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ABSTRACT

The distribution of phenotypes in space will be a compromise between

adaptive plasticity and local adaptation increasing the fit of phenotypes to local

conditions and gene-flow reducing that fit. Theoretical models on the evolution

of quantitative characters on spatially explicit landscapes have only considered

scenarios where optimum trait values change as deterministic functions of space.

Here these models are extended to include stochastic spatially autocorrelated

aspects to the environment, and consequently the optimal phenotype. Under

these conditions the regression of phenotype on the environmental variable

becomes steeper as the spatial scale on which populations are sampled becomes

larger. Under certain deterministic models - such as linear clines - the regression

is constant. The way in which the regression changes with spatial scale is

informative about the degree of phenotypic plasticity, the relative scales of

e↵ective gene flow and the environmental dependency of selection. Connections

to temporal models are discussed.

The optimal phenotype is likely to vary in space because of changes in both the biotic

and abiotic environment. To some degree populations can track these optima by individuals

responding plastically to cues that predict what the optimal phenotype should be (Via

& Lande 1985) and/or through selection increasing the frequency of alleles that confer a

local advantage (Kawecki & Ebert 2004). These processes give rise to a better fit between

phenotype and environment but are limited by intrinsic costs (van Tienderen 1991) and

imperfections (de Jong 1999) to plasticity and/or gene flow between populations with

di↵erent optima (Lenormand 2002). The discrepancy between the optimal and observed

distribution of phenotypes caused by gene flow has two main components: the first is from
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gene flow shifting the population mean from the optimum resulting in local directional

selection, and the second is caused by gene flow increasing the genetic variance resulting in

higher genetic variance load from stabilising selection (Barton 2001).

When dispersal between populations is equally likely regardless of their position in

space (the island model), the degree to which population means deviate from local optima

is determined by the ratio of migration to the strength of stabilising selection around the

local optimum (Bulmer 1971), similar to results from single-locus population genetic models

(Wright 1931; Moran 1962). For populations living on continuous landscapes, but where

the environment changes discretely, models predict that population means should deviate

from the optimum in the transition zone between the two environments before reaching

their optimal values (Slatkin 1978). The spatial scale over which population means are

intermediate between the two selective optima can be characterised by the cline width

(Endler 1977) which is determined by the relative strengths of migration and stabilising

selection, as in the island model and also single-locus models (Haldane 1948). In contrast,

models that explore the e↵ect of a linearly changing environment find that population

means track the optima perfectly (Felsenstein 1977; Slatkin 1978) and the cline in phenotype

provides no information about the relative strength of selection and migration, unlike in

single-locus models (Slatkin 1973).

The absence of local directional selection in a linearly changing environment is a

consequence of assuming symmetric dispersal: the number of immigrants with trait values

below the local optimum of a focal population exactly balance the number of immigrants

with trait values greater than the local optimum. When this assumption is relaxed, areas

that receive more net immigration tend to show greater deviations from the local optima.

Non-symmetric dispersal can occur actively because of directional dispersal (Slatkin 1978)

or as a passive consequence of non-uniform population densities; net movement of gametes
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from high to low density areas occurs even when individuals disperse randomly (Pease et al.

1989). When population density declines from the centre of a species range, this results

in a cline in phenotype that is shallower than the change in the optimum, and peripheral

populations experience directional selection (Haldane 1956; Garcia-Ramos & Kirkpatrick

1997).

Here this body of theory is extended so that changes in the environment are not fully

deterministic (such as with latitude) but also have a stochastic spatially autocorrelated

component (see also Engen & Sæther 2016). Such a component is typical of many important

biotic and abiotic factors (Legendre 1993). It is found that the joint spatial distribution

of the mean phenotype and driving environmental variable can be partitioned into two

parts: a deterministic part determined by the optimal trait-environment relationship

as in Slatkin (1978) and a stochastic part determined by the relative spatial scales of

environmental fluctuations and gene-flow. In contrast to linear deterministic environments

with symmetrical migration, stochasticity introduces local directional selection. It is also

shown that the joint distribution can be summarised by how the regression of phenotype

on the environmental variable changes as the spatial scale of sampling changes. Aspects

of this relationship (intercept, asymptote and initial rate of change) are informative about

the magnitude of plasticity, the optimal trait value and the relative strength of stabilising

selection and migration. This work connects directly with similar work on temporal

fluctuations in selection (Hansen et al. 2008; Michel et al. 2014; Tufto 2015) and suggests

that scaling temporal fluctuations by a species life-span and scaling spatial fluctuations

by a species dispersal distance puts them on a common scale by which they can be compared.

Methods

Below, a spatial evolutionary model is developed for which the joint distribution of
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a trait and a driving environmental variable in space can be solved for. Only the key

equations are presented in the main text and the full derivations can be found in the

Supporting Information. Mean phenotype at location x at time t is of the form

z̄(x, t) = ā(x, t) + b✏(x, t) (1)

where ā is the mean breeding value and b is the plastic response to the driving environmental

variable, ✏. In what follows ✏ is assumed not to fluctuate in time, but the likely consequences

of relaxing this assumption is discussed in the discussion. The variable x is a position on

the real line in which the organisms live. Generations are assumed to be discrete, and all

quantities, including the plastic response, are assumed to be measured prior to selection at

the start of each generation, e↵ectively at the zygote stage.

Following Slatkin (1978) the model has three components. Selection: the mean

breeding value in population x within generation t shifts because of selection causing

zygotes to produce a di↵erential number of gametes. Migration: gametes then migrate

into population x which may cause a further within-generation shift in mean breeding

value. Reproduction: gametes in population x then unite at random to form the zygotes of

generation t + 1. The order of events is therefore trait determination, including plasticity,

followed by selection, gamete dispersal and then fertilisation.

Population density is assumed to be constant in space (i.e. selection is soft) and the

probability that a gamete disperses from location x

0 to x is assumed to depend only on the

distance between the two populations (|x�x

0|). M(x�x

0) is used to denote this probability

distribution. A Gaussian fitness function is assumed where the optimum (✓) varies in space

but the width (!) remains constant (Haldane 1954). The within population additive genetic

variance (G
a

) and phenotypic variance (P ) are also assumed to remain constant in space

such that strength of stabilising selection is constant: � = (!2 + P

2)�1 (Lande 1976).
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Assuming equilibrium has been reached we can drop the notation with time (i.e.

ā(x, t + 1) = ā(x, t) for all locations) and Slatkin (1978, Equation 13) demonstrated that

ā(x) = (1�G

a

�)(M ⇤ ā)(x) + G

a

�(M ⇤ ✓)(x)
(2)

where ⇤ stands for convolution. When plasticity exists, Equation 2 becomes

ā(x) = (1�G

a

�)(M ⇤ ā)(x) + G

a

�(M ⇤  )(x)
(3)

where  (x) = ✓(x) � b✏(x) is the short fall between the optimum and the plastic response

and gives the optimal breeding value rather than the optimal phenotype (Michel et al.

2014).

If dispersal events are assumed to follow a Laplace distribution (i.e. dispersal distances

have an exponential distribution), then the Fourier transform of Equation 3 has a simple

form

F{ā(x)} = �

2
s

�

2
s+⇠

2F{ (x)}
(4)

where �
s

= �

p
G

a

� and � is the rate parameter of the Laplace distribution. �

�1 is

equal to the mean dispersal distance and so �
s

increases as e↵ective gene-flow diminishes;

dispersal distances decrease and/or selection around the optimum increases. The dispersal

displacements have standard deviation
p

2��1 and
p

2��1
s

is referred to as the characteristic

length by Slatkin (1978). The simplicity of Equation 4 arises because the Fourier transform

is a representation of the spatial function in the frequency domain (⇠ is the unitary ordinary

frequency) and convolution in the spatial domain corresponds to ordinary multiplication in
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the frequency domain.

A fixed linear relationship between the optimal phenotype and the environmental

variable (B) is assumed and di↵erent spatial distributions of the environmental variable

considered. Under this scenario  (x) = (B � b)✏(x) and so both selection and plasticity

are assumed to depend on the same environmental variable, ✏. This assumption is relaxed

in the Supporting Information and discussed in the discussion. To place the results from

stochastic environments in context, two models with deterministic environments presented

in Slatkin (1978) are analysed, one with a linear change in the environment and one with

a discrete change. The results are not presented (see SI), since in the absence of plasticity

the Fourier transform method gives identical results to those in Slatkin (1978). However,

they do appear as dashed lines in Figure 1. In a linear environment the optimum is tracked

perfectly (see also Felsenstein 1977) and does not depend on the amount of plasticity.

In a discrete environment mean phenotype is a sigmoid function of x reaching the two

optima some distance from the transition zone. The rate at which the optima are reached,

the inverse of cline-width, depends on �

s

. With plasticity, a discontinuity occurs at the

transition zone because of the di↵erent plastic responses in the two environments.

In order to analyses models with stochastic environments, spatial changes in the

environmental variable are split into a deterministic part and a stochastic part,

✏(x) = ✏

µ

(x) + ✏

e

(x) (5)

where ✏
µ

(x) is a deterministic function, such as a linear or discrete change, and ✏

e

(x) is

some zero-mean stationary random field. Under these conditions it can be shown that the

expected mean breeding values of populations (where the expectation is taken over the

spatial process) is equivalent to the mean breeding values of populations subject to purely

deterministic environments:
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F{E[ā(x)]} =
�

2
s

�

2
s

+ ⇠

2
F{ 

µ

(x)}. (6)

In order to analyse the consequences of spatially stochastic changes in the environmental

variable we need to consider its auto-covariance function C

✏e(x, x

0). This is the expected

covariance between the environmental variable at site x and site x

0 where the covariance is

taken over realisations of the spatial process. Assuming that the covariance is defined solely

in terms of distance d, the cross-covariance function between the environmental variable

and the de-trended trait (z̄
e

(x) = z̄(x)� z̄

µ

(x)) is given by

F{C
z̄e,✏e(d)} =

⇣
�

2
s

�

2
s+⇠

2

⌘
F{C

✏e(d)}(B � b) + bF{C
✏e(d)} (7)

where the first term represents the e↵ect of local adaptation and the second term represents

the e↵ect of plasticity.

One of the simplest stochastic processes is the Ornstein-Uhlenbeck process, which is the

continuous analogue of a first-order autoregressive process. This generates an exponential

auto-covariance function, C

✏e(d) = �

2
✏

e

�d/�✏ , where �2
✏

is the stationary variance, and e

�d/�✏

gives the correlation in the environmental variables of populations separated by distance

d (see also Tufto 2015). As the scale parameter �
✏

increases the environmental variable

becomes correlated at greater distances. In Figure 1 environmental variables are simulated

at a thousand equal spaced points according to an Ornstein-Uhlenbeck process around

a linear trend and around a step change. By discretising the landscape into a thousand

populations, the expected phenotype in each population was obtained by solving the

discrete-space matrix-equation analogue of Equation 2. The environmental variable is in

grey, the mean phenotype in black and the dashed red line corresponds to the theoretical

prediction for the mean phenotype in a fully-deterministic environment.
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Figure 1 here

The de-trended fluctuations (i.e. the fluctuations around the dashed line in Figure 1)

of the environmental variable and the phenotype are correlated, but the fluctuations in the

phenotype are smaller in magnitude and tend to be smoother. We can characterise this by

obtaining the modal ‘phenotype-environment association’ (PEA) had a pair of populations

been sampled at distance d. Conceptually, this is like taking a random pair of populations

d units apart and asking what the modal regression coe�cient would be if their mean

phenotypes were regressed on their environmental variables. Practically, the distance-based

PEA could be meausured by estimating the parameters of the cross-covariance function

between the phenotype and the environmental variable (Equation 7) and using the methods

in the SI to derive to the distance-based PEA. For an environmental variable with an

exponential auto-covariance function this evaluates to

PEA(d) = (B � b) �s�✏

1��

2
s�

2
✏

h
1�e

�d�s

1�e

�d��1
✏
� �

s

�

✏

i
+ b.

(8)

The function PEA(d) is plotted for a range of parameters in Figure 2.

Figure 2 here

Results

A number of interesting results emerge from this theory.

i) Equation 6 shows that the expected population mean at a location follows the

deterministic prediction (See Figure 1). In the case of a linear change in the environ-

mental variable this implies that the optimal relationship between the trait and the
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environmental variable can be obtained from the ratio B = �

z,x

/�

✏,x

where the regression

coe�cients are obtained by individually regressing the trait and the environmental

variable on location respectively. Equation 8 demonstrates that simply regressing the

phenotype on the environmental variable will under estimate B if there is stochasticity, be-

cause the fluctuations in each are not perfectly correlated because of gene-flow (See Figure 1).

Equation 8 gives the modal phenotype-environment association when assayed

populations are separated by some distance (PEA(d)). In Figure 3, PEA(d) is plotted

for a specific set of parameters (see Figure legend) and properties of the function are

characterised in terms of the biological parameters. The relationship between the shape of

this function and key biological processes constitutes the main results:

Figure 3 here

ii) At distance zero Equation 8 simplifies to

PEA(0) = b

(9)

and is equal to the plastic response. This logic was used by Phillimore et al. (2010)

to estimate b by regressing the phenotype (spawning dates of the Common frog, Rana

temporaria) on the environmental variable (temperature) at the same site over multiple

years, under the assumption that micro-evolution at that site had not built up a large

association. When temporal replication does not exist at a site, Equation 8 suggests

that if the environmental variable has a stochastic component, then in a spatially ex-

plicit model b can be estimated by estimating the function PEA(d) and finding the intercept.
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iii) At large distances, Equation 8 simplifies to

PEA(1) = (B � b) �s�✏

1+�s�✏
+ b

(10)

and tends to the optimal slope as �
s

�

✏

becomes large (i.e. dispersal is short with respect to

the scale of environmental fluctuations).

iv) The initial (i.e. at d = 0) rate of change in PEA(d) is given by

lim
d!0 

0
PEA(d) = 1

2�s

(PEA(1)� PEA(0)) (11)

which demonstrates that the relative strength of selection versus migration (�
s

) can be

independently estimated, and is related to the cline-width in deterministic models.

v) If the environment does not have a deterministic component, and so B cannot be

estimated according to i), results ii-iv) demonstrate that the function PEA(d) provides

independent information about b, �
s

and B conditional on �
✏

.

vi) In a temporally autocorrelated environment with adaptive plasticity, Michel et al.

(2014, Equation 6) derive the expected temporal PEA using a continous time approximation

(see Equation 4c in Tufto 2015, for discrete-time). In the notation used here, their result is

PEA = (B � b)
G

a

��

✏

1 + G

a

��

✏

+ b (12)

where �
✏

now specifies temporal autocorrelation in the environment in units of generations.

This is identical to our result at large spatial distances when the mean dispersal distance is
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one, except that
p

G

a

� appears in the spatial model (Equation 10) rather than G

a

�. The

square-root probably appears because ‘dispersal’ in time is only in one direction (forward)

whereas dispersal in a linear habitat can be in two directions and so all ‘sites’ are connected.

This result suggests that a natural way of comparing temporal and spatial fluctuations in

selection is to scale them by generation time and average dispersal distance, respectively.

Discussion

Compared to theoretical studies on the e↵ects of selection, migration and drift on gene

frequencies (e.g. Haldane 1930; Wright 1931; Levene 1953), work on quantitative traits

has a shorter history and remains less complete (Barton & Turelli 1989; Barton 1999).

Nevertheless, a substantial theoretical literature does exist exploring genetic di↵erentiation,

not only in the presence of divergent selective forces (Bulmer 1971) but with the added

complexity of phenotypic plasticity (Via & Lande 1985), demographic variation (Pease et al.

1989), drift (Lande 1991) and realistic genetic architectures (Yeaman & Guillaume 2009).

Currently, only environments that change deterministically in space have been considered,

and this study adds to this body of work by considering environments that also have a

stochastic component (see also Engen & Sæther 2016).

The e↵ect of stochasticity is most clearly illustrated by contrasting it with genetic

di↵erentiation under a deterministic linear change in the environment (Felsenstein 1977;

Slatkin 1978). In the deterministic case, population means track the optimum perfectly

and so the optimal phenotype-environment association (B) (also called the environmental

sensitivity of selection; Chevin et al. 2010) can be directly observed as the rate at which

the phenotype changes as a function of the environmental variable. Equivalently, B can

also be indirectly obtained as the rate at which the phenotype changes as a function of

location multiplied by the rate at which location changes as a function of the environmental

variable. With stochasticty, the expected (as opposed to the observed) population means
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behave the same as in the deterministic case, and are therefore also informative about

B. However, B cannot be measured directly from the observed phenotype-environment

association (PEA). This is because fluctuations in phenotypes and environmental variables

around their expectations are not perfectly correlated and so weaken the relationship, as in

models of temporally fluctuating selection (Michel et al. 2014; Chevin et al. 2015). However,

in contrast to temporally fluctuating selection, B can be readily obtained by independently

regressing phenotype on space (e.g. latitude) and the environmental variable on space and

taking the ratio of the coe�cients.

With a deterministic linear change in the environment, the change in phenotype

with location does not depend on the relative strengths of migration and stabilising

selection (Felsenstein 1977; Slatkin 1978), or the magnitude of plasticity (Via & Lande

1985). However, with stochasticity, the relative spatial scales at which phenotypes and

the environment fluctuate around their expected values tells us something about these

processes. This result can also be understood in terms of the PEA, which gets shallower

as we sample populations at smaller distances. We can understand this result in terms of

a more familiar phenomenon. A regression coe�cient is defined as cov(ā, ✏)/var(✏). If ✏ is

an imperfect measure with random error around the true values, then these errors do not

contribute to the covariance between ā and ✏, but they do contribute to the variance in

✏. The resulting slope is shallower than it would have been, had ✏ been measured without

error. The Fourier transform represents spatial variation in ✏ as a weighted sum of sinusoids

with di↵erent wavelengths, and this idea can be used to gain biological insight into why

the PEA changes with spatial scale (Figure 4). Fluctuations at short wavelengths (over

short distances) are like noise, occurring at such small spatial scales that the population

cannot locally adapt. These fluctuations contribute to var(✏) but do not cause correlated

fluctuations in breeding value and so do not contribute to cov(ā, ✏). However, populations

can locally adapt to environmental fluctuations that operate at long wavelengths (over large
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distances), resulting in an association between breeding value ā and ✏. As we increase the

scale of sampling we pick up more and more of the long-wavelength variation, whereas the

short-wavelength variation remains constant. Consequently, cov(ā, ✏) decreases more quickly

than var(✏) at short distances and so the regression slope gets shallower, eventually tending

to zero. In contrast, plasticity allows a direct response to fluctuations in ✏, irrespective of

their spatial scale, and therefore adds a constant to the regression of phenotype on ✏ (as

opposed to the regression of breeding value on ✏).

Figure 4 here

These features of stochastic models have analogues in both quantitative (Slatkin 1978)

and population genetic (Haldane 1948) models with a deterministic step change in the

environment (Figures 1b and 3). In these models, the mean breeding value (or allele

frequency) is intermediate between the two optima at the transition zone, and tends to the

optimal value with increasing distance. The distance over which the transition happens

increases with dispersal distance (which tends to move alleles favoured on one side of the

transition zone deeper into the other side) but decreases with selection (because alleles

on the wrong side of the transition zone are then eliminated more quickly). The relative

strength of these two processes is measured by the maximum rate of change in mean

breeding value in space: the reciprocal of cline-width. In stochastic models the degree to

which the association between ā and ✏ is maintained is also determined by the relative

strengths of dispersal and stabilising selection. Similar to deterministic step change models,

it is shown that the relative strength of these two processes can be measured by the initial

rate at which the between-population regression changes with spatial sampling.

With a deterministic step change in the environment, plasticity causes a concomitant

step change in phenotype despite mean breeding values changing smoothly. The magnitude

of this step change is equal to the plastic response. In a stochastic model the regression
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of breeding value on ✏ tends to zero at short distances. However, plasticity allows a direct

response to fluctuations in ✏ even over small distances and therefore the regression of

phenotype on ✏ (as opposed to the regression of breeding value on ✏) does not tend to zero

but tends to the plastic response. Phillimore et al. (2010) used a similar logic to distinguish

between plasticity and local adaptation in the spawning dates of the Common frog.

However, the theory presented here shows that the analyses presented in Phillimore et al.

(2010) could be extended to yield information on the relative strength of migration and

selection and the optimal response to environmental change. Although superior information

would be available from transplant or common garden studies that track individuals and

their fitnesses (Hereford 2009), the results presented here would allow conclusions to be

drawn from population means, which for many species is all that is available.

This work also connects with recent theoretical and methodological developments for

studying the evolution of traits in temporally autocorrelated environments (Hansen et al.

2008; Michel et al. 2014; Chevin et al. 2015; Tufto 2015). Indeed one of the central results

from work on temporal variation in selection is that the observed PEA is shallower than

B, particularly when temporal autocorrelation is weak (Michel et al. 2014). This result is

similar to our result when the PEA is measured across distant populations, although spatial

autocorrelation must be scaled by mean dispersal distance and temporal autocorrelation by

generation time. However, our results highlights the need to take care when interpreting

temporal PEA: Michel et al’s (2014) result only holds when environments are assayed at

su�ciently long time intervals that temporal autocorrelation is negligible (Hansen et al.

2008). Moreover, it suggests that a complete analysis of the phenotype and ✏ time-series

would provide additional information. This result is analogous to that developed in a

phylogenetic context (Hansen et al. 2008, see Burt (1989) also) where the observed PEA

(called the ‘evolutionary regression’) is expected to be shallower than B (called the ‘optimal

regression’), particularly when the species are more closely related. The explanation for
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this phenomenon is analogous to the one put forward in a spatial context: closely related

species living in two very divergent environments have had less time to adapt than distantly

related species living in the same pair of divergent environments, and so the association

between phenotype and environment is therefore weaker in the former (Burt 1989). The

longer history of these ideas in the phylogenetic comparative literature has led to a wide

understanding of why the di↵erence between the observed PEA and B would change

with taxonomic scale, and the development of statistical procedures for making inferences

from data (Hansen et al. 2008; Hansen & Bartoszek 2012; Bartoszek et al. 2012). Similar

methods could be developed in a spatial context by fitting spatial covariance functions for

the phenotype and the environmental variable and then deriving the distance-based PEA in

the same way that Equation 8 was derived. Although a wide variety of spatial models have

been developed for analysing a single response variable (i.e. a trait or an environmental

variable), bivariate analyses that allow a flexible model for the spatial cross-covariance

function are relatively new. However, such models have been applied in a di↵erent context

to short time series (Sy et al. 1997; Ja↵rezic et al. 2004) and moderate sized spatial datasets

(Gneiting et al. 2010), and new approaches and software are being developed for fitting

multivariate models to very large spatial data sets (Lindgren et al. 2011; Schlather et al.

2015). These new frontiers in spatial data analysis should allow ecologists and evolutionary

biologists to extract information from spatial patterns that has previously been ignored.

Limitations

The model makes several simplifying assumptions: population densities are i) uniform

and ii) large enough that genetic drift can be ignored; iii) plasticity and selection are driven

by the same environmental variable and this variable has been correctly identified; iv) at a

location the environmental variable is constant over time; v) plasticity and vi) the additive

genetic variance are fixed quantities that remain constant in space; vii) dispersal events are
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exponentially distributed in viii) a linear and infinite habitat. The likely consequences of

these assumptions are addressed below.

i) With random dispersal, gene-flow tends to be from high to low density areas causing

greater local maladaptation in low density areas. When density declines from the centre

of a species range, this causes peripheral populations to lie further o↵ their local optimum

resulting in an observed PEA that is shallower than B (Garcia-Ramos & Kirkpatrick

1997). It seems likely that in an environment with both a stochastic and deterministic

part the expected population means would also follow this trend, and care would have

to be taken in interpreting the ratio of the regressions of phenotype and environment

on space as a measure of B. Likewise, obtaining a measure of B from the pattern of

phenotype-environment fluctuations around the expectations would be compromised if

fluctuations in the environmental variable also drive fluctuations in population density.

Models that allow both density and trait to evolve (Pease et al. 1989) have shown that

when the environment changes rapidly, and density regulation is weak, a feedback loop

can occur (Haldane 1956; Holt & Gomulkiewicz 1997; Kirkpatrick & Barton 1997; Ronce

& Kirkpatrick 2001). Such a process could generate a spatial cross-correlation between

the environmental variable and population density (Polechová & Barton 2015), although

it would seem that the magnitude of any feedback would be smaller than observed for

deterministic changes.

ii) The e↵ects of drift were ignored yet they are known to generate spatial

autocorrelation in mean breeding value due to the fact that relatives exist closer in space

with restricted dispersal (Lande 1991). However, spatial autocorrelation due to drift and

random dispersal events in finite populations should be uncoupled to the environmental

variable and so are unlikely to alter the conclusions of this study greatly (Engen & Sæther

2016).



– 18 –

iii) In their island model, Via & Lande (1985) showed that if there is no cost to

plasticity, perfect plasticity evolves (i.e. b = B) and all populations track the local

optima without genetic di↵erentiation. Although simulation work with realistic genetic

architecture challenged this view (Scheiner 1998) analytical studies of the simulation

model demonstrated that deviations from perfect plasticity were in fact due to the cue

for plasticity being imperfect. Then, spatial di↵erentiation is a mixture of plastic and

genetic responses (de Jong 1999; Tufto 2000). The model presented here assumes that

plasticity and selection act simultaneously such that the environment of development and

the environment of selection are perfectly correlated (Moran 1992). In the Supporting

Information this assumption is relaxed and it is shown that a pair of PEAs, one for each

environmental variable, could be constructed that would allow all relevant parameters to be

assessed. Although empirically challenging this could also be extended to the case where

there are multiple environmental variables driving selection and plasticity (Chevin & Lande

2015). A more di�cult problem for empiricists will be to identify and measure the driving

environmental variable(s) rather than an environmental variable that is merely correlated

with them. In the Supporting Information it is shown that if the correlations between and

within all environmental variables decay in space at the same rate then Equation 8 would

remain valid. However, the observed environmental sensitivities of selection and observed

plasticities should then be thought of as e↵ective: B and b multiplied respectively by the

regressions of the environments of development and selection on the measured variable

(Michel et al. 2014). When the rate of decay is di↵erent between or within environmental

variables then an incorrectly identified driving variable could result in spurious inferences.

However, two diagnostics are available to assess whether this might be the case. The first is

that if the measured variable is the driving environmental variable, then the cross-correlation

between the mean phenotype and the environmental variable should decay at a slower

rate than the auto-correlation in the environmental variable. This should happen because
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gene-flow increases the spatial scale of fluctuations in the phenotype with respect to the

environmental variable. In cases where data have also been collected at multiple times at

the same location then a second diagnostic would be to obtain a second direct estimate of b

as in Phillimore et al. (2010) and see if the two estimates of plasticity di↵er.

iv) Using the within-site temporal PEA to measure plasticity as in Phillimore et al.

(2010) assumes that micro-evolution has not generated an association between breeding

value and the environmental variable across years. As shown in Michel et al. (2014), and

consistent with the spatial results presented here, this will only hold when the temporal

autocorrelation in the environmental variable is zero. Building temporal variation into the

model presented here should be straightforward if the temporal and spatial processes are

separable, and it is envisaged that an additional temporal PEA similar to that presented

in Equation 8 would emerge. This would allow the degree of plasticity and temporal

adaptation to be assessed from time series even when individual-level data are not available

(Chevin et al. 2015).

v) The model described follows the evolution of a linear reaction norm where the

intercept is allowed to evolve in space but the slope is fixed. Models that allow the slope

to evolve have shown that populations experiencing more extreme environments may evolve

greater plasticity (Tufto 2000) when the trait is canalised in the average environment (Lande

2009). With a deterministic linear trend in the environment this results in the evolution of

greater plasticity at the margin of a species range Chevin & Lande (2011). It is not clear

what e↵ect stochastic changes in the environment would have on the evolution of the slope,

although it seems likely that they would induce spatial fluctuations in the slope as they do

for the intercept. The magnitude of these fluctuations is hard to gauge, and although it

seems that they would most likely be small compared to those for the intercept, further

study would be required to confirm this.
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vi) The genetic variance was assumed to be constant, although it is expected to be

elevated in regions where the mean breeding value changes relatively quickly, such as at the

boundary of two discrete environments (Barton 1999; Nurnberger et al. 1995). However,

these e↵ects will be mitigated in finite populations with hard selection because local

population size will be reduced in such regions and the ensuing drift will act to reduce the

genetic variance (Polechová & Barton 2015). Understanding the balance between these

two processes in stochastic environments would require more work, although for highly

polygenic traits in smoothly varying environments the expectation is that genetic variances

may remain roughly constant.

vii) The Laplace distribution was used as a dispersal kernel due to its analytical

properties, and other reasonable dispersal kernels could have been used. However, the

deterministic results coincided with those of Slatkin (1978) who did not assume a specific

form for the dispersal kernel, but used a Taylor approximation that assumed that mean

breeding values change over large distances relative to dispersal. Consequently, although

the details of the model are expected to change with di↵erent dispersal kernels, it is believed

that the general results would still hold.

viii) An infinite habitat was assumed and the results will almost certainly breakdown at

the boundary of a species range where edge e↵ects become important. However, simulation

work (see SI) suggests that these edge e↵ects may be quite restricted and that the results

would still hold throughout much of a species range. Like the majority of the theory

exploring spatial evolution a one-dimensional habitat was also assumed, despite most

organisms primarily living in two dimensional habitats. Extending the Fourier analyses to

two dimensions is possible, and has been used in an ecological context (e.g. Lande 2009),

although little success was had in obtaining results using a multivariate Laplace dispersal

kernel. A future aim is to extend these models to two-dimensions and develop statistical
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tools that can be used to estimate the relevant parameters in a two-dimensional context.

In the most comprehensive empirical review of spatially varying selection to date

(Siepielski et al. 2013) the authors state that the degree of spatial replication in selection

studies is so low that we have little understanding of the scale of spatial variation in

selection. The theory presented in this paper will be useful to empiricists as it suggests

that under certain conditions spatially replicated data can be used to estimate key

evolutionary parameters without the need to collect individual-level fitness data from

multiple populations.
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Fig. 1.— Simulated environmental variable (grey) and equilibrium mean phenotype (black)
when the environment has a deterministic component (i) linear change, ii) discrete change)
and a stochastic component. B = 1 and so the grey trace also depicts the optimal phenotype.
The dashed red line gives the equilibrium mean phenotype in the absence of stochasticity,
which is also the expected mean phenotype with stochasticity where the expectation is taken
over realisations of the spatial process. This figure constitutes one such realisation. The
arrows in ii) represent aspects of the deterministic/expected phenotypic cline in a discrete
environment in terms of the biological parameters: intercept (b), asymptote (B) and maxi-
mum rate of change ((B�b)�

s

), the reciprocal of which is often referred to as the cline-width.
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Fig. 2.— Regression of the de-trended trait on the environmental variable (PEA) as a
function of sampling distance d with i) di↵erent spatial autocorrelation in the environmental
variable (�

✏

) holding the mean dispersal distance at ��1 = 1 or ii) di↵erent mean dispersal
distances holding the spatial autocorrelation in the environmental variable at �

✏

= 100. In
both scenarios b = 0.2 and B = 1. G

a

= 0.2 & � = 0.05 (Johnson & Barton 2005).
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the simulations presented in Figure 1. The arrows represent aspects of the function, PEA(d)
in terms of the biological parameters: intercept (PEA(0)), asymptote (PEA(1)) and initial
rate of change (
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Fig. 4.— The five sinusoids in grey are weighted by their respective weights (w) and then
added together to form the function describing how the environmental variable changes in
space (✏(x), on the right). Any function can be decomposed into a weighted sum of sinusoids
using the Fourier transform. We can imagine populations trying to locally adapt to each
sinusoid. For the low frequency sinusoid at the bottom this is relatively easy because the
environment is changing slowly compared to dispersal. For the high frequency sinusoid
at the top this is relatively hard because the environment is changing quickly compared
to dispersal, and an allele experiences very di↵erent environments each generation. If we
sample populations close together (those parts of the sinusoids in black) we can see that we
are picking up much of the high frequency variation but little of the low frequency variation.
Because it is not possible to adapt to the high frequency variation, the covariance between
the environment and breeding value is not built up and so the PEA is shallow and mainly
due to plasticity. If we sampled populations further away we would be picking up more of the
low frequency variation, for which a covariance can build up, and so the PEA gets steeper.
The rate at which the PEA changes with distance depends on the degree of plasticity, the
scale of dispersal and also the scale of auto-correlation in the environment. On the frequency
scale, the auto-correlation is determined by the magnitude of the di↵erent weights, with the
scale of autocorrelation increasing as more weight is placed on the low-frequency sinusoids.
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Supporting Information: The Spatial Scale of Local Adaptation in

a Stochastic Environment

Here the model is decribed, and the derivation of the main results given in more detail.

The mean phenotype (z) of newborns in population x in generation t is (Equation 1 in main

text)

z̄(x, t) = ā(x, t) + b✏(x, t) (A-1)

where ā is mean breeding value and b is the plastic response to the environmental variable,

✏. In what follows ✏(x, t) is assumed to be constant in time (i.e. ✏(x, t) could be replaced by

✏(x)).

After trait determination, including plasticity, individuals are subject to selection, then

gamete dispersal and fertilisation. ā is used to denote mean breeding value before selection,

ã for after selection but before migration and ǎ for after selection and migration. The mean

breeding value after selection and migration is given by

ǎ(x, t) =
R

M(x� x0)ã(x0, t)dx0

= (M ⇤ ã)(x, t)
(A-2)

where M(x�x0) is the probability that a gamete moves from x0 to x, and it is assumed that

this probability only depends on the distance between the two locations. For this to be the

case the most simple scenario is random dispersal and constant population size. ǎ(x, t) is a

weighted mean of population-mean breeding values after selection, with the weights equal

to the probabilities that a gamete arriving into population x came from those populations.

Under random mating, and the assumption that average e↵ects remain constant,

reproduction does not change the mean breeding value ā(x, t + 1) = ǎ(x, t) (Fisher 1918)
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and so at equilibrium

ā(x) = (M ⇤ ã)(x) (A-3)

Lande & Arnold (1983) showed that the mean breeding values before and after selection are

related:

ã(x) = ā(x) + E
h

@w(z,x)
@z

i

�z,a

E[w(z,x)]
(A-4)

if the distribution of phenotypes and breeding values before selection are multivariate

normal. w(z, x) is a function that gives the expected fitness of an individual with phenotype

z at location x. The expectations in the above equation are taken over values of z at a

location, and �
z,a

is the covariance between phenotype and breeding value. �
z,a

is equal to

the within population additive genetic variance (G
a

) in the absence of complications such as

maternal e↵ects (Kirkpatrick & Lande 1989). With Gaussian selection the fitness function

is (Haldane 1954)

w(z, x) / exp

✓

�(z � ✓(x))2

2!2

◆

(A-5)

where ✓(x) is a function for the optimal phenotype and !2 is the width of the fitness

function around the optimum. By defining the short fall between the optimum and the

plastic response as  (x) = ✓(x)� b✏(x) (Michel et al. 2014) then

ã(x) = (1�G
a

�)ā(x) + G
a

� (x)
(A-6)

where � = (!2 + P )�1, and P is the within-population phenotypic variance (Lande 1976).
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Substituting Equation A-6 into Equation A-3 we get Equation 3 in the main text:

ā(x) = (1�G
a

�)(M ⇤ ā)(x) + G
a

�(M ⇤  )(x). (A-7)

In the absence of plasticity this is Equation 13 of Slatkin (1978), who proceeds with

further approximations. However, by taking Fourier transforms of both sides we get

F{ā(x)} = (1�G
a

�)F{M(x)}F{ā(x)} + G
a

�F{M(x)}F{ (x)} (A-8)

which can be solved for

F{ā(x)} = Ga�

Ga�+F{M(x)}�1�1F{ (x)}. (A-9)

Dispersal events are assumed to follow a Laplace distribution, which has probability

density function

M(x) =
�

2
exp (��|x|) . (A-10)

The Fourier transform is

F{M(x)} =
�2

�2 + ⇠2
(A-11)

where ⇠ is the unitary ordinary frequency. Consequently, Equation A-9 simplifies to

Equation 4 in the main text:

F{ā(x)} = Ga�

Ga�+�2+⇠2

�2 �1
F{ (x)}

F{ā(x)} = �

2
s

�

2
s+⇠

2F{ (x)}.
(A-12)
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where �
s

= �
p

G
a

�.

Deterministic Environments

In order to show that the results are identical with those from previous work on

deterministic environments, we will use the examples of a linear and discrete change in the

environment presented in Slatkin (1978).

If the environmental variable changes linearly in space with coe�cient �
✏

, then

✏(x) = �
✏

x and  (x) = (B � b)�
✏

x. Then, F{ (x)} = 2⇡i(B � b)�
✏

�
0
where i =

p
�1 and �

0

is the distributional derivative of the Dirac delta function. This gives

F{ā(x)} = 2�

2
s⇡i(B�b)�✏�

0

�

2
s+⇠

2

ā(x) = (B � b)�
✏

x.
(A-13)

The mean phenotype is then,

z̄(x) = ā(x) + b�
✏

x

= B�
✏

x

= B✏(x).

(A-14)

which tracks the optimum perfectly as originally shown by Felsenstein (1977). Note that

the optimum is reached irrespective of whether plasticity exists or not, as in the island

model (Via & Lande 1985). Consequently changes in phenotype in a linearly changing

environment only depend on B not on plasticity, dispersal or the strength of stabilising

selection.

If we assume that the environmental variable is a step function changing from �1 when
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x < 0 to 1 when x > 0, then  (x) = (B � b)(2H(x)� 1) where H(x) is the Heaviside step

function and F{ (x)} = 2i(B�b)
⇠

to give

F{ā(x)} = 2�

2
si(B�b)

⇠�

2
s+⇠

3

ā(x) =

8

>

>

<

>

>

:

(B � b)(1� e��sx) if x > 0,

�(B � b)(1� e�sx) if x < 0.

(A-15)

The mean phenotype is then

z̄(x) =

8

>

>

<

>

>

:

(B � b)(1� e��sx) + b if x > 0,

�(B � b)(1� e�sx)� b if x < 0.

(A-16)

When plasticity is absent, this is equivalent to Eq. 24 from Slatkin (1978): mean

phenotype is a sigmoid function of x eventually reaching the two optima, �B and B,

some distance from the transition zone. With plasticity, a discontinuity occurs at the

transition zone because of the direct plastic response (b) to the change in environment (See

Figure A-1). The rate at which the optima are reached can be characterised in terms of

the maximum rate of change in phenotype, the reciprocal of which is also known as the

cline-width (Endler 1977). Di↵erentiating z̄(x) with respect to x gives (for x > 0 only)

z̄0(x) = (B � b)�
s

e��sx (A-17)

which is maximised when x = 0 (assuming B� b is positive) where it evaluates to (B� b)�
s

.

Consequently changes in phenotype in a discrete environment are not only informative

about B, but also plasticity (b), and the relative strengths of dispersal and stabilising

selection (�
s

).
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Fig. A-1.— Change in mean phenotype (z̄) with location x given the environmental variable

changes from -1 when x < 0 to 1 when x > 0. The three arrows represent properties of the

function, such as the intercept (b) asymptote (B) and maximum rate of change (B � b)�
s

.

Stochastic Environments

In order to analyse models with stochastic environments spatial changes in the

environment can be split into deterministic and stochastic parts:

✏(x) = ✏
µ

(x) + ✏
e

(x). (A-18)

Given a linear reaction norm (b) and a linear relationship between the environment and

the optimum (B) the conditional optimum has the same form, where  
µ

(x) = (B � b)✏
µ

(x)

is a deterministic function and  
e

(x) = (B � b)✏
e

(x) is some zero-mean stationary random

field. Under these conditions Equation A-12 becomes
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F{ā(x)} = �

2
s

�

2
s+⇠2F{ 

µ

(x)} + �

2
s

�

2
s+⇠2F{ 

e

(x)}. (A-19)

If we now take  
e

(x), and consequently ā(x), to be random homogeneous functions

then it can be shown that the expected mean breeding value at a location (the expectation

is taken over the spatial process) will follow the deterministic results presented above

(Equation 6 in main text):

F{E[ā(x)]} =
�2

s

�2
s

+ ⇠2
F{ 

µ

(x)}. (A-20)

To show this we need to show that

0 = E
h

F�1
n

�

2
s

�

2
s+⇠2F{ 

e

(x)}
oi

. (A-21)

Noting that the system is ergodic and the Fourier transform of a probability distribution

is also the characteristic function, then this is equivalent to

0 = �i
d �

2
s

�

2
s+⇠2F{ 

e

(x)}
d⇠

�

�

�

�

�

�

⇠=0

. (A-22)

Having Q(⇠) = �

2
s

�

2
s+⇠2 and noting that Q(⇠)|

⇠=0 = 1 and dQ(⇠)
d⇠

�

�

�

⇠=0
= 0 then

0 = �i dQ(⇠)F{ e(x)}
d⇠

�

�

�

⇠=0

0 = �i
⇣

F{ 
e

(x)}dQ(⇠)
d⇠

+ Q(⇠)dF{ (x)}
d⇠

⌘

�

�

�

⇠=0

0 = �i dF{ e(x)}
d⇠

�

�

�

⇠=0

0 = E[ 
e

(x)]

(A-23)

as required.
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If the auto-covariance function for the de-trended environmental variable can be defined

solely in terms of the distance d between locations, then the auto-covariance function for

the conditional optimum is

C
 e(d) = C

✏e(d)(B � b)2 (A-24)

where C
✏e(d) is the the auto-covariance function for the environmental variable. Given

the relationship between the cross-covariance of two signals and their convolution, the

cross-covariance function of the de-trended mean breeding value (ā
e

) and the environmental

variable is given by

F{C
āe,✏e(d)} = F{ā

e

(d)}F{✏
e

(�d)}

= F{ā
e

(d)}F{ 
e

(�d)}(B � b)�1

=
⇣

�

2
s

�

2
s+⇠2

⌘

F{C
 e(d)}(B � b)�1

=
⇣

�

2
s

�

2
s+⇠2

⌘

F{C
✏e(d)}(B � b)

(A-25)

and the equivalent function for de-trended phenotype is

F{C
z̄e,✏e(d)} = F{C

āe,✏e(d)}+ bF{C
✏e(d)}. (A-26)

These results are independent of the exact form for ✏
e

(x) although homogeneity must be

satisfied. For completeness the auto-covariance function for mean breeding value is also

given:
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F{C
āe(d)} = F{ā

e

(d)}F{ā
e

(�d)}

= �

2
s

�

2
s+⇠2F{ e

(d)} �

2
s

�

2
s+⇠2F{ e

(�d)}

=
⇣

�

2
s

�

2
s+⇠2

⌘2

F{C
 e(d)}

=
⇣

�

2
s

�

2
s+⇠2

⌘2

F{C
✏e(d)}(B � b)2

(A-27)

and phenotype

F{C
z̄e(d)} =

⇣

�

2
s

�

2
s+⇠2

⌘

F{C
✏e(d)}(B � b)2 + F{C

✏e(d)}b2 (A-28)

However, it should be noted that with finite populations additional terms are required

to deal with the e↵ects of drift and randomness in the dispersal process (Engen & Sæther

2016).

If we assume that the de-trended environmental variable has an exponential

auto-covariance function C
✏e(d) = �2

✏

e�d/�✏ then

F{C
✏e(d)} =

2�
✏

�2
✏

1 + �2
✏

⇠2
. (A-29)

and the cross-covariance function between de-trended mean breeding value and the

environmental variable is equal to

F{C
āe,✏e(d)} =

⇣

�

2
s

�

2
s+⇠2

⌘

2�✏(B�b)�2
✏

1+�2
✏⇠

2

C
āe,✏e(d) = (B � b)�2

✏

�s�✏

(1+�s�✏)
e

��sd��s�✏e
�d/�✏

(1��s�✏)
. (A-30)

It is worth noting that Equation A-30 evaluated at distance d = 0, the covariance

between the environmental variable and breeding value across hypothetical replicate

populations undergoing the same pattern of stochasticity, gives
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C
āe,✏e(0) = (B � b)�2

✏

�s�✏

1+�s�✏
(A-31)

This quantity is maximised when �
s

�
✏

is large: the optimum changes slowly relative to

dispersal distance thus allowing local adaptation to occur. It is also proportional to (by a

factor B

!

2 ) the measure of local adaptation defined in Blanquart et al. (2012) (Equation 3,

see also Blanquart et al. 2013) since

B

!

2 = @w(z,✏)
@z@✏

�

�

�

(E[z̄e],E[✏e])
(A-32)

The cross-covariance function between mean phenotype and the environmental variable

is

C
z̄e,✏e(d) = (B � b)�2

✏

�s�✏

(1+�s�✏)
e

��sd��s�✏e
�d/�✏

(1��s�✏)
+ b�2

✏

e�d/�✏ . (A-33)

If we took a pair of populations separated by distance d the expected covariance

between their environmental variables and their mean phenotypes, which will be called the

between population covariance, is given by

B
z̄e,✏e(d) = C

z̄e,✏e(0)� C
z̄,✏e(d). (A-34)

This is an intra-class covariance:

E [(z̄
e

� E
g

[z̄
e

])(✏
e

� E
g

[✏
e

])]

where E
g

stands for average of the variable in the (two) populations. As the distance

tends to zero the between-population covariance tends to zero because the populations
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become identical (i.e. z̄
e

= E
g

[z̄
e

]). As distances become large the between population

covariance increases to C
z̄e,✏e(0). When the environmental variable has an exponential

covariance function

B
z̄e,✏e(d) = (B � b)�2

✏

�s�✏

1+�s�✏

h

1� e

��sd��s�✏e
�d/�✏

(1��s�✏)

i

+ b�2
✏

⇥

1� e�d/�✏
⇤

.
(A-35)

Similarly, the between-population variance in the environmental variable is given by

B
✏e(d) = �2

✏

⇥

1� e�d/�✏
⇤

. (A-36)

Agian, we can think of this as taking a pair of populations separated by distance d and

calculating the intra-class variance in ✏
e

:

E
⇥

(✏
e

� E
g

[✏
e

])2
⇤

which is the variance in the deviations of the two ✏
e

from their average.

The regression of mean trait value on the environmental variable for a pair of

populations separated by distance d is centered around the ratio of the between-population

covariance and the between-population variance (Equation 8 of the main text):

PEA(d) = B
z̄e,✏e(d)/B

✏e(d)

= (B � b) �s�✏

1��

2
s�

2
✏

h

1�e

��sd

1�e

�d/�✏
� �

s

�
✏

i

+ b.
(A-37)

As the distance tends to zero, PEA(d) tends to b which will be denoted as PEA(0). At

infinite distances Equation A-37 simplifies to (Equation 10 in main text)
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PEA(1) = (B � b) �s�✏

1+�s�✏
+ b. (A-38)

Di↵erentiating PEA(d) with respect to d and taking the limit as d approaches zero

gives

lim
d!0 

0
PEA(d) = (B � b) �s�✏

1+�s�✏

1
2�s

lim
d!0 

0
PEA(d) = 1

2�s

(PEA(1)� PEA(0)).
(A-39)

Discrete-Space Model and Simulations

In order to verify the analytical results (and to generate Figure 1 in the main text), the

discrete-space analogue of Equations A-3 and A-6 are

ā(x) = ǎ(x) = Mã(x) (A-40)

and

ã(x) = (1�G
a

�)ā(x) + G
a

� (x) (A-41)

respectively, where a(x) and  (x) are now vectors of mean breeding values and conditional

optima at sites x. Dispersal between populations is given by the migration matrix M

(Bodmer & Cavalli-Sforza 1968; Bulmer 1971): m
ij

is the probability that a gamete at

location i originated from population j. Substituting Equation A-40 into Equation A-41

and solving for ā(x) gives
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ā(x) = M [(1�G
a

�)ā(x) + G
a

� (x)]

ā(x) = (1�G
a

�)Mā(x) + G
a

�M (x)

[I� (1�G
a

�)M] ā(x) = G
a

�M (x)

ā(x) = G
a

� [I� (1�G
a

�)M]�1
M (x).

(A-42)

The equilibrium mean phenotype is then

ā(x) = G
a

� [I� (1�G
a

�)M]�1
M (x) + b✏(x). (A-43)

For Scenario i) in Figure 1 the deterministic function for ✏(x) was linear from �1 when

x = �500 to 1 when x = 500 and for Scenario ii) it was a step function with �1 when

x < 0 and 1 when x > 0. A stochastic component was simulated in both cases with an

exponential covariance structure with parameters �
✏

= 10 and �2
✏

= 1/25. B was set to one

in both cases so the grey line represents both the environmental variable and the optimal

trait value. The conditional optimum,  (x) was obtained as (B � b)✏(x) where the plastic

response, b, was set to 0.2.

The migration matrix was obtained by simulating 100,000 dispersal events from a

Laplace distribution with � = 1/5 (i.e. mean dispersal distance is 5 units) to obtain

the probability mass function that a gamete in one population originated from another

population at distance d. For populations close to the range boundary, the probability mass

function was truncated and rescaled to sum to unity. G
a

was set to 0.2 and � to 1/20 such

that �
s

= 0.05. Simulations were carried out in R using the libraries RandomFields and

LaplacesDemon.

In addition to generating Figure 1 simulations were carried out using the same

parameters but with no deterministic trend, a mean dispersal distance of 1 and using �
✏

values across a range from 20, 21 . . . 210. One hundred simulations were generated for each
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value of �
✏

in order to evaluate the accuracy of the equations and this was done for a

landscape size of 1000 (as before) and 5000.

Ideally 
PEA

(d) would be estimated from each simulation using spatial explicit models

as discussed in the main text (e.g. Gneiting et al. 2010) although more work is needed

to develop this methodology. Instead, all pair-wise di↵erences in phenotype between

populations were divided by all pair-wise di↵erences in the environmental variable.

To see why this works, the REML estimator of the intra-class covariance is:

1
n�1

P

n

i=1(z̄ei � 1
n

P

n

j=1 z̄
ej)(✏ei � 1

n

P

n

j=1 ✏
ej) = 1

2(z̄e1 � z̄
e2)(✏e1 � ✏

e2) (A-44)

when n = 2, and the REML estimator of the intra-class variance in ✏
e

is

1
n�1

P

n

i=1(✏ei � 1
n

P

n

j=1 ✏
ej)

2 = 1
2(✏e1 � ✏

e2)
2 (A-45)

and their ratio is (z̄
e1 � z̄

e2)/(✏e1 � ✏
e2). It should be noted that the distribution of

these ratios, like the Cauchy distribution, has an undefined mean, although the median is

equal to 
PEA

(d). This can be seen by noting that both the numerator and denominator in

the ratio are zero-mean Gaussian variables, and so the probabilty density function of the

ratio is (Geary 1930)

f
⇣

z̄e1�z̄e2
✏e1�✏e2

⌘

= 1
⇡

�“
z̄e1�z̄e2
✏e1�✏e2

�↵

”2
+�

2
(A-46)

where ↵ = COV(z̄
e1 � z̄

e2 , ✏e1 � ✏
e2)/VAR(✏

e1 � ✏
e2) and � =

q

VAR(z̄e1�z̄e2 )

VAR(✏e1�✏e2 ) � ↵.

Integrating the probability density function gives:
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F
⇣

z̄e1�z̄e2
✏e1�✏e2

⌘

= � 1
⇡

tan�1

✓

↵� z̄e1�z̄e2
✏e1�✏e2

�

◆

+ C (A-47)

where C is the constant of integration. With initial condition F (1) = 1, C = 0.5, and

so solving for the median quantile:

0.5 = � 1
⇡

tan�1

✓

↵� z̄e1�z̄e2
✏e1�✏e2

�

◆

+ 0.5

z̄e1�z̄e2
✏e1�✏e2

= ↵

(A-48)

Since:

COV (z̄
e1 � z̄

e2 , ✏e1 � ✏
e2) = COV (z̄

e1 , ✏e1)� COV (z̄
e1 , ✏e2)� COV (z̄

e2 , ✏e1) + COV (z̄
e2 , ✏e2)

= 2C
z̄,✏e(0)� 2C

z̄,✏e(d)

= 2B
z̄,✏e(d)

(A-49)

and by the same logic

V AR(✏
e1 � ✏

e2) = 2B
✏e(d) (A-50)

then

↵ = 2B
z̄,✏e(d)/2B

✏e(d)

= 
PEA

(d)
(A-51)

and so the median ratio of di↵erences is equal to 
PEA

(d) as stated.

Distances were binned into twenty quantiles, and the median ratio within that bin

calculated. The mean and standard error of these medians (across the 100 simulations) are
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Fig. A-2.— Results of discrete-space simulations with 1000 populations (left) and 5000

populations (right). The x-axis is the median value of a regression of phenotype on the

environmental variable (
PEA

(d)). This regression was calculated for all n = 2 data-sets

that could be constructed where the pair of values came from 2 populations that fell within

a distance interval. The y-axis is this distance. The points are the mean of these medians

across 100 simulations and the points are located at the centre of each interval. The vertical

bars associated with the points are the standard errors of the means. The solid lines without

points are the theoretical predictions from a continuous-space model. Each coloured line

represents simulations with a di↵erent value of �
✏

(phi.t on the legend). Mean dispersal

distance was ��1 = 1, plasticity was b = 0.2, the environmental sensitivity of selection was

B = 1 and G
a

= 0.2 & � = 0.05.

plotted in Figure A-2 together with the theoretical predictions. As expected, the theoretical

predictions match the simulation results, particularly on the larger of the two landscapes

where edge e↵ects should be reduced.
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Misidentified Environmental Variables

A real problem for empiricists will be to identify the driving environmental variable(s).

Imagine that we have not been able to measure the environmental variable but another

variable v that is imperfectly correlated with it. Then, the covariance between the

de-trended breeding value and the measured environmental variable is

F{C
āe,ve(d)} = F{ā

e

(d)}F{v(�d)}

=
⇣

�

2
s

�

2
s+⇠

2

⌘

F{ 
e

(d)}F{v
e

(�d)}

= (B � b)
⇣

�

2
s

�

2
s+⇠

2

⌘

F{✏
e

(d)}F{v
e

(�d)}

= (B � b)
⇣

�

2
s

�

2
s+⇠

2

⌘

F{C
✏e,ve(d)}

(A-52)

and for the phenotype it is

F{C
z̄e,ve(d)} = (B � b)

⇣

�

2
s

�

2
s+⇠

2

⌘

F{C
✏e,ve(d)}+ bF{C

✏e,ve(d)} (A-53)

If the spatial cross-covariance function between the driving and measured environmental

variable, C
✏e,ve(d), has the form

C
✏e,ve(d) = �

v,✏

e�d/�v,✏ (A-54)

then B
z̄e,ve(d) has the same form as Equation A-35 but with �2

✏

replaced by �
v,✏

and

�
✏

replaced by �
v,✏

. Consequently, when v is considered as the environmental variable

the measured distance-based PEA (PVA) is going to di↵er from the true distance-based

PEA defined for the actual driving variable (PEA). In the case where �
v,✏

= �
✏

(i.e. the

autocorrelation in ✏ decays in space at the same rate as the cross-correlation) then the two

distance PEAs only di↵er by a constant
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
PV A

(d) = 
✏

PEA(d) (A-55)

where 
✏

is the regression of ✏ on v. In this case inferences using v rather than ✏ will

remain valid, although the slopes B
v

= B
✏

and b
v

= b
✏

should be considered as the

e↵ective environmental sensitivity of selection and the e↵ective plasticity respectively, as in

Michel et al. (2014). When �
v,✏

6= �
✏

incorrect inferences are possible, although two possible

diagnostics present themselves. The first is that if the measured variable is the driving

environmental variable, then �
v

< �
z̄,v

should be true if v = ✏ because gene-flow increases

the spatial scale of fluctuations in the phenotype with respect to the environmental variable.

Situations where �
v

> �
z̄,v

would indicate that the measured variable is not the driving

environmental variable. The second is to note that at small distances the regression tends

to 
PV A

(0) = b
✏

. In cases where data have also been collected at multiple times at the

same location then a second diagnostic would be to obtain a second direct estimate of b as

in Phillimore et al. (2010). If the regression of ✏ on v over time di↵ers from the regression

over space then the two estimates of e↵ective plasticity will vary, again indicating that the

measured variable v is not the driving environmental variable ✏.

In addition we could imagine a distinction between the environment of selection ✏ and

the environment of development ⌘. This complicates matters because now the conditional

optimum is,

 (x) = B✏(x)� b⌘(x) (A-56)

and ✏(x) and ⌘(x) might have di↵erent spatial trends and patterns of spatial covariance.

Designating the deterministic and stochastic components of the environment of development

as ⌘
µ

(x) and ⌘
e

(x) respectively, the deterministic results for the change in mean breeding

value is (from Equation A-12):



– A19 –

F{E[ā(x)]} = �

2
s

�

2
s+⇠

2 (BF{✏
µ

(x)}� bF{⌘
µ

(x)}) (A-57)

If the environment of selection changes linearly in space with coe�cient �
✏

and

the environmental of selection changes linearly in space with coe�cient �
⌘

then

F{✏
µ

(x)} = 2⇡i�
✏

�
0
and F{⌘

µ

(x)} = 2⇡i�
⌘

�
0
and

F{E[ā(x)]} = �

2
s

�

2
s+⇠

2 (BF{✏
µ

(x)}� bF{⌘
µ

(x)})

F{E[ā(x)]} = �

2
s

�

2
s+⇠

2

�

2B⇡i�
✏

�
0 � 2b⇡i�

⌘

�
0�

E[ā(x)] = B�
✏

x� b�
⌘

x

E[ā(x)] = B✏
µ

(x)� b⌘
µ

(x)

(A-58)

and the optimum is tracked by the phenotype as before; E[z̄(x)] = B✏
µ

(x). With

respect to a measured variable v that also changes linearly in space with coe�cient �
v

then

B
v

would again be the e↵ective sensitivity B�
✏

��1
v

. For stochastic variation, the covariance

between de-trended mean breeding value and v is

F{C
āe,ve(d)} = F{ā

e

(d)}F{v
e

(�d)}

=
⇣

�

2
s

�

2
s+⇠

2

⌘

F{ 
e

(d)}F{v
e

(�d)}

=
⇣

�

2
s

�

2
s+⇠

2

⌘ ⇣

BF{✏
e

(d)}F{v
e

(�d)}� bF{⌘
e

(d)}F{v
e

(�d)}
⌘

=
⇣

�

2
s

�

2
s+⇠

2

⌘ ⇣

BF{C
✏e,ve(d)}� bF{C

⌘e,ve(d)}
⌘

(A-59)

and for mean phenotype is

F{C
z̄e,ve(d)} =

⇣

�

2
s

�

2
s+⇠

2

⌘ ⇣

BF{C
✏e,ve(d)}� bF{C

⌘e,ve(d)}
⌘

+ bF{C
⌘e,ve(d)} (A-60)

If the auto and cross-correlations between the environmental variables have the same

decay rate then the above simplifies to,
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F{C
z̄e,ve(d)} =

⇣

�

2
s

�

2
s+⇠

2

⌘ ⇣

B�
✏e,veF{C✏e(d)}� b�

⌘e,veF{C✏e(d)}
⌘

+ b�
⌘e,veF{C✏e(d)}

= (B�
✏e,ve � b�

⌘e,ve)
⇣

�

2
s

�

2
s+⇠

2

⌘

F{C
✏e(d)}+ b�

⌘e,veF{C✏e(d)}
(A-61)

and


PV A

(d) = (B
✏

� b
⌘

) �s�✏

1��

2
s�

2
✏

h

1�e

��sd

1�e

�d/�✏
� �

s

�
✏

i

+ b
⌘

. (A-62)

where 
✏

and 
⌘

are the regressions of the driving environmental variables on the

measured variable v. As before, the interpretation of the PEA remains valid although

B
v

= B
✏

and b
v

= b
⌘

should be considered as the e↵ective environmental sensitivity of

selection and the e↵ective plasticity (Michel et al. 2014). When all auto/cross-correlations

do not have the same decay rate then interpreting the PEA would become di�cult. However,

if the environments of selection and development did di↵er, and could be measured, then

the PEA for each variable could be obtained using the above equations and all relevant

information extracted from the pair of functions. In the case where an environmental

variable correlated with the two driving environments has been measured then the same

diagnostics described above could be employed to assess the robustness of the model.
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