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Abstract

Quantifying variation in ecosystem metabolism is critical to predicting the impacts of environmen-
tal change on the carbon cycle. We used a metabolic scaling framework to investigate how body
size and temperature influence phytoplankton community metabolism. We tested this framework
using phytoplankton sampled from an outdoor mesocosm experiment, where communities had
been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed
and ambient phytoplankton communities differed substantially in their taxonomic composition
and size structure. Despite this, the response of primary production and community respiration to
long- and short-term warming could be estimated using a model that accounted for the size- and
temperature dependence of individual metabolism, and the community abundance-body size distri-
bution. This work demonstrates that the key metabolic fluxes that determine the carbon balance
of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of
the individual size distribution and environmental temperature.Ecology Letters (2018)

INTRODUCTION

Phytoplankton is responsible for around half of the carbon
fixed by the biosphere, despite accounting for < 1% of global
autotrophic biomass (Falkowski 1994; Field 1998). Most of
this carbon, fixed through photosynthesis, is quickly reminer-
alised by respiration (Falkowski et al. 2000) and the difference
between community respiration (CR) and gross primary pro-
duction (GPP) represents the amount of carbon that an
ecosystem can sequester from the atmosphere (Falkowski
et al. 2008). Despite its importance to the global carbon cycle,
methods of measuring planktonic metabolism in situ (through
monitoring gas concentrations) and in vitro (e.g. traditional
bottle-incubation measurements) have led to contrasting con-
clusions as to whether CR generally exceeds GPP in freshwa-
ter (del Giorgio et al. 1997; Carignan et al. 2000; Duarte &
Prairie 2005) and marine ecosystems (Duarte et al. 2011; Wil-
liams et al. 2013). If CR > GPP, aquatic ecosystems are net
heterotrophic and release more CO2 to the atmosphere
through respiration than they fix via photosynthesis (del Gior-
gio & Peters 1994; Duarte & Prairie 2005; Duarte et al. 2011).
With the aim of better understanding the key fluxes of car-

bon in aquatic communities, previous work has attempted to
link individual physiology and community size structure (del
Giorgio & Gasol 1995; del Giorgio et al. 1999) to predict phy-
toplankton community metabolism (L�opez-Urrutia et al.
2006; Yvon-Durocher & Allen 2012; Zwart et al. 2015). One
successful approach has been the application of metabolic
scaling theory (MST), which links organism and ecosystem
metabolism using the relationships between temperature, body
size and metabolic rate (Enquist et al. 2003; Brown et al.
2004; Allen et al. 2005). MST has previously helped explain
and predict the impact of warming on population, community
and ecosystem-level phenomena (Enquist et al. 2003; Savage
et al. 2004; O’Connor et al. 2009; Pawar et al. 2012).

At the community-level, GPP tends to be less sensitive to
changes in temperature than CR (L�opez-Urrutia et al. 2006;
Anderson-Teixeira et al. 2011; Regaudie-De-Gioux & Duarte
2012; Yvon-Durocher & Allen 2012). Consequently, MST has
been used to predict that increasing temperatures will shift the
metabolic balance of phytoplankton communities towards
heterotrophy (L�opez-Urrutia et al. 2006; Regaudie-De-Gioux
& Duarte 2012), which could act as a positive feedback with
climate warming. However, this work only considered the
direct effects of warming on rates of photosynthesis and respi-
ration – for example, via increases in the amount of kinetic
energy available for driving chemical reactions. Temperature
can also indirectly influence phytoplankton community meta-
bolism through structural changes to the community such as
shifts in biomass (Chust et al. 2014; Yvon-Durocher et al.
2015), biodiversity (Hillebrand et al. 2012; Lewandowska
et al. 2012, 2014; Yvon-Durocher et al. 2015), community
composition (Markensten et al. 2010; Thomas et al. 2012) and
size structure (Daufresne et al. 2009; Mor�an et al. 2010;
Yvon-Durocher et al. 2011). In addition, local adaptation of
organisms to environmental temperature can alter metabolic
rates (Berry & Bjorkman 1980). These indirect impacts of
warming can be as large as the direct effects of temperature
on community metabolism (Padfield et al. 2017). To improve
predictions of the impacts of warming on phytoplankton com-
munity metabolism, it is essential to consider these indirect
effects of warming alongside the direct effect of temperature
on metabolic rates.
Previous studies linking temperature, community structure

and metabolism in phytoplankton have focused on a subset
of these direct and indirect relationships in isolation. For
example, previous work has explored the relationship between
body size, metabolic rate and abundance (Huete-Ortega et al.
2012; Huete-Ortega et al. 2014; Garc�ıa et al. 2016); body size
and temperature (Mor�an et al. 2010; L�opez-Urrutia & Mor�an
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2015); and metabolic rate, temperature and biodiversity
(Lewandowska et al. 2012; Yvon-Durocher et al. 2015). How
community-level metabolism emerges from the direct effect of
temperature on individual physiology, and the indirect effects
of temperature on community structure and body size
remains largely unexplored. Here, we investigate how GPP
and CR in phytoplankton communities are influenced by
the direct effect of temperature on individual photosynthe-
sis and respiration and the indirect effect of temperature on
community structure (i.e. size structure, composition and
abundance). We do this by testing the predictions of a
model derived from metabolic scaling theory against empir-
ical data from a warming experiment with phytoplankton
communities.

THEORY

Metabolism sets the pace of the life (Brown et al. 2004) and is
a key process that can link patterns and processes across
levels of organisation by quantifying the relationships between
metabolic rate, body size and temperature (Gillooly et al.
2001; Enquist et al. 2003; Brown et al. 2004). The central
equation from metabolic scaling theory (MST) predicts indi-
vidual metabolic rate (i.e. photosynthesis or respiration), bi, at
environmental temperature, T (in Kelvin).

bi Tð Þ ¼ bi Tcð Þma
i e

E 1
kTc

� 1
kTð Þ ð1Þ

This modified Boltzmann formulation is only valid below
the optimum temperature of the organism, and thus
assumes that taxa predominantly experience temperatures
lower than their optimum temperature. The temperature

centring of the data 1
kTc

� 1
kT

� �
, where Tc is a common

temperature (in K) and k is Boltzmann’s constant
(8.62 9 10�5 eV K�1) sets the normalisation constant, bi Tcð Þ;
at a biologically relevant temperature instead of 0 K
(�273.15 °C) (Yvon-Durocher & Allen 2012; Padfield et al.
2016). ma

i is the mass dependence of metabolic rate charac-

terised by an exponent, a, which is thought to reflect mass-
dependent changes in the density of metabolic organelles
(Allen et al. 2005). The exponent, a, was originally considered
to be three quarters across all organisms (Gillooly et al. 2001;
West et al. 2002), but recent empirical studies have found the
size-scaling exponent to be steeper and close to isometric
(a = 1) in phytoplankton (Mara~n�on 2008; Huete-Ortega et al.
2012) and super-linear in bacteria (a > 1) (DeLong et al.
2010; Garc�ıa et al. 2016). E (eV) is the activation energy that
describes the temperature dependence of metabolism. Previous
work indicates that the activation energy of gross photosyn-
thesis tends to be weaker than that of respiration across both
terrestrial and aquatic autotrophs (Allen et al. 2005; Ander-
son-Teixeira et al. 2011; Padfield et al. 2016; Schaum et al.
2017).
The effects of body size and temperature on individual

metabolic rate in eqn 1 are summed across all individuals
within a community, j, to yield an estimate of total commu-
nity metabolic rate (Enquist et al. 2003; Allen et al. 2005;
Yvon-Durocher & Allen 2012):

Bj Tð Þ ¼ Bj Tcð ÞeE 1
kTc

� 1
kTð Þ ð2Þ

where Bj Tð Þ is the rate of metabolism of community j, at tem-
perature T, in Kelvin (K). Bj Tcð Þis the community-level nor-
malisation (¼ Pntot

i¼1 bi Tcð Þma
i Þ at Tc (= 18 °C [291.15 K]),

where ntot is the total number of individual organisms, i, that
comprise all the organisms in j and accounts for the abun-
dance, size structure and the average individual-level meta-
bolic normalisation constant.
Total biomass, Mtot ¼

Pntot
i¼1 mi, has been used to predict

community respiration (Robinson et al. 2002a,b) and gross
primary production (del Giorgio et al. 1999). However, eqn 2
demonstrates that if the size-scaling of metabolism is not iso-
metric (a 6¼ 1), then total biomass and community metabolism
will not be directly proportional (Allen & Gillooly 2009). By
multiplying total biomass, Mtot, with a biomass-weighted
average of the relationship between body size and metabolic
rate, ma�1

i ð¼ Pntot
i¼1 bi Tcð Þma

i

� �
=
Pntot

i¼1 mi

� �Þ, mass-corrected bio-
mass, Mtot ma�1

i

� �
, can account for the size-scaling of meta-

bolic rate with body size. Mass-corrected biomass is predicted
to be proportional to the total metabolic capacity (i.e. GPP or
CR) of the biomass pool of a community (Allen et al. 2005;
Yvon-Durocher & Allen 2012; Yvon-Durocher et al. 2012).
By rearranging eqn 2 to control for the direct effect of tem-
perature, T, on metabolism, mass-corrected biomass can be
used to compare metabolism estimates among communities
that differ in size structure, standing biomass and environ-
mental temperature (Barneche et al. 2014).

Bj Tð Þ
eE

1
kTc

� 1
kTð Þ ¼ Mtot ma�1

i

� � ð3Þ

In eqn 3, Mtot ma�1
i

� �
is an estimate of the metabolic flux of

the community that incorporates any effect of temperature
on the individual metabolic normalisation constant. This is
necessary because terrestrial and aquatic autotrophs can up-
regulate their metabolic normalisation constants at low tem-
perature, and down-regulate them at high temperature to
compensate for the constraints of thermodynamics on enzyme
kinetics (Atkin et al. 2015; Padfield et al. 2016, 2017; Reich
et al. 2016; Scafaro et al. 2017). After controlling for the
direct effect of temperature, T, eqn 3 predicts that tempera-
ture-corrected GPP and CR should be directly proportional
(the slope of the log-log relationship should be 1) to the mass-
corrected biomass of the community. However, this key pre-
diction of MST is difficult to test experimentally as measuring
community metabolism and the complete size distribution of
all organisms in an ecosystem simultaneously is logistically
challenging (Yvon-Durocher & Allen 2012).
In the MST framework described in eqn 2, variation in

total abundance, ntot, between communities will also alter
total metabolic rates. MST predicts that under steady state
conditions, carrying capacity should be inversely related to
mass and temperature (Savage et al. 2004); changes in ntot are
expected to be intrinsically linked to the effects of body size
and temperature on metabolic rate (White et al. 2007). Under
constant resource conditions, eqn 2 predicts a trade-off
between shifts in community size structure, temperature and
total community abundance (Enquist et al. 2003). These
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trade-offs within and across communities are similar to
Damuth’s rule and ideas of energetic equivalence, where the
scaling of abundance and body size is the inverse of the size-
scaling of metabolic rate (Damuth 1981; White et al. 2007).
At steady state, any increase in the average metabolic rate of

the individuals within a community (e.g. via rising temperature
or shifts in size structure) should result in a proportional
decrease in the total number of individuals (the slope of the log-
log relationship should be �1) (Enquist et al. 1998; White et al.
2004; Ernest et al. 2009). We refer to this trade-off between the
number of organisms and the average individual-level metabolic
rate as ‘community-level metabolic compensation’. This compen-
sation means that total community metabolism can remain
unchanged in the face of shifts in environmental temperature
owing to adjustments in the abundance, biomass and size struc-
ture of communities.
We now test this framework and its predictions using mea-

surements of GPP and CR of phytoplankton communities
from a mesocosm experiment in which communities had
been either experimentally warmed (+ 4 °C) or left at ambi-
ent temperature for over 10 years. Specifically, we test
whether community metabolic rate can be estimated from
the individual size distribution and the predictable relation-
ships between body size, temperature and individual physiol-
ogy (see eqn 2). We then examine whether changes in
abundance, biomass and size structure compensate for the
direct effects of temperature on individual metabolic rates,
buffering the response of total community metabolism to
warming. Critically, by inoculating microcosms from a long-
term mesocosm experiment using a fully factorial design and
measuring each microcosm’s metabolic flux and individual
size distribution, we can investigate both the direct and indi-
rect effects of warming on phytoplankton community meta-
bolism.

METHODS

Experimental setup and maintenance

Twenty freshwater mesocosms, each holding 1 m3, were set
up in 2005 to mimic shallow lake ecosystems (Yvon-Durocher
et al. 2010). They are situated at the Freshwater Biological
Association’s river laboratory (2� 100 W, 50� 130 N) in East
Stoke, Dorset, UK. Of the 20, 10 mesocosms have been
warmed by 4 °C above ambient temperature for more than
10 years. We sampled all 20 mesocosms (c. 200 mL) and inoc-
ulated each sample into laboratory microcosms in a reciprocal
transplant experiment on 13 April 2016. Microcosms
(200 mL) were inoculated with a starting density of 200
cells mL�1 and placed in incubators (Infors-HT) at 16 and
20 °C (the temperatures of the ambient and warmed meso-
cosms, respectively, on the day of sample collection). This
resulted in 40 communities with 10 replicates of each combi-
nation of short- and long-term warming (i.e. warmed meso-
cosm in warm incubator, ambient mesocosm in ambient
incubator, warmed mesocosm in ambient incubator and ambi-
ent mesocosm in warm incubator) (see supplementary meth-
ods for a more detailed description of the mesocosms and
experimental setup).

Quantifying community diversity

We quantified microbial community composition and diversity
by sequencing the V4 hyper-variable region of the 16S rRNA
gene at the end of the experiment. On the day of metabolic
rate measurements, 50 mL of each community was cen-
trifuged at 2000 g for 45 min at 4 °C. The supernatant was
then removed, and the pellet transferred to 1.5 mL Ependorf
tubes and centrifuged again for 30 min at 15000 g. The super-
natant was again removed, and the samples were frozen at
�80 °C prior to DNA extraction. DNA was extracted from
samples using a Qiagen DNeasy Plant Mini Kit (Qiagen,
D€usseldorf, Germany) following the manufacturer’s instruc-
tions. Genomic DNA was further purified and concentrated
using Agencourt AMPure XP beads (Beckman Coulter, CA,
USA) at a ratio of 1:1.4. The products of this clean up were
eluted into c. 25 lL 10 mM TRIS. Subsequent polymerase
chain reaction (PCR) amplification and sequencing of the 16S
V4 region was undertaken by the Centre for Genomic
Research (Liverpool, UK) following the Illumina MiSeq 16S
Ribosomal RNA Gene Amplicons workflow.
Sequence data was analysed in R (v 3.3.2) (Team 2014)

using the packages ‘dada2’ and ‘phyloseq’ (Callahan et al.
2015, 2016), following the full stack workflow to estimate
error rates, infer and merge sequences, construct a sequence
table, remove chimeric sequences and assign taxonomy (Calla-
han et al. 2016). We assigned autotroph taxonomy using Phy-
toREF (Decelle et al. 2015): a reference database for the 16S
rRNA gene contained in the plastid of photosynthetic eukary-
otes (see supplementary methods for a full description of the
sequencing data analysis protocols). Samples were removed if
represented by fewer than 1000 reads and the remaining sam-
ples were standardised to the total number of amplicon
sequence variants [ASVs; (Callahan et al. 2017)] through rar-
efaction to account for biases associated with differences in
sequencing effort. We then selected ASVs corresponding to
autotrophic taxa, which resulted in samples from 37 of the 40
communities that could be used for downstream analysis.

Measuring community metabolism and community size structure

After c. 30 days of culture, we measured community metabo-
lism at incubator temperature (16 or 20 °C). Aliquots (30 mL)
of each community were concentrated through centrifugation
(c. 500 g for 30 min at 4 °C), re-suspended in 5 mL of fresh
culture medium, and acclimatised to the measurement temper-
ature for 15 min in the dark prior to measuring metabolic
flux. Primary production was measured as oxygen evolution
at multiple light intensities to characterise a photosynthesis-
irradiance (PI) curve for each community (Fig. S1). Commu-
nity respiration was measured as oxygen consumption in the
dark at the end of each PI curve to ensure respiration was not
limited by available photosynthate during the measurement
period. Each individual PI curve was fit to a modification of
the Eiler’s curve for photoinhibition (Eilers & Peeters 1988)
(see supplementary methods).
The community size distribution was measured by flow

cytometry using the sample from the respirometer immediately
after metabolic rate measurements. Cell size was calculated by
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converting values of forward scatter from the flow cytometer
into values of diameter (d; lm) (Schaum et al. 2017). The bio-
volume of each cell was then calculated by assuming each par-
ticle was spherical ðbiovolume ¼ 4

3 p d
2

� �3Þ and converted into
units of carbon (lg cell�1) using a conversion factor of
0.109 9 10�6 (Montagnes et al. 1994). We also quantified het-
erotrophic bacterial abundance using a SYBR gold stain. Bac-
teria represented < 5% of total carbon biomass in all but one
of the microcosms (Fig. S2) and are therefore unlikely to have
significantly impacted the measurements of community meta-
bolism. Thus, all analyses used only the size distribution of
the autotrophic communities.

Statistical analyses

To compare the composition of phytoplankton communities,
we examined the impact of short- and long-term warming on
the Bray–Curtis distance, which compares the compositional
dissimilarity between samples based on abundances. Differences
in composition between communities were explored using the
rarefied samples of each community and Bray–Curtis distance
using the R packages ‘phyloseq’ (Callahan et al. 2016) and ‘ve-
gan’ (Oksanen et al. 2007). Permutational ANOVA tests were run
using the ‘adonis’ function from the ‘vegan’ package in R using
short- and long-term warming as main effects and Bray–Curtis
distance as a response term with 9999 permutations.
To estimate primary production, we fit eqn S1 to the mea-

surements of oxygen flux using nonlinear least squares regres-
sion using the R package ‘nls.multstart’ (Padfield & Matheson
2018). This method of model fitting involved running up to
1000 iterations of the fitting process with start parameters
drawn from a uniform distribution and retaining the fit with
the lowest Akaike Information Criterion (AIC) score. Esti-
mated gross primary production at light saturation (see sup-
plementary methods) and measured community respiration
were used in the metabolic scaling framework. We analysed
the effect of short- (ambient or warm incubator) and long-
term warming (ambient or warm mesocosm) on total commu-
nity metabolism using an Analysis of Covariance in a mixed
effects model framework. A random effect was included to
account for the hierarchical structure of the data (laboratory
microcosms nested within long-term mesocosms). Separate
models were conducted for each metabolic flux and model
selection was carried out by comparing nested models using
likelihood ratio tests.
We assessed the ability of our model (eqn 2) to estimate

community metabolism from the direct effects of warming on
individual metabolic rate and changes in the individual size
distribution using a maximum likelihood (ML) approach in
two stages. We first fitted eqn 2 to the measurements of GPP,
CR, the individual size distribution of each community

(
Pntot

i¼1 bi Tcð Þma
i Þ) and the incubator temperature (expressed as

1
kTc

� 1
kT

� �
, where Tc = 18 °C). We treat the key parameters

in eqn 2 (e.g. the metabolic normalisation constant, size-scal-
ing exponent and activation energy) as unknown and use the
ML approach to simultaneously estimate the values that yield
the best fit (maximise the likelihood function) of the model,
given the data. Because the key parameters in eqn 2 are likely

to vary among taxonomic groups and environmental gradients
via acclimation and/or evolution (Padfield et al. 2016, 2017;
Scafaro et al. 2017; Schaum et al. 2017), our approach treats
MST as a model framework that captures important processes
that determine how individual-level traits shape emergent
community-level properties such as GPP, CR and the individ-
ual size distribution. Using the ML approach, we tested
whether the metabolic normalisation constant, b Tcð Þ, activa-
tion energy, E, and individual size-scaling exponent, a, dif-
fered between communities exposed to long-term warming by
comparing the goodness-of-fit of models with and without a
term for long-term warming (warm or ambient mesocosm) for
each estimated parameter. Model selection was carried out by
comparing nested models using likelihood ratio tests. Analyses
were carried out in R using the package ‘bbmle’ (Bolker &
Team 2010), with separate models for GPP and CR.
We then assessed how well the MST framework could

approximate our measurements of community metabolism. To
do this, we used eqn 3 and the best fit parameter estimates
(b Tcð Þ, E and a) to calculate temperature-corrected metabolic
rate and mass-corrected biomass for GPP and CR of each
community. According to eqn 3, we expect temperature-
corrected community metabolic rate to be directly propor-
tional to mass-corrected community biomass (i.e. have a slope
of 1 when both variables are log-transformed). To test this,
we used standardised major axis (SMA) regression to quantify
the slope of the relationship between temperature-corrected
metabolic rate and mass-corrected biomass (Warton et al.
2006). SMA was useful here as we were not interested in pre-
dicting one variable from another, but rather estimating the
underlying line of best fit between the variables (we are testing
for an expected slope of 1) (Warton et al. 2006).
We used the individual size distribution of each community

to investigate whether shifts in abundance, biomass and size
structure of communities compensated for the direct effects of
temperature on individual metabolic rate, buffering the
response of total community metabolism to warming. We esti-
mated average individual-level gross photosynthesis using the
parameters estimated from the ML fits for GPP and then
dividing the estimate of metabolism (calculated using eqn 2)

by total community abundance (ma
i ¼ Mtot ma�1

ið ÞeE 1
kTc

� 1
kTð Þ

ntot
).

Thus, ma
i accounts for the effect of temperature, changes in

the metabolic normalisation constant and size structure on
average individual-level metabolic rate. We tested the slope of
the log-log relationship between average individual metabolic
rate and abundance using SMA regression against the
expected slope �1. For all SMA regression analyses, confi-
dence intervals of the predictions were created by bootstrap-
ping 1000 replicates of the data and model.

RESULTS

Effect of warming on community composition and size structure

Long-term warming significantly altered the composition of
the phytoplankton communities (i.e. the Bray–Curtis dissimi-
larity among communities, Fig. 1a, PERMANOVA, F1,36 = 41.62,
partial R2 = 0.54, P = 0.0001). In contrast, short-term
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warming had no effect on community composition (PER-

MANOVA, F1,36 = 1.66, partial R2 = 0.02, P = 0.154). The dif-
ference in composition altered community size structure with
communities from the ambient mesocosms having fewer large
phytoplankton (mean size = 3.6 9 10�5 lg C) compared to
those from the warm mesocosms (mean size = 1.06 9 10�4 lg
C) (Fig. 1b).

Effect of short- and long-term warming on community metabolism

Total gross primary production and community respiration
did not significantly change as a result of either short- or
long-term warming (Fig. 2, Table S1). This is consistent with
‘community-level metabolic compensation’, where adjustments
to abundance and size structure buffer the direct effects of
temperature on total metabolic rates.

Temperature dependence and size-scaling of community metabolism

We fitted eqn 2 to the measurements GPP and CR (Fig. 2 &
Table 1). After accounting for differences in size structure
between communities, we quantified the effects of short-term
warming on community metabolic rate and found that the
temperature dependence of gross primary production
(EGPP = 0.74 eV [Q10 = 2.75]; 95% CI = 0.20–1.29 eV) was
weaker than that of community respiration (ECR = 1.42 eV
[Q10 = 6.98]; 95% CI = 0.85–1.98 eV). Using the maximum
likelihood approach, we also estimated the size-scaling expo-
nent of gross primary production (aGPP = 0.87; 95%

CI = 0.58–1.17) and community respiration (aCR = 1.14; 95%
CI = 0.74–1.41) which were not significantly different (they
have overlapping 95% confidence intervals) from previously
found three quarters, or isometric (a = 1) scaling that has
been found in phytoplankton. Long-term warming had no
impact on the temperature dependence, size-scaling and meta-
bolic normalisation constant of GPP or CR (Table 1 &
Table S2).

Estimating gross primary production and community respiration

from metabolic scaling theory

After estimating the temperature dependence and size-scaling
of metabolic rate for GPP and CR, we used eqn 3 to calculate

mass-corrected community biomass, Mtot ma�1
i

� �
, and the tem-

perature-corrected community rates, Bj Tð ÞeE 1
kTc

� 1
kTð Þ; of GPP

and CR for each microcosm using the parameter estimates
from the best fit maximum likelihood model (Table 1). After
accounting for the effect of short-term warming and mass on
metabolic rate, our scaling approach predicted that tempera-
ture-corrected rates should increase proportionally (1 : 1) with
mass-corrected biomass on a log-log scale (Fig. 3; dashed
lines). For GPP, the SMA regression had an intercept of 0.29
(95% CI = �0.68–1.26), a slope of 0.94 (95% CI = 0.78–1.13)
and an R2 of 0.68 (Fig. 3a). For CR, the SMA regression had
an intercept of 0.64 (95% CI = �0.09–1.37), a slope of 0.83
(95% CI = 0.67–1.02) and an R2 of 0.59 (Fig. 3b). The rela-
tionships between mass-corrected biomass and temperature-
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Figure 1 Effects of long-term warming on community structure. (a) Principal Coordinate (PCoA) plot of communities based on Bray–Curtis distance. The

percentage of variation explained is shown on each axis (calculated from the relevant eigenvalues). Long-term warming alters community composition

while short-term warming had no impact. (b) Probability density function for the size distribution of ambient and warm mesocosms. Warm mesocosms are

dominated by larger phytoplankton. In both panels, different colours are used to represent ambient (black) and warm (red) mesocosms. In (a) triangles

represent the warm incubator and circles, the ambient incubator; ellipses represent the 95% confidence interval ellipses of the ambient and warm

mesocosms. In (b) the pronounced line represents the size distribution of the pooled communities, while the faded lines show the size distribution of each

individual community.
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corrected rate for both GPP and CR had values of the slopes
and intercepts that were not significantly different from the
expected values (slope = 1; intercept = 0). This suggests that
metabolic scaling theory provides a reasonable representation
of total community metabolism from information on the size
distribution and the environmental temperature (Fig. 3). Fit-
ting the same model using OLS regression returned similar
results.

Community-level metabolic compensation

We calculated the average individual metabolic rate for each
community using the parameter values for GPP from the maxi-
mum likelihood approach (Table 1; see Methods) and quanti-
fied the relationship between total community abundance and
average individual metabolic rate using SMA regression. Total
community abundance was inversely correlated with average

individual metabolic rate with a slope (slope = �1.16, 95% CI
= �1.59 to �0.85; intercept = 3.47, 95% CI = �1.03 – 7.96;
R2 = 0.21; Fig. 3) that was not significantly different from the
predicted value of �1 (test comparing slope to -1 by testing the
correlation between residual and fitted values, r = 0.16,
d.f. = 37, P = 0.35). This result is consistent with our expecta-
tions based on community-level metabolic compensation – that
is, a trade-off between the number of organisms and the aver-
age individual-level metabolic rate – and demonstrates that
shifts in abundance, biomass and size structure compensate for
the direct effects of high temperature on metabolic rates.

DISCUSSION

Current methods of measuring planktonic metabolism in situ
and in vitro have led to disagreement as to whether aquatic
systems are net autotrophic or heterotrophic (del Giorgio &
Peters 1994; del Giorgio et al. 1997; Duarte et al. 2011; Wil-
liams et al. 2013). These differences are driven, in part, by
the different mechanisms that influence metabolism at the
contrasting scales at which the measurements are taken. Pre-
vious work has attempted to address these differences using
metabolic scaling theory to predict phytoplankton commu-
nity metabolism by linking individual physiology and
community size structure (del Giorgio et al. 1999; L�opez-
Urrutia et al. 2006; Yvon-Durocher & Allen 2012). Here, we
extend this work by examining both the direct and indirect
effects of warming on phytoplankton community metabolism
by empirically testing a model that links phytoplankton GPP
and CR with the effects of body size and temperature on
individual physiology and community size structure. Long-
term warming resulted in marked differences in community
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Figure 2 The effect of short- and long-term warming on (a) gross primary production and (b) community respiration. The maximum likelihood framework

found that short-term warming increases GPP and CR in both ambient (black) and warm (red) mesocosms. Long-term warming resulted in large shifts in

community composition and size structure. However, there was no significant effect of either short- or long-term warming on either GPP or CR. Each

point represents the metabolic flux of one community; tops and bottoms of box-whisker plots represent the 75th and 25th percentiles and the white

horizontal line represents the median.

Table 1 Results of the maximum likelihood model fitting, which entailed

estimating the parameters below simultaneously by fitting eqn 2 to gross

primary production, community respiration and the community size

distribution

Parameter Units Estimate 95% confidence interval

EGPP eV 0.61 0.11–1.12
ECR eV 1.27 0.70–1.83
aGPP – 0.88 0.57–1.17
aCR – 0.80 0.31–1.18
lnGPP Tcð Þ lmol O2 L�1 h�1 �3.46 �6.27 to �1.02

lnCR Tcð Þ lmol O2 L�1 h�1 �5.50 �10.10 to �2.22
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composition, which shifted communities towards larger phy-
toplankton species, altering the size structure between com-
munities (Fig. 1). This effect is thought to be driven by
stronger top-down control in the warm mesocosms through
elevated zooplankton grazing (Yvon-Durocher et al. 2015).
Despite differences in composition and size structure between
communities, rates of both GPP and CR were well predicted
from the individual size distribution and the effects of body
size and temperature on individual metabolic rate (Fig. 3).
In line with previous work, gross primary production was

less sensitive to temperature change than community respira-
tion (Table 1), with the activation energies of GPP and CR
at the community level similar to those recently found for
single species of phytoplankton at the population level (i.e.
gross photosynthesis and respiration) (Padfield et al. 2016;
Schaum et al. 2017). Previous studies have used the short-
term temperature sensitivities of GPP and CR to predict the
impact of long-term warming on phytoplankton communities
(L�opez-Urrutia et al. 2006). As respiration increases relative
to photosynthesis in the short-term, the metabolic balance of
phytoplankton communities are thought to shift towards
heterotrophy (L�opez-Urrutia et al. 2006; Regaudie-De-Gioux
& Duarte 2012; Yvon-Durocher & Allen 2012), which could
potentially exacerbate further climate warming. However,
using short-term responses to temperature to predict the
impacts of long-term warming (as is expected of climate
warming) on community metabolism is not straightforward.
In the long-term, warming can indirectly influence

community metabolic flux through changes in phytoplankton
composition, size structure (Yvon-Durocher et al. 2011; Dos-
sena et al. 2012) standing biomass (Yvon-Durocher et al.
2015) and the individual-level metabolic normalisation con-
stant (Padfield et al. 2017; Scafaro et al. 2017).
In our experiment, warming and changes in size structure did

not affect total community metabolism. This somewhat paradox-
ical result was due to a trade-off between community properties,
where differences in temperature and shifts in size structure
between communities were compensated for by changes in total
community abundance. At steady state, MST predicts a trade-off
between total abundance and average individual metabolic rate.
Such ‘community-level metabolic compensation’ means that
communities at different temperatures with different composition
and size structure can have similar metabolic rates because an
ultimate energetic constraint (e.g. the carrying capacity of the
microcosm) sets an upper limit on community metabolism
(White et al. 2004; Ernest et al. 2008, 2009). In line with this pre-
diction, across all the communities, microcosms with higher aver-
age individual rates of gross photosynthesis had proportionally
lower community abundance (Fig. 4). Community-level meta-
bolic compensation meant that higher average individual meta-
bolic rates, due to larger phytoplankton or higher temperatures,
were compensated for by changes in total abundance, resulting
in no overall change in community metabolism (Fig. 2). This
indirect effect of warming on community abundance adds to
recent work highlighting the importance of considering ecologi-
cal and evolutionary processes that can indirectly alter metabolic
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is significantly different from the predicted slope of 1. The dashed line represents a 1 : 1 line as predicted from metabolic scaling theory.
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rates when predicting the response of ecosystems to warming
(Michaletz et al. 2014; Yvon-Durocher et al. 2015; Padfield et al.
2017; Schaum et al. 2017).
Overall, this method, derived from metabolic scaling the-

ory, successfully inferred rates of GPP and CR from the
individual size distribution and environmental temperature
(Fig. 3). This is because community metabolism is ultimately
driven by the abundance, temperature and individual size
distribution of the organisms that comprise the community.
The success of this simple theoretical framework in explain-
ing variation in community metabolism suggests that
aggregate ecosystem functions can be understood from infor-
mation on the individual size distribution and the tempera-
ture dependence of metabolic rate, irrespective of the
taxonomic identities of the organisms that comprise the com-
munities. Our approach is not truly predictive in that it
requires estimation of the key parameters characterising the
size and temperature dependence of metabolic rate. How-
ever, this is not necessarily a weakness as recent evidence
suggests that these parameters are not universal constants,
but rather vary among taxonomic groups and different envi-
ronments owing to physiological acclimation and evolution-
ary adaptation (Padfield et al. 2016; Reich et al. 2016;
Scafaro et al. 2017; Schaum et al. 2017; Vasseur et al. 2012).
Further progress in understanding taxonomic and environ-
mental variation in the size and temperature dependence of

metabolic rate and developing theory for predicting this vari-
ation from first principles will be vital to improving the
scope and application of metabolic scaling theory in ecologi-
cal research.
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