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Abstract 

Horizontal gene transfer (HGT) can equip organisms with novel genes, expanding the 

repertoire of genetic material available for evolutionary innovation and allowing recipient 

lineages to colonise new environments. However, few studies have characterised the 

functions of HGT genes experimentally or examined post-acquisition functional divergence. 

Here we report the use of ancestral sequence reconstruction and heterologous expression in 

Saccharomyces cerevisiae to examine the evolutionary history of an oomycete transporter 

gene family that was horizontally acquired from fungi. We demonstrate that the inferred 

ancestral oomycete HGT transporter proteins and their extant descendants are predominantly 

localised to the plasma membrane when expressed in yeast, and that they transport 

dicarboxylic acids which are intermediates of the tricarboxylic acid cycle. The substrate 

specificity profile of the most ancestral protein has largely been retained throughout the 

radiation of oomycetes, including in both plant and animal pathogens and in a free-living 

saprotroph, indicating that the ancestral HGT transporter function has been maintained by 

selection across a range of different lifestyles. No evidence of neofunctionalization in terms of 

substrate specificity was detected for different HGT transporter paralogues which have 

different patterns of temporal expression. However, a striking expansion of substrate range 

was observed for one plant pathogenic oomycete, with a HGT derived paralogue from Pythium 

aphanidermatum encoding a protein that enables tricarboxylic acid uptake in addition to 

dicarboxylic acid uptake. This demonstrates that HGT acquisitions can provide functional 

additions to the recipient proteome as well as the foundation material for the evolution of new 

protein functions. 

Introduction 

Horizontal gene transfer (HGT) involves the transfer of genetic material between 

reproductively isolated lineages and can allow recipient organisms to adapt to a novel lifestyle 

or to exploit a new ecological niche (Doolittle 1999; Jain et al. 2003; Keeling and Palmer 2008; 

Richards and Talbot 2013). HGT is highly prevalent in prokaryotes, and is becoming 
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increasingly recognised as an important mechanism driving evolutionary innovation and 

adaptation in eukaryotes (Keeling and Palmer 2008). For instance, horizontal acquisitions of 

putative virulence genes have been reported in fungi (Friesen et al. 2006; Marcet-Houben & 

Gabaldon 2010; Slot & Rokas 2011; Gardiner et al. 2012; Wisecaver et al. 2014; Zhao et al. 

2014), and HGT genes involved in metabolism in anaerobic environments have been detected 

in the genomes of anaerobic protists and fungi (Gojkovic et al. 2004; Ricard et al. 2006; 

Slamovits and Keeling 2006; Hall & Dietrich 2007; Eme et al. 2017). However, putative 

functions of horizontally acquired genes in eukaryotes have typically been inferred based on 

shared sequence identity to characterised genes of distantly related model organisms. Few 

studies have determined the functions of HGT genes experimentally (Friesen et al. 2006; 

Gardiner et al. 2012; Kirsch et al. 2014; Zhao et al. 2014; Alexander et al. 2016), or 

investigated post-acquisition functional divergence from an ancestral state (Aoki 2004) 

approximating the HGT acquired gene. This constrains our ability to understand how HGT 

events can play a role in determining the ecology and cellular functions of the recipient taxa 

and limits our understanding of how horizontally acquired genes may have contributed to the 

evolution of recipient lineages. 

 Among the supported cases of HGT in eukaryotes are a variety of genes encoding 

putative transporter proteins, which mediate the translocation of molecules across cell 

membranes (Richards et al. 2006, 2009, 2011; Slot and Hibbett 2007; Marcet-Houben and 

Gabaldon 2010; Galeote et al. 2011; McDonald et al. 2012; Coelho et al. 2013; Schönknecht 

et al. 2013; Marsit et al. 2016; Major et al. 2017). Gaining novel transporter genes via HGT 

may be of particular importance to osmotrophic organisms, which feed by secreting 

depolymerising enzymes into the external environment to break down complex molecules, 

and then importing the resulting subunits into the cell through specialised membrane 

transporter proteins (Richards and Talbot 2013). Specifically, horizontal acquisition of 

transporter genes could allow osmotrophs to colonize new niches by facilitating the use of 

nutrients that were previously inaccessible (e.g. Slot and Hibbett 2007; Galeote et al. 2011; 

Coelho et al. 2013), and/or outcompete other organisms that are present in the same 

environment (Richards and Talbot 2013). However, the substrate specificities of many 

transporters are poorly annotated in genomic databases and members of the same protein 

family can often transport a variety of different substrates (Moran et al. 2016), making it difficult 

to identify the subsequent ecological role of horizontally acquired transporter proteins in 

recipient lineages.  

 Oomycetes are eukaryotic microbes that feed by osmotrophy. They include a diversity 

of forms, from free-living saprotrophs, which obtain nutrients from decaying matter, to obligate 



and opportunistic pathogens of plants and animals. Oomycetes superficially resemble fungi, 

but belong to the Stramenopile (Heterokonta) phylum, and descended from a phagotrophic 

and possibly photosynthetic ancestor (Cavalier-Smith and Chao 2006; but see Stiller et al. 

2009, 2014). This radical change of lifestyle and feeding strategy, from an ancestral form that 

engulfs and digests microbes inside the cell and/or fixes carbon by photosynthesis, to one 

which breaks down complex molecules in the external environment and imports nutrients into 

the cell, may have been facilitated by HGT (Torto et al. 2002; Richards et al. 2006, 2011; 

Richards and Talbot 2013; Misner et al. 2014). Indeed, phylogenetic analyses suggest that a 

variety of oomycete genes which putatively encode osmotrophy associated proteins, such as 

secreted depolymerising enzymes and membrane transporters, were horizontally acquired 

from fungal donors (Richards et al. 2006, 2011; Savory et al. 2015). The majority of these 

HGTs are specific to plant pathogenic oomycetes given current genome sampling (Richards 

et al. 2011; Soanes and Richards 2014) and may provide the means to invade and obtain 

nutrients from the host. However, one HGT transporter gene family appears to have been 

acquired early in the oomycete radiation, prior to the divergence of the major oomycete 

lineages, as orthologues have been detected in the genomes of Peronosporaleans, which are 

predominantly plant pathogenic, and Saprolegnialeans, which include opportunistic 

pathogens of invertebrates, fish and amphibians, as well as non-pathogenic saprobes 

(Richards et al. 2006, 2011; Savory et al. 2015). The ancient acquisition of this HGT gene 

family and the retention of orthologues in distinct oomycete lineages is indicative of an 

important adaptive role, which may have been associated with the transition to an osmotrophic 

lifestyle (Richards et al. 2006; Soanes and Richards, 2014). Based on PFAM and CDD 

(Marchler-Bauer et al. 2005) analyses, the HGT gene family was assigned to the Major 

Facilitator Superfamily (MFS), and the proteins were putatively annotated as monosaccharide 

sugar transporters (Richards et al. 2006, 2011). Here we functionally characterise members 

of the HGT transporter family and use ancestral sequence reconstruction to confirm that the 

ancestral protein functions as a transporter, identify substrate ranges across the oomycete 

gene family, and investigate post-acquisition functional divergence during the oomycete 

radiation. 

Results and discussion 

HGT and post-acquisition evolutionary dynamics  

We used maximum likelihood (ML) and Bayesian methods to reconstruct the phylogeny of the 

oomycete HGT transporters from an alignment of oomycete and fungal protein sequences 

(Supplementary Datasets 1 and 2). The alignment contained sequences from oomycetes with 

different lifestyle strategies, including obligate biotrophs, hemibiotrophs, necrotrophs and non-



pathogenic saprotrophs, and a selection of orthologous fungal sequences that were identified 

in similarity searches. The fungal sequences corresponded to the Pezizomycotina subphylum, 

previously inferred as the HGT donor lineage (Richards et al. 2006, 2011), as well as the 

Saccharomycotina subphylum, and a set of more distant fungal paralogues was included as 

an outgroup. Orthologues were absent in non-oomycete Stramenopiles, including 

Hyphochytrium catenoides, a free-living sister of the oomycetes (Leonard et al. 2018). No 

major topological differences were detected among trees generated using different 

phylogenetic approaches. The analyses yielded a phylogeny with strong statistical support for 

the placement of oomycete sequences within the fungal lineage (Figure 1, Figures S1-S4), 

providing further confirmation that the ancestral oomycete HGT transporter gene was 

horizontally acquired from a fungal donor. The placement of oomycete sequences within the 

Pezizomycotina lineage had moderate statistical support (Figure 1, Figures S1-S4), consistent 

with the hypothesis that the fungal donor belonged to the Pezizomycotina subphylum or was 

a close relative of the Pezizomycotina (Richards et al. 2006, 2011).  

HGT transporter sequences were detected in the majority of oomycetes for which 

genome data were available (Figure 1, Figures S1-S4) (Savory et al. 2015), suggesting that 

the transporter proteins have an important function in these microbes which is conserved 

across lineages with different lifestyle strategies. However, our phylogenetic analyses 

revealed unexpected relationships that are not consistent with the oomycete species 

phylogeny (e.g. McCarthy and Fitzpatrick 2017; Ascunce et al. 2017), as sequences 

corresponding to two Peronosporalean Pythium species repeatedly grouped with 

Saprolegniales sequences with strong statistical support (Figure 1, Figures S1-S4). 

Additionally, the Phytopythium vexans (previously Pythium vexans) HGT transporter 

sequence appears to have diverged prior to the other oomycete sequences, yet this species 

occupies a phylogenetic position which is immediately basal to the Phytophthora and 

Hyaloperonospora arabidopsidis clade in species phylogenies. These results could reflect 

artefacts of the sequences and/or phylogenetic reconstructions within the oomycete radiation. 

Alternatively, they may be indicative of differential patterns of loss following post-acquisition 

gene expansion and/or a secondary HGT event, whereby a Saprolegnialean ancestor 

acquired a transporter sequence from a Peronosporalean donor. In the latter case, this would 

imply a more recent acquisition of the HGT transporter gene family from fungi, after the split 

between the Peronosporalean and Saprolegnialean lineages, which is estimated to have 

occurred around 200 million years ago (Matari and Blair 2014). HGT transporter sequences 

were not detected in the genomes of Albuginales or Aphanomyces species (Savory et al. 

2015, Fig. 1A: HGT gene family 3), which diverged early in the Peronosporalean and 

Saprolegnialean radiations, respectively (Petersen and Rosendahl 2000; McCarthy and 
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Fitzpatrick 2017). This could potentially support the occurrence of a secondary HGT event. 

However, further genome sequencing of Pythiales, Saprolegniales and early branching 

oomycetes would provide greater insight into the taxonomic distribution of the gene family, 

and allow us to make more robust inferences regarding the phylogenetic positions and post-

acquisition evolutionary dynamics of the HGT transporter sequences. 

 The genomes of plant pathogenic, hemibiotrophic Phytophthora species typically 

contain two HGT transporter paralogues (Figure 1, Figures S1-S4), indicating that a 

duplication event occurred prior to the radiation of this genus (only a partial sequence was 

detected for one P. capsici paralogue, perhaps reflecting loss of one gene copy or incomplete 

genomic sequence data). The retention of two intact gene copies in multiple Phytophthora 

species suggests that both transporter proteins are functional. Transcriptome data from two 

Phytophthora species reveal that the paralogues have developmental stage-specific patterns 

of expression; whilst one paralogue is upregulated in zoospores and/or cysts, the other is 

upregulated in hyphae (Torto-Alalibo et al. 2007; Roy et al. 2013) (Figure 1). Two paralogues 

were also detected in the genomes of Thraustotheca clavata, a free-living saprotroph, and 

Saprolegnia declina, an opportunistic pathogen of aquatic animals (Figure 1, Figures S1-S4). 

However, these paralogues appear to have arisen from recent lineage-specific gene 

duplication events.  

Homology with ‘Jen’ carboxylic acid transporters 

Fungal orthologues of the oomycete HGT transporters belong to the Sialate:H+ Symporter 

(SHS) family and are referred to as ‘Jen’ proteins (Casal et al. 1999, 2008). Jen proteins share 

homology with an Escherichia coli monosaccharide transporter (Saier 2000) but have been 

shown to preferentially transport carboxylic acids in Saccharomycotina yeasts (Casal et al. 

1999; Soares-Silva et al. 2004, 2007, 2011, 2015; Vieira et al. 2010; Dulermo et al. 2015; Guo 

et al. 2015) and the Pezizomycotina fungus Aspergillus nidulans (Sa-Pessoa et al. 2015). 

Many fungal genomes contain multiple Jen paralogues, and, in some cases, these have non-

overlapping substrate specificities. For instance, in some Saccharomycotina yeasts, Jen1 

proteins transport monocarboxylic acids, such as lactic acid and pyruvic acid, whilst Jen2 

proteins transport dicarboxylic acids, such as succinic acid and malic acid (Casal et al. 1999; 

Soares-Silva et al. 2004, 2007, 2011, 2015; Lodi et al. 2004, 2007; Queirós et al. 2007; Vieira 

et al. 2010). Conserved residues which are critical determinants of substrate specificity have 

been identified within transmembrane domains that form the substrate translocation pathway 

of the Saccharomyces cerevisiae Jen1 transporter (Soares-Silva et al. 2011). Residues that 

are required for dicarboxylic acid uptake are present in Pezizomycotina Jen proteins (Lodi et 

al. 2007; Sa-Pessoa et al. 2015) and the oomycete HGT transporters (Figure S5). However, 
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the two A. nidulans Jen orthologues (the only Pezizomycotina Jen proteins that has been 

functionally characterised) both have the capacity to transport mono- and dicarboxylic acids, 

albeit with greater affinity for dicarboxylic acids (Sa-Pessoa et al. 2015). This raises the 

possibility that the ancestral oomycete HGT transporter gene encoded a promiscuous protein, 

capable of transporting a range of mono- and dicarboxylic acid substrates.  

The oomycete HGT transporters are functional carboxylic acid transporters 

To investigate the function of the ancestral oomycete HGT transporter and post-acquisition 

functional divergence, we used an empirical Bayes approach (Yang et al. 1995) to reconstruct 

ML protein sequences at key ancestral nodes using a reduced alignment (Supplementary 

Dataset 3) and corresponding ML phylogeny (Figure S2). This approach calculates the 

likelihood of all possible ancestral residues at each site in the protein sequence, and yields a 

single sequence, for each node of interest, which contains ML states at all sites. The ML 

ancestral sequence represents the best estimate of the true ancestral sequence given the 

alignment, the phylogeny and the model of sequence evolution. Ancestral sequence 

reconstruction algorithms are reported to infer ancestral sequences with high accuracy 

(Williams et al. 2006; Hanson-Smith et al. 2010; Matsumoto et al. 2015; Randall et al. 2016) 

and can be reasonably robust to uncertainty associated with the underlying phylogeny and 

the evolutionary model (Hanson-Smith et al. 2010; Thomson et al. 2005; Chang et al. 2007). 

Genes encoding a selection of eight extant transporters and five ancestral transporters 

were codon optimised, synthesised, and expressed in S. cerevisiae for phenotypic 

characterisation. The extant transporters corresponded to oomycetes representing a variety 

of lifestyle strategies, including obligate biotrophs (H. arabidopsidis), hemibiotrophs 

(Phytophthora infestans and Phytophthora parasitica), saprotrophs and opportunistic 

necrotrophs (Pythium aphanidermatum and S. declina), and free-living saprotrophs (T. 

clavata). The ancestral transporters included the optimal ML protein sequence reconstruction 

(here named the primary ancestral protein) of each Phytophthora paralogue (A1 and A2), the 

ancestor of the Phytophthora paralogues prior to duplication (A3), the ancestor of the 

Saprolegniales and Pythium clade (A4), and an ancient oomycete ancestral form (A5). For a 

particular site in an ancestral protein sequence, the posterior probability of an amino acid 

state is derived from the likelihood that the residues observed in all extant sequences 

included in the alignment would have evolved given that state, the phylogeny, and the 

evolutionary model. Assuming that posterior probabilities accurately reflect the probability that 

an inferred ancestral state is correct, mean posterior probabilities can be used as a measure 

of confidence in ancestral sequence reconstructions (Thornton 2004; Hanson-Smith et al. 

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000497#pbio.1000497.s010


2010). Overall confidence in the ancestral sequences was high, with mean posterior 

probabilities ranging from 0.91 (ancestral transporter sequence A4) to 0.98 (A2).  

Reconstructed ancestral sequences typically contain ambiguously inferred sites, in 

which two or more ancestral states are statistically plausible. This is particularly the case 

when ancient divergences are investigated. However, in this study, the number of residues 

with plausible alternative states (considered as non-ML states with posterior probabilities > 

0.2) in transmembrane domains that form the putative substrate translocation pathway was 

low, ranging from 0 (A2) to 5 (A5) (Figure S5). As these transmembrane domains contain 

conserved residues and sequence motifs that influence substrate specificity in fungal 

orthologues (Soares-Silva et al. 2011), they represent the most likely regions of the sequences 

in which ambiguous sites could impact ancestral protein function in the oomycete HGT 

transporters. Although the node prior to the split between P. vexans and the other oomycetes 

(A6 in Figure 1) represents the earliest ancestral oomycete HGT transporter sequence in the 

phylogenetic reconstruction, we chose not to characterise this protein due to the unexpected 

phylogenetic position of P. vexans. The P. vexans sequence was, however, included in the 

alignment and tree used for ancestral reconstruction, as removal of the sequence had little 

effect upon statistical support for key nodes in the tree (Figure 1), although resulted in lower 

overall confidence in the A5 ancestral sequence identified (mean posterior probability 0.88 

compared to 0.92 when the P. vexans sequence was retained). 

 To determine if extant and ancestral oomycete HGT transporters import carboxylic 

acids, they were constitutively expressed in the S. cerevisiae strain W303-1A jen1Δ ady2Δ, 

which lacks native carboxylic acid transporters (Soares-Silva et al. 2007). As the oomycete 

sequences contain conserved residues that enable the S. cerevisiae Jen1 protein to transport 

dicarboxylic acids (Soares-Silva et al. 2011; Figure S5), we tested if expression of the 

oomycete HGT transporters conferred the ability to import radiolabelled succinic acid and 

malic acid. We detected uptake of 14C labelled succinic acid (Figure 2a; Figure S6) and 14C 

labelled malic acid (Figure 2b; Figure S7) in the eight W303-1A jen1Δ ady2Δ strains 

expressing extant oomycete HGT transporter proteins and the five W303-1A jen1Δ ady2Δ 

strains expressing ancestral oomycete HGT transporter proteins. Uptake was also detected 

in a positive control W303-1A jen1Δ ady2Δ strain expressing the Candida albicans JEN2 

protein, a dicarboxylic acid transporter (Vieira et al. 2010), but not in a negative control W303-

1A jen1Δ ady2Δ strain transformed with an empty vector (Figures 2a and 2b; Figures S6 and 

S7). This demonstrates that the oomycete HGT transporter proteins are functional carboxylic 

acid transporters.  
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The capacity to transport 14C labelled succinic acid and 14C labelled malic acid was 

similar to or greater than observed for the positive control strain in several strains expressing 

oomycete HGT transporter proteins (Figures 2a and 2b; Figures S6 and S7). However, 

transport capacity (Vmax – the maximum uptake rate) was relatively low in a few strains, 

particularly for 14C labelled succinic acid. For instance, we observed reductions in the capacity 

to transport 14C labelled succinic acid of 29-82% relative to the positive control strain in six 

strains expressing oomycete HGT transporter proteins (Figure 2a). These correspond to two 

oomycete HGT transporter clades (ancestral proteins A1 and A4 and two extant proteins 

derived from each of these, see Figure 1), suggesting that a phylogenetic pattern could 

underlie the observed variation. Although a low capacity to transport 14C labelled succinic acid 

was not observed for all extant proteins that were characterised for these clades, this could 

reflect evolved differences in the preferred substrates of the oomycete HGT transporter 

proteins. Alternatively, the variation in transport capacity could have arisen due to differences 

in the efficiency of heterologous expression in S. cerevisiae cells. GFP tagging revealed that 

all of the oomycete HGT transporters localised to the plasma membrane (Figure 3a). However, 

considerable differences in the proportion of cells expressing GFP-transporter fusion proteins 

were observed (Figure 3b), and cellular distributions were highly patchy in some strains, with 

fusion proteins being localised to additional components other than the plasma membrane in 

a high proportion of cells (Figure 3c). These results are likely to be linked to the observed 

variation in transport capacity, as strains with the lowest proportions of cells expressing GFP-

transporter fusion proteins and/or the lowest proportions of cells in which the fusion proteins 

were fully localised to the plasma membrane exhibited relatively low capacities to transport 

14C labelled succinic acid (Figure 2a) and/or 14C labelled malic acid (Figure 2b). With the 

exception of the strain expressing the T. clavata HGT transporter protein, growth rates were 

reduced in all strains relative to the negative control (Figure 3c). The reduction was most 

striking for a strain expressing ancestral protein A1, which displayed low transport capacities 

for both radiolabelled substrates (Figures 2a and 2b). Overall these results suggest that a 

considerable portion of the variation in the capacity to transport 14C labelled succinic acid 

and/or 14C labelled malic acid can be explained by differences in the efficiency of heterologous 

expression and/or toxic effects of heterologous expression in S. cerevisiae cells. This limitation 

of using S. cerevisiae as a chassis for expression constrains our ability to detect possible 

differences in the kinetic properties of the transporter proteins. As such, we predominantly 

focus on investigating substrate ranges using competitive inhibition assays in which inter-

strain comparisons are not required. 



Functional diversification of substrate ranges in the oomycete HGT transporters 

To further investigate substrate repertoires, we examined the ability of non-labelled carboxylic 

acids to inhibit 14C labelled succinic acid uptake in W303-1A jen1Δ ady2Δ strains expressing 

oomycete HGT transporter proteins. Whilst the ability to inhibit succinic acid uptake does not 

provide definitive confirmation that a substrate can be transported across the plasma 

membrane, inhibition assays can reveal substrates that transporters bind and potentially 

transport, allowing us to make inferences about putative substrate ranges. Non-labelled 

carboxylic acids were provided at a 1000-fold greater concentration (50 mM) than 14C labelled 

succinic acid (50 µM) (Soares-Silva et al. 2007) to minimize the probability of discarding 

substrates with low binding and/or transport capacities, and included seven monocarboxylic 

acids, ten dicarboxylic acids (including succinyl coA - a combination of succinic acid and 

coenzyme A) and three tricarboxylic acids (see Figure 4 for substrates used). Glucose (50 

mM) was used as a control. We considered a substrate to be a moderate inhibitor or a strong 

inhibitor if it caused a reduction in 14C labelled succinic acid uptake of at least 50% or 80%, 

respectively, relative to 14C labelled succinic acid uptake when no additional non-labelled 

substrate was present. 

 Five non-labelled dicarboxylic acids inhibited uptake of 14C labelled succinic acid in all 

W303-1A jen1Δ ady2Δ strains expressing oomycete HGT transporters (Figures 4 and 5), 

including the six strains with relatively low 14C labelled succinic acid transport capacities 

(Figure 2a). The five dicarboxylic acids are all intermediates of the tricarboxylic acid (TCA) 

cycle, or citric acid cycle, and included succinic acid, malic acid, α-ketoglutaric acid and 

fumaric acid, which were strong inhibitors of 14C labelled succinic acid uptake in the majority 

of strains, and succinyl coA, which was a moderate inhibitor in some strains and a strong 

inhibitor in others (Figure 4). Inhibition of 14C labelled succinic acid uptake by additional non-

labelled carboxylic acids was observed only in specific strains. For instance, oxaloacetic acid, 

which is also a TCA cycle intermediate, was a moderate inhibitor of 14C labelled succinic acid 

uptake in W303-1A jen1Δ ady2Δ strains expressing the extant H. arabidopsidis HGT 

transporter protein and the A4 ancestral protein (Figures 4 and 5). Pyruvic acid, a 

monocarboxylic acid, was also a moderate inhibitor of 14C labelled succinic acid uptake in the 

latter strain (Figure 4). However, 14C labelled succinic acid transport capacity was relatively 

low in these strains (Figure 2a), meaning that small absolute changes in uptake will be 

reflected as large relative changes when expressed as proportions or percentages, perhaps 

leading to incorrect conclusions about potential inhibitory substrates. As such, we do not place 

strong confidence in these results. A more striking expansion of putative substrate range was 

detected for the HGT transporter of Pythium aphanidermatum, an opportunistic plant pathogen 



with a broad host range, as citric acid was a strong inhibitor and cis-aconitic acid was a 

moderate inhibitor of 14C labelled succinic acid uptake in a W303-1A jen1Δ ady2Δ strain 

expressing this protein (Figures 4 and 5). We also detected uptake of 14C labelled citric acid 

in this strain (Figure 6), confirming that the P. aphanidermatum HGT transporter protein can 

transport tri-carboxylic acids across the plasma membrane. This gain of function, which could 

conceivably be linked to the ability of P. aphanidermatum to infect a broad range of hosts, may 

be attributed to changes within transmembrane domains that form the putative substrate 

translocation pathway, as several residues within these domains were unique to the P. 

aphanidermatum sequence (Figure S5). These include four sites in transmembrane domain 

V, in close vicinity to sites which influence substrate specificity in the S. cerevisiae Jen1 

transporter (Soares-Silva et al. 2011) (Figure S5). Notably, the residues at two of these sites 

are hydrophobic in all other extant oomycete HGT transporter sequences and the inferred 

ancestral sequences, but polar in the P. aphanidermatum sequence (Figure S5), potentially 

altering the topology of the transporter pore.  

 We detected no divergence in the range of substrates that the extant and ancestral 

Phytophthora paralogues can transport and/or bind (Figures 4 and 5), and thus no evidence 

of neofunctionalisation [the emergence of novel functions] or subfunctionalisation [the division 

of ancestral functions] (Innan & Kondrashov 2010) in terms of substrate specificity following 

duplication of the ancestral transporter (A3 in Figure 1). However, we cannot rule out possible 

differences in transport capacities and/or affinities for particular substrates, as observed for 

Jen dicarboxylic acid transporter paralogues in Yarrowia lipolytica (Dulermo et al. 2015) and 

Debaryomyces hansenii (Soares-Silva et al. 2015). As one Phytophthora paralogue is 

upregulated in zoospores and/or during the cyst stage, whilst the other is upregulated in 

hyphae (Torto-Alalibo et al. 2007; Roy et al. 2013), such differences could reflect variation in 

transcriptional regulation and/or the metabolic requirements of these stages and underlie the 

retention of two functional paralogues in the Phytophthora genus. Though 14C labelled malic 

acid Km values (the concentration at which uptake occurs at half the maximum rate) for both 

extant and ancestral proteins were lower in one Phytophthora paralogue (paralogue 1 in 

Figure 1) than the other (Figure S7), suggesting a higher affinity for malic acid, we observed 

too much variability in these data and in the efficiency of heterologous expression among 

strains for these results to be conclusive.  

Substrate ranges are robust to statistical uncertainty 

We examined the ability of non-labelled carboxylic acids to inhibit 14C labelled succinic acid in 

four additional W303-1A jen1Δ ady2Δ strains expressing alternative ancestral proteins. The 

proteins contained plausible non-ML residues (posterior probabilities > 0.2) at ambiguous sites 



within transmembrane domains which form the putative substrate translocation pathway 

(Figure S5; note that the A2 ancestral reconstruction contained no ambiguous sites in these 

domains and so consequently no alternative ancestral protein was synthesised for A2). This 

strategy, in which a single alternative protein is expressed to simultaneously account for 

ambiguities at multiple sites, provides an efficient approach to examine the robustness of 

protein function to statistical uncertainty in ancestral reconstructions (Eick et al. 2017).  

The five non-labelled dicarboxylic acids which inhibited 14C labelled succinic acid 

uptake in the strains bearing extant proteins and the primary ancestral protein forms also 

inhibited uptake of 14C labelled succinic acid in strains expressing alternative ancestral 

proteins A3(a) or A5(a), which correspond to the ancestor of the two Phytophthora paralogues 

and the earliest ancestral oomycete HGT transporter reconstructed, respectively (Figure 4). 

These results demonstrate that the putative substrate ranges of these ancestral oomycete 

HGT transporter proteins are robust to statistical uncertainty in the ancestral sequence 

reconstructions, at least within transmembrane domains that form the putative substrate 

translocation pathway of the transporter pore. This is consistent with previous studies showing 

that ancestral protein functions can be determined accurately despite uncertainty in 

ancestral sequences (Ortlund et al. 2007; Bar-Rogovsky et al. 2015; Randall et al. 2016; 

Eick et al. 2017), though occasionally phenotypic variation associated with plausible 

differences in ancestral sequences has been observed (e.g. Bar-Rogovsky et al. 2015; 

Randall et al. 2016).  

Potential inhibitory effects of non-labelled carboxylic acids could not be examined in 

strains expressing alternative ancestral HGT transporter proteins A1(a) or A4(a), which 

correspond to the ancestor of one Phytophthora paralogue (paralogue 1 in Figure 1) and the 

ancestor of the Saprolegniales and Pythium clade, respectively, as 14C labelled succinic acid 

uptake was too low to distinguish from background levels of non-specific 14C adsorption. This 

suggests that these proteins are non-functional, at least when expressed in S. cerevisiae 

W303-1A jen1Δ ady2Δ cells and could reflect limitations of addressing uncertainty in the 

ancestral sequence reconstructions using single sequences which simultaneously incorporate 

plausible non-ML states at all ambiguous sites within the putative substrate translocation 

pathway of the transporter pore. Indeed, this approach represents the ‘worst plausible case’ 

scenario for each node (Eick et al. 2017), as the ‘alternative’ ancestral proteins occupy 

positions in sequence space that are farther from the true ancestors than all other plausible 

ancestral sequences, when only transmembrane domains that form the putative substrate 

translocation pathway are taken into account. Despite this, due to the apparent lack of change 

in substrate specificity profiles from the most ancestral oomycete HGT transporter protein to 



all but one of the extant proteins that were characterised in this study, we are confident in the 

phenotypes observed for the primary ML protein sequences that were inferred for these 

ancestral nodes. 

Functional characterisation of the sequence space surrounding inferred ML ancestral 

sequences has provided important insights into the processes and constraints underlying 

protein evolution (Harms & Thornton, 2014; Starr & Thornton, 2016; Starr et al. 2017).  For 

instance, a functional comparison of proteins with different combinations of amino acid 

substitutions revealed intra-protein epistatic interactions, whereby the effects of substitutions 

at sites which strongly influence protein function were dependent upon the presence of specific 

residues at other sites, even though these had no apparent functional effects or only weak 

effects when considered in isolation (Ortlund et al. 2007). Such interactions are likely to 

reflect structural and/or stability constraints imposed by the stochastic accumulation of 

historic mutations (Ortlund et al. 2007; Harms & Thornton, 2014; Starr & Thornton, 2016; 

Starr et al. 2017). Further functional characterisation of the sequence space surrounding the 

primary ML ancestral proteins that were reconstructed in this study, as well as more ancient 

proteins that existed before the transporters were horizontally acquired, could reveal the extent 

to which epistatic interactions have shaped the evolutionary trajectories of the oomycete HGT 

transporter proteins and perhaps provide insights into the protein properties that permitted 

expansions in substrate ranges, such as observed for P. aphanidermatum.  

Possible roles of HGT carboxylic acid transporters in the oomycetes 

The confirmed oomycete HGT transporter substrates (succinic acid, malic acid and citric acid) 

and putative substrates which inhibited 14C labelled succinic acid uptake (α-ketoglutaric acid, 

fumaric acid, succinyl coA, and cis-aconitic acid) are all intermediates of the TCA cycle. With 

the exception of α-ketoglutaric acid and succinyl coA, they are also intermediates of the 

glyoxylate cycle, which facilitates the use of alternative carbon sources when sugars are 

unavailable. Oomycetes can utilise a range of mono-, di- and tricarboxylic acids as the sole 

carbon source for growth, including TCA cycle and glyoxylate cycle intermediates (Chun et al. 

2003; Khalil and Alsanius 2009; Van Buyten and Höfte 2013; Wang et al. 2015). Assimilation 

of these carboxylic acids is presumably dependent on the ability to transport them across the 

plasma membrane, indicating that the oomycete HGT transporter proteins could be involved 

in nutrient acquisition, and consistent with the suggestion that HGT contributed to the 

oomycete transition to an osmotrophic lifestyle from a phagotrophic and/or photosynthetic 

ancestral form (Richards et al. 2006; Richards and Talbot 2013). However, we cannot rule out 

the possibility that the oomycete HGT transporter proteins have a function that is not 

associated with nutrient acquisition and osmotrophy. For instance, they could play a role in 



cellular homeostasis, exporting rather than importing carboxylic acids in order to maintain an 

optimal intracellular pH. Indeed, the S. cerevisiae Jen1 protein is capable of lactic acid efflux 

(Pacheco et al. 2012). Alternatively, as a variety of carboxylic acids are present in plant root 

exudates (Ryan et al. 2001; Bais et al. 2006) and are presumably leaked from a range of plant 

and animal tissues, the HGT transporters of pathogenic oomycetes could participate in 

chemotaxis, facilitating the ability of motile zoospores to locate suitable hosts. Upregulation of 

one Phytophthora paralogue (paralogue 1 in Figure 1) in zoospores and/or during the cyst 

stage (Torto-Alalibo et al. 2007; Roy et al. 2013) is consistent with the latter possibility.  

Regardless of how the function of the HGT transporters effect the ecology of the 

recipient microbes, the results presented here demonstrate that the substrate specificity profile 

of the ancestral protein has largely been retained during the evolutionary diversification of the 

oomycetes, even though gene duplications, paralogue losses and a possible additional case 

of HGT are evident. Comparative functional analysis informed by ancestral sequence 

reconstruction demonstrates that post-acquisition divergence of the HGT transporter family 

has resulted in at least one major functional change, as observed for the P. aphanidermatum 

protein. This demonstrates the importance of functional experimentation that samples the 

wider diversity of the HGT acquired gene family and which investigates likely ancestral gene 

forms and their functions. The results therefore provide an important example of how 

horizontally acquired genes can add a functional phenotype, potentially playing a key role in 

adaptive radiations in recipient lineages and demonstrate that transporter genes that are 

acquired by HGT can be subject to neofunctionalisation. 

Materials and methods  

Phylogenetic analysis and ancestral sequence reconstruction 

Oomycete HGT transporter sequences and orthologues from other lineages were selected 

based on similarity searches (BLASTp) of protein sequences in publicly available databases. 

Recovered hits were filtered to remove distant paralogues and sequences representing 

multiple orthologues from the same non-oomycete genera. Protein sequences were aligned 

using MUSCLE (Edgar 2004) and the alignment was masked using Seaview version 4 (Gouy 

et al. 2010) (unmasked (*.mase) and masked (*.phy) alignment files are presented as 

Supplementary Datasets 1 and 2, respectively). The best-fit model of protein evolution was 

determined as LG + I +  using ProtTest version 3.4 (Darriba et al. 2011), and a ML 

phylogenetic tree was generated using RaxML version 8.0.5 (Stamatakis 2014). Statistical 

support was evaluated with 1000 bootstrap replicates. Phylogenetic relationships were also 

reconstructed using Bayesian Markov Chain Monte Carlo (MCMC) methods implemented in 

https://elifesciences.org/content/5/e10147#bib17


MrBayes version 3.2.6 (Ronquist and Huelsenbeck 2003) and PhyloBayes version 4.1 

(Lartillot et al. 2009). The MrBayes analysis included 4 chains run for 1,000,000 MCMC 

generations, with trees and parameters being sampled every 100 generations. Convergence 

was assessed by checking the average standard deviation of split frequencies (< 0.01) and 

the potential scale reduction factor (PSRF, close to 1.0 for all parameters). The PhyloBayes 

analysis was run using the CAT model (Lartillot and Philippe 2004) to improve the model 

accounting for evolutionary rate heterogeneity and included 2 chains that were stopped 

automatically upon convergence, when maximum discrepancies were less than or equal to 

0.3 and effective sizes were over 50. For the MrBayes and PhyloBayes analyses, posterior 

distributions of trees were summarised after removal of 25% burnin. All phylogenetic analyses 

were repeated following removal of a P. vexans sequence from the original alignment.  

Ancestral protein sequences and their posterior probability distributions were inferred 

from a reduced sequence alignment (Dataset 3) and the corresponding ML tree (Figure S2) 

using an empirical Bayes approach (Yang et al. 1995) implemented in PAML version 3.13 

(Yang, 1997), assuming the ML phylogeny and the best-fit model of protein evolution. Overall 

confidence in the ancestral sequences reconstructions was evaluated for each node of interest 

by calculating mean posterior probabilities and alternative ancestral states were considered 

as plausible if posterior probabilities were > 0.2.  

Heterologous expression of oomycete HGT transporter proteins in S. cerevisiae 

DNA sequences coding for a selection of eight extant and five ancestral oomycete HGT 

transporter proteins were codon optimized for expression in S. cerevisiae, synthesised de 

novo (Genscript, Piscataway, NJ, USA), and inserted into a p423-GPD expression vector. 

Each transporter sequence contained a 6 x His tag immediately before the stop codon. The 

vectors were used to transform a S. cerevisiae strain lacking native carboxylic acid 

transporters (W303-1A jen1Δ ady2Δ; Soares-Silva et al. 2007; kindly provided by Professor 

M. Casal), based on selection for complementation of a histidine auxotrophy. A negative 

control strain was obtained by transforming W303-1A jen1Δ ady2Δ with an empty p423-GPD 

vector. To generate a construct containing a confirmed dicarboxylic acid transporter as a 

positive control, the JEN2 open reading frame was amplified from Candida albicans (SC5314) 

genomic DNA using Phusion® high-fidelity DNA polymerase (New England Biolabs, Ipswich, 

MA, USA) and cloned into the p423-GPD expression vector using BamHI and SalI restriction 

sites. This vector was used to transform the W303-1A jen1Δ ady2Δ strain, based on selection 

for complementation of a histidine auxotrophy.  

http://www.sciencedirect.com/science/article/pii/S1567134814004766#b0170
https://elifesciences.org/content/5/e10147#bib59


For fluorescence microscopy, extant and ancestral oomycete open reading frames 

were amplified from the appropriate p423-GPD vectors with Phusion® high-fidelity DNA 

polymerase (New England Biolabs, Ipswich, MA, USA). Amplicons were cloned into the 

pDONR221 vector using Gateway® recombination (Life Technologies, Carlsbad, CA, USA) 

and mobilized into the pAG426-GPD-EGFP vector (providing an N-terminal EGFP fusion). 

The Pythium aphanidermatum open reading frame was synthesised de novo (Genscript, 

Piscataway, NJ, USA) and assembled into a linear pAG426-GPD-EGFP vector using SpeI 

and HindIII restriction sites.  The pAG426-GPD-EGFP vectors were used to transform the 

W303-1A jen1Δ ady2Δ strain based on selection for complementation of a uracil auxotrophy.  

To account for ambiguities in the ancestral sequence reconstructions, constructs were 

generated in which all sites with plausible alternative ancestral states (posterior probabilities 

> 0.2) within transmembrane domains that form the putative substrate translocation pathway 

were simultaneously altered within a single peptide to contain the state with the second highest 

posterior probability. Transmembrane domains were identified based on TMpred (Hofmann 

and Stoffel 1993) and HMMTop (Tusnády and Simon 2001) predictions and alignment with 

the S. cerevisiae Jen1 transporter sequence (TMHMM (Krogh et al. 2001) predictions failed 

to detect TM XI helices with high probabilities, as previously described for Saccharomycotina 

Jen2 proteins and Pezizomycotina orthologues (Lodi et al. 2007)). DNA sequences coding for 

ancestral oomycete HGT transporter proteins were modified by site-directed mutagenesis and 

fragments were assembled within a p423-GPD expression vector using Gibson assembly 

master mix (New England Biolabs, Ipswich, MA, USA). The resulting vectors were used to 

transform the W303-1A jen1Δ ady2Δ strain, based on selection for complementation of a 

histidine auxotrophy.  

Competent cells were prepared for transformations as previously described (Thomson 

et al. 1998), mixed with approximately 500 ng of vector DNA, and pulsed at 1.5 kV in an 

Eppendorf electroporator. Cells were suspended in YPD [2% bacteriological peptone (Oxoid, 

Milan, Italy), 1% yeast extract (Oxoid; 2% glucose)] and grown at 30°C with 180 rpm shaking 

for 16-20 h before plating on Complete Supplement Mixture minus histidine (Formedium, 

Norfolk, UK) with 2% glucose (p423-GPD vectors), or Complete Supplement Mixture minus 

uracil (Formedium, Norfolk, UK) with 2% glucose (pAG426-GPD-EGFP vectors). All strains 

generated in this study are listed in Table S1 and primers are listed in Table S2. 

Phenotype assays 

Growth assays W303-1A jen1Δ ady2Δ strains transformed with p423-GPD vectors 

containing oomycete HGT transporter proteins were incubated overnight at 30°C with 



Complete Supplement Mixture minus histidine and 2% glucose. Cells were harvested by 

centrifugation at 2300 rpm for 3 mins, washed twice with deionized water, re-suspended in 

synthetic complete (SC) medium minus histidine media containing 1% glucose, and adjusted 

to an optical density of OD600 = 0.2. Aliquots of 100 µl were transferred to a sterile 96 well 

plate, with 3-4 replicates per strain. OD600 measurements were recorded every 10 mins for 48 

hrs at 30°C, and growth rates were estimated from the OD600 measurements using a logistic 

population growth equation implemented using a non-linear least squares regression in R 

3.1.2 (R Core Team 2014). 

Radiolabelled uptake assays W303-1A jen1Δ ady2Δ strains transformed with p423-GPD 

vectors containing oomycete HGT transporter proteins were incubated overnight at 30°C with 

SC medium minus histidine and 2% glucose. Overnight cultures were diluted using the same 

media and allowed to grow at 30°C until early log phase. Cells were harvested by 

centrifugation at 2300 rpm for 3 mins, washed twice with deionized water, then incubated at 

30°C for 2 hrs in SC medium minus histidine with 1% succinic, malic or citric acid (depending 

on the labelled acid to which they would later be exposed). Cells were harvested by 

centrifugation at 2300 rpm for 3 mins, washed twice with deionized water, and re-suspended 

in 0.1 M potassium phosphate buffer (pH 5.0) at a concentration of approximately 15-25 mg 

dry weight ml-1. To start the uptake reactions, 90 µl aliquots of the cell suspensions were mixed 

with 10 µl of radiolabelled carboxylic acid at various concentrations and incubated at 30°C for 

1 min (Soares-Silva et al. 2007). Different molar concentrations were obtained by combining 

14C labelled substrates with non-labelled counterparts and adjusting the specific activity 

accordingly using a specific activity adjustment calculator (www.perkinelmer.co.uk). The 

following radiolabelled carboxylic acids were used: [2, 3-14C] succinic acid (American 

Radiolabeled Chemicals, St. Louis, USA), L-[U-14C] malic acid (PerkinElmer, Wokingham, UK) 

and [1, 5-14C] citric acid (PerkinElmer, Wokingham, UK). Uptake reactions were stopped by 

adding 1 ml of ice-cold 120 mM non-labelled succinic, malic or citric acid (pH 5.0). Background 

adsorption of 14C was determined by exposing cells to 1 ml of 120 mM non-labelled succinic, 

malic or citric acid (pH 5.0) prior to the addition of the 14C labelled acid. Cells were centrifuged 

at 13,000 rpm for 3 mins, washed in 1 ml deionized water, re-suspended in 0.5 ml deionized 

water then added to scintillation vials containing 2.5 ml scintillation fluid (PerkinElmer, 

Wokingham, UK). Radioactivity was measured in a Packard Tri- Carb 2200 CA liquid 

scintillation counter. Uptake assays were repeated 3-4 times for each radiolabelled substrate 

and strain. Kinetic parameters were estimated in R 3.1.2 using the Dose-Response Model 

(drm) function in the DRC library (Ritz 2015).  



The ability of alternative substrates to inhibit succinic acid uptake was assessed by 

simultaneously exposing cells prepared as described above to 14C labelled succinic acid (50 

µM) and non-labelled substrates (50 mM). The non-labelled substrates included 7 

monocarboxylic acids (acetic, formic, D-galacturonic, D-gluconic, lactic, propionic and pyruvic 

acid), 10 dicarboxylic acids (α-ketoglutaric, fumaric, maleic, malic, malonic, oxalic, oxaloacetic, 

succinic and tartaric acid, as well as succinyl coA, a combination of succinic acid and 

coenzyme A), 3 tricarboxylic acids (cis-aconitic, citric and DL-isocitric acid) and glucose. 

Uptake reactions were stopped by adding 1 ml of ice-cold 120 mM non-labelled succinic acid 

(pH 5.0) and cells were prepared for scintillation counting as described above. Radioactivity 

values were then compared with those from control cells that had been exposed to 14C labelled 

succinic acid (50 µM) with no additional non-labelled substrate added and were expressed as 

percentage change. Whilst negative values indicate inhibition, positive values indicate 

enhanced uptake. Inhibition assays were repeated 3-5 times for each non-labelled substrate 

and strain. Due to variation across replicates, we classified a non-labelled substrate as a 

moderate inhibitor or a strong inhibitor of 14C succinic acid uptake if the upper quartile of the 

response was < - 50% or < - 80%, respectively. 

Spinning disc confocal microscopy  

S. cerevisiae strains transformed with pAG426-GPD-EGFP vectors were grown in SC medium 

minus uracil with 2% glucose at 30°C with 180 rpm shaking to mid-log phase, then were 

suspended in PBS containing 10 µl/ml Wheat Germ Agglutinin, Alexa Fluor 594 Conjugate 

(WGA, Life Technologies) and incubated at room temperature in the dark for 1-2 hrs. Spinning 

disc confocal microscopy was performed using an Olympus IX81 inverted microscope and 

CSU-X1 Spinning Disc unit (Yokogawa, Tokyo, Japan). A ×100/1.40 oil objective was used 

with a 488 nm solid-state laser to excite the EGFP fluorophore and a 594 nm solid-state laser 

to visualise the WGA stain. A Photometrics CoolSNAP HQ2 camera (Roper Scientific, 

Martinsried, Germany) was used for imaging with the VisiView software package (Visitron 

Systems, Puchheim, Germany). 

Flow cytometry 

S. cerevisiae strains transformed with pAG426-GPD-EGFP vectors were grown in SC medium 

minus uracil with 2% glucose at 30°C with 180 rpm shaking to mid-log phase, then were 

suspended in PBSE (10 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 0.1 mM 

EDTA, pH 7.4) containing 1 µg/ml propidium iodide. Three samples for each strain were run 

on a CytoFLEX S flow cytometer (Beckman Coulter), and proportions of live cells expressing 

GFP-transporter fusion proteins were determined using CytExpert. 
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Figures 

 

Figure 1. ML phylogeny of oomycete and fungal transporter proteins. The displayed tree 

is a composite of the reduced taxa tree used for calculating ancestral proteins with a schematic 

representation of a phylogeny encompassing wider taxonomic groups (i.e. additional outgroup 

sampling). RaxML bootstrap support values and MrBayes (MB)/Phylobayes (PB) posterior 

probabilities are tabulated for key internal nodes, including oomycete ancestral nodes A1-A6 

and ‘HGT’ nodes B1-B3, which show oomycete sequences grouping within the ascomycete 

fungal clade (NS – node not supported). Support values are tabulated for phylogenies inferred 

from a) the alignment used for ancestral sequence reconstruction (ASR), b) the ASR alignment 

following removal of the P. vexans sequence (see text for details), and c) an extended 

alignment containing additional Saccharomycotina sequences and more distant fungal 

outgroup sequences (see Figure S1). In the latter case, only RaxML bootstrap support values 

are reported. Support values for other nodes are marked if bootstrap values and posterior 

probabilities are above 95% and 0.95, respectively (shaded circles), or 50% and 0.8, 

respectively (open circles). Symbols correspond to oomycete transporter proteins that are 

upregulated prior to (†) and during (‡) infection (Torto-Alalibo et al. 2007; Roy et al. 2013). 

Fungal nodes were collapsed and the branch connecting the Saccharomycotina outgroup was 

truncated for tree display (full ML and Bayesian phylogenetic trees are presented in Figures 

S1-S4). The additional fungal outgroup, represented by a dashed line, was inferred from 

Figure S1 and previous studies (Richards et al. 2006, 2011).  



 

Figure 2. Transport capacity (Vmax – the maximum uptake rate) of HGT oomycete 

transporters. (A) 14C labelled succinic acid and (B) 14C labelled malic acid by W303-1A jen1Δ 

ady2Δ S. cerevisiae strains transformed with an empty vector (negative control) or expressing 

extant or ancestral oomycete HGT transporter proteins relative to a W303-1A jen1Δ ady2Δ 

strain expressing the C. albicans JEN2 transporter protein (positive control) (note that the y-

axis is log scaled). Mean values from three replicated experiments are presented and bars 

correspond to standard errors.  

 



 

Figure 3. Localisation and effects of transporter expression on yeast growth. (A) Cellular 

localisation of extant and ancestral (A1-A5) oomycete HGT transporter proteins. Panels 

display images from the same S. cerevisiae W303-1A jen1Δ ady2Δ cell(s) expressing GFP-

transporter fusion proteins; from left to right: bright field, GFP, wheat germ agglutinin (WGA) 

counterstain of the cell membrane, GFP and WGA. (B) Percentage of live cells expressing 

GFP-transporter fusion proteins. (C) Percentage of cells in which GFP-transporter fusion 

proteins were localised only to the plasma membrane rather than to the plasma membrane 

and additional components of the cell. (D) Growth rates of S. cerevisiae W303-1A jen1Δ ady2Δ 

strains expressing extant or ancestral (A1-A5) oomycete HGT transporter proteins. Rates 

were estimated from OD600 measurements using a logistic population growth equation, and 

are displayed as log response ratios (log proportional changes in mean growth rates relative 

to an empty vector W303-1A jen1Δ ady2Δ strain). In B, C and D, mean values from three 

replicated experiments are presented and bars correspond to standard errors. 



 

Figure 4. Inhibition of 14C labelled succinic acid (50 µM) uptake by addition of non-

labelled substrates (50 mM) in W303-1A jen1Δ ady2Δ strains expressing extant, 

ancestral (A1-A5) and alternative ancestral (A3a and A5a) oomycete HGT transporter 

proteins. Boxes and lines represent medians and interquartile ranges, respectively. Dashed 

lines correspond to thresholds for considering substrates as moderate or strong inhibitors 

(upper quartile reduced by 50% or 80%, respectively). Glucose (50 mM) was used as a control 

(data not displayed). 



 

Figure 5. Schematic phylogenetic tree showing retention of oomycete HGT transporter 

substrate specificity profiles from an ancestral state (A5) through key internal nodes (A1-A4) 

to extant oomycetes, and expansion of substrate range in Pythium aphanidermatum. 

Substrate specificity profiles are represented by nonagons in which different segments 

correspond to tricarboxylic acid cycle intermediates and confirmed (radiolabelled uptake 

assays, see Figures 2 and 6) or putative (competitive inhibition assays, see Figure 4) 

substrates are coloured. Substrate specificity profiles for strains exhibiting low transport 

capacity of 14C labelled succinic acid are shaded, reflecting the lower confidence that we place 

in these results (see text for details). Asterisks represent substrates that meet our criteria for 

consideration as moderate inhibitors by a narrow margin (upper quartile of the response 

approximately - 50%, see Figure 4). 



 

Figure 6. Uptake of 1mM 14C labelled citric acid by W303-1A jen1Δ ady2Δ S. cerevisiae strains 

transformed with an empty vector (negative control) or expressing the Pythium 

aphanidermatum HGT transporter protein or other representative extant (S. declina) and 

ancestral (A3) oomycete HGT transporter proteins.  
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