.guerrero@essex.ac.uk

Annie Louis†
University of Edinburgh

Edinburgh, UK
alouis@inf.ed.ac.uk

Diego Perez-Liebana
University of Essex

Colchester, UK
dperez@essex.ac.uk

Abstract—General Video Game Playing (GVGP) algorithms
are usually focused on winning and maximizing score but
combining different objectives could turn out to be a solution
that has not been deeply investigated yet. This paper presents
the results obtained when five GVGP agents play a set of games
using heuristics with different objectives: maximizing winning,
maximizing exploration, maximizing the discovery of the different
elements presented in the game (and interactions with them) and
maximizing the acquisition of knowledge in order to accurately
estimate the outcome of each possible interaction. The results
show that the performance of the agents changes depending on
the heuristic used. So making use of several agents with different
goals (and their pertinent heuristics) could be a feasible approach
to follow in GVGP, allowing different behaviors in response to
the diverse situations presented in the games.

I. INTRODUCTION

When creating a heuristic or an agent to play a game, the
objective is usually clear: to win. There’s little discussion
about the fact that most efforts in agent Game AI try to either
achieve victory or to maximize the game score in the domain
being investigated. For instance, when creating drivers for the
Car Racing competition [1], the objective is to be the first
car that crosses the finish line. If the agent is playing Mario
AI [2], the aim is to reach the end of the level alive, avoiding
the hazards on the way and maximizing the score.

Building AI for agents that play games like these can be
a simple or a complicated task, depending on the approach
followed, but one aspect is common: the programmer typically
knows how to win the game. They know that it is safer
to overtake another driver in certain circumstances, or that
collecting coins is a task worth pursuing to maximize game
score. These concepts are usually included in the agents as
heuristics that allow the algorithm to explore the search space
in a more determined way.

However, when building agents for General Video Game
Playing (GVGP), these heuristics are less clear, especially
if the game that is being played is unknown a priori. In
the concrete case of the General Video Game AI (GVGAI)
Framework and Competition1, with a collection of more than
150 games at the time of this writing, the possibilities of
writing heuristics that can guide search in all games are
greatly reduced. After three years of GVGAI competitions,

†Work done while at University of Essex
1http://www.gvgai.net/

there hasn’t been a single approach that has been able to
achieve more than 60% of victories across the different game
sets and, in most cases, winners achieve a rate below 50%.

An assorted range of approaches has featured in the contest
during this time, from Evolutionary Algorithms (EA) to Monte
Carlo Tree Search (MCTS) techniques, including multiple
variants and other more straightforward approaches such as
Breadth First Search (BFS) or A*. In some cases, several of
these approaches are glued together, using a high level switch
that determines the algorithm to use, in the form of a meta-
heuristic [3]. All these approaches have, quite naturally and
understandably, a common objective: to achieve victory.

This work presents a study across algorithms and game-
independent heuristics in 20 games of the GVGAI corpus.
However, the aim here is to present different types of game-
agnostic heuristics that, rather than aiming to win, have dif-
ferent objectives, such as exploring the level, triggering game
interactions and gathering knowledge about the dynamics of
the game. The ultimate goal is to pave the path for higher level,
general algorithms, which will be able to combine different
heuristics efficiently in order to improve the chances of not
only winning, but also obtaining a better understanding of
the game being played. Gaining and using this understanding,
when in GVGAI this information is not directly available,
could ultimately increase the performance of the general
algorithms in terms of winning.

This paper is organized as follows. Section II details pre-
vious work on GVGAI controllers and heuristics. Section III
describes the search methods used in this work, and is followed
by definitions of proposed game heuristics in Section IV.
Section V describes the experimental setup and the different
ways these heuristics are evaluated, including a discussion
about the results obtained.

II. BACKGROUND

The General Video Game AI Framework (GVGAI) is a
port to Java from the original py-vgdl [4], an initial version
implemented by Tom Schaul, as a benchmark for planning and
learning problems. Games in this framework are described in
the Video Game Description Language (VGDL), that allows
the definition of 2D arcade games, for single and two-players,
where the player controls an avatar that is able to interact
with other sprites in the game. The engine exposes a Java



object interface to query the game status (game ticks, score and
winning conditions), the state of the avatar (position, velocity,
orientation, etc.), the available actions and a view to the other
sprites of the game via Observations. These, anonymize the
type of the sprite by providing an arbitrary integer identifier,
but includes its real position in the level grid.

More importantly, the framework provides the AI agent with
a forward model, which can be used to foresee the next states
reached after an action has been taken in a simulated manner.
The controller (agent) must return an action within the 40ms of
budget time at each tick, and it counts on 1s for initialization
at the beginning of the game. Additionally, the engine does not
provide the VGDL description of the game, nor the rules or
ways to achieve victory, leaving this to the agent to discover.

GVGAI has run as a competition since 2014, receiving the
submission of more than a hundred of entries since. Apart from
the single player planning [5], a two-player track [6] spawned
in 2016 and attracted eight entries in its first edition of the
contest. Both tracks were mostly dominated by tree search
techniques, like Adrien Couëtoux’s OLETS for single [5] and
two-player games [6] (and used in this work) or the winner of
the 2015 and 2016 editions, YOLOBOT [7], who combined
MCTS, BFS and targeting heuristics.

Heuristics are the base of every general algorithm, and
could be decisive for its performance. This paper presents
four heuristics, with different goals: winning, exploration,
knowledge discovery and knowledge estimation. Some authors
have looked onto the creation of heuristics of this kind before.
Perez et al. [8] developed a domain independent exploration
heuristic, based on pheromones that would prevent the agent
from staying in the same position too often, hence encouraging
exploration of the level. This heuristic was used later in [9], for
a Multi-Objective implementation of MCTS (MO-MCTS) in
GVGAI, which employed this exploration heuristic as another
objective to optimize during play. Interestingly, the authors
showed that MO-MCTS was able to improve the performance
of the single-objective MCTS algorithm that used a linear
combination of the objectives as value function, and also that
simply switching between objectives (uniformly at random,
one at a time) was able to obtain decent results in many games.

In a similar work to the knowledge discovery and estimation
heuristic presented in this paper, Perez et al. [10] proposed an
heuristic based on rewarding interactions with sprites in the
game to estimate the value of colliding with them. The final
algorithm, also hybridized with an Evolutionary Algorithm to
guide the Monte Carlo simulations, improved the performance
of a vanilla MCTS in the first set of GVGAI games.

Likewise, C. Chu et al. [11] propose the use of potential
fields to replace the Euclidean distances employed in [10],
by including attractors and repellers in the level based on the
influence of the surrounding sprites, slightly improving the
victory rate of the algorithms in this set. Additionally, H. Park
et al. [12] propose the use of Influence Maps (IM) to help
MCTS navigate the search space more efficiently. By means
of the forward model, the authors interact with sprites in order
to estimate the goodness of all game entities and build an IM,

using the concept of curiosity as a way to stimulate the agent
towards those sprites is has less knowledge of. Then, the IM
takes part of MCTS Tree Policy as an extra term, guiding the
search and delivering some final promising results.

It is worth mentioning that, although diverting goals from
winning and maximizing score is an innovative approach for
GVGP, exploring alternative heuristics has been investigated
outside the scope of general video game playing. An example
is the use of agents for player modeling; like the work
of Holmgård et al. in [13] [14], where agents (Procedural
Personas) were trained to simulate human playing style and
decision making process in a dungeon-themed puzzle game.

III. CONTROLLERS

As the GVGAI Framework is used for the GVGAI Compe-
tition, a range of sample general controllers are available. We
used five of these sample controllers and adapted them to fit
the needs of the experiment.

1) OLETS (Open-Loop Expectimax Tree Search): This
agent was created by Adrien Couëtoux, winner of the 2014
GVGAI Competition [5]. It has shown a strong performance
across different game sets, and it can be easily adapted to
different heuristics. The algorithm behind this agent is based
on Hierarchical Open-Loop Optimistic Planning (HOLOP), a
tree search method that uses sampling to perform search in the
game state space. OLETS performs no rollouts and substitutes
the average of rewards for a more involved calculation. For
more details about this agent, the reader is referred to [5].

2) OLMCTS (Open-Loop Monte-Carlo Tree Search): Ver-
sion of the Monte-Carlo Tree Search (MCTS) algorithm that
uses an open-loop approach [8]. MCTS is a search algorithm
that builds an asymmetric tree in memory, which grows
towards the most promising parts of the search space. Adding
one node to the tree at each iteration, tree navigation is guided
by a policy that balances exploration of new actions and
exploitation of the most promising ones. Random rollouts
are run from the leaves of the tree to estimate the value of
the states. For more information on MCTS, its variants and
applications, please see [15].

3) OSLA (One Step Look Ahead): One of the simplest
algorithms in the sample pool. It checks every available
action and estimates the reward gained when each of them is
executed, carrying out the one with the best evaluation rating.

4) RHEA (Rolling Horizon Evolutionary Algorithm):
RHEA is an online evolutionary algorithm that evolves plans
or sequences of actions during the time budget. It has shown a
promising performance when compared to MCTS in GVGAI
and other domains [16]. Once the best individual is identified,
the agent performs the first action in the sequence.

5) RS (Random Search): This algorithm spends the time
budget to decide a move in trying random action sequences.
As in RHEA, all actions are executed sequentially until end of
the plan is reached, where the state is evaluated by an heuristic.
The action returned to the game is the first one in the sequence
found to maximize this value. RS has recently shown very
good results in the same set of games used in this paper [16].



These controllers were taken from the sample pool and
modified accordingly in order to provide a common ground
for the comparison of both the algorithms and the heuristics
used. First of all, whenever possible, the search depth of the
algorithms has been set to 10. Note that in some cases (like in
OLETS or OSLA), the algorithm itself prevents search from
reaching this depth in the time allowed per move. Secondly,
the value function that evaluates game states on each algorithm
has been isolated so it can be easily exchanged by the different
ones presented in this paper. Finally, a form of cumulative
reward has been put in place for all algorithms. This allows the
longer lookahead algorithms (OLETS, OLMCTS, RHEA &
RS) to keep track of the state of the game at every step during
the evaluation, as it allows using rewards more accurately
during the evaluation process instead of having just the end
state of the roll-out/evaluation as a reference. Note that this is
already in place by default in OSLA, as it only simulates one
step ahead in the search.

IV. GAME HEURISTICS

This section describes the four heuristics explored in this
paper. These heuristics affect the way the state is evaluated,
and thus guide the search and inform the recommendation
policies to play an action in the real game. For each heuristic,
we specify its goal, the way the heuristic works, and its
pseudocode (Algorithms 1 to 4). As a common ground for
all heuristics, it is worth defining the following concepts:

• Heuristic value: Result of the evaluation of a game state,
as defined in the Algorithms 1 to 4. High and low numeric
values for the heuristics are indicated with H+ and H−,
respectively, and all the other rewards are given in relative
terms to these. For the experiments described in this
paper, H is set to an arbitrary high value of 106.

• Collision (same as Interaction or Event): Effect of two
sprites being in contact during the game, one of the two
sprites being the avatar (i.e. the player). An example
could be the player collecting an item in the game.

• Action-onto: Particular case of a collision when one of
the two sprites in the interaction is a sprite generated by
the avatar. An example of this interaction type is a bullet
shot by the avatar hitting a target.

A. Winning Maximization (WMH)

Goal: The goal of this heuristic is to win the game.
GVGP algorithms are usually focused on winning the game

and, if possible, maximizing the score obtained. This is the
aim which all sample agents were following in their original
heuristics, even when they were not designed exactly in the
same way. WMH, as specified in Algorithm 1, penalizes the
end states where the player loses and rewards those where the
agent is proclaimed the winner. In the rest of the states, the
difference of the score is set as heuristic value.

B. Exploration Maximization (EMH)

Goal: The goal of this heuristic is to maximize exploration
of the level.

Algorithm 1 Winning Maximization (WMH)
if is EndfTheGame() and is Loser() then

return H−

else if is EndOfTheGame() and is Winner() then
return H+

return new score - game score

Algorithm 2 Exploration Maximization (EMH)
if is EndfTheGame() then

return H−

else if is outOfBounds(pos) then
return H−

if not hasBeenBefore(pos) then
return H+/100

else if is SameAsCurrentPos(pos) then
return H−/200

return H−/400

This heuristic is focused on rewarding the agent that visits as
many different locations of the level as possible. At the begin-
ning of the game, an empty exploration matrix is initialized.
Every time step, this exploration information is updated to
annotate the current position of the player as visited. This data
is used by the heuristic when subsequent states are evaluated,
providing a positive reward in those locations where the agent
has never been before. In addition, negative rewards are given
if the agent remains in the same position in consecutive moves.
Algorithm 2 shows the pseudocode for this heuristic.

C. Knowledge Discovery (KDH)

Goal: The goal of this heuristic is to interact with the game
as much as possible, triggering sprite spawns and interactions.

This heuristic is focused on maximizing the discovery of the
different sprites present in the game, and trying to perform
interactions with all of them. We say that the agent has
acknowledged a sprite if its type has been observed either in
gameplay or in the simulations using the forward model. At the
beginning of the game, the acknowledgement of the sprites is
initialized using the available information (i.e. what sprites are
visible right before the game starts). Regarding the interactions
with sprites, the following types have been considered:

• Collision. When the agent itself bumps into another sprite
of the game.

• Action-onto. When an item previously created by the
agent (typically because an action of type ACTION was
executed previously) has collided with another sprite of
the game.

Every interaction with another sprite is recorded in an
interaction table. KDH rewards those states where new sprites
are acknowledged. If no new sprites emerge in the next
state reached, it prioritizes carrying out new interactions.
Ultimately, if no new interactions are at their disposal either,
the heuristic rewards interactions that have occurred in the
past, but if they happen now in different locations of the level.



Algorithm 3 Knowledge Discovery (KDH)
if is EndfTheGame() and is Loser() then

return H−

else if is EndfTheGame() and is Winner() then
return H−/2

else if is outfBounds(pos) then
return H−

if newSpriteAck() then
return H+

if eventOccured(lastT ick) then
if is newUniqueInteraction(event) then

return H+/10
else if is newCuriosityCollision(event) then

return H+/200
else if is newCuriosityAction(event) then

return H+/400

return H−

400

This is referred to as curiosity in the rest of this paper. Please
refer to Algorithm 3 for the pseudocode of this heuristic.

D. Knowledge Estimation (KEH)

Goal: The goal of this heuristic is to predict the outcome
of interacting with sprites, both changes in the victory status
and in score modifiers.

This heuristic is focused on acquiring the best possible
knowledge of the game dynamics, in order to estimate the
advantages and disadvantages of each possible interaction.
The goal is to provide an estimation of the winning/losing
conditions and the score change when interacting with each
one of the sprites present in the game. During the game, the
heuristic gathers the following information for each interaction
type (collisions and actions-onto) with every sprite:

• Win condition. Depending on the game, interactions be-
tween sprites can trigger a termination condition or not.
After an interaction has been detected, the game could
have finished because that particular interaction meets a
termination requirement, so the total number of wins and
defeats encountered are collected. This information will
be used to predict (by simply calculating the average)
the win condition at the end of the game, which ideally
would be 0 (if that specific interaction never produces a
game over), or 1 or −1, in case it triggers a termination
condition making the player to win or lose, respectively.

• Score change. Some interactions trigger a modification
in the score of the game, which is the second piece
of information that KEH tries to predict. Therefore, the
change in the score presumably derived from a detected
interaction is accumulated. At the end of the game, this
accumulated information will be used to estimate the
score change per interaction (again, by calculating the
average of score change for this sprite), which ideally
will be 0 if the specific interaction does not affect the
score at all or a value (positive or negative) if it does.

Algorithm 4 Knowledge Estimation (KEH)
if is EndfTheGame() and is Loser() then

return H−

else if is EndfTheGame() and is Winner() then
return H−/2

else if is outfBounds(pos) then
return H−

if newSpriteAck() then
return H+

if eventOccured(lastT ick) then
if is newUniqueInteraction(events) then

return H+/10

return rewardForTheEvents(events) {∈ [0, H+

100 ]}
n int = getTotalNStypeInteractions(int history)
if n int == 0 then

return 0
return H−/(200× n int) {∈ [H

−

200 , 0]}

As it is possible that some sprites in the game have never
been subject of an interaction by the avatar, a default value of 0
is given for both Win Condition and Score Change. Effectively,
this implies an assumption that, upon lack of interactions
with a given sprite, it will predict that no score or changes
on game termination are triggered by this sprite. Therefore,
but rather than maximizing the number of interactions with
the same sprites, KEH attempts to uniformly interact with
all the available ones, in order to better estimate the effects
of these collisions and improve upon the default estimations.
Algorithm 4 indicates the pseudocode of this heuristic.

V. EXPERIMENTAL WORK

A. Experimental Setup

There are more than a hundred of games available in the
GVGAI Framework, all of them with different properties and
characteristics. As testing the methods proposed in this paper
in all games in the framework is prohibitively expensive, we
selected a subset of them in a way that best represents the
variety of games in the benchmark. Some authors had already
looked into a way of selecting games with the aim of using
the GVGAI framework as a benchmark for experiments, for
instance the work of Gaina et al [16], [17] on Rolling Horizon
evolutionary methods.

On account of this, the authors combined two classifications
already presented in previous works: a selection of games
based on how Monte Carlo Tree Search (MCTS) performed
in them [18], and a classification of games in clusters by
their features [19]. The final set is constituted by 20 games,
presented in Table I, and it is the one employed in this paper.

Five agents (OLETS, OLMCTS, OSLA, RHEA and RS)
have been run with four different heuristics (WMH, EMH,
KDH and KEH), for a total of 20 different configurations
used in this experiment. Each of these agents have played
the first level of each game for 20 times, to reach a total of
400 games played for each agent with an heuristic. For each



Deterministic games Stochastic games
Bait Camel Race Aliens Butterflies

Chase Escape Chopper Crossfire
Hungry Birds Lemmings Digdug Infection

Missile Command Modality Intersection Roguelike
Plaque Attack Wait For Breakfast Seaquest Survive Zombies

TABLE I
NAMES OF THE 20 GAMES FROM THE SUBSET SELECTED [17].

heuristic, controllers are sorted according to their results in
each game, based on a criteria tailored to the heuristic em-
ployed. Therefore, this section presents four different rankings,
one per heuristic, determining the best algorithms at each task.

In all rankings, the Formula 1 point system used in the
GVGAI Competition has been used to sort the agents. As five
algorithms are used in this experiment, they receive 25, 18,
15, 12 or 10 points, depending on the position achieved. The
final ranking for the heuristic processed is determined by the
total sum of the scores received across the 20 games. This
point system has been previously adopted by authors using
the GVGAI framework for performance benchmarking [20]
as it allows a fair perspective on the general performance of
the agents when a set of games is considered.

Apart from the final rankings for each of the heuristics,
some statistics are included in order to provide an overview
of the overall performance of the agents. Note that some of the
criteria in the ranking benchmark is used merely for breaking
ties and are not really worth to be summarized (i.e. game ticks
results). Some other data is highly dependent on the games and
cannot be generalized or summarized in a unique table per
heuristic (i.e. score for WMH) and it has not been included in
the statistics unless it has been found (although game-relative
still) generalizable enough to be comparable.

B. Rankings for WMH

The data gathered at the end of the game for the Winning
Maximization Heuristic includes three values: win condition
(a 1 or a 0, determined by the game finishing with a victory
for the agent or not, respectively), score (number of points at
the end of the game) and timesteps (game ticks played).

Given the results of different controllers in a game, the
agent with the highest percentage of victories is considered
the best one. In case of a tie, higher scores are better. For
game ticks, a lower average of timesteps to victory is preferred
(indicative that the game was won faster), while a higher value
is better for games lost (which suggest a longer survival time).
This ranking system is similar to the one used in the GVGAI
competition.

Table II shows the final rankings according to this system.
The statistics included in this case are the overall average of
percentage of victories obtained for each of the controllers.

The performance of RHEA is noticeably poor compared
with the rest of the algorithms, being last in the ranking
with a mere 10% (3.29) overall percentage of victories, in
contrast with the 34.00% (4.95) obtained by OSLA (ranked
in 4th position) and the 59.00% (5.43) achieved by OLETS,
ranked 1st and with the best stats for the WMH. Unlike RHEA,

WMH Stats
Controller F-1 Points Total average % of Wins

OLETS 449 59.00 (5.43)
RS 356 51.00 (4.24)

OLMCTS 333 41.50 (3.69)
OSLA 283 34.00 (4.95)
RHEA 224 10.00 (3.29)

TABLE II
WMH STATS TABLE, PRESENTING THE OVERALL AVERAGE OF

PERCENTAGE OF WINS OBTAINED FOR EACH OF THE CONTROLLERS

RS performs well, finishing in 2nd position of the ranking
with the second best numbers. It is interesting that these two
algorithms, even while following a similar approach, have
clearly different performance, indicating that further tweaking
of the default RHEA parameters could land better results. It is
worth mentioning that, specifically for the game Intersection,
the difference between this algorithm and the other ones is
notable, as RHEA averages no victories when for the rest the
average is 100.00%.

Result tables with performance on a game per game basis
have not been included in this paper for the sake of space, but
some interesting results have been observed and are discussed
next. Firstly, an average of victories of 0.00% has been found
for CamelRace, Digdug, Lemmings and Roguelike, meaning
that none of the controllers managed to win these games.
The last three corresponds with games with big levels where
the agent must carry out accurate actions in order to trigger
the winning condition and, because of the limited resources
employed in this heuristic, is understandable that any of them
managed to find the solution. However, it is interesting that
the first game has not been solved, given that to win Camel
Race, moving in a straight line to the right, where the goal
is located, is enough. Clearly, even the simplest of the games
poses a challenge for agents when the information about the
dynamics of the game is restricted. Also Hungry Birds was
very close to fall onto the category of unsolvable games as
only OLETS managed to win it, with a prominent 65% (10.67)
average of victories. Similarly, Crossfire was only solved by
three of the algorithms (OLETS, OSLA and RS) with a very
low percentage of victories achieved by the last two (5.00%
(4.87)). Regarding games with an overall high percentage of
victories (higher than 80% on average), we could mention
Aliens, Infection, Intersection and Modality. In summary, it can
be concluded that OLETS works really well with the WMH,
while RHEA shows a poorer performance.

C. Rankings for EMH

The rankings designed for the Exploration Maximization
Heuristic consider two main aspects. First, the number of dif-
ferent positions marked as visited in the heuristic’s exploration
matrix is used to calculate the percentage of the level explored.
As the number of valid positions depends on the game and
level played, and that information is not available through the
agent’s interface, the maximum exploration was calculated by
hand for all levels. On a given game, a higher exploration



EMH Stats
Controller F1-Points Total average % Explored

RS 428 74.94 (1.83)
OLETS 377 76.86 (2.19)

OLMCTS 309 65.60 (1.64)
OSLA 282 54.14 (2.18)
RHEA 204 27.56 (1.64)

TABLE III
EMH STATS TABLE, PRESENTING THE OVERALL AVERAGE OF

PERCENTAGE EXPLORED OBTAINED FOR EACH OF THE CONTROLLERS

percentage is better. In order to break ties, the game tick when
the agent visited the last new position is recorded, being the
smaller the better in order to reward a faster exploration.

Table III shows the final rankings obtained for this heuris-
tic. The ranking obtained for the Exploration Maximization
Heuristic looks very similar to the one for WMH. Interestingly,
the overall average of percentage of exploration for RS and
OLETS is almost the same, and even slightly higher for
OLETS (74.94% (1.83) and 76.86% (2.19)), but it is RS
the algorithm achieving the 1st position, with a total of 428
points, being OLETS second with 377. OLMCTS is third with
309 points and a performance of 65.60% (1.64). RHEA has
a notably poor performance compared with the rest of the
algorithms (27.56% (1.64)) and ranks last, headed by OSLA,
in 4th place, with a performance of 54.14% (2.18).

For the per-game analysis, only in Aliens some of the agents
(RS, OLETS and OLMCTS) manage to achieve a 100.00%
of exploration, but games like Butterflies, Chase, Chopper,
Modality and Survive Zombies present a high performance
from the agents, with a total average of more than 80%. In
all these games, the level played is completely accessible,
meaning that the agent does not have to make an action or
interact with other sprites in order to be able to reach the
positions in the navigation matrix. Only two of the games have
a significant mediocre average performance of the controllers:
Camel Race, which finishes very quickly (as the NPC win
the game rapidly) and does not provide the agents enough
time to explore; and Roguelike, which has a large map with
two distinguished zones; the agents having to collect a key in
order to access to the second one.

D. Rankings for KDH

For the Knowledge Discovery Heuristic, agents are ranked
according to the following criteria (each point is a tie-breaker
of the previous one):

• Sprites acknowledged: Number of different game entities
acknowledged. This is, how many different sprites type
IDs are observed during the game or the forward model
simulations. The higher the better.

• Unique interactions: Number of collisions and actions-
onto involving different pair of sprites, the higher the
better.

• Curiosity: Number of interactions with sprites in differ-
ent locations of the game, favoring higher values for
collisions than action-onto curiosity instances. Note that

KDH Stats
Controller F1-Points % Ack (Rel) % Int (Rel) % CC (Rel) % CA (Rel)

RS 414 100.00 96.18 85.46 87.42
RHEA 342 99.66 95.48 62.48 54.44

OLMCTS 330 99.79 93.53 84.75 84.06
OLETS 279 99.86 88.97 90.72 77.55
OSLA 235 98.48 84.99 56.37 51.75

TABLE IV
KDH RANKINGS AND OVERALL GAME-RELATIVE (REL) PERCENTAGES
FOR SPRITES ACKNOWLEDGED (ACK), INTERACTIONS ACHIEVED (INT),

CURIOSITY COLLISION (CC) AND CURIOSITY ACTION-ONTO (CA)

both positions and sprites are taken into account, making
more than one curiosity interaction possible in a certain
location if it involves different sprites.

• Last acknowledgment game tick. Game tick of the last
new sprite acknowledged. As in the next two points, the
lower this value, the better.

• Last interactions game ticks. Game tick of the last new
interaction that took place.

• Last curiosity game ticks. Game tick of the last new
curiosity instance recorded (either for collision or for the
action-onto type).

Table IV shows the final rankings obtained for this heuristic.
Here, the statistics are given in percentages, in contrast with
the criteria used for the F1 ranking. As there is no informa-
tion about the total number of sprites acknowledgeable per
game, and it is not possible to gather this data accurately, a
benchmark based on relative information per game (number
of sprites) was used. However, this measurement could not be
generalized to provide valid overview statistics, as the number
of sprites is different between games. Therefore, another
approach was followed. For each game, the highest value
obtained for any of the controllers was used as benchmark to
calculate the relative performance percentage for each of the
agents for that particular game; meaning that for every game
there is always at least one algorithm with a performance of
100%. The statistics displayed in the table give the average of
this percentage performance through every game.

For KDH, RS ends up in 1st position with 414 points,
followed by RHEA with 342 points, OLMCTS with 330
points, OLETS with 279 points and OSLA last with 235
points. RS is the algorithm that performs the best, achieving
100% performance in acknowledgement, meaning that it is
the only controller that was capable of acknowledging the
maximum number of sprites for every game. Also, for the other
achievements considered, it always performs the first or the
second with high performance, which is a remarkable result.
The algorithm that performs the worst in general is OSLA
as, although its performance acknowledging the elements and
interacting with them it is over 80%, the curiosity performance
is just around a 50%. The best performance for collision
curiosity is achieved by OLETS’ with a 90.72%.

E. Rankings for KEH

The data collected for the Knowledge Estimation Heuristic
rankings must reflect how well the agent is able to estimate



KEH Stats
Controller F1-Points Avg. Square Error Average % Int estimated
OLMCTS 347 0.338 97.92

RHEA 330 0.505 97.50
OSLA 313 0.617 73.19

RS 310 0.528 98.33
OLETS 300 1.086 87.92

TABLE V
KEH RANKINGS AND OVERALL AVERAGE OF THE SQUARE ERROR

AVERAGE AND THE OVERALL GAME-RELATIVE (REL) PERCENTAGE FOR
THE INTERACTIONS ESTIMATED (INT ESTIMATED)

the dynamics of the game, in terms of score awarded when
colliding with a sprite, and changes on the victory status.
In order to achieve this goal, estimations of the outcomes
of each interaction type (collisions and actions-onto) are
gathered from the agent when the game is over, in terms of
the likelihood of winning or losing the game and the score
awarded after colliding with such sprite. These estimations
must be compared with the true outcome in order to determine
how accurate these predictions are. The ground truth about
each one of the games has been extracted manually, regarding
sprites that cause score change or winning/losing the game.

For every prediction, the square error to the ground truth
is calculated, and the mean of square errors determine the
total prediction error incurred by the agent in that game. This
quantity is the first decisive factor for the rankings, the best
controller being the one with the smallest average of square
errors. In the (rare) case of a tie, the number of interactions
that the controller was able to give a prediction for, is used as
a tie-breaker, considering the higher the better.

Table V shows the rankings obtained with this criteria,
including the average of square errors in all games. The
statistics presented for KEH are the overall average of the
average of square errors obtained for each the games and
the percentage of interactions estimated. Notice that this
interactions percentage has been obtained game-relatively,
considering the highest value given by a controller for each of
the games as benchmark to obtain the performance. The value
displayed in the table has been obtained with the average of
these values for all games.

OLMCTS ranks first for KEH with 347 points, followed
by RHEA with 330 points. Last three positions, OSLA, RS
and OLETS are very close to each other in number of points
achieved: 313, 310 and 300, respectively. It is noticeable how
the average square error is not very good overall, as the best
performance average is OLMCTS’s 0.338. Also, none of the
agents has remarkably better performance than the others, as
the difference of points between OLMCTS and OLETS is
just 47. However, it is worth mentioning that, unless there
is a poor overall performance, the estimations for some of
the interactions in certain games are very accurate. There are
even a few cases where the outcome of the interaction with
a determined sprite is estimated by all the controllers with an
average square error of 0.00%. Most of these cases are related
with estimations for the interactions of the type collision.

Rankings
WMH EMH KDH KEH

1st 449 OLETS 428 RS 414 RS 347 OLMCTS
2nd 356 RS 377 OLETS 342 RHEA 330 RHEA
3rd 333 OLMCTS 309 OLMCTS 330 OLMCTS 313 OSLA
4th 283 OSLA 282 OSLA 279 OLETS 310 RS
5th 224 RHEA 204 RHEA 235 OSLA 300 OLETS

TABLE VI
AGENTS RANKED BY HEURISTIC, INCLUDING THE TOTAL NUMBER OF

POINTS ACHIEVED BY EACH ALGORITHM.

In Aliens, all five controllers are capable of giving an
accurate estimation for the collisions with both the bomb
and the alien sprites, predicting an inarguable defeat. Another
example of accuracy has been found in Chase, where exists a
sprite of type ’angry goat’ that can (or not) emerge at some
point during the game and kills the avatar when colliding with
it, also removing one point from the score. OLMCTS, RS and
RHEA managed to discover this sprite and interaction, and
predicting both winning condition and score change with an
average square error of 0.00%. Finally, it is worth mentioning
how RHEA is capable of predicting with an average square
error of 0.00% every outcome of every sprite interaction for
the game Escape, which is a remarkable achievement. These
are only some of the results of good performance detected
when analyzing the data obtained, but many examples with
a bad performance have been encountered. It shows how
challenging and difficult is the task of predicting and trying
to understand the game when its information is very limited.

F. Rankings overview

Table VI provides an overview of the rankings obtained
for each of the heuristics. It displays the position of each of
the controllers and the total number of points achieved. The
number of points scored by the controllers in the first positions
for WMH, EMH, KDH and KEH are, respectively, 449, 428,
414 and 347. Note that the difference between the first and last
positions for WMH, EMH and KDH is higher than for KEH,
with a more uniform distribution of points in the last case,
suggesting that the performance of the algorithms for KEH is
very similar, with no algorithm showing a clear dominance.

It is worth mentioning the heterogeneous results obtained, as
three different controllers (OLETS, RS and OLMCTS) have
reached a first position and other three (RHEA, OSLA and
OLETS) have lost in at least one of the rankings. In addition,
there is a noticeable difference for each of the heuristics:
RHEA performs poorly for both WMH and EMH (being last
and with a significant difference in scores with OSLA, in
4th place) but appears on the top of the ranking for KDH
and KEH, ranking 2nd in both of them with 342 and 330
points. There is also a remarkable change in the order of the
controllers; unlike for RHEA, OLETS performs very well for
WMH and EMH but ranks 4th and last in both of the heuristics
involving knowledge. OSLA maintains a similar rank through
over all the heuristics (4th for WMH and EMH, last for KDH
and 3rd for KEH) and OLMCTS, with a medium performance
for WMH, EMH and KDH, reaches the first position for KEH.
Finally, it can be said that RS has generally good performance,



being second for WMH, first for EMH and KDH and, even in
a fourth position for KEH, the difference of points between
the positions in the rank is not as high as in the other rankings.

VI. CONCLUSIONS

The main purpose of the experiment conducted in this work
was to analyze how known general agents perform when their
objective is changed. By means of different heuristics, the
goal of the search methods is modified to explore, interact
or predict, rather than wining games. 5 different sample
GVGAI controllers are employed for this study (OLETS, RS,
OLMCTS, OSLA and RHEA), and 4 heuristics were designed:
winning, exploration, knowledge discovery and estimation.

This work can be taken as a first step in the possibility of
enlarging GVGP techniques. These would use and combine
different heuristics to gain useful knowledge about the dynam-
ics of the game and improve the performance of the general
algorithms. It is worth mentioning that, even when the GVGAI
framework has been used for the experiment, these strategies
should be applicable to GVGP in general, and even extended
to put into practice a general evaluation of levels and games.

From the heterogeneous results, we can deduce two im-
portant things: how challenging and difficult is the task of
achieving different goals with a good performance for every
game when it is generalized; and how the performance of
the agents changes depending on the heuristic used, a very
interesting and thought-inspiring result. It is sensible to think
that all the heuristics presented here may come in handy
at different moments of playing a game; for instance, it
sounds reasonable that a first stage of play would use the
knowledge discovery and knowledge estimation heuristics to
achieve a better understanding of the game (note that all
heuristics specifically penalize losing the game - thus this can
be considered a “safe” search). Once certain conditions have
been met, it could be the time to proceed to use a combination
of winning and exploration heuristics (for instance, in a multi-
objective setting, as in [9]) to try to achieve victory and
maximize score, but influenced for the discoveries found in
the previous stage. Furthermore, it could be possible to design
a high level meta-heuristic algorithm, capable of combining
and selecting different agents and heuristics in-game. Having
an available set of general algorithms with different objectives
(provided by the pertinent heuristic) could allow the agent to
accommodate to different situations that emerge during the
games, and to switch behavior in response to the environment.

In terms of using the right controller, it would be reasonable
to choose the one with best results for the heuristic to be
used; or the one with steady results, if several heuristics are
brought together. If combining WMH and EMH, the choice
would be between using RS or OLETS but, if knowledge is
also included, it would be preferable to use RS or OLMCTS.
Future work will combine the idea of exploring and exploiting
the level, making the most from the knowledge acquired in
order to improve the performance in terms of winning.

Last but not least, although there is still room for improve-
ment, these agents and heuristics are capable of obtaining a

relatively good understanding of the game being played. This
information can be used not only to play games better, but
also to aid general procedural content generation of levels and
games, clearly being an alternative for generators for the Level
and Rule Generation GVGAI competition [7].

ACKNOWLEDGMENT

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/L015846/1.

REFERENCES

[1] D. Loiacono et al., “The 2009 Simulated Car Racing Championship,”
IEEE Trans. on Computational Intelligence and AI in Games, vol. 2:2,
pp. 131–147, 2010.

[2] J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yannakakis, “The
Mario AI Championship 2009-2012,” AI Magazine, vol. 34, no. 3, pp.
89–92, 2013.

[3] A. Mendes, A. Nealen, and J. Togelius, “Hyperheuristic General Video
Game Playing,” Proceedings of Computational Intelligence and Games
(CIG). IEEE, 2016.

[4] T. Schaul, “A Video Game Description Language for Model-Based or
Interactive Learning,” in Conference on Computational Intelligence in
Games (CIG). IEEE, 2013, pp. 1–8.

[5] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.

[6] R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video Game
for 2 Players: Framework and Competition,” in Proc. of the IEEE
Computer Science and Electronic Engineering Conference, 2016.

[7] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General Video Game AI: Competition, Challenges and
Opportunities,” in 13th AAAI Conference on Artificial Intelligence, 2016.

[8] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and
S. Lucas, “Open Loop Search for General Video Game Playing,” in
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation. ACM, 2015, pp. 337–344.

[9] D. Perez-Liebana, S. Mostaghim, and S. M. Lucas, “Multi-Objective
Tree Search Approaches for General Video Game Playing,” in IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 624–631.

[10] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-Based Fast Evo-
lutionary MCTS for General Video Game Playing,” in Conference on
Computational Intelligence and Games. IEEE, 2014, pp. 1–8.

[11] C. Y. Chu, T. Harada, and R. Thawonmas, “Biasing Monte-Carlo
Rollouts with Potential Field in General Video Game Playing,” , 2015.

[12] H. Park and K.-J. Kim, “MCTS with Influence Map for General
Video Game Playing,” in Conference on Computational Intelligence and
Games (CIG). IEEE, 2015, pp. 534–535.

[13] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative
Agents for Player Decision Modeling in Games.” in FDG, 2014.

[14] ——, “Evolving Personas for Player Decision Modeling,” in Computa-
tional Intelligence and Games (CIG). IEEE, 2014, pp. 1–8.

[15] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods,”
IEEE Trans. on Computational Intelligence and AI in games, vol. 4:1,
pp. 1–43, 2012.

[16] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing,” in European Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 418–434.

[17] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Population Seeding
Techniques for Rolling Horizon Evolution in General Video Game
Playing,” in Proc. of the Congress on Evolutionary Computation, 2017.

[18] M. J. Nelson, “Investigating Vanilla MCTS Scaling on the GVG-AI
Game Corpus,” in Conference on Computational Intelligence and Games
(CIG). IEEE, 2016, pp. 1–7.

[19] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching Games
and Algorithms for General Video Game Playing,” in 12th Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016.

[20] D. Pérez-Liébana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “Analyzing the Robustness of General Video Game Playing
Agents,” in Conference on Computational Intelligence and Games, 2016.


