
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fex: A Software Systems Evaluator

Citation for published version:
Oleksenko, O, Kuvaiskii, D, Bhatotia, P & Fetzer, C 2017, Fex: A Software Systems Evaluator. in The 47th
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2017). DOI:
10.1109/DSN.2017.25

Digital Object Identifier (DOI):
10.1109/DSN.2017.25

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 47th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/DSN.2017.25
https://www.research.ed.ac.uk/portal/en/publications/fex-a-software-systems-evaluator(448b97f0-c26d-410c-9fc9-75211dee79a8).html


FEX: A Software Systems Evaluator

Oleksii Oleksenko† Dmitrii Kuvaiskii† Pramod Bhatotia‡ Christof Fetzer†

† Technical University of Dresden ‡ The University of Edinburgh

Abstract—Software systems research relies on experimen-
tal evaluation to assess the effectiveness of newly developed
solutions. However, the existing evaluation frameworks are
rigid (do not allow creation of new experiments), often
simplistic (may not reveal issues that appear in real-world
applications), and can be inconsistent (do not guarantee
reproducibility of experiments across platforms).

This paper presents FEX, a software systems evaluation
framework that addresses these limitations. FEX is extensible
(can be easily extended with custom experiment types),
practical (supports composition of different benchmark suites
and real-world applications), and reproducible (it is built
on container technology to guarantee the same software
stack across platforms). We show that FEX achieves these
design goals with minimal end-user effort—for instance,
adding Nginx web-server to evaluation requires only 160 LoC.
Going forward, we discuss the architecture of the framework,
explain its interface, show common usage scenarios, and
evaluate the efforts for writing various custom extensions.

I. INTRODUCTION

Software systems research primarily relies on
experimental evaluation to validate the effectiveness of
proposed solutions. Therefore, a sound experimental
evaluation setup is at the core of systems research.

At the same time, evaluating new systems can be
tedious, time-consuming, and error-prone. Furthermore,
since systems research usually requires multiple iterations
over the “design-implement-evaluate” cycle, the resulting
evaluation effort can be significant. Ideally, a sound
evaluation mechanism requires a wide variety of
benchmarks to be built with varying parameters, run in
a controlled “bias-free” fashion, and the results have to
be aggregated, processed, and neatly plotted.

Unfortunately, there is no unifying evaluation frame-
work which could be reused and extended in new projects.
Current best practice lies in taking a benchmark suite, e.g.,
SPEC CPU2006, modifying its configuration files with
custom parameters, and writing a number of scripts to
automate experiment runs, aggregate results, and finally
plot them. This ad-hoc method has three major limitations.

First, existing benchmark suites are rigid. They cannot
be easily combined together and it is either cumbersome
or outright impossible to modify experiments, e.g., add
security evaluation to the existing suite. We experienced
these problems during a project that evaluated a
new security-related tool [1]. For the evaluation to
be holistic, we used three benchmark suites: SPEC
CPU2006 [2] (de-facto standard but supports only
single-threaded applications), Phoenix [3] (represents
I/O- and memory-intensive workloads), and PARSEC
[4] (contains complex multithreaded programs). Each

has its own management system and no support for
plotting. Without a unifying framework, we would be
forced to replicate the same configuration parameters
in ad-hoc scripts, possibly resulting in hard-to-diagnose
performance bugs. Additionally, our security evaluation
would require yet another collection of scripts.

The second limitation of existing benchmark suites
is that they are often simplistic. Recent works show that
using only one benchmark suite may be insufficient for
adequate evaluation [5]. Moreover, choosing a wrong
suite may significantly skew the results, either because
the included benchmarks do not represent current
computing problems [6, 7] or because they do not fully
capture the specifics of a particular domain [8].

The third limitation of the existing evaluation frame-
works is that they can be inconsistent: they do not enforce
the same software stack (in particular, specific versions
and build flags of used compilers, libraries, and tools)
which may lead to inconsistent results across different
platforms. This aspect is crucial for reproducibility of
results [9]. While other areas of computer science have de-
veloped domain-specific solutions to this problem [10, 11],
we are unaware of similar tools in the systems community.

This paper presents FEX, a software systems evaluation
framework that overcomes the aforementioned limitations.
FEX is extensible and practical—adding a new type of ex-
periment, a benchmark suite, or a standalone application
requires minimal effort. Furthermore, it leverages the
Docker container technology to secure the software stack
and achieve reproducibility [12, 13]. To our knowledge,
FEX is the first effort to combine the entire build-run-plot
evaluation process across different benchmark suites and
standalone programs. It can be used to evaluate compiler
extensions and optimizations, dynamic and static instru-
mentation tools, new libraries or library versions, and
any other tools that affect the application behavior.

Out-of-the-box, FEX is integrated with several well-
known benchmark suites (SPLASH, Phoenix, PARSEC),
standalone programs (Apache, Memcached, Nginx),
compilers (GCC, Clang), and measurement tools (perf,
time). Internally, our framework is comprised of a number
of tools for automating installation, building and running
benchmarks, collecting logs, and plotting the final results.

To highlight FEX’s extensibility and ease of use, we
evaluate the efforts to incorporate SPLASH-3 benchmark
suite [14], Nginx web-server [15], and RIPE security
testbed [16]: 326, 166, and 75 LoC respectively. In terms of
time spent, the whole effort took less than 8 man-hours.
These results allow us to conclude that FEX significantly
simplifies the software systems evaluation process.

1



II. DESIGN OF FEX

A. System Interface

FEX was developed with reproducibility as one of
the main goals. Therefore, we prepare the environment
and run all experiments in a Docker container in such
a way that they are as independent from the actual host
system as possible [12, 13]. The Docker image contains
a bare minimum to run the experiments: sources for
all programs in benchmark suites with corresponding
makefiles, Bash scripts for environment setup, Python
scripts to actually perform experiments and to aggregate
and plot their results. Note that the packages put in the
image—git, python3, wget, perf, etc—are used by the
framework itself and do not influence the experiments
(i.e., they do not affect measurements neither through the
build system nor through dynamically linked libraries).

Figure 1 shows the general workflow and the exposed
system interface of FEX. Any of the actions in the
workflow can be executed via call to the framework’s
entry point—fex.py file:

>> fex.py <action> −n <name> [other_arguments]

For example, running Phoenix benchmark suite with
GCC will look like this:

>> fex.py run −n phoenix −t gcc_native

The workflow is divided into two stages: setup and
run. The first stage prepares an environment for the
second stage by installing all the necessary components
from the Internet.

Experiment Setup. The Docker image we ship contains
only the source codes of benchmarks and a set of
scripts to build and run them. The actual dependencies—
compilers to build, shared libraries to link against,
additional tools and benchmarks—are downloaded
from the Internet and installed at the experiment setup
stage. The reasons for this flow are twofold. First, the
Docker image would swell to approx. 17GB in size1 if
all dependencies would be built-in. Images of such size
would be cumbersome to distribute. Second, this allows
the end user to install only those dependencies and
only those versions needed for her experiments. (For
reproducibility, it is important that the exact versions of
software crucial for experiments are installed.)

For simplicity, the installation scripts are written in
Bash (they can also be written in Python). To run an
installation script, FEX provides an “install” command.
The following example installs GCC 6.1.

>> fex.py install −n gcc−6.1

As shown in Figure 1 (top), this stage includes three
steps:
• Installing compilers with specific versions is a

prerequisite. FEX cannot rely on Linux default
package managers to automatically install required
compilers, e.g., APT or RPM, because compiler
versions in their repositories change over time and

1Our current image is 1.04GB, with 122MB Ubuntu files, 300MB of
benchmarks’ source files, and the rest helper packages

Docker container    

Install
compilers

Install
dependencies

Install additional 
benchmarks

Bash scripts Bash scripts Bash scripts
setup experiment

run experiment

Build Run Collect

Makefiles Python Pandas

Plot

Matplotlib

binary log statssrc plot

Fig. 1: System interface of FEX.

thus hinder reproducibility.
• Installing dependencies implies tools required for

the build process or for specialized measurements.
For example, several PARSEC benchmarks require
gettext system for Autoconf—this software does
not affect performance but is simply needed to
resolve all build dependencies of a particular
benchmark. These tools are optional and may not
be needed for simple experiments.

• Installing additional benchmarks may be necessary
to perform experiments on large unmodified
programs. FEX encourages to put program sources
in its repository; this simplifies changing and
tweaking original code to the user’s needs. However,
sometimes it is simpler to fetch the sources from
elsewhere. For example, we install Apache and Nginx
in this way because we want to experiment with
their different versions (those that are vulnerable to
a particular bug and those that are not).

Experiment Runs. After installing all prerequisites, users
can start running experiments. All experiments are
usually performed as a sequence of steps depicted in
Figure 1 (bottom):
• The build step is performed once before running

each benchmark in the experiment. FEX consults
the makefile corresponding to the benchmark-to-run
and puts a final binary in the build directory.
It is important to re-build all benchmarks for
each experiment, otherwise a mix of old and new
compilation flags and/or libraries could skew the
results. For quick preliminary experiments, the build
step can be omitted via --no-build flag.

• The run step is the experiment itself. FEX includes
a Run component, which provides several Python
hooks to specify a list of benchmarks-to-run
with their inputs and to control how exactly
these benchmarks are started. For example, we
implement an additional “dry run” for Phoenix
benchmarks using a per_benchmark_action
hook. Multithreaded benchmarks are automatically
run with a set of number of threads specified in the
command line, e.g., -m 1 2 4.

• The collect step parses the log, extracts the measure-
ment results, processes them in a user-specified way,
and stores into a CSV table. We use Pandas Python li-
brary [17] for efficient data analysis and aggregation.

• The plot step is performed after the whole experiment
is finished. It is usually performed on a local user
machine and a the remote server. The powerful
matplotlib [18] is used to emit different kinds of

2



Include

Include Type-specific 
makefiles

Generic makefiles

C
om

m
on

A
pp

E
xp

er
im

en
t Include

Compiler-specific 
makefiles

Include

Application-specific 
makefiles

Fig. 2: Build system hierarchy.

plots. Again, the user is provided with hooks to
change the appearance of emitted plots.

Building and running the benchmarks is sensitive to
environment variables. FEX provides a convenience wrap-
per to specify default variables for these steps (see §II-B).

B. System Architecture

Following the workflow presented in §II-A, FEX
consists of 4 subsystems: building, running, collecting,
and plotting. The later two have plain structure which
does not require any explanations. The former two,
however, are slightly more complex and we will discuss
them in detail.

Build subsystem. In the build stage, two scenarios are
possible: (1) a single application can be built many
times with varying build parameters or (2) the same
parameters can be reused for many different applications.
To aid this variability, our build subsystem was divided
into three layers (see Figure 2): common, experiment,
and application layers.

Common layer contains parameters that are applicable
to all benchmarks and all build types. This includes,
for example, optimization levels, debugging information
(if enabled), common compilation flags and generic
compilation targets.

Experiment layer is responsible for parameters of the
current build type. For example, if a benchmark suite has
to be built by GCC and with enabled AddressSanitizer,
the makefiles will set CC variable to gcc and CFLAGS
to -fsanitize=address. Note that there might be
multiple levels of makefiles in this layer: some may set
parameters that are applicable to all configurations of
a single compiler, and the others will refine them to a
concrete configuration.

Finally, the application layer defines the structure and
the procedure of the build. It specifies the location of
source files, lists dependencies, and sets application-
specific flags.

The overall build system is structured in such a way
that these layers can be replaced independently of each
other. Accordingly, any application can be compiled
with any of the existing build configurations without
additional efforts.

Experiment runners. When an experiment is started via
>> fex.py run ...

a new instance of the FEX class is created (see Figure 3).
This object controls the overall experiment execution.
Firstly, it retrieves a configuration file and sets experiment
parameters accordingly. Then, it sets environment

variables to the necessary values by instantiating child
classes of the Environment abstract class. In the end, it
instantiates and calls the child of the Runner class that
corresponds to the current experiment. This new Runner
object will perform the actual experiment.

Since environmental variables can vary in accordance
to parameters of the given experiment (e.g., when debug
mode is turned on), we define four types of the variables:

1) Default: the default values of environment variables.
2) Updated: the values of this type are appended if the

variable exists, and assigned otherwise.
3) Forced: the variables are overwritten regardless of

the previous value.
4) Debug: the values are set only in the debug mode.

Note that the order is important here: each next type
has higher priority that the previous one. For example,
if variable BIN_PATH is assigned to /usr/bin/ among
default variables and to /home/usr/bin/ among the
forced ones, the end value will be /home/usr/bin/.
On top of it, if a user wants to add another type, she
can do it simply by writing a subclass of Environment
and redefining the set_variables function.

The key element of the Runner class is
experiment_loop function. For each of the execution
parameters, it iterates over all their values by going
through a series of nested loops, as shown in Figure 4.
For example, the outermost loop may go through GCC
and Clang compilers, the next one—through Nginx,
Apache, and Memcached applications, and so forth.
Each of the loops has a hook that can be implemented
in a subclass. This way, the overall structure of the
experiment stays the same, but the concrete actions
can be tailored to the needs of the given experiment.
Moreover, if even more parameters would be necessary,
the experiment_loop can be redefined or extended in
a subclass, as VariableInputRunner does in Figure 4.

III.FEX DETAILS AND WORKFLOW

A. Creating new experiments

In this section, we explain how FEX facilitates creation
of new experiments and evaluation of new benchmark
suites and standalone programs. We also detail the
implementation of FEX with the help of its standard
directory layout (similar to projects like Jekyll [19], FEX
assumes a specific directory tree structure).

One (simplified) example of a directory tree is shown
in Figure 5. Here, the end user sets up the environment
to evaluate the performance overhead of Google’s
AddressSanitizer [20] on the Phoenix benchmark suite
[3] and on Apache web server [21]. Moreover, for
reproducibility she chooses GCC version 6.1 which
comes with AddressSanitizer by default.

First, she needs to write installation scripts to install
the GCC 6.1 compiler, download input files for the
Phoenix benchmark, and install an additional Apache
benchmark. For convenience, FEX provides a set of
functions for frequently used operations, found in
install/common.sh, e.g., download.

3



Environment

- default_variables
- updated_variables
- forced_variables
- debug_variables

- set_variables()

ASanEnvironmentNativeEnvironment

Fex

- configure()
- set_environment()
- run_benchmark()

ParsecSecurityPhoenixPerformanceParsecVariableInput
Performance

PhoenixVariableInput
Performance

Runner

- experiment_name
- experiment_setup()
- experiment_loop()
- per_run_action()
- per_type_action()
- per_benchmark_action()
- per_thread_action()

Configuration

...

VariableInputRunner

- experiment_loop()

......

Fig. 3: Class diagram of the infrastructure for running experiments.

for each build type:
self.per_type_action(type)
for each benchmark:

self.per_benchmark_action(type, benchmark)
for each thread count:

self.per_thread_action(type, benchmark, thread_num)
for i in range(0, number_of_repetitions):

self.per_run_action(i)

Fig. 4: Experiment loop

Next, the user must create compiler-specific and
type-specific makefiles for different experiment variants
and put them under makefiles/. The compiler-specific
gcc_native.mk file would look like:

include common.mk
CC := gcc
CXX := g++

The type-specific file gcc_asan.mk would include the
previous file and additionally enable AddressSanitizer:

include gcc_native.mk
CFLAGS += −fsanitize=address
LDFLAGS += −fsanitize=address

After that, the user must put application-specific
makefiles and sources of the Phoenix benchmark suite
and Apache web server under src/. To keep directories
clean, standalone programs like Apache are put in a
separate subdirectory named applications/. In case
of Apache, the sources are downloaded from the Internet
using an installation script, thus the only file required
is a Makefile. In case of Phoenix, all sources are copied
in the FEX directory tree for convenience; we only show
histogram for the sake of clarity. Application-specific
makefiles are generally simple and follow this pattern
on the histogram example:

NAME := histogram
SRC := histogram−pthread
include Makefile.$(BUILD_TYPE) ;; includes type-specific makefile
all: $(BUILD)/$(NAME) ;; build target

Finally, the user describes the experiments themselves.
The Phoenix performance-overhead experiment is put
under experiments/phoenix. The only required
file here is run.py which describes benchmarks
with their command-line arguments to be run and
measured. Additionally, each Phoenix benchmark needs
a preliminary dry run: this functionality is implemented
through a per_benchmark_action hook. Note that
most of the functionality to build and run benchmarks
is actually inherited from the abstract class implemented

in experiments/run.py.
There are no specific collect and plot scripts

for Phoenix. Instead, since the user has no ad-hoc
requirements for them, the generic collect.py and
plot.py are re-used. Also note that Figure 5 does not
show Apache experiment files for simplicity.

Some variants of the experiment may require
setting specific environment variables. For example,
AddressSanitizer can be fine-tuned via runtime flags in
the ASAN_OPTIONS variable. For this, the user shall add
this flag in environment.py. In addition, the user can
modify parameters for collection and plotting of results
in a config.py file.

In the end, to add a new experiment with new
compiler types and new benchmarks, the user needs to
create (some of) the following files: (1) installation scripts,
(2) compiler- and type-specific makefiles, (3) sources
and makefiles for benchmarks, and (4) experiment
descriptions. In fact, all of the scripts are already
available in the repository of FEX.

Additionally, FEX facilitates creation of tests—short
runs of benchmarks with tiny inputs. These tests can
be accessed via -i test and are useful to check if
user-defined makefiles, source files, and other scripts
are written correctly. This functionality is implemented
inside run.py files.

B. Running new experiments

Now that the experiment description is finished,
the user can re-build the Docker container using
Dockerfile and deploy it on a test server. The actual
experiment proceeds in two stages as shown in Figure 1.

Inside the container, the user sets up the experiment
by invoking the relevant installation scripts:

>> fex.py install −n gcc−6.1
>> fex.py install −n phoenix_inputs
>> fex.py install −n apache

Next, it is sufficient to call the generic all-in-one “run”
command like this:

>> fex.py run −n phoenix −t gcc_native gcc_asan

This command will build all Phoenix benchmarks using
native and AddressSanitizer GCC versions, run them
once (with a preliminary dry run), collect statistics from
logs, and aggregate and save final data in a CSV table.
There are several command-line flags to fine-tune the

4



FEX

Dockerfile
fex.py
environment.py
config.py
install . . . . . . . . . . . . installation scripts to prepare environment

compilers
gcc-6.1.sh

dependencies
phoenix_inputs.sh

benchmarks
apache.sh

common.sh
makefiles . . . . . . . . . . . . . .makefiles for different variants to test

common.mk
gcc_native.mk
gcc_asan.mk

src . . . . . . . . . . . . . . . . . . . . . makefiles and sources for benchmarks
applications

apache
Makefile

phoenix
histogram

Makefile
[...source files...]

experiments . . . . . . . . . . . . . . . . scripts to run-parse-plot results
phoenix

run.py
collect.py
plot.py
run.py

build . . . . . . . . . . . . . . . . . . automatically generated final binaries
phoenix

histogram
gcc_native

[. . . ]
gcc_asan

[. . . ]

Fig. 5: Example directory tree of FEX.

experiment. The user can specify -v for verbose output
and -d to build debug versions of benchmarks. To
increase the number of runs of each benchmark, the user
adds -r 10. To run benchmarks with different numbers
of threads, the -m 1 2 4 flag must be added. To run
only one benchmark from the benchmark suite, the user
specifies -b histogram.

Note that the final binaries of benchmarks are put un-
der build/ directory, see Figure 5. Sometimes it is useful
to run the binary directly from there, e.g., to debug spuri-
ous errors or to perform additional quick measurements.

After the experiment is finished, the user should fetch
the final CSV results from the server and run the “plot”
command locally:

>> fex.py plot −n phoenix −t perf

This builds the “perf” (performance overhead barplot)
graph and saves it in a PDF file. The examples of such
graphs are shown in the next section.

C. Currently supported experiments

During the months of internal use of FEX, we
expanded it in several directions. Table I lists the
currently supported benchmarks, compilers and

– Benchmark suites Phoenix, SPLASH, PARSEC, SPEC CPU2006*
– Add. benchmarks Apache, Nginx, Memcached, RIPE, micro
– Compilers GCC, Clang/LLVM
– Types AddressSanitizer (as example)
– Experiments Performance and memory overheads,

security evaluation
– Tools perf-stat (generic), perf-stat (memory), time
– Plots Lineplot, regular barplot, stacked barplot,

grouped barplot, stacked-grouped barplot

*Will not be open-sourced as part of FEX due to proprietary license.

TABLE I: Currently supported experiments in FEX.

compilation types, and experiments.
FEX supports four benchmark suites: Phoenix [3],

SPLASH [14], PARSEC [4], and SPEC CPU20062 [2].
Additionally, FEX comes with Apache, Memcached,
and Nginx programs that showcase real-world usage
scenarios. They are installed via scripts and not put
under src/. FEX also provides several statically linked
libraries like libevent and OpenSSL, required for at least
one of the above benchmarks. Lastly, we wrote a suite
of microbenchmarks—e.g., reading from an array—that
can be useful for debugging purposes.

FEX provides installation scripts and makefiles for
GCC version 6.1 and Clang/LLVM 3.8.0 [22]. It is easy
to update these scripts to install newer versions of these
compilers. As of type-specific makefiles, the current
version of the framework includes only AddressSanitizer
as an example.

The list of supported experiments includes (1)
performance- and memory-overhead experiments as
well as variable-inputs experiments of Phoenix, PARSEC,
and SPEC, and (2) throughput-latency and security
experiments of Apache, Nginx, and Memcached.

For plotting, FEX provides the following generic plots:
barplot (e.g., for performance and memory overheads),
lineplot (for multithreading overheads), stacked barplot,
grouped barplot, and stacked-and-grouped barplot (for
complicated statistics such as cache misses at different
levels).

IV.CASE STUDIES

In this section, we evaluate extensibility and ease
of use of FEX on a set of benchmarks. To showcase the
required end-user effort, we considered the following
scenario: a researcher wants to compare performance
of Clang compiler against GCC using SPLASH-3 [14]
benchmark suite and Nginx web server [15], as well as
the security guarantees provided by the two compilers
using the RIPE testbed [16].

The presented evaluation of effort was done by an ex-
perienced user—we wrote all the extensions on our own.

A. Multithreaded Benchmark Suite: SPLASH-3

SPLASH-3 benchmark suite is used to evaluate
parallel applications on large-scale NUMA architectures

2SPEC CPU cannot be made publicly available and will not be
open-sourced as part of FEX

5



ba
rn

es
ch

ol
es

ky fft

fm
m lu

oc
ea

n
ra

di
os

ity
ra

di
x

ra
yt

ra
ce

vo
lre

nd
w

at
er

-n
w

at
er

-s Al
l

0

1

2

N
or

m
al

iz
ed

 r
un

tim
e

(w
.r

.t.
 n

at
iv

e 
G

C
C

)

Native (Clang)

Fig. 6: Example of Clang-GCC comparison produced
by FEX and tested on SPLASH-3.

[14]. To include it in FEX, the first step was to add the
source code of SPLASH-3 itself. This required:
• Changes in the build system of the suite: renaming

of the variables, restructuring of directories, and
removing unnecessary build targets—194 LoC in
total. Note that most of the changes can be done
by automatic renaming and do not take much time.
Also, the resulting build system became smaller and
more generic, since many variables and build targets
are now defined globally (167 LoC deleted).

• An installation script to download input files (5 LoC).
• A Runner subclass to control the experiment (36

LoC) and collect.py script to process the final
results (9 LoC).

Next, Clang must be added as a build type (GCC
is supplied with the framework). It required writing
an installation script for Clang and all its dependencies
(50 LoC if built from sources) and a compiler-specific
Makefile (6 LoC).

Finally, the results had to be represented as a plot of
slowdown (speedup) of Clang versions over GCC ones.
The natural choice for this type of data is a barplot since
it can clearly depict overheads of several applications.
FEX already has the functionality for building such
plots, therefore the effort was minimal—only 26 LoC in
plot.py script. The total effort summed up to 326 LoC
or approximately 5 man-hours of work.

The experiment was run with the following command:
>> fex.py run −n splash −t gcc_native clang_native

As a result, it produced the plot shown in Figure 6.
From this plot the researcher might deduct, for example,
that the given version of Clang has slightly worse
performance than GCC and it is especially bad with
operations on matrices, as represented by FFT.

B. Real-world Application: Nginx Web-server

To evaluate the effort of adding a standalone
application, we integrated Nginx web server into FEX [15].

First, we did not put Nginx’s sources under the
src/ directory, but instead wrote an installation script
(9 LoC). Next, we created a performance experiment:
we wrote a specialized collect.py script to collect

0 10 20 30 40 50

Throughput (£103 msg/s)

0.2

0.3

0.4

0.5

0.6

0.7

La
te

nc
y 

(m
s)

Native (GCC)
Native (Clang)

Fig. 7: Example throughput-latency plot of Nginx
produced by FEX. Remote clients fetch a 2K static
web-page over a 1Gb network.

throughput and latency statistics (14 LoC), a plot.py
script to adjust the appearance of a throughput-latency
plot (34 LoC), and a run.py script to pre-configure the
server side, start a client on a separate machine via SSH,
wait for the experiment to finish, and fetch the logs (89
LoC). Finally, we created a makefile with configuration
options to build Nginx (20 LoC). The whole effort was
166 LoC—mostly due to a complicated running scenario
with a remote client—or approximately two man-hours.

We ran the Nginx experiment like this:
>> fex.py run −n nginx −t gcc_native clang_native

The resulting throughput-latency measurements are
shown in Figure 7. In our hypothetical study this plot
would support the previous observations: the Clang
version has worse throughput than GCC.

C. Security Benchmark: RIPE

To highlight that FEX supports types of experiments
other than performance ones, we experimented with
RIPE security testbed [16]. At its core, RIPE is a C
program that tries to attack itself in a variety of ways
(with 850 possible attacks in total).

As a first step, we put sources of RIPE—two source
and two header files—together with a simple Makefile
under src/. We did not change the source code of RIPE,
and our resultant Makefile was 14 LoC. Next, we created
an experiment. The run.py script (44 LoC) simply calls
a script to run security tests, shipped together with RIPE.
The collect.py script extracts RIPE-specific statistics
from the final log (17 LoC). Note that for this security
experiment, we do not need any plot. In the end, the
effort took 75 LoC and less than one hour of work.

The experiment was run with the following command:
>> fex.py run −n ripe −t gcc_native clang_native

This produced the aggregated results shown in Table II. It
is interesting to note that even under our “insecure” con-
figuration (Ubuntu 16.04 with disabled ASLR and build-
ing with disabled stack canaries and enabled executable
stack), only a handful of attacks were successful: through
the shellcode that creates a dummy file and through
return-into-libc. Another interesting result is that Clang

6



Compiler Successful Failed
Native (GCC) 64 786
Native (Clang) 38 812

TABLE II: RIPE security benchmark results produced
by FEX. Columns 2 and 3 show the number of
successful and failed attacks respectively.

has almost 2× less successful attacks: Clang prevents
indirect attacks via buffers in BSS and Data segments due
to a smarter layout of objects in these segments.

V. RELATED WORK

Benchmark suites. Systems researchers developed a
plethora of benchmark suites, varying in their age,
targeting, and diversity. Dhrystone is a 30-year-old but
still wildly used set of synthetic integer benchmarks
[23]. Because of its age and code atypical for modern
programs, its substitute Coremark suite was developed
in 2009 [24]. However, both these suites are targeted
for embedded systems and have a limited diversity of
included programs. Recently, new benchmark suites
were released, covering more scenarios and stressing
particular parts of systems (floating-point operations,
instruction/data cache pressure, etc.) [2, 14, 25, 26]. For
example, MiBench is a comprehensive set of 35 embedded
applications targeting areas such as networking, security,
automotive, and telecommunications [27].

Aside from the high number of included programs
and their diversity, benchmark suites are characterized by
their targeting. LINPACK [28] is targeted for vectorizable
computations, MediaBench [29]—for media applications,
BioPerf [30]—for bioinformatics, MineBench [31]—for
data mining area, HPC Challenge [32] and NAS [33]—for
high-performance computing.

The focus of this work are benchmarks to analyze the
impact of static and dynamic instrumentation techniques.
Thus, benchmarks that test the whole hardware/software
stack (Phoronix [34]) or large-scale systems (YCSB [35]
and CloudSuite [8]) are not in the scope of FEX.

Orthogonally to our work, recent research efforts
concentrate on evaluation of diversity and redundancy of
benchmark suites. For example, several studies analyzed
the redundancy of SPEC and PARSEC benchmark suites,
i.e., what is the minimum number of programs and
inputs needed to obtain statistically significant results
[36, 37]. Some papers compare different benchmark
suites, e.g., PARSEC and SPLASH [6, 38].

Tools and methodologies for performance
measurements. To our knowledge, FEX is the only
meta-framework to combine several benchmark suites.
However, other research tools exist that strive to provide
more stable, reproducible, and statistically significant
results of performance evaluations.

It is widely known that measurement bias can perturb
evaluation and lead to incorrect performance results [5].
Additionally, abnormal behavior called workload flurries
is frequently observed in real workloads (which are
later used as inputs in benchmarks) and can thus lead

to instable results [39]. One solution to this problem
is “shaking” the input workload to achieve a better
distribution of results [40]. We believe this can be
seamlessly integrated in FEX.

Stabilizer is a tool to achieve statistically sound
performance evaluation by re-randomizing the memory
layout—which turns out to be the leading factor of
measurement bias—to achieve normal distribution of
results [41]. Coz is another tool for better performance
measurements [42]. Its main focus is on highlighting
performance bottlenecks in complex software with the
help of causal profiling, by virtually speeding up separate
parts of code. Stabilizer was evaluated only on SPEC
CPU2006, and Coz—only on PARSEC. Both tools could
benefit from FEX: they could be plugged into FEX for
quick evaluation on other benchmark suites.

Kalibera and Jones provide not a tool but a set of
guidelines to perform statistically sound experiments with
the minimum number of repetitions for each benchmark
[43]. The users are encouraged to follow these guidelines
when performing their experiments with FEX.

Another related category of measurement tools is
comprised of profilers [44, 45] and tracers [46, 47]. These
tools are mainly used for measuring various runtime
parameters and analyzing performance bottlenecks.
Some of them (e.g., perf [44]) provide basic results
processing, such as calculation of mean values and
standard deviations over several runs. Yet, all of them are
single-application single-configuration tools, i.e., they are
not capable of aggregating and comparing measurement
results of multiple benchmarks and/or different
build configurations. Moreover, control of experiment
procedure is out of their scope. Therefore, we consider Fex
to be orthogonal and complementary to this class of tools.

VI.CONCLUSION AND FUTURE WORK

FEX started as a small set of frequently reused
scripts and quickly matured in a full-fledged evaluation
framework. During months of internal usage (e.g., in
our evaluation of Intel MPX [48] and SGXBounds [1]),
we constantly refactored and expanded the framework
to accommodate our growing needs, until the point we
decided it can be useful for others. The end result is
FEX, a software system evaluation framework that is
extensible, practical, and reproducible.

Currently, FEX has a number of limitations. The
framework provides no statistical analysis functionality
(except basic statistics such as standard deviation).
We plan to integrate statistical numpy/scipy Python
packages in the framework to allow for advanced
statistical methods and hypothesis testing.

We would like to combine FEX with a continuous
integration system (e.g., Jenkins) to facilitate
Evaluation-Driven Development (similar to Test-
Driven Development). Furthermore, we wish to support
a graphic user interface, since an ability to observe
intermediate results will simplify and shorten the process
of setting up and debugging experiments.

7



FEX supports only single-machine experiments. We
are investigating ways to build distributed experiments,
e.g., using the Fabric library.

Finally, since we rely on the Docker infrastructure,
we do not guarantee reproducability on levels below
user space, i.e., on different hardware setups or across
different kernel versions. However, FEX outputs various
environment details, so that the complete experimental
setup is stored in the log file.

FEX is available at https://github.com/tudinfse/fex.

REFERENCES

[1] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “SGXBounds: Memory Safety for Shielded
Execution,” in EuroSys, 2017.

[2] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, 2006.

[3] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for multi-core and
multiprocessor systems,” in HPCA, 2007.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,”
in PACT, 2008.

[5] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously wrong!”
in ASPLOS, 2009.

[6] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A
Quantitative Comparison of Two Multithreaded Benchmark Suites
on Chip-Multiprocessors,” in WWC, 2008.

[7] V. Saxena, Y. Sabharwal, and P. Bhatotia, “Performance evaluation
and optimization of random memory access on multicores with
high productivity,” in HiPC, 2010.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads
on modern hardware,” in ASPLOS, 2012.

[9] C. Collberg and T. A. Proebsting, “Repeatability in computer
systems research,” Communications of the ACM, 2016.

[10] G. R. Brammer, R. W. Crosby, S. J. Matthews, and T. L. Williams,
“Paper mâché: Creating dynamic reproducible science,” Procedia
Computer Science, 2011.

[11] S. Perianayagam, G. R. Andrews, and J. H. Hartman, “Rex: A
toolset for reproducing software experiments,” in BIBM, 2010.

[12] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux Journal, 2014.

[13] C. Boettiger, “An introduction to docker for reproducible research,”
SIGOPS OS Review, 2015.

[14] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3:
A properly synchronized benchmark suite for contemporary
research,” in ISPASS, 2016.

[15] “nginx: The Architecture of Open Source Applications,” http:
//www.aosabook.org/en/nginx.html, 2016, accessed: Oct, 2016.

[16] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime intrusion prevention evaluator,” in ACSAC, 2011.

[17] W. McKinney, “pandas: a foundational python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, 2011.

[18] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing
in Science Engineering, 2007.

[19] Jekyll, “Directory structure – Jekyll,” https://jekyllrb.com/docs/
structure/, accessed: Dec, 2016.

[20] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in ATC, 2012.

[21] “Apache HTTP server project,” http://httpd.apache.org/, 2016,
accessed: Oct, 2016.

[22] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis and transformation,” in CGO, 2004.

[23] R. P. Weicker, “Dhrystone: A synthetic systems programming
benchmark,” Communications of ACM, 1984.

[24] “EEMBC – CoreMark – Processor Benchmark,” http:
//www.eembc.org/coremark/, 2016, accessed: Nov, 2016.

[25] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in MoBS, 2009.

[26] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth:
Scalable MapReduce on a Large-scale Shared-memory System,”
in WWC, 2009.

[27] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in WWC, 2001.

[28] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
benchmark: Past, present, and future,” Concurrency and Computation:
Practice and Experience, 2003.

[29] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communicatons Systems,” in MICRO, 1997.

[30] D. Bader, Y. Li, T. Li, and V. Sachdeva, “BioPerf: A Benchmark
Suite to Evaluate High-Performance Computer Architecture on
Bioinformatics Applications,” in WWC, 2005.

[31] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary, “Minebench: A benchmark suite for data mining
workloads,” in WWC, 2006.

[32] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
Benchmark Suite,” in SC, 2006.

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS Parallel Benchmarks—Summary and Preliminary
Results,” in SC, 1991.

[34] “Phoronix test suite,” http://www.phoronix-test-suite.com/, 2016,
accessed: Nov, 2016.

[35] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.

[36] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,”
in ISCA, 2007.

[37] C. Bienia and K. Li, “Fidelity and scaling of the PARSEC
benchmark inputs,” in WWC, 2010.

[38] N. Barrow-Williams, C. Fensch, and S. Moore, “A Communication
Characterization of SPLASH-2 and PARSEC,” in WWC, 2009.

[39] D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling
simulation: The role of workload flurries,” in IPDPS, 2006.

[40] D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing
performance evaluation sensitivity and variability by input
shaking,” in MASCOTS, 2007.

[41] C. Curtsinger and E. D. Berger, “Stabilizer: Statistically sound
performance evaluation,” in ASPLOS, 2013.

[42] C. Curtsinger and E. Berger, “Coz: Finding code that counts with
causal profiling,” in SOSP, 2015.

[43] T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable
time,” in ISMM, 2013.

[44] “perf: Linux profiling with performance counters,”
https://perf.wiki.kernel.org, 2017, accessed: Apr, 2017.

[45] J. Reinders, VTune performance analyzer essentials. Intel Press, 2005.
[46] R. McDougall, J. Mauro, and B. Gregg, Solaris Performance and

Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris.
Prentice Hall PTR, 2006.

[47] M. Desnoyers and M. R. Dagenais, “The LTTng tracer: A low
impact performance and behavior monitor for GNU/Linux,” in
OLS, 2006.

[48] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “In-
tel MPX Explained: An Empirical Study of Intel MPX and Software-
based Bounds Checking Approaches,” arXiv:1702.00719, 2017.

8


