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Nickel and platinum group metal
nanoparticle production by
Desulfovibrio alaskensis G20

M.J. Capeness, M.C. Edmundson and L.E. Horsfall

School of Biological Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK

Desulfovibrio alaskensis G20 is an anaerobic sulfate reducing bacteria. While Desulfovibrio species have
previously been shown to reduce palladium and platinum to the zero-state, forming nanoparticles in the
process; there have been no reports that D. alaskensis is able to form these nanoparticles. Metal
nanoparticles have properties that make them ideal for use in many industrial and medical applications,
such as their size and shape giving them higher catalytic activity than the bulk form of the same metal.
Nanoparticles of the platinum group metals in particular are highly sought after for their catalytic ability
and herein we report the formation of both palladium and platinum nanoparticles by D. alaskensis and
the biotransformation of solvated nickel ions to nanoparticle form.

Introduction

The six platinum group metals (PGMs) are ruthenium (Ru), rhodi-
um (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum
(Pt). PGMs are in high demand and have low abundance, making
them highly valuable; platinum, for example, is only found at
0.003-5 ppm in the earth’s crust and is considered to be the second
most expensive metal (after Rh) at €37.66/g on the London
Platinum and Palladium Market.

Despite the high cost of platinum, very little is done to reduce
waste or improve recycling in many of its applications. A major use
of platinum is in the catalytic converters of vehicles to convert
unburnt hydrocarbons and carbon monoxide into CO; and water,
with each exhaust system containing 1-5 g of platinum. As the
vehicle is used over time, platinum lost from the converter is
deposited on the road network and then flushed away by rain,
leading to contamination of the water table [1]|. Palladium and
rhodium are also used in some catalytic converters and, in a similar
way; they are lost from converters and contaminate the water
table.

Nickel is a significant contaminant of soil throughout the world
and is often found in sites of Pt and Pd mining operations as a
contaminant or co-product. Recently it has been identified as a
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major contaminant of UK stream sediments, reaching 4.9 g/kg in
some locations (compared to the normal background level of
0.036 g/kg) [2]. However, while not as valuable a metal as the
PGMs, nickel is still a useful material in its nanoparticle form.
Nickel sulphide nanoparticles have unusual superparamagnetic
properties and stability compared to elemental state NiNPs, and
also exhibit exceptional electrochemical properties and the po-
tential to be used in super capacitors [3,4], while nano-scale
elemental nickel is currently employed as a catalyst in the produc-
tion of hydrogen, as a capture material for PGMs in the refining
process and also as potent anti-microbial and anti-cancer agents
[5-71.

On the nano-scale, both the cost of PGMs and nickel increase
dramatically (1 g of 3 nm Pt nanoparticles: €159) with the bulk of
the cost in the process technology used to create the nanoparticles.
Their properties include vastly different reactive characteristics
compared to the bulk metal due to their increased surface area,
different optical properties and new uses as catalysts [8]. Pt nano-
particles (PtNPs), for example, can be used in oxygen reduction
reactions in fuel cells [9] or even as highly specific DNA probes [10]
and anti-cancer agents [11]. These highly desirable properties are
also present when nanoparticles are produced using a bacterial
host. Therefore without a loss in quality, the bacterial production
of nanoparticles (NPs) could potentially reduce manufacturing
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costs whilst also lowering the costs of starting material, as the
selective nature of biology allows nanoparticles to be synthesized
from impure starting feeds [12].

Recent resource recovery efforts have included the collection of
road dust and chemical remediation to harvest the PGMs from it.
Like many other chemical forms of remediation, the cost of this
process is high compared to the value of the resultant product and
the methods used involve chemicals that are toxic, such as the use
of hydrazine in the production of nickel NPs [13]. The use of
biogenic methods of nanoparticle production addresses these
problems; the cost of using metal-reducing bacteria to produce
metal nanoparticles is relatively low, and all steps are carried out in
keeping with a Green Chemistry approach, utilizing standard non-
toxic aqueous solutions and growth media.

The use of bacteria to produce nanoparticles of various metals
such as Au, Ag, Cu, Fe, Ti and Zr has previously been reported
(reviewed by Edmundson et al. [12]); with Desulfovibrio sp. in
particular having received a large amount of attention as they
can reduce Cr, Mg, Fe, Te and even Ur to nanoparticle forms
[14-18]. However, it is with the PGMs that Desulfovibrio sp. have
been most studied, particularly D. vulgaris and D. desulfuricans that
have been shown to be able to reduce Pt and Pd to zero-valent
nanoparticles and display them on their outer surface. These
nanoparticles can be observed as dark spheres when viewed by
electron microscopy. This bio-Pd/Pt can be used directly in some
applications without isolation from the cells, and has previously
been shown to act as a nano-catalyst in proton exchange mem-
branes to power fuel cells [19] or in Cr decontamination [20].

The reduction of PGMs in Desulfovibrio sp. is hypothesized to
occur due to the bacteria incorporating the metals into their
energy production pathways. The PGMs act as terminal electron
acceptors in respiration, thus being reduced to the zero-state, often
in the presence of hydrogen (Fig. 1) [21,22]. This occurs in the

Na,Pd(I1)Cl
S f,] 4 Pd (0)

Quter Membrane

Periplasm

Na,Pd(ll)cl, ——> Pd (0)

Metal sequestering transport mechanism
Free or membrane bound cytochromes/hydrogenases
Export mechanism

FIGURE 1

Proposed method of palladium reduction to nanoparticle form in the
periplasm of Desulfovibrio. Pd** ions are taken up by the Desulfovibrio across
the outer membrane to the periplasm where it is reduced by cytochromes
and/or hydrogenases forming nanoparticles. The NPs are then exported to
the outside of the cell where they are deposited on the cell surface and act as
a catalytic site for increased palladium reduction. It is thought that both Pt
also works in a similar way to the Pd, though the Ni does not bind to the cell
surface.

periplasm using hydrogenases/cytochromes, with the NPs being
exported out of the cell and subsequently attaching to the cell
surface, preventing the metal from re-entering the periplasm, and
acting as a catalyst for further reduction of the metal [23]. This
process may be of added benefit to the cell as PGMs have been
observed to cause DNA lesions and inhibit growth in other bacteria
such as E. coli and Pseudomonas sp. [24,25]; therefore the reduction
and display of the metal on the cell surface could form part of a
bacterial survival mechanism.

Desulfovibrio alaskensis G20, formerly D. desulfuricans G20, is an
anaerobic sulfate reducing bacterium with a publically available
sequenced genome (GenBank CP000112). Herein we report the
formation of palladium and platinum nanoparticles by D. alas-
kensis and the biotransformation of solvated nickel ions to nano-
particle form by both D. desulfuricans 8307 and D. alaskensis G20,
with the efficiency quantified by the novel application of an
established assay [26].

Materials and methods

Growth of Desulfovibrio sp.

Both the D. alaskensis G20 and D. desulfuricans 8307 strains were
purchased from DSMZ (DSM No. 17464 and 642 respectively).
Both were grown on Postgate Media C (PGMC) using lactate as a
carbon source [27]. All growth and manipulation of the Desulfovi-
brio strains was carried out at 30°C in an anaerobic hood fed with
10% CO,, 10% H, in nitrogen. For the NiCl, resistance assay
cultures of both Desulfovibrio strains were grown to an ODggo of
1.0. 10 pl was spotted onto a series of PGMC plates (1% agar)
containing 0-20 mwm of NiCl, and grown for 5 days anaerobically.

Nanoparticle production

Cells were grown as previously in PGMC to an ODgg of 1.0 and
centrifuged for 10 min at 4000 rpm. The cell pellets were then
washed with an equivalent volume of 10 mm 3-(N-morpholino)-
propanesulfonic acid (MOPS) buffer, pH 7.0, three times and re-
suspended after the third wash in the buffer. Solutions of PtCly,
Na,PdCly or NiCl, were then added to the cell suspension to a
final concentration of 2 mmMm, 2 mMm and 1 mm respectively (in
water). The cells in the presence of Pd and Pt were left for 2 hours
while cells in the presence of Ni were left for 30 min at 30°C
anaerobically.

Samples were then taken for analysis by dimethylglyoxime
(DMG) assay (Ni) and by electron microscopy and EDX (energy
dispersive X-rays) (Ni, Pd and Pt) and EELS (electron energy loss
spectroscopy) (Ni).

Electron microscopy and EDX (energy dispersive X-rays)

For the conventional imaging of cells by EM: samples were placed
on a 200 mesh copper grid for 5 min and the excess liquid was
removed, the samples were then imaged on a Philips CM120
transmission electron microscope. Images were captured with a
Gatan Orius CCD camera.

For EDX analysis of nanoparticles: the cells were removed from
the sample by centrifugation (4000 rpm for 15 min) and the super-
natants were analysed on a JOEL JEM 2011 TEM fitting with an ISIS
system and viewed at an accelerating voltage of 200 kV. Readings
were compared to a reference database for the specific metal.
Further analysis of the particles was done by EELS.
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Dimethylglyoxime assay for nickel reduction

Nickel reduction was measured using dimethylglyoxime (DMG) asa
chelator of the Ni** in the solution containing cells or MOPS buffer
only [26]. The cell suspension from the nickel-containing nanopar-
ticle production method was taken and the cells were removed by
centrifugation. The supernatant was then either taken immediately
for the assay or filtered through a 0.20 pm filter and then used. The
DMG was added to the solution, forming DMG-Ni?*, which was
then phase-extracted using chloroform. The absorbance of the
extracted phase was measured at 360 nm, cell supernatants were
compared to a solution of MOPS with NiCl, solution added that had
also been centrifuged and filtered. This novel method of measuring
the amount of reduced nickel has not previously been applied to
nanoparticle formation, and works on the principle DMG does not
bind to nickel unless it is present in an aqueous ionic state (i.e. it will
not bind with nickel in nanoparticles).

Results

D. alaskensis G20 produces nickel nanoparticles

When challenged with NiCl, (1 mwm final concentration) D. alas-
kensis G20 produces a black precipitate after just 30 min of incuba-
tion (Fig. 2). This precipitate is made up of extracellular
nanoparticles that, unlike the Pt and Pd nanoparticles made by this
strain (Fig. 3a,b), are not attached to the cells when viewed using
TEM (Fig. 3c,d) and the nanoparticles had a diameter of ~10 nm.
EELS analysis confirmed that these nanoparticles are composed of
nickel and sulphur in all particles analysed suggesting they have the
composition of NiS (Fig. 4) and not elemental Nickel. The formation
of these particles did not occur in the MOPS buffer or the PGMC
media supplemented with NiCl,, only as a result of the presence of
D. alaskensis G20 being incubated with NiCl,.

MOPS +
Desulfovibrio + MOPS +
NiCl, Desulfovibrio
F it 6 -,
—
5 —
-
4 —
— 4 -
3 =%
-
2

MOPS +
NiCl,

f

FIGURE 2

Formation of the black precipitate in liquid culture. Comparison between D.
alaskensis G20 cells in MOPs buffer incubated for 30 min with and without
1 mm final NiCl, and the buffer control.

FIGURE 3

Representative electron micrographs of nanoparticles produced by D.
alaskensis G20. (a) Pd NPs exported and found on the surface of the cell as are
Pt NPs (b). (i), (ii). NiS were found in the surrounding media. Scale

bars = 200 nm.

Using the DMG assay for Ni?* quantification it was found that
up to 90% of the NiCl, is transformed to the solid state by the D.
alaskensis G20 in 30 min, while the D. desulfuricans 8307 trans-
formed 85% of the Ni** (Fig. 5). Although there is only a slight
difference in the amount of Ni** removed between the G20 and
8307 strains, the assay used was reliable enough to give little
variance, indicating a significant difference between the strains
for filtered and non-filtered (p = <0.005, 2-tailed t-test).

The plate assay to find the resistance of the Desulfovibrio strains
to NiCl; showed that growth was sustained up to 20 mm and there
was a black discolouration of the colony observed that increased
with increasing amounts of NiCl,, which correlates with the
production of NPs and the colour observed when NiCl, was
present in buffer containing cells (Fig. 2).

Both strains of Desulfovibrio showed high resistance to NiCl, on
PGMC agar plates with growth continuing up to 20 mm NiCl, (Fig. 6).

200
180
160 Ni

5 140

£ 120 Ni

£ 100

40

FIGURE 4

EELS data showing the composition of the Ni-containing nanoparticles. Peaks
for both nickel and sulphur were present in every nanoparticle analysed
suggesting a composition of NiS.
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100 P = <0.005 P = <0.005
a0
T 80
o 70
E 60
2 50
§ 40 -
P 30 4
Z 20 -
10
0 +
B30T + Ni (s) G20 + Ni(s) B30T + Ni (fs) G20 + Ni (fs)
Desulfovibrio sp.

FIGURE 5

Percentage of Ni** converted to NP form by different species of Desulfovibrio
in 30 min. Samples were assayed using the chelator dimethylglyoxime to
complex with the un-reduced nickel in solution, phase extracted and the
absorbance measured at 360 nm. s = supernatant, fs = filtered supernatant.
Error bars represent the 95% confidence interval.

Palladium and platinum nanopatrticles were also produced by D.
alaskensis G20

Although platinum nanoparticle formation has been previously
reported for D. desulfuricans 8307, there has been no documenta-
tion that D. alaskensis G20 also carried out the reduction, however
this was found to be the case. When subjected to PtCl, or Na,PdCly
the G20 cells reduce the platinum and palladium respectively to
form nanoparticles. These were observed on the cell surface when
viewed by transmission electron microscopy (Fig. 3a,b), in the
same way as reported for D. desulfuricans 8307 in the presence of
platinum/palladium. As a control 8307 was also subjected to PdCl,
treatment and was seen to present nanoparticles on the cell
surface. Both these NPs were subjected to EDX analysis and con-
firmed they consist of their respective PGM (data not shown). The
simple advantage of D. alaskensis G20 is that it has a publically
available, fully sequenced genome.

Discussion and conclusions

Here we have added to the list of Desulfovibrio sp. known to
produce metal nanoparticles, demonstrating that D. alaskensis
G20 can synthesize Ni, Pd and Pt nanoparticles. We have also
presented a method for assaying aqueous Ni2* in the presence of
NiS NPs and therefore showing that within 30 min Desulfovibrio sp.
can turnover up to 90% of the NiCl, solution under anaerobic
conditions. These methods are a fast and facile way of producing
and detecting nanoparticle formation, and highlight how com-
petitive metal NP production could be against chemical methods.

imM 2mM 5mM 10mM 15mM 20 mM

8307 l....ll

FIGURE 6
Growth of D. alaskensis G20 and D. desulfuricans 8307 on PGMC-agar plates
containing increasing amounts of NiCl,.

Previously it has also been reported that total conversion of Pd**
occurred within 5 min of incubation [28] highlighting how Desul-
fovibrio sp. are suited to bioremediation. Desulfovibrio sp. can carry
out this conversion at 30°C and in a much reduced time compared
to chemically derived methods of production that often require
reflux, hazardous chemicals and/or high temperatures, all of
which to lead to higher costs.

The NiS NPs produced are not displayed on the cell surface;
instead they are suspended in the buffer, allowing for easy removal
of the cells by centrifugation. To further purify the sample and
remove any remaining cells it is also possible to filter the NP
solution through a 0.20 pum filter as the typical size of the NPs
is 10 nm. However this purification method is not possible for cells
producing Pt or Pd nanoparticles, as they remain attached to the
surface and aggregate to form large deposits (Fig. 3a,b).

As D. alaskensis can transform Ni?* into nanoparticles contain-
ing sulphur, this process must be different to that hypothesized for
Pd and Pt ions and their subsequent NP formation as no reduction
takes place. The formation of NiS NPs has previously been hypoth-
esized to be a method for increasing Ni** tolerance in another
bacterium, Desulfotomaculum, which forms NiS using H,S [29]. The
Desulfovibrio sp. also produce H,S, as do most sulphate-reducing
bacteria, so this is a possible mechanism for the conversion of
NiCl, to NiS NPs, which may happen extracellularly rather than
the aforementioned hypothesized pathways for Pd and Pt ion
reduction (Fig. 1). Hydrogen sulphide is also used in the chemical
synthesis of NiS NPs in conjunction with high temperatures or
sodium hydroxide [30,31], whereas the NiS NP made here require
much lower temperatures (30°C) and no application of NaOH.
Further work is required to prove that H,S is involved in the
formation of NiS NPs in D. alaskensis. The resistance to Ni** itself
is something worthy of note, in comparison Escherichia coli
MC4100 is only resistant to concentrations up to 10 pm NiCl,
[33]; thus making D. alaskensis an ideal organism for nickel biore-
mediation and NP formation. One possible reason for this height-
ened tolerance to nickel could be the formation of these NiS NPs.
With its sequenced genome, this strain could be a useful source of
genes for the construction of bacterial strains that allow the
customisation of metal and metal-containing nanoparticles. By
selecting, combining and manipulating the genes involved in the
production of the nanoparticles, synthetic biology could allow the
tailoring of nanoparticle size and production rate in an E. coli
chassis, in a significant step beyond how D. alaskensis arsenic
resistance genes have been previously used to increase arsenic
tolerance [34]. Although there has been a large amount of work
carried out on PGM NP production by Desulfovibrio sp. there has
been little work carried out into the genetics of NP bio-production
due to the lack of genetic tools and genomic data of the species
used; the focus of the work so far has mainly been on the produc-
tion and use of the NPs, rather than the biological aspects of their
synthesis. In addition to the advantages biogenic NP production
has over traditional physical and chemical NP synthesis methods,
advances in Synthetic Biology could potentially allow the tailoring
of the Desulfovibrio sp. to selectively produce NPs that are for a
specific use, that allow the bacteria to target a specific contaminant
in a heterogeneous solution, and that broaden the list of metals
able to be removed from a contaminated site/solution by their
conversion into higher-value NPs [12].
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The DMG assay reported here can also be used to assay the
reduction rate of Pd as it has previously been reported to be a
chelator of Pd ions. As such, perhaps it too can be used in waste
recovery, to separate Pd from other PGMs, for example, separating
the different PGMs from roads contaminated with PGMs lost from
several different types of catalytic converter [35]. Additionally we
are exploring the possibility of utilizing heavy metals from con-
taminated sites as a cost-effective source of the raw materials
needed to produce nanoparticles.

All the NPs produced by D. alaskensis require further analysis
into their properties both catalytically and morphologically to
determine if they are comparable to their chemically made alter-
natives. In time, this proposed method of metal ion conversion to
elemental or sulphide-containing states could potentially be used
as a generic resource recovery method, encompassing metals
reported to be reduced by Desulfovibrio and also those yet to be
identified. For example until now there has been no evidence to
show that any of the Desulfovibrio sp. can form NiS NPs and very
few examples of bacteria making nickel containing NPs; examples
include Desulfotomaculum, which produces NiS NPs, and the for-
mation of NiNPs by Pseudomonas [29,36]. Perhaps because nickel,
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