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Abstract

Amorphous carbon-based memories have gained traction in recent years due to their good

scalability and switching performance and are an important contender to close the perfor-

mance gap between fast but volatile DRAM and slow but non-volatile flash memory. A

writing and erasing process driven by the electrically induced formation and rupture of

a conductive filament permits switching times in the range of a few nanoseconds. Fur-

ther, the memristive property of amorphous carbon allows the implementation of beyond

von Neumann computation paradigms. However, ‘pure’ amorphous memories have a low

cyclic endurance. To overcome this and to exploit beyond von Neumann computation,

devices based on oxygenated amorphous carbon were employed here.

The first part of this thesis evaluated the switching performance and data retention ca-

pabilities of tetrahedral amorphous carbon memories. Switching times below 10 ns were

achieved for the SET as well as for the RESET times. An energy consumption below

1 pJ was obtained, while data could be retained for more than 300 s at 450 ◦C. Further,

evidence was provided that the SET process is not induced by an electric field alone.

A finite-element simulation was employed in the second part of this thesis to reproduce the

experimentally determined conductivity of tetrahedral amorphous carbon (ta-C) memory

devices and to shine light on the conditions at the onset switching from the high to low

resistance states (dielectric breakdown). The maximum temperature observed at dielectric

breakdown was 1615 K. It was found that a reduction of the lateral cell radius from

xi



25 nm to 15 nm and 10 nm increases the switching performance by reducing the switching

current from 34 µA to 20 µA and 8 µA.

The third part of this thesis evaluated the switching performance, temperature stabil-

ity, multilevel storage and memcomputing capabilities of oxygenated amorphous carbon.

Switching times below 10 ns for both, SET and RESET were demonstrated. A 3-level

(11/2 bits) data storage was achieved using three different resistance states. Further, a

memcomputing approach was implemented using a base-16 accumulation response with

energy consumptions as low as <100 fJ per pulse. Additionally, a finite element simu-

lation of a device in the low resistance state (LRS) was used to illustrate the correlation

between device resistance and Joule heating effects.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the extent to which electronic communication devices have revolutionised

our daily life in the form of smartphones, laptops, on demand streaming services, to name

a few, is truly striking. This technological revolution was only possible due to ever in-

creasing computational power being available at lower costs, lower energy and power

consumption and in smaller and smaller dimensions. The driving force behind this suc-

cess story is the doubling of the number of transistors that can be integrated in chips every

18 months to 24 months, which has been described as Moore’s law [1, 2].

With electronic devices pervading almost every aspect of our lives, the demand for high

density, cheap, fast and energy efficient data storage becomes increasingly important. To

balance the trade-off for cheap, high density data storage on one hand, and the need for fast

access, high performing storage devices on the other hand, different types of memories

are currently employed. The size of a given memory design is expressed by its lateral

dimensions in multiples of F2, where F is the smallest lithographic feature size [3]. An

often used criterion that allows one to split different types of memories into two categories

is the capability to retain data.
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Chapter 1 Introduction

High performance memory is located in close proximity to the central processing unit

(CPU) and requires constant power supply to retain the data and hence, falls into the

category of volatile memory. The volatile memory that is typically used for fast CPU

access and caching is static-random access memory (SRAM) [4]. One level lower in

the hierarchy of memories is dynamic-random access memory (DRAM) which is more

compact in comparison to SRAM, but slower due to periodical refresh operations that

have to be carried out to account for charge leakage [3, 5].

One step lower in the memory hierarchy are memories that fall into the second category

and are non-volatile. Non-volatile memories have longer read, write and erase times, but

can retain data without refreshing cycles or a constant power supply [6]. They are cheaper

in fabrication and offer a higher storage density due to a compact design.

The most ubiquitous current non-volatile memory devices are those based around CMOS

Flash technology. However, the speed difference between accessing DRAM and the write-

cycle time of Flash is around 4 orders of magnitude, which causes a significant delay

between performing logic operations (CPU) and storing the resulting data [7]. The ac-

cess time for different memory technologies is given in a memory hierarchy diagram in

Figure 1.1 [7].

In addition to the speed limitations of Flash-based memory, also the number of re-write

processes (endurance cycles) is limited to around 1000 [8]. To fill the performance gap

between DRAM and Flash in the memory hierarchy a new class of memory is required.

This class of memory is referred to as storage-class memory (SCM) [7]. The limitations

of DRAM and NAND Flash are compared in Table 1.1, together with the demands for

SCM.

The most promising memory candidates that have the potential to bridge the performance

2



Section 1.1 Motivation

Figure 1.1: Memory hierarchy and target application for storage-class memory (SCM) [11, 12].

gap between fast, but volatile memory and traditional non-volatile memories are shown

in the memory taxonomy in Figure 1.2, which is an adapted version of the International

Technology Roadmap for Semiconductors (ITRS) [9, 10]. The non-volatile memories are

split according to their current development state into prototypical and emerging mem-

ories. An overview of prototypical and emerging SCMs is provided in Sections 1.3 and

1.4, with the focus on technical approach, performance, data storage characteristics, en-

ergy consumption and scalability.

3



Chapter 1 Introduction

Figure 1.2: Memory taxonomy showing the most relevant memories according to the Interna-
tional Roadmap for Semiconductors [modified from [9, 10, 12]].
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Section 1.1 Motivation

Table 1.1: Comparison of DRAM and NAND Flash and requirements of SCM [adapted from
[12]]

DRAM NAND Flash Memory (SCM)

Maturity Production Production —

Read/Write
<100 ns

100 µs
5 µs

Latency Block Erase 1 ms

Retention
Time @ 85 ◦C

64 ms 10 yrs 10 yrs

Endurance
>1016 103–105 106

Cycles

Write Energy
100 pJ 100 pJ 100 pJ

per Bit

Scalability poor limited (3D) —

5



Chapter 1 Introduction

1.2 Traditional Memory Technologies

Dynamic Random-Access Memory (DRAM) Dynamic random-access memory

(DRAM) is based on charge stored in a capacitor [3]. The access to the storage capacitor

is controlled by a transistor to which the (conducting) wordline is connected. During

the writing process, the transistor is in forward bias, which allows one to store charge

in the capacitor (logic ‘1’) [3, 4]. The erase process discharges the capacitor (logic ‘0’)

[3]. The read out of the state of the device is done by applying a reference voltage to

the (conducting) bitline – which is orthogonal to the wordline – and sensing the voltage

change of the bitline when the capacitor is accessed [3, 4]. In the case that no charge

was stored on the capacitor (logic ‘0’), charge is drawn from the bitline, thus reducing

the voltage on the bitline (and vice-versa in the case that the capacitor was charged) [3].

Since the read out is destructive, the addressed cell has to be re-written in the case that a

logic ‘1’ was stored [3]. Due to leakage current from the capacitor, cyclic re-freshing of

the device state is also required [13].

Flash Flash memory is commercially available in two main categories, NOR Flash and

NAND Flash [14]. NOR Flash allows one to access stored data randomly, which is in

contrast to NAND Flash where data blocks are accessed sequentially. However, NOR

Flash has slower writing times and storage density and is therefore commercially less

relevant for large data storage applications [14]. Similar to DRAM, Flash memory is

based on stored charge in a capacitor [13]. The top electrode (control gate) is connected to

the word line and the bottom electrode (floating gate) is surrounded by an insulating oxide

on top of a metal-oxide-semiconductor field-effect transistor (MOSFET) channel [14]. To

store electrons in the floating gate, a positive bias is applied to the control gate (logic ‘0’)

which allows electrons to tunnel through the dielectric [14]. The erase process (logic ‘1’)

6



Section 1.3 Prototypical Storage Technologies

requires a positive bias applied to the substrate to discharge the capacitor [14]. To read

out the device state, a positive bias (smaller than used for programming) is applied to the

control gate and the current response through the transistor channel is sensed [14].

1.3 Prototypical Storage Technologies

Ferroelectric Random-Access Memory (FeRAM) Memory based on ferroelectric

materials (FeRAM) is based on the polarisation of the ferroelectric [15]. A typical FeRAM

cell is composed of a capacitor cell, whereby the polarisation of the dielectric is altered by

charging/discharging cycles of the capacitor during the write and erase procedures [15].

The device selection is carried out using a transistor [15]. The read out of the device state

is done by draining the capacitor and evaluating the charge flow, which depends on the

polarisation of the ferroelectric and hence, allows the determination of the stored logic

state [16]. Due to the destructive nature of the read out process, it is necessary to re-write

the data if the read out bit was ‘1’ [13].

Phase-Change Random-Access Memory (PRAM) Phase-change random-access

memory (PRAM) is based on the phase switching of chalcogenides from an amorphous

to a crystalline phase [17]. The amorphous phase has a high electrical resistance in com-

parison to the crystalline phase [18]. The write process that switches the device from

logic ‘0’ in the high resistive amorphous state to logic ‘1’ in the low resistive crystalline

state is achieved using short electrical pulses that heat the material above its crystallisa-

tion temperature but below the melting temperature [7]. The erase process is carried out

by applying short electric pulses that heat the material above its melting temperature, fol-

lowed by rapid cooling which re-amorphises the material [19, 20]. The highly non-linear

current-voltage dependence ensures that the temperatures remain low during the read out

7



Chapter 1 Introduction

processes [21]. The device access is typically done using a transistor, a diode [22] or an

Ovonic Threshold Switch (OTS) [23].

Despite progress in the fabrication of sublithographic PRAM structures [24], the main

drawback of PRAM remains its high power consumption which is necessary to melt the

material during the switching process [25].

Magnetic Random-Access Memory (MRAM) Traditional magnetic random-access

memory is based on a magnetic tunnel junction (MTJ) or spin valves formed by an in-

sulating layer that is sandwiched between two magnetic layers [16, 26]. One of the two

magnetic layers is ferromagnetic and has a fixed spin orientation, while the spin orienta-

tion of the free layer can be manipulated. The magnetisation of the free layer is changed

by passing sufficiently large currents through two lines ( ‘bit’ and ‘digit’) that are adjacent

to the stack and induce a sufficiently large magnetic field to change the magnetisation of

the free layer [26, 27]. This allows one to store data by using the electron spin orientation

[5]. The read out is done by measuring the resistance across the MTJ stack, which de-

pends on the orientation of the magnetic moments of the fixed layer and the free layer. A

parallel orientation of the magnetic moments has a high tunnelling probability and hence,

a low resistance corresponding to logic ‘1’, while an antiparallel orientation of the mag-

netic moments results in a high electric resistance which corresponds to logic ‘0’ [16].

The advantages of MRAM are fast switching, comparable to SRAM and high cyclic en-

durance [26]. The main challenges are related to scaling, due to the potential overlap of

the induced magnetic fields that are required for the writing process, which can, aided

by the low resistance contrast between the high resistive and low resistive state, lead to

writing errors [13, 28].

8



Section 1.4 Emerging Storage Technologies

Spin Transfer Torque Random-Access Memory (STT-MRAM) Instead of the mag-

netic field used in conventional MRAM, a polarised current is directly applied to the MTJ

cell [29]. For writing, the control of the magnetisation of the free layer using a polarised

current means that STT-MRAM is much better suited than conventional MRAM to down-

scaling, since ‘free-space’ fields are no longer required for switching [29].

To employ STT-MRAM as SCM, the main challenge is to reduce the cost per bit and

to achieve a high density integration [15]. The main difficulties in these respects are the

need for a transistor as device selector and the low on/off ratio (i.e. high resistance contrast

between LRS and HRS) which makes MLC data storage, i.e. the storage of several bits

per cell, in STT-MRAM difficult [15].

1.4 Emerging Storage Technologies

Conductive Bridging Memory (CBRAM) Conductive bridging memory (or electro-

chemical metallization memory [25]) belongs to the class of redox-based resistive random-

access memories (ReRAMs). The characterising feature of ReRAMs is the movement of

ions that combined with local structural changes lead to the formation and rupture of a

conductive filament. This change in electrical resistance is non-volatile and typically re-

versible. In CBRAM the resistance change is based on the formation of a conductive

metal filament that forms a percolation path within a solid electrolyte that separates two

electrodes [13, 15]. The conductive filament starts to form in the presence of an elec-

tric field as a consequence of a redox reaction at the active metal electrode / electrolyte

interface [25]. The metallic filament grows from the cathode towards the anode, due to

the diffusion of mobile metal cations to the inert metal cathode, where they are reduced

9
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[25]. The device is switched into a low resistance state (LRS) (logic ‘1’), when the metal-

lic filament formed bridges the two electrodes. The device is switched back into a high

resistance state (HRS) (logic ‘0’) by reversing the polarity of the applied electric field,

which dissolves the filament or at least a part of it [30]. This bipolar operation mode is in

contrast to the unipolar operation mode, where SET and RESET processes are induced by

voltage pulses of the same polarity (the switching process from the HRS into the LRS is

called SET process, while the reversible switching process from the LRS into the HRS is

referred to as the RESET process). The device state is read out using small voltages that

do not affect the state of the device [30].

Due to the solid electrolyte, CBRAM has a good on/off ratio and offers good scaling

capabilities [25]. However, the bipolar operation mode makes high density integration

challenging. Furthermore, endurance and retention properties still show a large variability

from device to device, which is partly due to the chemical potential gradients in the cell

that can shift the voltages that are required to switch the cell into the LRS or HRS [25,

31].

Valence Change Memory (VCM) Another type of ReRAM is valence change memory

(VCM), which is based on the formation of a conductive filament due to the movement

of mobile anions in a thin oxide layer that is sandwiched between two inert electrodes

[25, 32]. The filament starts to form at the cathode where the formation of oxygen va-

cancies leads to a valence change and a reduction of the metal cations, which then form

a conductive path that grows towards the anode [30, 33]. The conductive filament is typ-

ically based on the formation of oxygen vacancies, which is in contrast to CBRAM. The

device is switched into the LRS (logic ‘1’), when the conductive filament connects the

two electrodes. Typically, the first switching into the LRS requires a forming pulse using

a high voltage to establish the conductive filament. The device is RESET into the HRS

10
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(logic ‘0’) using a reverse polarity [32]. As a consequence of the rupture of the conductive

filament (and not complete dissolution) during the RESET process, the HRS has typically

a lower resistance than pristine devices [34]. Recently however, forming-free devices

were reported [35, 36]. The device state is read out using small voltages that do not affect

the state of the device.

If one (chemically) active electrode is used, the switching mechanism changes from fila-

mentary to interface dominated due to the redox reaction taking place at the oxide/active

metal interface, and the resistance of the LRS scales with the active electrode area [32].

Thermochemical Memory (TCM) Another branch of ReRAMs are thermochemical

memories (TCMs), which are based on thermally controlled diffusion and redox processes

[37] and thus can be operated in a unipolar manner [25]. The unipolar operation mode

sets TCM apart from VCM, which require a bipolar operation mode. Thermochemical

memories typically consist of a binary oxide that is sandwiched between two inert metal

electrodes [25]. During the SET pulse two conductive filaments start forming from both

electrodes and the device is set into the LRS when both conductive filaments merge,

creating a conductive percolation path between the two electrodes [25]. The conductive

filaments consists of either an oxygen vacancy defect chain or a metallic filament due to

the formation of oxygen vacancies along with a reduction of the metal cations [25, 38].

The reverse switching from the LRS into the HRS occurs then due to oxygen diffusion and

local re-oxidation of the conductive filament or by the thermally induced rupture of the

metallic filament [37]. A disadvantage of TCMs is the strong dependence on experimental

parameters, and the inherent large variability in the device properties [32]. This, and the

high energy consumption led to a drop in research activities in recent years [32].

11
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Carbon Memory Resistive switching phenomena were also reported in different carbon

allotropes, like nanotubes, thin graphitic structures and amorphous carbon (a-C) which are

included under the umbrella of carbon memory [12, 39–42]. Carbon memories based on

insulating, tetrahedally bonded amorphous carbon (ta-C) have recently gained traction

due to their good scalability and simple deposition techniques [43]. They are based on

the reversible formation of a conductive sp2 network, in an otherwise amorphous, insu-

lating carbon matrix [43]. The π bonds of the sp2 bonded carbon form a delocalised or

(‘conjugated’) network [44]. The amorphous carbon matrix is sandwiched between two

electrodes. The conjugated sp2 network forms a conductive filament within the insulating

matrix, when the device is biased with a sufficiently high voltage to induce a dielectric

breakdown [45]. The establishment of the conductive filament during the dielectric break-

down event switches the device into the LRS (logic ‘1’). The SET process leading to the

formation of a conductive filament in an otherwise insulating carbon matrix was not well

understood at the time when the work leading to this thesis was started. The current un-

derstanding, to which this work contributed significantly (see Sections 4.4, 4.6, 5.4 and

publications [46], [47]), is that the formation of a conductive filament in a spatially con-

fined memory cell is temperature activated and triggered by a local re-hybridisation from

sp3 to sp2 carbon. The SET process is discussed in more detail in Section 2.5.1.

Reverse switching is induced by applying a short electric pulse which leads to the rup-

ture of the conductive filament and resets the device into the HRS (logic ‘0’) [43]. The

RESET process that causes the reverse switching is less understood in comparison to the

SET process. A large contributor to the difficulty in understanding the RESET process is

the thermodynamical stability of the LRS. The current understanding, to which this work

again contributed significantly (see Section 4.6 and publications [46], [47]), is that the

rupture of the conductive filament is induced by the large temperature gradient that arises

at the electrode / conductive filament interface during the RESET pulse. The RESET pro-
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cess is discussed in more detail in Section 2.5.2. Similar to other filamentary memories,

the HRS after a RESET is typically lower than the resistance of pristine devices [45].

The device state is read out using small voltages that do not affect the state of the device

[43]. Carbon memories are typically distinguished from ReRAMs due the formation of a

conductive sp2 percolation path, rather than an oxygen-vacancy formation (in VCM) or

metal filament (in CBRAM) [9].

1.5 Comparison of Non-Volatile Memory Technologies

The key characteristics of the most studied data storage memory technologies were intro-

duced in Section 1.4 and are presented with their key attributes in Table 1.2. To avoid a

misleading impression about the capabilities of each storage technology, typical specifi-

cations that were available from a single device of each type (rather than for devices in

large arrays) were taken. The best specifications for each attribute are provided addition-

ally in brackets [48]. The correlation between the energy consumption during the writing

process as a function of the writing time and cell area of a device, are also provided in

Figure 1.3 and Figure 1.4, respectively [48]. In both figures VCM and TCM are grouped

together as ReRAM, meanwhile CBRAM is shown separately (cf. [32]).
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Table 1.2: Specifications of single device performances for selected storage class memories
SCMs. VCM and TCM are grouped together as ReRAM, meanwhile CBRAM is shown sepa-
rately (cf. [32]); the best characteristics for each attribute are given in brackets [adapted from
[48]].

PRAM STT-MRAM CBRAM ReRAM

Maturity Prototypical Prototypical Emerging Emerging

Film 10 nm(1) ≈5 nm(2) —(3)
<5 nm(4)

Thickness (2 nm) (≈2 nm) (2 nm)

SET Times
30 ns(1) 0.5 ns(2)

5 ns(3) 5 ns(4)

(10 ns) (0.2 ns) (0.3 ns)

RESET Times
30 ns(1)

0.5 ns(2) 1 ns(3) 5 ns(4)

(6 ns) (0.3 ns)

Retention 104 s @ RT(1) 30 [Eb/kbT ](2) 10 yrs @ RT(3) 10 h @ 200 ◦C(4)

Time (10 yrs @ 220 ◦C) (120 [Eb/(kbT )]) (10 yrs @ 150 ◦C) (10 yrs @ 85 ◦C)

Endurance 105(1) —(2)
107(3) 106(4)

Cycles (1.25 × 1012) (1015) (1012)

Write Energy
<0.1 pJ(1) 6 fJ(2) <2 pJ(3)

<1 pJ(4)

per Bit (<1 pJ)

(1) Taken from [49]
(2) Taken from [50]
(3) Taken from [51]
(4) Taken from [52]
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Figure 1.3: Writing energy as function of writing time for selected storage class memories
(SCMs) [taken from [53]]; VCM and TCM are grouped together as ReRAMs, meanwhile
CBRAM is shown separately (cf. [32]).
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Figure 1.4: Writing energy as function of the cell area for selected storage class memo-
ries (SCMs) [taken from [53]]; VCM and TCM are grouped together as ReRAMs, meanwhile
CBRAM is shown separately (cf. [32]).
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Section 1.6 Beyond von Neumann Computation

1.6 Beyond von Neumann Computation

Modern computers are based on the von Neumann architecture where logic and memory

operations are physically separated [19]. Logic and arithmetic operations are performed in

the CPU from where the data has to be transferred to the memory and retrieved for further

computation [19]. This separation between logic and memory is currently a large perfor-

mance limiting factor and known as the von Neumann bottleneck [19, 54]. To overcome

this performance limitation, this separation can be abandoned to perform logic/arithmetic

operations and data storage within the same physical unit using a computing-in-memory

or memcomputing approach [19, 55, 56]. Concepts to address this issue include the

translocation of arithmetic operations from the CPU to the SCM [19, 57]. These con-

cepts can be realised using so-called memristive devices, where the electrical resistance

of the device is related to the charge flow through the devices, examples of which are non-

volatile resistive switching memories (such as ReRAM, PRAM, CBRAM etc.) [58–61].

Arithmetic operations can be implemented using multiple pulses to change the resistance

state gradually from the LRS into the HRS or vice-versa, as it was shown for phase-

change memory devices [19, 57]. The excitation pulses are configured (in amplitude and

duration) such that only after all pulses of the predetermined sequence have been applied

does the resistance of the cell change significantly enough (either in transitioning from the

HRS into the LRS, or vice-versa) to cross a pre-set resistance decision threshold. Thus,

for base-n operation, a decision threshold is set between the resistance levels achieved

after the input of (n-1) and n pulses. The number of pulses required to pass through the

decision threshold determines the arithmetic base of the calculation. When the accumu-

lator exceeds the decision threshold a carry forward is recorded and the device is set back

to its starting state and the input pulses are continued until all the remaining input pulses

have been sent [19, 62]. More details for carrying out accumulator-based arithmetic op-
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erations (addition, subtraction, multiplication, division etc.) are provided in [19, 57, 62].

In contrast to MLC data storage, where the different resistance levels have to be precisely

sensed, this arithmetic approach solely requires the distinction of two resistance states

that are separated by a decision level [19].

For the remainder of this thesis the focus is on amorphous carbon-based memories, which

have the potential to play an important role as non-volatile SCM as well as in beyond

von Neumann computation due to their simple structure, cheap manufacturing processes,

good scalability, fast switching times and biocompatibility [43, 63, 64].

1.7 Thesis Objectives

Memory devices based on ta-C have promising properties, such as nanosecond switch-

ing times, a good scalability (possibly to the single bond level), cheap and easy manu-

facturing processes [43]. The key performance achievements of memory devices based

on ta-C are summarised in Table 2.2. Motivated by these promising characteristics, the

unipolar switching and data retention capabilities of ta-C devices were investigated in

Sections 4.2 and 4.3. The effect of different pulse lengths and amplitudes on the SET

process was investigated in Section 4.7 to correlate the switching times with power and

energy consumption. Preliminary experiments have shown a low cycling endurance (see

Section 4.4), which could be linked to the thermodynamical stability of the LRS. In Sec-

tion 4.6 this was found to be exacerbated by the unipolar operation mode and the fast

switching times, which give rise to large capacitive currents that manifest in large con-

ductive filaments [43]. This led to an intensive investigation into the conditions at the

dielectric breakdown event, when the switching from the HRS into the LRS occurs, see
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Sections 4.6, 5.1, 5.2, 5.3, 5.4. This work contributed to the current understanding of the

SET process in ta-C memories, as discussed in Sections 1.4 and 2.5.1.

To address the difficulty of a low cycling endurance, memory devices based on oxy-

genated amorphous carbon (a-COx), which have shown high cycling endurance in bipolar

mode due to oxygen aiding the reset process [63], were investigated in Chapter 6 with

respect to data retention, switching time, multi-level storage and beyond von Neumann

computation.

The motivation of this work is therefore threefold. Firstly, the switching performance of

devices based on elemental amorphous carbon and oxygenated amorphous carbon were

evaluated with respect to the switching time, energy consumption and temperature stabil-

ity. Secondly, a computational model was developed to help shine light on the switching

process, in particular on the conditions at dielectric breakdown, especially on the tem-

perature distribution due to the Joule heating effect. Thirdly, the memristive properties

of oxygenated amorphous carbon were investigated. As part of this study, a multi-level

approach was realised, which allows a significant increase of the storage density. Ad-

ditionally, a simple base-16 accumulator was implemented to demonstrate some of the

beyond von Neumann capabilities of oxygenated amorphous carbon.

1.8 Thesis Outline

Chapter 1 The first chapter introduces the memory taxonomy and identifies the per-

formance gap in the memory hierarchy that is located between fast, but volatile memory

on one side and slow, but non-volatile memory on the other side. The working princi-

ples of current memory storage technologies are presented and compared with the most

promising and emerging memory storage technologies as identified by the International
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Roadmap for Semiconductors (ITRS) [9]. The concept of memcomputing to perform

arithmetic operations within a memristive device is briefly introduced as means to over-

come the speed limitation of the von Neumann architecture.

Chapter 2 The second chapter reviews the most common deposition techniques for

amorphous carbon thin films and provides a brief description of the working principle of

each. The most typical spectroscopic characterisation methods are reviewed with respect

to their capability to determine the sp2 and sp3 content of deposited films. A key emphasis

is put on Raman spectroscopy which allows one to get insights in the local arrangement of

sp2 bonded carbon, which is a key factor in determining the electric properties of amor-

phous carbon-based films. Further, the key concepts of electronic transport in localised

states is reviewed for low electric fields, together with trap-limited band transport for

high electric fields. Additionally, a literature review about the current understanding of

the physical origins of the SET and RESET processes in insulating amorphous carbon is

provided.

Chapter 3 The third chapter presents the deposition methods and parameters used for

the ta-C and a-COx films and devices used in this thesis, along with the results of the

material analysis of ta-C and a-COx films. Further, the design of the ta-C and a-COx

memory devices is provided, together with descriptions of the experimental device test

setups that were used to investigate the switching and retention properties of the ta-C

and a-COx memory devices, and the low temperature conduction properties of the ta-C

memory devices. Additionally, the material parameters and electric pulses used within

the framework of the computational modelling are provided. It is pointed out that the

experimental pulses to be modelled have to be long enough to avoid a time lag between

the maximum voltage achieved and onset of the dielectric breakdown. This finding aids
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to the understanding of the SET process since the observed time lag suggests that the

electric field alone is not sufficient to switch the device from the HRS into the LRS.

Chapter 4 In chapter four, the switching performance, energy consumption and data

retention capabilities of tetrahedral amorphous carbon based memories are investigated

experimentally. The fastest switching times and lowest power consumptions achieved to

date are reported.

Chapter 5 The fifth chapter presents the results of the experimentally determined field-

and temperature dependent conductivity of pristine ta-C, which is fed into the computa-

tional modelling. The results of the simulated conductivity is then presented and com-

pared with experimental data, which allows one to draw conclusions about the temper-

ature distribution at the onset of dielectric breakdown. The obtained high temperatures,

exceeding 1500 K, suggests that temperature activation is important to SET the device,

which aids to the understanding of the SET process. The obtained insights are used in an

optimisation study that aims to provide a guideline to reduce the energy consumption.

Chapter 6 The sixth chapter present the switching performance, energy consumption

and data retention capabilities of devices based on oxygenated amorphous carbon. The

memristive effects are evaluated for the first time, and a 3-level (11/2 bits) data storage

approach is presented. Additionally, a base-16 accumulator response is successfully

achieved. The chapter concludes with a thermal analysis that aims to provide insights

into the temperature distribution within a filament during the reset process.

Chapter 7 In Chapter 7, the key findings are summarised and a future outlook on re-

search on carbon-based materials for memory applications is presented.
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In terms of original contribution to knowledge, the work of this thesis achieves this via

both significantly improved device performance aspects as well as contributions to the

understanding of the switching mechanism in ta-C and a-COx devices. Notable contribu-

tions include the following:

• Fastest switching in a-COx memory devices reported to date (40 ns).

• Fastest switching in ta-C and a-COx memory reported to date (7 ns).

• Data retention of 300 s @ 450 ◦C achieved in ta-C memory devices.

• Lowest writing energy per bit in a-COx memory devices reported to date (≈2 pJ).

• First time multi-level storage achieved in a-COx memory devices.

• First time accumulator response (base-16) realised in a-COx memory devices to

demonstrate beyond von Neumann capabilities.

• First complete computational modelling of experimentally obtained conductivity in

ta-C memory devices ranging from Ohmic conduction until the onset of the dielec-

tric breakdown.

• Realisation that large electric fields in the absence of high temperatures do not suf-

fice to induce a dielectric breakdown in ta-C memory devices.

• Localised Joule heating is captured in the computational model by introducing a

random distribution of conductive sp2 clusters in an otherwise insulating sp3-rich

matrix.

• Realisation that high temperatures exceeding 1500 K are present in ta-C memory

devices at the onset of the dielectric breakdown.
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• Highlighting that temperature plays an important role during the RESET process in

a-COx devices.
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Chapter 2

Insulating Amorphous Carbons

2.1 Introduction

Resistive switching phenomena can be observed in various carbon allotropes, as outlined

in Section 1.4. Probably the most promising allotropes with regards to ease of fabrica-

tion, scaling, fast switching speeds and the prospective application in beyond von Neu-

mann computation, are based on amorphous carbon and amorphous carbon derivatives

[63]. The different a-C derivatives such as diamond-like carbon (DLC) have a large vari-

ation in optical, electrical and mechanical properties [65]. These differences arise due to

the inherent differences between graphite-like sp2 bonding and diamond-like sp3 bonding

[65, 66]. The main attributes that affect the electrical properties and hence, influence the

resistive switching performance in a memory device, are the sp3 content, the clustering

of the sp2 phase into conjugated sp2 rings or networks, the orientation of the sp2 phase,

the cross-sectional nanostructure and the content and bonding of any additional elements,

such as hydrogen [67] (or oxygen [63]) [46, 65, 66]. Amorphous carbon with a significant

fraction of sp3 bonds is referred to as diamond-like carbon (DLC) or tetrahedral amor-

phous carbon (ta-C), in the case of a very high sp3 C-C bonding content [65, 66, 68].

The relation (in terms of sp3, sp2 and H content) between graphitic carbon, diamond-like

carbon and hydrogenated carbon is shown in the ternary phase-diagram in Figure 2.1.
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Figure 2.1: Ternary phase diagram of amorphous carbon and amorphous carbon-based al-
loys (here a-C:H) [taken from [69]].

For the use of amorphous carbon as an active material in memory devices, it is necessary

to disrupt any existing conjugated (delocalised) π networks (see Section 1.4) to achieve

reversible switching from the LRS into the HRS [43]. The current densities that are

required for this RESET process were reported to be ≈350 MA cm−2 [43]. In amorphous

carbon containing a high sp2 content, these current densities translate into large currents

that are required to disrupt the large extended conjugated sp2 networks connecting the

electrodes. This is power and energy inefficient, and in the case of conductive carbon only

feasible for areal cross-sections with diameters below 10 nm [43, 45]. The reason for this

is that practically the entire volume has to be amorphised. Thus, a more viable route is

the use of ta-C or a-C-based alloys that reduce C –– C sp2 bonding, (such as hydrogenated

amorphous carbon (a-C:H) or oxygenated amorphous carbon (a-COx)).
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2.2 Deposition Methods

Filtered Cathodic Vacuum Arc (FCVA) The filtered cathodic vacuum arc (FCVA)

method is based on the creation of a plasma, which in the case of a graphite target, con-

tains a high ion density of C+ species [65]. The plasma is created through an electric

arc discharge between a graphite target and a small striker anode in a high vacuum en-

vironment [65, 70]. To remove large ion clusters, the plasma is guided through a curved

magnetic filter before hitting the substrate [70]. To control the energy range of the im-

pinging ions, a DC or RF bias can be applied to the substrate [65, 70]. The plasma net

charge is neutral which allows the deposition of ta-C films on insulating substrates [65].

A schematic of a single bend FCVA apparatus is shown in Figure 2.2. The FCVA is the

most commonly used method for producing high-quality ta-C films, and as such is used

widely for e.g. ta-C coatings of magnetic hard disks [70–72]. The FCVA method was also

used to prepare the ta-C films for the resistive switching investigations that are presented

in this thesis.

Pulsed Laser Deposition (PLD) The pulsed laser deposition (PLD) method uses

short, high energetic laser pulses which create a plasma by vaporising carbon particles

from a graphite target. [65]. The plasma consists of ionised and neutral carbon species

that condense on the substrate as a consequence of the plasma expansion [73]. For indus-

trial application, the high initial costs and the requirement for homogeneous depositions

on the wafer-scale, are the biggest obstacle to the widespread adaption of PLD for a-C

deposition [73]. A schematic of a PLD system is shown in Figure 2.3.
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Mass Selected Ion Beam (MSIB) The mass selected ion beam method (MSIB) is

based on the extraction of C+ ions from a graphite target or a carbon containing gas

[74]. To select only C+ species, the ion beam is accelerated to around 40 keV and guided

through a 90° bent magnet for mass selection [75]. The ion beam is decelerated before

reaching the substrate [75]. Although ta-C films produced with the MSIB method are of

high quality, the deposition rate is too low (0.001 Å/s) for industrial applications [65, 70,

74]. A schematic of an MSIB system is shown in Figure 2.4.

DC Magnetron Sputtering The sputtering method is widely used in industry due to its

capability to deposit electrically conductive as well insulating materials on a large scale

[65]. Conductive materials are deposited using direct current (DC) sputtering, whereas

insulating materials have to be deposited using radio frequency (RF) sputtering to avoid

charge build-up [70]. Amorphous carbon thin films are usually deposited from a graphite

target using the DC magnetron sputtering technique. The DC magnetron sputtering tech-

nique is based on the creation of a plasma in a noble-gas, typically argon, atmosphere

[70]. The Ar+ ions are accelerated towards a conductive target, where typically lumps

of particles are released as consequence of the Ar+ ions’ impact on the target [70]. The

particles are then deposited on the substrate. To increase the yield, magnets are placed

behind the target [65]. The magnetic field increases the ion path, which leads to a higher

ion density, and ultimately to a higher yield [65]. A schematic of a magnetron sputtering

system is shown in Figure 2.5. Although a-C films of high quality can be produced us-

ing this method, the deposited carbonaceous species are of low energy (several eV) and

consequently, the resulting film has a low sp3 content [65, 70]. The high sp2 content

(>80 %) inhibits their use in resistive switching applications (see Section 1.4) [76]. The

sp3 content can be increased by adding a reactive gas like oxygen during the deposition

process which produces a-COx films, whereby the ratio of sp3 and sp2 bonded carbon
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varies as function of the oxygen partial pressure [63, 65, 70]. The deposition of carbon

from a graphite target in an O2 atmosphere was used in the work of this thesis to produce

a-COx films for resistive switching studies.

29



Chapter 2 Insulating Amorphous Carbons

Figure 2.2: The FCVA method: Single bend filtered cathodic vacuum arc deposition tech-
nique; the plasma arc is ignited by touching the cathode (graphite target) with a striker. The
high energy plasma is then filtered for neutral species using a magnetic filter, before imping-
ing on the substrate. The net-charge is neutral which allows the deposition on insulating
substrates [modified from [65].
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Fig. 2. Schematic of a basic equipment configuration for pulsed laser 
deposition of DLC films. 

strate to form a film. Herein, the strongly forward- 
directed flux of material is referred to as the plasma 
plume. A detailed examination of the beam-target inter- 
action, however, reveals the more complicated character 
of the process, which is still not completely understood. 

The currently used representation of the laser-target, 
laser-plasma interactions is shown in Fig. 3, according 
to Refs. [59,60]. This representation illustrates several 
steps of the process, including absorption of photon 
energy, surface melting, vaporization and multi-photon 
ionization, plasma emission and plasma heating by 
inverse-Bremsstrahlung absorption, and, finally, super- 
sonic expansion of plumes owing to the pressure differ- 
ences. Target melting may lead to droplet emission from 
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Fig. 3. Schematic of a currently used representation for the laser- 
target interactions (after Refs. [59,60]). 

metal, ceramic or polymer targets. This is minimized for 
materials with high melting point and thermal conductiv- 
ity, such as graphite. However, high-energy laser inter- 
action with these materials induces surface fragmental 
damage and ejection of erupted fragments [61]. 
Summarizing, the following main features of ablated 
fluxes have been observed. 

(i) Energy of the particles in the flux is considerably 
higher than thermal, and increases with beam fluence 
(power delivered per unit of target area). 

(ii) Laser beams of shorter wavelength (higher photon 
energy) have lower optical penetration depths and, con- 
sequently, produce higher energy particles in the flux by 
the absorption of laser energy in a smaller surface 
volume. 

(iii) Fluxes contain both neutrals and ionized atoms 
and clusters of ablated target material. 

(iv) The plumes produced are cone-shaped, with a 
highly forward-directed spatial distribution, which can 
be reasonably approximated by cos"(0) function with 
8 < n < 1 2  [62]. 

(v) The density of fluxes drops exponentially with 
distance from the target. This provides a need for short 
target-to-surface distances, which typically do not exceed 
10 cm for DLC deposition. 

(vi) Plumes contain particulates ejected from the target 
surface, especially when high fluences and long laser 
wavelengths are used. 

The composition and energetic characteristics of the 
laser-produced carbon plumes depend also on which 
form of carbon is used as the target material. Plume 
characteristics in the laser ablation of pressed diamond 
powder [63], amorphous and glassy carbon [64] or 
polymer carbon [50] may differ from that of graphite. 
However, high-purity graphite targets are most com- 
monly used in PLD of DLC films, which is then the 
focus of this review. 

3. Development of process configuration and main 
process parameters 

Beginning with the pioneering works by Marquardt 
et al. [65] and Sato et al. [66], a critical dependence of 
DLC formation on the energetic characteristic of evapo- 
rated plumes has been observed. This resulted in a 
number of modifications to the basic deposition config- 
uration, shown in Fig. 4, which were aimed at controlling 
the energy of deposited fluxes. First, Sato et al. [66,67] 
applied a negative bias to the substrate to accelerate 
ions and thereby improve the diamond-like character of 
the films (Fig. 4(a)). Wagal et al. [68] used a Faraday 
cage with a biased entrance grid to extract and accelerate 
ions from plasma plumes (Fig. 4(b)) and deposit opti- 
cally uniform DLC films. 

Trying to extend the plasma plume further from the 

Figure 2.3: The PLD method: A laser beam is focused on a graphite target inside the vacuum
deposition, which leads to the evaporation and condensation of carbonaceous species on a
substrate. The energy density of the laser beam is directly correlated to the kinetic energy of
carbon ions, which in turn affects the sp3 content of the resulting carbon film [65, 73] [taken
from [73]].
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conditions, material naturally is far from the stable 
thermodynamic equilibrium. 

It is not only the increased kinetic energy that 
makes low-energy ions so attractive in thin-film 
growth. Research has clearly shown that ionized 
species have many unique and beneficial effects: 
For example, chemical activity is greatly increased 
by the presence of ions. 

Aisenberg and Chabot 6 conducted one of the first 
attempts to utilize energetic beams in growing dia- 
mondlike films. They used a coaxial source to gen- 
erate positive ions of solid carbon. Their deposited 
films had several interesting properties such as 
transparency and high index of refraction. The films 
were also insulators, hard, and chemically inert. X- 
ray diffraction showed the lattice constant of these 
partially crystalline films to be similar to that of 
diamond. 

Miyazawa et  al .  7 used mass-analyzed low-energy 
carbon beams of 300 and 600 eV to produce dia- 
mondlike films. They also used a neutral trap to 
eliminate neutral species. Unique characteristics of 
produced films were an atomic density close to that 
of c r~4stalline diamond, a specific resistivity of 1.7 
• 10 ~m, and transparency in the visible spectral 
region with wavelengths longer than 650 nm and 
in the infrared region. Transmission electron dif- 
fraction revealed an amorphous diffraction pattern. 
The scientists did not determine the hydrogen con" 
centration of these films, but presumably it was low. 

Negative carbon ion beams have also been used 
to produce diamondlike carbon films. Ishikawa et  
a/.~concluded that the optimum energy would be 
about 100-200 eV. The properties of the films were 
very similar to those of films produced by Miyazawa 
et  al .  7 with an exception of the slightly higher elec- 
trical resistivity. The structure of these films also 
turned out to be amorphous. 

A dual-ion-beam technique 9 has also been applied 
in growing diamondlike films. In this technique, re- 
searchers use one low-energy ion beam to sputter a 
solid carbon target while using the other beam to 
bombard a growing film. Normally, noble gas ion 
beams have been employed. Film properties vary 
greatly depending on the process parameters. 

A common characteristic to all these techniques 
is that hydrogen is not involved in the process as 
an active participant. Thus, a clear distinction should 
be made between these techniques and those based 
on cracking of hydrocarbon molecules in plasma-as- 
sisted deposition systems: ~ In the latter methods, 
scientists have reported an accumulation of hydro- 
gen up to 50%. H Because recent studies indicate that 
a degradation of mechanical performance is caused 
by a high hydrogen concentration, ~2'~3 developing 
hydrogen-free diamondlike films is attracting more 
attention. It also seems evident that in some tri- 
bological applications diamondlike films are at least 
competitive with crystalline diamond films. A low 
deposition temperature is also an advantage of dia- 
mondIike films, especially in cases where common 
construction materials serve as substrates. 

In this review we present two different methods 

to produce diamondlike films, both of which utilize 
energetic carbon ions. The first technique is a di- 
rect, mass-analyzed ion-beam deposition method, 
which is an extremely well-controlled process. The 
second technique is an arc-discharge method, which 
possesses potential as a high-deposition-rate com- 
mercial process. 

DIRECT, MASS-ANALYZED ION-BEAM 
DEPOSITION METHOD 

Figure 1 shows a schematic picture of the depo- 
sition system. 14 We extracted the C + ions from the 
ion source of a small duoplasmatron or a low-volt- 
age arc type. The feed gas was CO2. We accelerated 
the ion beam up to 40 keV and mass-analyzed it by 
using a 90 ~ magnet. After mass-analyzing, we de- 
creased the energy of the beam by the deceleration 
voltage connected to the sample holder. The decel- 
eration voltage was the initial acceleration voltage 
minus the voltage, V, of the additional power sup- 
ply. The special advantage of this arrangement was 
that the final nominal acceleration voltage was V 
regardless of the drift of the 40-keV power supply. 
We varied the voltage V between 10 V and 2 kV. 
No neutral trap was used in the presented set-up. 
Because of the low intensity of the ion beam, the 
deposition rate was extremely low. A typical depo- 
sition rate was of the order of 10 -~ pm3/s. Films 
with a thickness from 0.5 to 10 ftm were deposited. 
We employed silicon (100) single crystals and 
WC-Co cemented carbide as substrates. Films on the 
silicon substrates were used in spectroscopic and 
electrical measurements while mechanical proper- 
ties were tested by using films on WC-Co cemented 
carbide. All depositions were carried out at room 
temperature. 

We used Rutherford backscattering spectroscopy 
(RBS) and Raman spectroscopy, among other tech- 
niques, to characterize the films. Figure 2 shows RBS 

sample 

ion source 

analyzing 
m ag net 

T 

voltage V 

(I0 V - 2 kV) 

40 kV 

Fig. 1 -- Schematic picture of the direct, mass-analyzed ion beam 
deposition system. Figure 2.4: The MSIB method: The C+ ions extracted from an ion source are accelerated up

to 40 keV and guided through a 90° bend magnet for mass selection [75]. The ion energy is
decreased prior to the deposition on the substrate [taken from [75].

Figure 2.5: The magnetron sputtering method: Noble-gas ions (typically Ar+) are accelerated
towards a cathodic graphite target, which leads to the release of lumps of carbonaceous
species from the target and deposition on a substrate [70]. Some neutralised noble-gas ions
are incorporated into the deposited film [70] [modified from [77].
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Chapter 2 Insulating Amorphous Carbons

2.3 Spectroscopic Characterisation

It is important to characterise the structural and chemical composition of the deposited

carbon-based films with respect to their use in resistive switching applications. An overview

of the typical characterisation methods and their key characteristics is presented in Ta-

ble 2.1. The state-of-the art methods are explained in more detailed in the following.

Raman Spectroscopy Raman spectroscopy is based on the inelastic scattering of pho-

tons in matter [78]. Raman spectroscopy is a non-destructive method to characterise the

chemical and structural properties that influence the switching performance of carbon-

based memories [65, 66]. The amorphisation of carbon from a crystalline graphitic form

to tetrahedral amorphous carbon can be described in Raman spectroscopy by a three-stage

model as originally introduced by Ferrari et al. [69]. The first stage involves the transition

from graphite to nano crystalline graphite, the second from nano crystalline graphite to

a-C and the last stage describes the transition from a-C to ta-C and the inherent increase

of the sp3 content [69]. The three-stage model is visualised in Figure 2.6.

The Raman spectra of amorphous carbons are dominated by sp2 bonded carbon atoms

due to the larger scattering cross-section in comparison to sp3 bonded carbon atoms [65].

The difference of the cross-section is related to the larger polarisability of π bonds, and

Table 2.1: Characterisation methods for amorphous carbon-based films [adapted from [65]].

Method Remarks

ESCA (XPS) Small shifts for homopolar bonding
Raman Multi-wavelength (including uv) analysis
EELS Time-consuming, destructive
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Section 2.3 Spectroscopic Characterisation

Figure 2.6: Variation of the sp2 configuration as function of the amorphisation trajectory ac-
cording to the 3-stage amorphisation model [66] [taken from [66]].

the lower energetic position of π states [65, 69]. To characterise the structural properties

the intensity and position of the Raman G and D peaks are relevant for all three-stages

in the transition from graphite to ta-C [69]. The G peak originates from bond stretching

of sp2 coordinated pairs [69]. The D peak is a breathing mode for benzene rings (sp2

bonded carbon) and is only active within defective 6-fold rings [69].

The transition from graphite to nano crystalline graphite in stage one leads to a shift in the

G peak position from 1581 cm−1 to 1600 cm−1 due to phonon confinement [65, 69]. The

D peak also appears and consequently, the ratio of the intensities of the D and G peaks

(I(D)/I(G)) increases [65, 69]. Stage two involves a weakening of the sp2-sp2 bonds due

to the rearrangement of sp2 bonded atoms from sixfold rings into odd membered rings,

which leads to a decrease in the G peak position from 1600 cm−1 to 1510 cm−1 and at the

same time the I(D)/I(G) ratio approaches zero [69]. Stage three involves the transition

from sp2-rich a-C to sp3-rich ta-C [69]. This transition causes an upward shift in the G

peak position from 1510 cm−1 to 1570 cm−1 [69]. The origin of this G peak position shift

is caused by two counteracting effects, namely the rearrangement of the sp2 bonded atoms

into olefinic chains leads to shorter bonds and thus higher vibrational frequencies, and the

mixing of sp2 vibrational modes with sp3 vibrational modes, which are at lower frequency
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[65, 69]. A Raman spectrum of the amorphisation trajectory is shown in Figure 2.7 for a

514 nm illumination wavelength [69]. Thus, the combined study of the G peak position

shift and the change of the I(D)/I(G) ratio can be used to determine the sp3 content, in

the absence of thermal annealing effects [69].

Upon annealing or deposition at elevated temperatures, a clustering process sets in which

causes the sp2 sites to form aromatic, sixfold rings [69]. The clustering process causes

the appearance of the D peak and leads to a shift in the G position, when using a laser

with a wavelength in the visible range [69]. This upward shift in the G position is a di-

rect consequence of the larger cross-section of aromatic rings in comparison to chains

[79]. The second effect of annealing is the conversion from sp3 bonded carbon to sp2

bonded carbon. The larger cross-section of clusters outweighs the influence of the con-

version on the shift in the G peak position [69]. As a consequence, there is no unique

relationship anymore between G peak position, I(D)/I(G) peak ratio and the sp3 content

for visible wavelength Raman spectra [69]. This leads to a hysteresis between the G peak

position and the I(D)/I(G) peak ratio as a function of the sp3 content, which prevents an

accurate and unambiguous determination of the sp3 content using solely visible Raman

spectroscopy [69]. It has to be noted that while the variation of the G peak full width

half maximum shows a unique relation with the sp3 content even for one (visible) wave-

length, it is advisable to perform further measurements in order to minimise experimental

uncertainties [66]. The hysteresis is schematically shown in Figure 2.8.

However, to determine the sp3 content it possible to use the fact that the G peak position

is dispersive, i.e. wavelength dependent, in amorphous carbon [69, 80]. The an upward

shift in the G position with increasing wavelength is caused by the stronger weighting

of olefinic bonded sp2 groups, which have a higher vibrational frequency [65, 69]. This

causes the G peak position to be shifted to higher wavenumbers than the G peak position
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many amorphous carbons, because it is often only a low-
frequency shoulder of the G peak. Two factors can shift the
D peak. On one hand, smaller aromatic clusters have higher
modes21 and shift D upwards. On the other hand, a decrease
in number of ordered aromatic rings on passing from nano-
crystalline graphite to a-C lowers D and reduces its intensity,
due to softening of the VDOS.44
Another important issue from Eq. !9" is that the maximum

of the BWF line is not at 00 but lies at lower frequencies:

0max"00$
%

2Q , !10"

as Q is negative. We define the G position as 0max rather
than 00 . 00 is higher than the apparent peak maximum
because 00 is the position of the undamped mode.43 We
attribute no physical meaning to the undamped frequency but
merely view the BWF line as an efficient way to fit the data.
The asymmetric BWF line shape is appropriate for the G
peak due to the asymmetry of the VDOS of graphite or
amorphous carbons towards lower wave numbers.9 No Fano
resonance is present. Whenever reporting data from other
papers using BWF fits, we will use 0max , derived by apply-
ing Eq. !10" to their data. Moreover, 0max compares directly
with data from symmetric curve fitting.
Finally, it is not always clear if the I(D)/I(G) ratio

should be the ratio of the peak heights or peak areas. Gener-
ally, groups using BWF$Lorentzian fits report peak height
ratios, while groups using two Gaussians report the area ra-
tio. The difference is not so important for disordered graph-
ite, as the peak widths are similar, but this is not so for
amorphous carbons. In that case, the broadening of the D
peak is correlated to a distribution of clusters with different
orders and dimensions, and thus the information about the
less distorted aromatic rings is in the intensity maximum and
not in the width, which depends on the disorder. Ring orders
other that six tend to decrease the peak height and increase
its width. Unless differently stated, in this paper we refer to
I(D)/I(G) as the ratio of peak heights.

VI. THREE-STAGE MODEL

The large amount of experimental visible Raman spectra
on amorphous carbons will be interpreted using a phenom-
enological three-stage model. Given a perfect, infinite graph-
ite sheet, we consider the introduction of a series of defects:
bond-angle disorder, bond-length disorder, and hybridiza-
tion. We neglect the possible role of hydrogen, as C-H
modes give no detectable contributions in the G and D peaks
!Sec. VIII". The Raman spectrum is considered to depend on

!1" clustering of the sp2 phase,
!2" bond disorder,
!3" presence of sp2 rings or chains, and
!4" the sp2/sp3 ratio.

These factors act as competing forces on the shape of the
Raman spectra, as shown schematically in Fig. 6. We define
an amorphization trajectory6 ranging from graphite to ta-C
!or diamond" consisting of three stages, as shown in Fig. 7:

!1" graphite→nanocrystalline graphite (nc-G),
!2" nanocrystalline graphite→a-C, and

!3" a-C→ta-C (→/100% sp3 ta-C, defected
diamond45".

For simplicity, we will consider the evolution of G-peak po-
sition and I(D)/I(G). Except where differently stated, we
refer to Raman data at 514 nm.

A. Stage 1: From graphite to nanocrystalline graphite

The main effects in the evolution of the Raman spectrum
in this stage are the following.

!a" The G peak moves from 1581 to /1600 cm!1.
!b" The D peak appears and I(D)/I(G) increases follow-

ing the TK equation !8".
!c" There is no dispersion of the G mode.

FIG. 6. Schematic diagram of influences on the Raman spectra.
A dotted arrow marks the indirect influence of the sp3 content on
increasing G position.

FIG. 7. Amorphization trajectory, showing a schematic variation
of the G position and I(D)/I(G) ratio.

14 100 PRB 61A. C. FERRARI AND J. ROBERTSON

Figure 2.7: Raman spectrum of the G peak position and the I(D)/I(G) peak ratio as a function
of the amorphisation trajectory for a 514 nm laser wavelength [69] [adapted from [69]].

of graphite and leads to an inversion in the G peak position between ultra-violet (UV)

Raman spectra and visible Raman spectra [79]. Upon annealing, the G position (under

UV illumination) is shifted downwards to the G peak position of graphite due to clustering

of the sp2 bonded carbons, which is in contrast to the upwards peak shift in visible Raman

[79]. It is this inversion that allows the determination of the sp3 content unambiguously, as

shown in Figure 2.9. Hence, the G peak dispersion, i.e. the rate of change of the G peak

position as function of the illumination wavelength, allows the evaluation of important

structural parameters such as the sp3 content [66]. Multi-wavelength Raman spectroscopy
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relationship between the G-peak position and sp3 content.
G-peak position can either increase or decrease with increas-
ing sp3 and a high and low sp3 content corresponds to the
same G position. I(D)/I(G) would discriminate, between
high and low content and, except for the first stage, in which
sp3 is constant anyway, it would be a crucial parameter to
quantify the sp3 phase. Figure 7 also emphasizes that most
changes of the Raman spectra are not driven by the sp3
increase, but by the evolution of sp2 clusters.
Figure 7 shows how we could relate the 1G ,I(D)/I(G)2

pair to sp3 content. However, the situation is more complex
than described so far, as the clustering of the sp2 phase has
to be taken directly into account, as we discuss now.

VII. THE HYSTERESIS CYCLE

The amorphization trajectory discussed above is derived
for disordering !e.g., ion implantation" in relatively ordered
carbons or for room-temperature depositions. What happens
if we follow an ordering trajectory from ta-C to graphite?
Examples of an ordering trajectory are deposition at high
temperature, annealing after deposition, low-dose ion im-
plantation of ta-C, or unfiltered deposition processes. These
cases favor clustering of sp2 sites into fairly ordered aro-
matic rings.
There are two fundamental processes: !a" sp3 sites con-

vert to sp2 sites and !b" sp2 cluster size increases and the
sp2 phase eventually orders in rings. There are two situa-
tions. During a room-temperature deposition of ta-C, the sp2
and sp3 phases are linked together, forcing the sp2 phase to
evolve continuously with increasing sp3 content, giving the
trends seen in Fig. 7. On the other hand, other treatments,
such as annealing or high-temperature deposition, separate
the two processes so that clustering !b" occurs at lower tem-
peratures than conversion !a".48,57 This causes hysteresis.
Visible Raman spectroscopy is much more sensitive to clus-
tering than conversion. The effect of the hysteresis is that
there is no unique relation between I(D)/I(G) or the G po-
sition and sp3 fraction !Fig. 10". Thus, we need an indepen-
dent assessment of the sp3 fraction. Fundamentally, optical
and electrical properties correlate closely with the degree of
sp2 clustering, and not directly with the sp3 content. This
implies that in general visible Raman spectroscopy is not a
safe way to get sp3 content. Various examples of hysteresis
can be found in the literature;14,48,57,61,62 see Fig. 11.
We have so far neglected the presence of sp1 bonds,

whose C-C vibrations at 2100–2200 cm!1 !Ref. 33" lie out-
side the G and D regions. Even if present in a small amount,
this does not change our model.
Generally, in an inhomogeneous material we predict the

TK equation to underestimate La with respect to XRD, as for
Eq. !11". This gives a hysteresis even in stage 1, in that
visible Raman spectroscopy is more sensitive to the smaller
graphitic domains in a material not composed of grains hav-
ing a similar La .
Are there conditions for estimating sp3 content by visible

Raman spectroscopy? Figures 7 and 9 show that a high
G-peak position combined with a I(D)/I(G)/0 is a suffi-
cient condition to assess the sp3 content of ta-C. In this case,
the sp3 content can be read off from Fig. 9!a". Here, a higher
G position correlates with a higher optical gap.

VIII. RELATIONSHIPS BETWEEN VISIBLE RAMAN
SPECTRA AND THE sp3 FRACTION IN a-C:H

More generally, if there is a relationship between sp2 and
sp3 phases, e.g., between the optical gap and sp3 fraction,
we can derive sp3 content from the visible Raman spectra.
We apply this idea to derive a correlation between visible
Raman spectra and sp3 content for a-C:H.
The main effect of H in a-C:H is to modify its C-C net-

work compared to a-C of similar sp3 content. A higher sp3
content is achieved mainly by H saturating CvC bonds as
wCHx groups, rather than by increasing the fraction of
C—C bonds !Fig. 1". Most sp3 sites are bonded to
hydrogen.63,64 Thus, highly sp3 a-C:H are soft, low-density,
polymeric films.63,64 In a-C:H the sp2 sites can exist as rings
as well as chains. Increasing H content reduces the sp2 clus-
ter size and increases the band gap. We have three bonding
regimes.1,63 At low H content, sp2 bonding dominates and
the gap is under 1 eV. At intermediate H content, the C-C
sp3 bonding is a maximum, the films have the highest den-
sity and diamondlike character, and the gap is 1–1.8 eV. At
highest H contents, the sp3 content is highest, the bonding is
more polymeric, and the band gap is over 1.8 eV. ta-C:H
differs in that a higher sp3 fraction occurs at a fixed, lower H
content of 25–30% !Fig. 1". ta-C:H has much more C-C sp3
bonding than a-C:H with similar sp3 fraction, giving a
higher density and higher hardness.65
In visible Raman spectra, we can neglect all C-H modes.

The stretching modes lie above 3000 cm!1.64 C-H bending
modes lie in the D-peak region,33,64 but we neglect them
because they are not resonantly enhanced. This is supported
by a similar behavior for D and G peaks with changing ex-
citation energy found in a-C:H and a-C.10,11 C-H modes

FIG. 10. Amorphization trajectory, showing the possibility of
hysteresis in stages 2 and 3.

PRB 61 14 103INTERPRETATION OF RAMAN SPECTRA OF . . .

Figure 2.8: Hysteresis of the G peak position and the I(D)/I(G) peak ratio due to cluster
formation of sp2 bonded carbon [69] [taken from [69]].

(UV and visible) was used extensively to characterise ta-C films used in the work of this

thesis.
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is probed for increasing excitation energy, which results in a
smaller width. Note also that at a fixed wavelength, ta-C has
the largestG width, as it has the largest disorder or largest
range of clusters. On the other hand polymerica-C:H has a
very narrowG peak, consistent with the low disorder in this
material deposited at low ion energies.1,57

This range of behaviors of theG peak can be understood
within the three-stage model,9 as shown in Fig. 11 for four
typical wavelengths.

In Ref. 9 we showed that following the reverse,ordering
trajectory, from ta-C to graphite there can be hysteresis,9 i.e.,
sp2 clustering orp electron delocalization without a corre-
spondingsp2→sp3 conversion. For visible excitation,sp2

clustering and ordering will alwaysraise the G peak in
stages 2 and 3. In contrast, in UV excitation, increasing clus-
tering lowers the G position, as noted above. This is shown
schematically in Fig. 12. Comparing visible to UV excita-
tion, there is aninversionof the trends. This is another re-
markable result, since it allows for a distinction of samples
that, although having different structures, may accidentally
show very similar Raman spectra at a certain wavelength.

The detection of a trend inversion can be used to derive
the amount of clustering of thesp2 phase. If two samples
have a similarG position in visible Raman spectra but very
different ones in UV Raman spectra, the sample with the
lower G position in the UV has moresp2 clustering. A strik-
ing example of this is nitrogen introduction inS-bend FCVA
ta-C films, for low N contents. There, to an almost zero
change in theG position for 514 nm Raman spectra with
increasing N content, corresponds a clear linear decrease of
G peak in the UV Raman spectra, Fig. 13; this will be dis-
cussed with more detail elsewhere.

C. The D peak and I „D…ÕI „G…

TheD peak arises from the breathing motion ofsp2 rings.
I (D)/I (G) is highest for IR excitation, and it decreases
strongly at higher excitation energy. Although there is noD

FIG. 11. Amorphization trajectory, showing the schematic varia-
tion of G position for four typical wavelengths.

FIG. 12. Amorphization trajectory, showing the possibility of
hysteresis in stages 2 and 3 for two typical wavelengths~514.5 and
244 nm!. The regions span by hysteresis at 514.5 and 244 nm are
evidenced by lines. Note the different shape of the hysteresis region
for UV excitation: an inversion of the trends happens, with the
highest shift Vis→UV for samples having the least-orderedsp2

phase~see text!

FIG. 13. G peak position~measured at 244 and 514.5 nm! vs
nitrogen content~at. %! for ta-C:N samples deposited with aS-bend
FCVA ~Ref. 42!. The nitrogen content was estimated from XPS
~Ref. 42!. Note that to an almost zero change of theG peak position
at 514.5 nm, corresponds an almost linear decrease with N at 244
nm. This is a clear example of inversion~see text!. MW Raman
spectroscopy of N containing samples will be discussed in detail
elsewhere.

RESONANT RAMAN SPECTROSCOPY OF DISORDERED . . . PHYSICAL REVIEW B64 075414

075414-7

Figure 2.9: The stronger weighting of olefinic bonded sp2 groups in UV-Raman spectroscopy
leads to an inversion in the G peak position and I(D)/I(G) peak ratio in comparison to visible
Raman spectroscopy [79] [taken from [79]].
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X-ray Photoelectron Spectroscopy (XPS) Another popular method to determine the

sp3 content is X-ray photoelectron spectroscopy (XPS), also known as electron spec-

troscopy for chemical analysis (ESCA) [65]. X-ray photoelectron spectroscopy is based

on the interaction between X-rays and the core electrons of the material under study and

is typically performed in ultra-high vacuum (UHV) [81]. The material is irradiated with

X-rays of a well defined energy hν that is above the ionisation threshold of the material

[82]. The energy of the X-ray photon is completely transferred to a core electron, whereby

the specific binding energy Eb of the electron is significantly lower than hν, which causes

the electron (photoelectron) to overcome the work function and to potentially leave the

surface of the solid [81]. The binding energy is not only element specific, but also de-

pends on the chemical environment [81, 82]. The emitted photoelectron is then detected,

and its kinetic energy Ek analysed by a spectrometer, which allows the obtaining of infor-

mation about Eb and hence, about the chemical environment [81]. The relation between

Eb and Ek is given in equation 2.1, where φa is the work function of the material [81]. A

conventional XPS set-up is schematically shown in Figure 2.10.

Eb = hν − Ek − φa (2.1)

The analysis of the binding energy of the 1s core electron of carbon allows the determina-

tion of the bonding type, and hence, the sp3/sp2 ratio [82, 83]. The binding energy of the

1s core electron depends on the hybridisation of the C atoms, whereby the binding energy

for sp3 hybridised carbon is ≈0.9 eV higher than the binding energy of sp2 hybridised

carbon [82].

The advantage of XPS in comparison to visible Raman spectroscopy is that the ionisation

cross-sections are independent of the chemical state (bonding) and therefore, the sp2/sp3
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Fig. 2.5 Conventional X-ray
source for an XPS instrument
(Reproduced from
M.A. Kelly, with permission
of Elsevier B.V.)

Table 2.2 X-ray satellite energies and intensities for Mg and Al sources

K lines ’1;2 ’3 ’4 ’5 ’6 “

Mg Rel. intensity (%) 100 8.0 4:1 0:55 0:45 0:5

Energy displacement (eV) 0 8.4 10:2 17:5 20:0 48:5

Al Rel. intensity (%) 100 6.4 3:2 0:4 0:3 0:55

Energy displacement (eV) 0 9.8 11:8 20:1 23:4 69:7

The X-ray source produces a main emission line together with minor lines at
higher binding energy (see Fig. 2.6) [2.5]. The K’ line of the usual Mg and Al
sources consists, besides the main unresolved doublet peak K’1;2, of further satellite
peaks and K“ (see Table 2.2). Whereas the K’5;6 and K“ lines are negligible, the
K’3;4 lines possess together about 10% intensity of the main line and are about 10 eV
shifted to lower binding energy. These satellites, together with the Bremsstrahlung
background, distort the spectra (see Fig. 2.6a), the resolution of which is limited to
the K’1;2 line width of Mg or Al (0.7 and 0.85 eV, respectively). Most frequently,
the Mg K’ line is used for systems without monochromator. In case of overlap of
Auger peaks with XPS peaks, the use of Al K’ can be useful, because the kinetic
energy of the XPS peaks shifts with the X-ray excitation energy whereas that of the
Auger peaks does not.

2.2.2 Monochromatic X-Ray Source

A better energy resolution and removal of the Bremsstrahlung background and of the
satellite peaks is achieved using a monochromator which selects a narrow line from
the natural emission as shown in Fig. 2.6b. The principle experimental arrangement
is shown schematically in Fig. 2.7 [2.6]. Source, monochromator crystal, and sample
are placed on the circumference of a Rowland sphere of typically 0.5 m diameter.
Usually, a bent quartz crystal (or several pieces) in combination with an Al anode is

Figure 2.10: XPS set-up: The energy of X-ray photons to core electrons leads to the emission
of the latter. The core electrons are then energetically filtered through the hemispherical anal-
yser prior to arriving at the detector. The kinetic energy of the arriving photo electron allows to
draw conclusions about the hybridisation specific binding energy of the photo electron [taken
from [81]].

ratio can be determined by comparing their relative peak intensities [82]. The perfor-

mance of single elemental amorphous carbon in resistive switching memories, however,

is largely dependent on the organisation of sp2 bonded carbon into clusters of sixfold

rings. This favours multi-wavelength Raman spectroscopy over XPS as a tool to char-

acterise ta-C thin films. However, XPS can be successfully employed to characterise

amorphous carbon alloys like a-C:H and a-COx for resistive switching purposes, where

— depending on the composition — no or little C-C sp2 bonds are present [63, 69]. XPS

spectroscopy was used to determine the composition and the sp3 content of the a-COx

films used in the work of this thesis (see [63]). Exemplar XPS results are given in Fig-

ure B.3 of Appendix B.4 and were obtained by collaborators at IBM Research Zurich.

For further details regarding the XPS analysis of the a-COx thin films see [63].
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Electron Energy Loss Spectroscopy (EELS) Electron energy loss spectroscopy

(EELS) allows the reliable determination of the sp2/sp3 ratio by evaluating the energy

loss of electrons that undergo inelastic scattering when transmitted through a thin film of

the order of 10 nm to 20 nm (to avoid multiple scattering) [65, 70, 84]. The 2p orbitals

in ta-C are degenerated into delocalised and localised bonding bands (π and σ), and into

anti-bonding bands (π∗ and σ∗) [70]. The Fermi level (E f ) in ta-C is pinned between the

filled π and the empty π∗ states [70]. The π and π∗ bands are absent in purely sp3 bonded

carbon [70]. The sp2/sp3 ratio can then be determined by evaluating the energy loss of

electrons that excite 1s core electrons in the ta-C film into either the π∗ or σ∗ band [70].

The π and π∗ excitation is around 5 eV lower than the 1s to σ∗ excitation [70]. Assuming

sp bonding is negligible, the sp2 content is then evaluated by comparing the ratio of the

peak area Aπ∗ corresponding to the 1s to π∗ excitations divided by the total excitation peak

area Aπ∗ + Aσ∗ , with the peak area ratio of 100 % sp2 bonded carbon (like graphite) [70].

This relation is given by equation 2.2, where Gπ∗ and Gσ∗ are the peak areas for the 1s

to π∗ excitation and the 1s to σ∗ excitation in graphite [70]. An indirect estimate of the

sp3 content can be obtained by evaluating the position of the plasmon energy peak at the

low-energy end of an EELS spectrum [85]. The EELS analysis was used to characterise

the sp2/sp3 ratio in ta-C films used in the work of this thesis. The results of the EELS

characterisation are presented in Sections 3.1.2 and 4.6.

sp2 [%] =
Aπ∗

Aπ∗ + Aσ∗
·

Gπ∗ +Gσ∗
Gπ∗

· 100% (2.2)

2.4 Electronic Transport

The difference in conductivity between the HRS and LRS in amorphous carbon arises due

to changes in the density of states (DOS). The main difference in conductivity arises from
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the transition from localised π states in the vicinity of E f in ta-C, into ordered clusters

[68].

2.4.1 Density of States

A feature of the DOS in disordered materials is the presence of defect states within the

band gap, which separates the valence band and the conduction band [65]. The defect

states closer to the band edges originate from distortions in bond lengths and angles [65].

Deep defects originating from a different bonding configuration are typically located in

the middle of the band gap [65, 86].

The extended, i.e. delocalised, states (valence and conduction band) in ta-C are comprised

by σ and σ∗ states, whereas the deep defects arise from π and π∗ states of sp2 bonded car-

bon within the sp3-rich matrix [65]. The Fermi level in ta-C is pinned between the π and

π∗ states and the low conductivity of as-deposited ta-C originates5 from the localisation

of the charge carriers in the π and π∗ states as schematically shown in Figure 2.11 [65].

The change from localised to delocalised (extended) states occurs at the mobility edge

(Em) [86]. In the case of isotropic orbital interactions (s and σ states), Em can be related

to the DOS via the insulator-metal transition as first described by Mott [86, 87].

The insulator-metal transition describes the transition of an electrically insulating mate-

rial to an electrically conducting material once the DOS is high enough [86, 87]. The

insulator-metal transition can be described by equation 2.3. This equation is an approx-

imation which states that once the DOS at the mobility edge (N(Em)) is high enough

5ta-C has to be deposited at temperatures low enough to avoid cluster formation [69].
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(the cubic root of the DOS equals a constant c divided by the Bohr radius (a0)), then the

material becomes conductive (i.e. insulator-metal transition) [86, 88, 89].

3
√

N(Em) =
c
a0

(2.3)

However, it is important to note that this approximation of metal-insulator transition does

not apply for ta-C, where the interaction of π-π states depends on their projected dihedral

angle φ [65]. This leads to the strong localisation of π states that is observed in ta-C [65].

The DOS for ta-C is schematically shown in Figure 2.11 together with the dihedral angle

φ. This is important as it explains why as-deposited a-C is insulating even at high sp2

contents [90]. A measure for the π states localisation is the inverse participation ratio P

which describes the localisation of a state and varies between 1 for strong localisation

and 1/N for delocalisation over N sites [65, 90]. The DOS and the inverse participation

ratio are shown in Figure 2.12 for sp3 concentration of 20 %, 80 % and 92 % [90]. The

calculations were performed using atomistic modelling [90].

ta-C

Figure 2.11: The dependence of the delocalisation of π states on the dihedral angle φ leads
to a strong localisation of π states within the band gap [65] [modified from [65]].
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The localisation of π states can be observed (see Figure 2.12) even for an 80/20 sp2/sp3

ratio [90]. This exceeds the percolation limit and explains why resistive switching can be

observed in amorphous carbon films that contain a high sp2 content [64, 90]. Also, this

makes clear that an effective media approach [91], which would aim to link the electrical

conductivity to the sp2 content in an otherwise insulating sp3 matrix, is not suitable to

capture the conductivity change during the switching from the HRS into the LRS. The

attempts — part of which were made in collaboration with the work of this thesis — to

obtain insights into the HRS to LRS transition are presented in Section 2.5. These insights,

were also taken into account in the computational model developed in the work of this

thesis. The computational model allows the investigation of the temperature distribution

at the onset of the dielectric breakdown, where the switching process from the HRS into

the LRS sets in, and is presented in Sections 3.2 and 5.
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Figure 2.12: The density of states and the participation ratio are shown as a function of the
sp3 content [65] [taken from [65]].
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2.4.2 Low Electric Field Transport

At low electric fields, electronic transport in amorphous carbon is reported to be governed

by variable-range hopping (VRH) in localised states within the mobility gap [92–95].

Variable-range hopping describes the quantum mechanical tunnelling from occupied lo-

calised states into nearby unoccupied localised states of similar energies [86, 96, 97]. The

conductivity scales inversely with the mean tunnelling distance, which in turn depends

on the DOS close to E f [86, 98, 99]. The VRH conductivity is significant in ta-C due to

the high defect density (≈1020 cm−3) in the vicinity of E f , which is a consequence of the

strong localisation of π and π∗ states within the band gap [65]. The hopping conductivity

is temperature dependent since the hopping probability from occupied states into unoccu-

pied states requires thermal activation if the final state is at higher energies than the initial

jumping site [86, 96, 100]. The hopping conductivity can be described by a power law as

depicted in equation 2.4, whereby σ0 is constant at low electrical fields and the exponent,

Tn is a constant and n is typically smaller than unity [44].

σ = σ0 · exp
(
−

Tn

T

)n

(2.4)

The VRH process is schematically visualised in Figure 2.13, where it is also contrasted

with trap-limited band transport (TLB) which describes the conductivity through release

and capture events of charge carriers into extended states and becomes relevant at high

electrical fields [95].
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8 2.2 Ladungstransport in Phasenwechselmaterialien

g-Faktoren, die von den bisher genannten abweichen können, wobei auch nicht-natürliche Zahlen denkbar
sind. Dies betrifft wahrscheinlich sämtliche Bindungen in amorphen Phasenwechselmaterialien, da hier die
Defekte, wie oben beschrieben, auf Dangling Bonds und die Verzerrung der Bindungswinkel zurückzuführen
sind, und nicht davon ausgegangen werden kann, dass diese kugelsymmetrisch sind. Da hier jedoch für amor-
phe Phasenwechselmaterialien keine Daten vorliegen, soll im Folgenden von g = 2 ausgegangen werden, was
dem Fall eines einzelnen einfach besetzbaren Energieniveaus entspricht.

2.2 Ladungstransport in Phasenwechselmaterialien
Beim Ladungstransport in amorphen Phasenwechselmaterialien sind zwei prinzipiell verschiedene Trans-
portphänomene zu beobachten. Zum Einen tritt Bandtransport auf. Das heißt, die Ladungsträger werden
in die Bänder angeregt, in dem sie, wie in Festkörpern üblich, durch Drift am Transport teilnehmen kön-
nen. Auf Grund der großen Anzahl an Störstellen werden die freien Ladungsträger jedoch von diesen im-
mer wieder eingefangen, wobei sie im "getrappten" Zustand nicht am Transport teilnehmen können, weil
die Störstellen nur räumlich lokalisierte Wellenfunktionen zulassen. Dieser Mechanismus nennt sich "Trap-
Limited-Bandtransport".
Zum Anderen kann Hopping-Transport auftreten, der dann stattfindet, wenn sich die lokalisierten Wel-
lenfunktionen der Defektzustände signifikant überlappen. In diesem Fall können Elektronen zwischen zwei
lokalisierten Zuständen tunneln. Hierbei ist einerseits Hopping zwischen isoenergetischen Zuständen möglich.
Andererseits kann es bei etwas höheren Temperaturen auch zu Hopping kommen, bei dem durch thermische
Anregung die Überwindung einer Energiedifferenz möglich wird, indem Phononen absorbiert oder ange-
regt werden. Allgemein wird davon ausgegangen, dass bei hohen Temperaturen und geringen Defektdichten
Bandtransport dominiert, während bei geringen Temperaturen bei gleichzeitig vielen Defekten Hopping der
dominante Transportmechanismus ist (siehe z.B. [Mar05] oder [AHL71]).

x
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Hopping

Abb. 4: Veranschaulichung der Transportwege des Trap-Limited-Bandtransports und des Hopping-Transports
in der Bandlücke

Die in Abbildung 4 gezeigten Anregungsprozesse "Anregung" und "Release" und deren Umkehrprozesse
"Trapping" und "Rekombination" brauchen in der weiteren Betrachtung nicht mehr berücksichtigt werden,
da diese nach [Mar83] und [LT09] bereits durch die Fermistatistik hinreichend berücksichtigt werden. Dieses
bedeutet allerdings auch, dass das hier vorliegende Modell nur für Transport im thermischen Gleichgewicht
geeignet ist, es also weder für kurze leistungsstarke Strompulse noch für optisch angeregte Materialien Vor-
hersagen machen kann.

2.2.1 Trap-Limited-Bandtransport

Modelle des Trap-Limited-Bandtransports beruhen darauf, dass die Beweglichkeit des ungetrappten Elek-
trons µ0e

bekannt ist und die Beweglichkeit des getrappten Zustandes 0 ist, da die Trapzustände lokalisiert
sind. Die Beweglichkeit bezeichnet hierbei die Driftgeschwindigkeit des Ladungsträgers dividiert durch die an-
gelegte Feldstärke [Vol08]. Zur Beschreibung der Beweglichkeit des Elektrons im Trap-Limited-Bandtransport
µTLBe

wird nun über die Beweglichkeiten gewichtet gemittelt, wobei der Wichtungsfaktor der Anteil τ der
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Figure 2.13: Illustration of the variable-range hopping (VRH) and trap-limited band transport
(TLB) processes [adapted from [101]].

2.4.3 Field Enhanced Transport

The conductivity of ta-C shows a field-dependent conductivity at high electric fields and

can be described by equation 2.5 in the case of bulk limited conduction, whereby F is the

field, Fn is a constant and the exponent n depends on the conduction mechanism [95].

σ = σ0 · exp
(

F
Fn

)n

(2.5)

Variable-range hopping can be distinguished from TLB at high electric fields by different

values for the exponent n [95]. For field-assisted variable-range hopping n ≤ 1/2 at high

electrical fields, whereas n ≥ 1/2 in the case of Poole-Frenkel emission [95, 102]. For the

ta-C devices investigated in the work of this thesis an exponent of n = 1 was determined

at high electric fields (see Section 5.2).
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Poole-Frenkel Effect The Poole-Frenkel (PF) effect describes the thermal emission

and capture events of trapped charge carriers into extended states [103, 104]. The PF effect

is based on the formation of a Coulomb potential by charged empty defects [103–105]. In

the presence of an electric field, the Coulomb interaction between the charged empty traps

leads to a lowering of the energy barrier between them [103]. The original PF equation

describes a field-lowering of the energy barrier of logσ ∼ F1/2 as denoted in equation 2.6,

with the constant σPF
0 , the temperature T , the Boltzmann constant kB and β =

√
e3/(πεε0).

The constant β depends on the elementary charge e, the vacuum permittivity ε0 and the

high-frequency dielectric constant ε [95, 103].

σPF(F) = σPF
0 · exp

(
βF1/2

kBT

)
(2.6)

In the case of a high defect density, the Coulombic potentials can interact [104, 106]. This

field-dependence can be described using a two-centre Coulomb potential with a field-

lowering of the energy barrier of logσP ∼ F (Poole law) as denoted in equation 2.7, with

s being the conductivity-dominating spatial distance between Coulomb centres [21].

σP(F) = σP
0 · exp

(
eFs

2kBT

)
(2.7)

The barrier lowering described in equations 2.6 and 2.7 takes only the lowering in the field

direction into account, which leads to an overestimation of the barrier lowering [95, 104,

107, 108]. The barrier lowering for the corrected angular dependence of the potential

is thus described by equation 2.8 for the Poole law and in equation 2.9 for the Poole-

Frenkel law [20, 21]. The additional parameters are the mobility µ, a constant K and the

activation energy for conduction Ea [20, 21]. In the case where the electric field F is large

enough (F � β2/(es)2) that there is no significant overlap of the two Coulombic centres,

a transition from the Poole to the Poole-Frenkel law is observed [21, 109]. The barrier
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lowering is schematically shown in Figure 2.14 for the case of a two-centre Coulomb

potential in the direction of the electric field θ = π and θ = 0 [109].

σP′(F) '
2KµkBT

Fs
exp

(
−

Ea

kBT

)
sinh

(
eFs

2kBT

)
(2.8)

σPF′(F) ' Kµe
kBT
βF1/2

(
1 −

kBT
βF1/2

)
exp

(
−

Ea

kBT

)
exp

(
βF1/2 − β2/(es)

kBT

)
(2.9)

Therefore, the application of either the Poole or Poole-Frenkel law depends on the strength

of the applied electric field and the defect density. In in the work of this thesis, a Poole-

type conduction behaviour was identified for the field-dependent conduction of ta-C (see

Section 5.2). This is in agreement with reports of a high defect density in ta-C [65].

Therefore, a Poole-type conduction was used in the computational model to describe the

field-dependent part of the conductivity of the ta-C devices (see Section 5.2). Since the

primary aim of the computational model developed in the work of this thesis was to re-

produce the experimentally determined conductivity prior to dielectric breakdown, and

s, µ and Ea are unknown, a simplified model was used in Section 5.2 to capture the

σ ∼ sinh (F/F0) dependence (see equation 5.2). In the case of a small electric field,

equation 2.8 describes constant (Ohmic) conductivity [21].
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r Fð Þ ¼K �l Fð Þ � e
4p

ðp

0

exp �Ea Tð Þ�EPF F;hð Þ
kBT

� �
2psin hð Þdh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Probability for emission

;

(2)

where K is a constant. As motivated and described in Ref.

14, we use an expression for the mobility

l Fð Þ ¼ l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l0F=vsatð Þ2

q (3)

that allows for a field dependence of the mobility. Thus, a

charge carrier excited to the band travels with a constant mo-

bility in the limiting case of F � vsat/l0 or with a constant

velocity in the limiting case of F 	 vsat/l0, where vsat/

l0¼ 50 V/lm.

We parametrize the activation energy as Ea(T)¼Ea0

� n � T2, which is based on the observation of a temperature

dependent bandgap (observation on PCMs, e.g., in Ref. 26)

that results in a temperature dependence of the activation

energy.27 We connect the temperature dependence of the acti-

vation energy for conduction directly with the temperature de-

pendence of the optical bandgap based on a low temperature

expansion of Varshnis formula.28 This parametrization allows

us to describe the temperature dependence of the low-field

conductivity in our samples. The two parameters Ea0 and n
were determined from dedicated measurements in the ohmic

regime of aforementioned larger structures (i.e., on the same

wafer piece, see supplementary material17) for all three mate-

rials and are listed in Table I. The values for the relative

dielectric constant shown in Table I are values for the high

frequency dielectric constant �1 determined from FTIR

measurements on nominally the same materials, which will be

published elsewhere.29 We neglect its change with tempera-

ture that we know from FTIR measurements to be on the order

of �2% in our temperature range. The choice of the high fre-

quency dielectric constant instead of the static dielectric con-

stant is motivated by the notion that emission and re-trapping

are determined by charges generating the relevant potentials

in a dynamic process that should not be described by the

static dielectric constant.12,25 Instead of measuring �r with

optical methods, one could also attempt to extract it directly

from the field-dependence of the conductivity in the PF-type

region as, e.g., in Ref. 22. For a strict PF-type conductivity

rðF; TÞ ¼ r0ðTÞ � expðb
ffiffiffi
F
p

=kBTÞ, the logarithmic slope, b

¼ kBT � @ logðrðF;TÞÞ
@
ffiffiffi
F
p , can be used to extract the PF-constant b,

and thus the dielectric constant with the relation �r

¼ e3=p�0b
2. As we show in the supplementary material, this

procedure is not very accurate for our data sets. The difficul-

ties arise from the existence of the crossover from Ohmic to

Poole to PF-type dependence as well as the high-field behav-

ior present in the data. Therefore, we rather use the values for

�1 from optical measurements as input parameters for �r for

our model. In summary, the parameters that influence the

determination of the temperature and field dependent conduc-

tivity within the framework of our model are the inter-trap dis-

tance s, the temperature dependent activation energy Ea(T) of

the low-field conductivity, the dielectric constant �r, and the

product K � l(F).

In contrast to our previous work, we allow here for a

temperature dependency of the inter-trap distance s and use

it as an additional fit parameter. This choice is motivated by

the argument that the defects creating the Coulomb potential

are deep defects in vicinity of EF, which are negatively

charged when unoccupied by a hole.14 Thus, the change of

the occupation function f(E) affects the number of defects

N/ s�3. For s, the value at 280 K is displayed in Table I. In

our approach, Ea(T) varies according to the previous para-

metrization known to be valid for our samples down to

200 K. The value for vsat/l0¼ 50 V/lm is assumed as moti-

vated above. This choice of the saturation velocity effec-

tively renders the mobility independent of the field in our

fitting range for GeTe (0 V/lm to 20 V/lm), GST (0 V/lm to

18 V/lm), and AIST (0 V/lm to 8 V/lm). This restriction of

the fitting range (cf. black lines in Figure 4) is motivated by

the influence that the high field behavior has on the shape of

the conductivity vs field curve even at lower fields. In sum-

mary, the only free parameters during a fit at a single temper-

ature step are the value of K � l0 and the inter-trap distance s.

We observe that for GeTe and GST, the product K � l0

is temperature independent down to a temperature of

T� 200 K below which the fitted value strongly increases

(cf. Figure 5). In a mobility-edge transport picture, K corre-

sponds to the effective density of states at the band-edge,

i.e., kBTNv, whereas an expression for the extended states

mobility l0 / ðe�hÞ=kBTm
 has been given by Mott and

Davis.13 Thus, the product K � l0 can be assumed to be tem-

perature independent as long as band-transport occurs, which

seems to be the case at least down to 200 K. As we show

below, the temperature dependency of s can be modeled with

FIG. 3. Schematic illustration of the employed potential. Equation (1) is

used to calculate the energy barrier lowering in the directions h¼ 0 and

h¼p. The applied field F reduces the potential barrier in the direction h¼ 0

and increases it along h¼p. In the low-field limit, the activation energy for

conduction Ea(T) is recovered irrespective of the average spatial separation s
between sites. The field dependent energy barrier to be overcome for emis-

sion is given by Ea�EPF(F, h).

135707-4 Kaes et al. J. Appl. Phys. 118, 135707 (2015)

Figure 2.14: The Poole-Frenkel effect leads to a lowering of the activation energy Ea by EPF

due to the presence of an electric field F in direction θ = 0 [109]. The dominating spatial
distance between Coulomb centres is denoted as s [109] [taken from [109]].

2.5 Resistive Switching Mechanism

The physical mechanisms causing the switching process in amorphous carbon from the

HRS into the LRS and the reverse switching process from the LRS into the HRS are

still under debate [46, 110–112]. The following subsections provide an overview about

the suggested mechanisms that lead to the formation (SET process) and rupture (RESET

process) of a conductive filament in elemental amorphous carbon-based memories. The

key difference between memories based on ta-C and alloyed amorphous carbon is that an

additional element, like oxygen, aids the RESET process in the bipolar operation mode
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[63]. Both types of memories are based on the formation and rupture of an sp2-rich carbon

filament [63]. However, the addition of oxygen was found to increase the cyclic endurance

due to oxygen aiding the RESET process by reacting with the conductive filament [63].

It was found in the work of this thesis that oxygen assists the RESET process, even in

the absence of large, aiding electric fields. The results of this investigation are presented

in Section 6.2. This sets devices based on a-COx apart from devices based on elemental

amorphous carbon [63]. Devices based on elemental amorphous carbon solely rely on a

RESET process induced by Joule heating effects [63]. Note that the following discussion

is limited to elemental amorphous carbon, but also relates to memories based on alloyed

amorphous carbon when operated in a unipolar manner [63].

2.5.1 SET Process

The means to obtain information about the SET process in amorphous carbon include

experiments, circuit simulations, finite element simulations and atomistic simulations.

The main challenge to obtain insights into the switching process directly from electri-

cal switching experiments arises from the fast switching speed (≈1 ns), which is usually

accompanied and overshadowed by a parasitic capacitive discharge, along with the ex-

tremely small size (nanometres) of the switched regions [43].

An entirely field dependent switching mechanism in the absence of high temperatures

was conjectured in [113] using a simulation based on a random circuit breaker model.

However, no detailed switching mechanism was proposed. On the other hand, annealing

[114] and pulsed laser experiments [64] on pristine amorphous carbon films indicate that

a substantial reduction of the resistivity can be achieved thermally.

Two possible scenarios for the formation of a conductive graphitic filament in an sp3-rich
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matrix comprise the formation of sp2 clusters through the re-arrangement of sp2 sites

and direct conversion of carbon atoms from sp3 hybridisation to sp2 hybridisation [113].

Electrothermal switching experiments and pulsed laser experiments (1 µs to 100 µs pulse

lengths) and subsequent analysis of the sp3 content revealed the formation of graphitic

clusters, while the sp3/sp2 ratio remained constant, suggesting that the SET process is

driven by the re-arrangement of sp2 sites [64].

This view is in agreement with reports that assign the direct conversion process a sig-

nificantly higher activation energy in comparison to clustering (3.5 ± 0.9 eV [115] and

≈3.3 eV [72] vs. ≈0.28 eV [72]).

The time scale of both processes (clustering and conversion) were evaluated in a study

using a quantum molecular dynamic simulation approach [110]. The study found that at

a temperature of 2000 K the direct conversion process takes a few hundred femtoseconds

and the clustering of sp2 sites requires tens of picoseconds, indicating that both processes

can occur fast enough, at least at 2000 K, to explain nanosecond switching [110, 111].

Another molecular dynamic (MD) simulation study [46] deployed a device sized simula-

tion box and a constant volume approach to replicate the experiments that where under-

taken in the work of this thesis. In this device design, the amorphous carbon layer was

confined between a SiO2 thermal insulation barrier and the two electrodes (W and Pt).

The device design is shown in Figure 3.2. In this study, the authors found the formation

of a conductive filament only at temperatures above 1500 K and attributed the SET pro-

cess to local re-hybridsation from sp3 carbon to sp2 carbon, meanwhile the sp3 content

of the surrounding matrix increased slightly as a consequence of the constant volume ap-

proach used in the simulation [46]. The overall sp3/sp2 ratio showed only little variation

(1 % to 2 %) [46]. The required temperatures of >1500 K are around the temperatures re-

ported in annealing experiments (1000 ◦C to 1300 ◦C) for the direct conversion from to sp3
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to sp2 bonding in amorphous carbon [114–116]. Similar temperatures were reported in

finite-element simulations of electrical switching of ta-C through localised Joule heating

effects ([47] and this work). The findings of the MD investigations that were carried out

in tandem, and in collaboration, with work of this thesis are presented in Appendix A.

2.5.2 RESET Process

The underlying physical mechanisms of the RESET process are less understood in com-

parison to the SET process. Finite element simulations suggest that the confinement of

the current to the conductive filament leads to high temperatures, via Joule heating, of

around 2100 K [67]. This localised heating consequently causes large temperature gra-

dients within the device [67, 113]. Insights from molecular dynamic simulations that

were carried out in tandem with the work of this thesis suggest that the large tempera-

ture gradient is vital to induce the reverse switching process, as no reversible switching

occurred in the absence of a large temperature gradient between the conductive filament

and its surroundings [46]. Similar findings are reported from quantum molecular dynamic

simulations were the instant cooling of a metastable graphite-like liquid from 5000 K to

300 K lead to the formation of a DLC structure [110]. A similar result was also obtained

from ab initio simulations where cooling from 5000 K to 300 K resulted in a higher sp3

content for higher cooling rates [117]. It is conjectured that the large temperature gra-

dient leads to thermally induced compressive stresses that trigger the transition from sp2

bonded carbon to sp3 bonded carbon [113]. This is similar to reports stating that local

compressive stresses may aid in the stabilisation of the metastable sp3 phase during de-

position [72, 114, 118]. The findings of the MD investigations that were carried out in

tandem, and in collaboration, with work of this thesis are presented in Appendix A.
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2.6 State-of-the Art Benchmarks

The key characteristics of memory devices based on ta-C and a-COx are presented with

their key attributes in Table 2.2. To avoid a misleading impression about the capabilities

of each carbon-based storage technology, the best specifications that were available from

one type of device were taken. The key characteristics presented in Table 2.2 are those

existing at the start of, or emerging during, the work of this thesis. They are updated

with the results obtained in the work of this thesis in Table 7.1 in Section 7.1. In addition

to these key characteristics, MLC and the use of memristive effects for memcomputing

purposes were investigated in Sections 6.3, 6.4 and 6.5.
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Table 2.2: Specifications of device performances for ta-C and a-COx.6

ta-C a-COx

Maturity Emerging Emerging

Film
22 nm(7) 18 nm(8)

Thickness

Device
240 nm(7) 50 nm(8)

Diameter

SET Speed 50 ns(7) 50 ns(8)

RESET Speed 10 ns(7) 10 ns(8)

Retention
10 h @ 300 ◦C(7) 104 s @ 85 ◦C(8)

Time

Endurance
103(7) 4 × 104(8)

Cycles

Write Energy
<1 pJ(7) ≈10 pJ(8)

per Bit

(7) Taken from [119]
(8) Taken from [63]

6An updated version is provided in Section 7.1.
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Experimental & Simulation Methods

The ta-C and a-COx confined-cells and the ta-C cross-bar devices investigated in this

thesis were fabricated under the auspices of the Seventh Framework Programme (FP7)

project Carbon Resistive Random Access Memory Materials (CareRAMM). The fabrica-

tion of the confined-cells and cross-bar devices was carried out by V. P. Jonnalagadda at

IBM Research Zurich, whereas the ta-C deposition and characterisation was carried out

by Dr. A. K. Ott at Cambridge University.

Partial results of the presented work in this chapter have been published in:

• ”Joule Heating Effects in Nanoscale Carbon-based Memory Devices,” in 2016 IEEE

Nanotechnology Materials and Devices Conference (NMDC)., pp. 1–2, IEEE,

2016. DOI: 10.1109/NMDC.2016.7777081

• ”Temperature Evolution in Nanoscale Carbon-Based Memory Devices due to Local

Joule Heating,” in 2017 IEEE Transactions on Nanotechnology. IEEE, 2017. DOI:

10.1109/TNANO.2017.2674303
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3.1 Experiments

3.1.1 Tetrahedral Amorphous Carbon (ta-C)

To identify the most promising film thickness for the application as non-volatile memory,

different film thicknesses of ta-C ranging from 5 nm to 100 nm and different deposition

parameters were explored. For each ta-C film thickness, one chip was fabricated. The

devices on each chip were available with three different diameters (50 nm, 100 nm and

200 nm) and three different on-chip load resistor values, thus giving a total of 9 different

combinations per tested chip. Each chip contained more than 500 devices.

Material Deposition & Characterisation All the ta-C films used in this thesis were

deposited using the FCVA method (as described in Section 2.2). The active material,

ta-C was deposited into openings (of confined-cell devices) with diameters ranging from

50 nm to 200 nm. The deposition parameters that were used to deposit the ta-C films are

provided in Table 3.1.

To determine the sp3 content, films with different thicknesses were directly deposited on

Table 3.1: Deposition parameters of the ta-C layers.

Ion energy 28 eV
Coil current 7 A/8 A
Temperature RT
Diameter of cathode 9 cm
Density of cathode 2.3 g cm−3

Purity of graphite target 99.999 %
Deposition rate 0.39 nm s−1
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a silicon substrate and the sp3 content was determined using multi-wavelength Raman

spectroscopy (as described in Section 2.3) [114]. The multi-wavelength Raman spectra of

a 5 nm thick ta-C film is exemplarily shown in Figure B.1 of Appendix B.1. The obtained

G peak dispersion allows the determination of the Young’s modulus, the density and the

sp3 content of the ta-C thin films (as described in Section 2.3). The Raman analysis of

5 ± 1 nm, 10 ± 1 nm, 15 ± 1 nm and 20 ± 1 nm thick as-deposited ta-C films is provided in

Figure B.2. The sp3 content of ta-C thin films deposited on Si substrates, as determined

via Raman analysis, is shown in Figure 3.1 as a function of the film thickness of film

thickness over the thickness range from less than 1 nm to 10 nm. The uncertainty in the

determination of the sp3 content is ± 5 %.

It can be seen from Figure 3.1 that the sp3 content increases with increasing film thick-

ness until a maximum of ≈70 % is reached for thicknesses of 5 nm or larger. The initial
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Figure 3.1: The carbon sp3 content for ta-C thin films in this thesis is shown as a function of
the film thickness. Films were deposited using the FCVA method onto Si substrates.
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dependence of the sp3 content on the thickness is reported to be a consequence of the

film composition [71]. The middle ‘bulk’ layer is sp3-rich and is sandwiched between

an sp2-rich outer surface layer ≈0.5 nm and an interfacial layer of 1 nm to 2 nm thickness

[71]. Hence, the contribution of the ‘bulk’ layer to the sp3 content is reduced at small

thicknesses. The sp3 content of carbon thin films is higher when deposited directly onto

the Si substrate (see Figure 3.1) than when deposited onto the Pt bottom electrodes of the

confined-cell devices used for electrical testing (see Table B.2), due to Si suppressing the

formation of sp2 bonds at the Si-C interface [120].

The best experimental results in terms of switching voltage, endurance and switching

speed (see Sections 4.4 and 4.6) were obtained on 5 nm confined-cell devices (having the

cell structure shown in Figure 3.2). The mechanical properties of the 5 nm confined-cell,

as well as the density and the sp3 content was determined using multi-wavelength Raman

spectroscopy [114] and is presented in Table 3.2.

The sp2 content of the ta-C layer deposited on platinum (the material used as a bottom

electrode layer in this study) is lower than when directly deposited on a silicon substrate,

due to silicon only forming σ bonds with carbon (cf. Figure 3.1). The confined-cell

architecture is schematically schematically in Figure 3.2a. The ta-C layer is spatially

confined between silicon dioxide on the sides, and the top and bottom electrodes. The

cross-section of a device is depicted in an SEM micrograph in Figure 3.2b.

In total 108 ta-C thin films were deposited and characterised under the auspices of the

Table 3.2: Properties of a 5 nm thick ta-C layer deposited into a confined memory cell.

Young’s modulus 439 GPa
Density 2.66 g cm−3

sp3 content 0.5
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Figure 3.2: a) Schematic of the ta-C confined memory cell architecture. b) Cross-section of
a ta-C confined-cell depicted in an SEM micrograph. [adapted from [46]].

FP7 project CareRAMM. In the work of this thesis approximately 1000 devices based on

ta-C thin films were studied.

3.1.2 Oxygenated Amorphous Carbon (a-COx)

The memory devices based on the confined-cell architecture with a-COx as active material

were fabricated by collaborators at IBM Research Zurich. The films were deposited using

the DC magnetron sputtering technique [63].

Material Deposition & Characterisation All the a-COx films used in this thesis were

deposited using the DC magnetron sputtering method (as described in Section 2.2) [63].

To identify the most promising film composition for the application as non-volatile mem-

ory, the oxygen partial pressure was varied from 0 µbar to 3.5 µbar [63]. The best switch-

ing results were obtained with 18 nm thick a-COx films, deposited using an oxygen partial

pressure of 1.5 µbar and a combination of a W bottom electrode and a Pt top electrode

(other investigated electrode combinations consisted of W bottom electrode and W or Ti

top electrode [63]) [63]. The deposition parameters that were used to deposit the a-COx
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Table 3.3: Deposition parameters of the a-COx layer [63].

DC Plasma Power 600 W
Total Flow Rate 20 sccm
Oxygen flow rate 3 sccm
Total Pressure 10 µbar
Oxygen Pressure 1.5 µbar

films are provided in Table 3.3. The active material, a-COx was deposited into openings

with diameters ranging from 50 nm to 200 nm (in a device configuration identical to the

one for the ta-C devices shown in Figure 3.2). Oxygenated amorphous carbon is deposited

into the openings from a solid carbon source in an O2//Ar atmosphere.

A combined EDS and EELS (as described in Section 2.3) of a cross-section of a device

was undertaken to confirm a uniform distribution of a-COx, and to exclude the presence

of interfacial WOx (which itself has resistive switching properties [121]). This analy-

sis was done by correlating the intensity of the different element edges obtained from

the EELS/EDS spectra with the spatial distribution inside the cell. The cross-section is

shown element specific in Figure 3.3a, whereby the largest intensities are shown brightest.

The RGB map is coded with red corresponding to O, green for C and blue for W. This

confirms that there is a clear separation between the a-COx resistive switching layer and

the W bottom electrode (i.e. no WOx layer is formed). This is shown in more detail in

Figure 3.3b, where the elemental distribution is shown as a function of the depth profile

from the Pt top electrode to the W bottom electrode.
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Figure 3.3: a) Elemental maps of cross-sectioned a-COx devices indicating the presence of
Pt, W using EDS spectra and Si, C and O using EELS spectra. RGB map is coded with red
corresponding to O, green for C and blue for W. b) Distribution of Pt, W, C and O [taken from
[63]].

3.1.3 Device Design

The devices used in this thesis have a GSSGSSG (G= ground, S= signal) layout, which

allows them to be contacted by two different electrical paths. One path uses an on-chip

load resistor and limits the current flow during the SET process. The load resistors are

written (via e-beam lithography) in series next to the device and have a small footprint

(e-beam lithography) to reduce the flow of parasitic current through the device after di-

electric breakdown (i.e. at the switch from HRS to LRS). The load resistors have values

between 3 kΩ and 14 kΩ for the ta-C-based devices and ≈10 kΩ for devices based on

a-COx as the active material [47, 63]. Gold interconnects and pads are deposited to probe

the devices. More fabrication details can be found in [63]. The second path is used for the

reverse switching process from the LRS into the HRS (which does not require the series

on-chip resistor). A typical device with the active material sandwiched between the two

electrodes is depicted in a scanning electron micrograph in Figure 3.4.
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Cell

TE BE TE
BE
via
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100μm

Figure 3.4: Scanning electron micrograph of a memory device with ta-C or a-COx as active
material, sandwiched between the top (TE) and bottom (BE) electrode. The load resistor Rs

is shown as inset [modified from: [63]].

3.1.4 Device Test Setup

To characterise the devices a benchtop setup was used for electrical switching and data

retention measurements, and a cryogenic probing station was used to measure the con-

ductivity at low temperatures.

Electrical Switching Setup The device-under-test (DUT) was mounted onto an invar

block which was heated by in-built tungsten heaters. Depending on the type of experiment

that was performed, either the path having the load resistor connected in series was used,

or the path connecting the DUT directly to the probes. The electrical contact was done

using high frequency Dual-Z probes (Cascade Microtech®). The AC voltage outputs to

switch the devices between the LRS and the HRS were supplied by an arbitrary waveform

generator (Agilent 81150A) and captured with an oscilloscope (Tektronix TDS3054B). A

50Ω termination was placed close to the DUT during to application of fast (ns) pulses
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to reduce voltage reflections due to the resistance mismatch at the DUT-transmission line

interface, as well as to reduce parasitic current flowing through the DUT after dielectric

breakdown occurred. To reduce the time constant τ of the parasitic current, another 50Ω

termination was placed after the DUT. The relation between the time constant of the

voltage drop caused by the parasitic capacitive discharge, and the resistance R of the

DUT and the capacitance C of the device test setup (including the DUT) is shown in

equation 3.1) [122].

τ = R ·C (3.1)

The read out of the resistance state was done at 0.2 V using an SMU (Keithley 2400). The

low side potential of the SMU was connected to ground. The 50Ω next to the DUT was

removed during the read out of the resistance (using the SMU) the 50Ω. A schematic of

the memory device and the electrical circuit used for electrical switching measurements

is shown in Figure 3.5.
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Pt

W

SiO2 ta-C
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1MΩ 

V

50Ω 

50Ω 

Figure 3.5: Schematic of a device (here ta-C) with the electrical connections used for testing.
SET and RESET pulses are applied to the bottom electrode. A load resistor limits the current
during the set process [modified from [8]].
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Capacitance Evaluation The capacitances of the circuitry that are in parallel to the

DUT have great impact on the switching characteristics [43]. In addition, the capaci-

tances strongly influence the endurance of the carbon-based memory devices due to the

capacitive current that is discharged once dielectric breakdown has occurred and the DUT

is switched from the HRS into the LRS [43]. The fast dielectric breakdown speed ≈1 ns

can lead to large capacitive currents [46]. Further, low capacitances are desired in order

to capture the current response of the DUT accurately, when SET or RESET pulses are

applied. The capacitance of the electric circuit including the DUT was determined to be

≈40 fF. This low capacitance together with a resistance of the DUT of around 50 kΩ at the

onset of the dielectric breakdown event (cf. Figure 3.9) allowed the capture of switching

events on the order of ≈2 ns (see equation 3.1).

Cryogenic Probing Station9 To study the temperature dependence of the ta-C con-

ductivity, the conductivity of pristine devices (HRS) was measured for temperatures be-

tween 85 K to 300 K at low voltages (<1 V) using a cryogenic probing station (JANIS

ST-500-2-UHT). The temperature stability of the probing station is <50 mK [123].

A schematic of the vacuum chamber including the most important components is shown

in Figure 3.6. The samples were fixed with clamps on top of the top chuck at A. The

temperature was set using a temperature controller (Lakeshore 336) and measured using a

silicon diode (DT-670B-CU-HT). The set temperature was adjusted using liquid nitrogen

and a heater (50 W), indicated at A3 in Figure 3.6. The electrical measurements were car-

ried out using high frequency Dual-Z probes (CascadeMicrotech®) that were connected

to an SMU (Keithley 2636B).

9A more detailed description of the cryogenic probing station can be found in [123].
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3.2 Finite Element (FE) Simulations

The first part of this section describes the model that was used (in Sections 5.3, 5.5 and

5.6) to investigate Joule heating and the resulting temperature distributions within pristine

ta-C confined-cell memory devices at the onset of memory switching. This is essential

to gain further insights into the switching mechanism and to address the key challenge

of cycling endurance (see Section 2.5.1). The model that is introduced in this section

was developed in the work of this thesis and accounts for both electric field and temper-

ature dependence of the electrical conductivity in ta-C thin films. It also considers local

distributions of sp2 and sp3-rich clusters (see Sections 2.4.1 and 2.5.1). To obtain the

temperature distribution in the device when a voltage is applied, a finite element software

package (COMSOL®) was used to solve the coupled heat and Laplace equations. The

simulations were validated with experimental data (see Section 5.3).

The second part of this section describes the model that was used (in Section 6.6) to inves-

tigate Joule heating and the resulting temperature distributions within a-COx confined-cell

memory devices during the read out of the LRS and during the consecutive application of

RESET pulses. The consecutive application of partial RESET pulses was carried out in

Sections 6.4 and 6.5 to investigate the accumulation properties of a-COx based memory

devices. The investigation of the temperature distribution during the read out of the LRS

is important to verify that the read out does not affect the resistance state of the device

(cf. Section 6.2). To achieve this, the maximum temperature obtained from the simula-

tion of the read out of the LRS was compared with the temperatures used in an annealing

experiment (see Section 6.6). The investigation of the temperature distribution during the

application of partial RESET pulses (described in Sections 6.4 and 6.5) was carried out to

shine light on the role that temperature plays during a series of input pulses. An estimate
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of the local temperature distribution (and its change) during partial RESET pulses aids,

for example, in assessing the basis to which arithmetic operations can be carried out using

a previously defined set voltage pulse (see Section 6.5).

3.2.1 Electro-Thermal Model

To obtain the temperature distribution in the ta-C and a-COx devices when a voltage is

applied, a finite element software package (COMSOL®) was utilised to simulate the

electro-thermal properties. The AC/DC and Heat Transfer modules were used to solve the

coupled heat and Laplace equations [124]. The heat equation is given in equation 3.2 and

describes the time and space dependent heat flow within the device/material [124]. The

material properties within each simulation cell were treated as isotropic due to the amor-

phous character of the films (though note that this does not mean the overall distribution

of sp2 and sp3 clusters is isotropic — see Section 3.2.2). The specific heat capacity is de-

noted as Cp, ∂T /∂t is the time derivative of the temperature, k is the thermal conductivity

and Q is the heat source term. The Laplace equation is given in equation 3.3 and de-

scribes the steady-state current flow in the presence of an electric field [124]. The density

is denoted as ρ, the conductivity is σ, the electrostatic potential is V and ∇ is the nabla

operator (differential operator in x, y, z).

ρCp
∂T
∂t
− k∇2T = Q (3.2)

∇ · (σ · ∇V) = 0 (3.3)

The coupling of equations 3.2 and 3.3 is given through the Joule heating effect. The

Joule heating effect describes the resistive heating process that occurs when current flows

through a device with a non-zero resistance. The power dissipation is described by equa-
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tion 3.4, where P is the power, V the electric potential and I the current [124]. The cou-

pling given in equation 3.5 describes the differential dissipated power dP per differential

unit volume dVol [124].

P = I · V (3.4)

Q =
dP

dVol
= ∇V · (σ · ∇V) (3.5)

3.2.2 ta-C Device Modelling

Cluster Distribution To reflect local sp2 variations in the models for ta-C films and de-

vices, randomly distributed clusters of different sp2-rich concentrations were used within

the simulation cells. The sp2 content was randomly assigned to each simulation cell using

the probability density function (PDF) of the beta distribution [125]. The PDF of the beta

distribution is defined between 0 and 1, which reflects the range of the possible sp2 con-

tent in any particular simulation cell. Thus, the sp2 content can be assigned randomly to

each simulation cell by generating random values from the beta distribution. The random

assignment of the sp2 content is done by using Matlab® and invoking the in-built betarnd

function. The shape of the PDF is described by the two parameters α > 0 and β > 0 [125].

The PDF of the beta function is provided in equation 3.6 and the mean in equation 3.7

[125]. The gamma function is denoted by Γ.

PDF(r, α, β) =
Γ(α + β)
Γ(α)Γ(β)

rα−1(1 − r)β−1 (3.6)

mean =
α

α + β
(3.7)

The variable r is the sp2 content and is defined between 0 and 1 in each simulation cell.

The PDF was chosen to be symmetric and reflects a mean sp2 content of 0.5, and α =
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β = 2.65. An sp2 content of 0.5 was chosen to model the ta-C confined-cell devices

that showed the best performance in terms of switching voltage, endurance and switching

speed (see Sections 4.4 and 4.6). The values of α and β were chosen arbitrarily. The

PDF used is thus as shown in Figure 3.7 for an sp2 content of r = 0.5 and α = β =

2.65. The threshold for sp2-like conduction was set to 92 % within each simulation cell.

Smaller values (than 2.65) for α and β result in a broader PDF, whereas larger values

result in a narrower PDF around the mean. As long as the chosen values of α and β where

high enough to account for the presence of sp2 conductive clusters within the insulating

sp3 matrix, and small enough to prohibit the instantaneous formation of a conductive

percolation path, no large variations were found for the simulated conductivities.

The simulated initial conductivity for a ta-C cell (of 50 nm diameter) with randomly dis-

tributed sp2 clusters (as described above) is shown in Figure 3.8. The film thickness in this

example was 5 nm reflecting the properties of the experimentally tested ta-C confined-cell
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Figure 3.7: PDF of the beta distribution function (used to model the distribution of sp2 con-
centration).
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Figure 3.8: Initial conductivity, as calculated via the FE model, for randomly distributed sp2-
like conductive clusters in an sp3 matrix (red); top shows conductivity in the x,y-plane (at
z = 3.3 nm); bottom shows conductivity in the y,z-cross-section (indicated by the dotted line)
[taken from [47]].

devices (see Table 3.2). The choice of the mesh size that was used to solve the coupled

heat and Laplace equation within COMSOL® was found to influence the choice of con-

ductivity values (cf. Table 3.2.4) that were used to reproduce the experimentally deter-

mined conductivity (see Figure 5.6). However, as long as the experimentally determined

conductivity was reproduced, the obtained temperature distributions (see Figures 5.8 and

5.9) were similar.

The cross-section in Figure 3.8 shows the conductivity in the x,y-plane at z = 3.3 nm (i.e.

3.3 nm from the bottom electrode-ta-C interface). The vertical distribution of the sp2-

like conductive clusters in the y,z-plane is shown at the bottom of Figure 3.8. The most

important material properties used in the simulation of the ta-C devices are summarised

in Table 3.4 in Section 3.2.4.
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Electrical Switching Pulse Different experimental switching curves were compared

to examine the time response of the current on the application of a SET voltage in pristine

ta-C devices. This evaluation was carried out to ensure that the implemented model would

produce realistic temperature profiles, and that any ‘undesirable’ transient effects that

would occur in experimental switching curves for very short pulses, could be excluded.

Experimental device I-V characteristics for a (typical) trapezoidal voltage pulse with a

15 ns leading edge (LE) followed by a 45 ns plateau and a 15 ns trailing edge (TE) [46]

were applied to a pristine ta-C device and compared with a quasi-static triangular pulse

with 5 µs LE and TE that was applied to a different pristine device (on the same chip).

The voltages applied across the device are plotted (blue) in Figure 3.9, together with the

voltage drop across a typical ta-C cell (red) and the corresponding currents. For noise

reduction a 200 MHz software filter is applied to the current and voltage signals during

post-processing with the exception of during the actual switching event.

It can be seen that the voltage pulse in Figure 3.9a reached the plateau of the trapezoidal

pulse after 15 ns, during which little or no increase in current, see Figure 3.9b, was noted

(1). The current then began to increase (2) and a dielectric breakdown set in after 30 ns

(3). From then on the current followed the voltage pulse (4). This indicated that the

electric field alone, in the absence of sufficiently large currents, did not trigger memory

switching (cf. Section 2.5).

No such time lag (between voltage and current) could be observed for the slow, quasi-

static pulse. There, the current (see Figure 3.9c) always followed the voltage pulse (Fig-

ure 3.9d) until dielectric breakdown occurred after 4.8 µs ((5) in Figure 3.9d) and the

device was switched from its HRS into the LRS. As a consequence of the absence of any

‘undesirable’ transient effects in the slow, quasi-static pulse, the simulations were val-

idated using the same SET pulse characteristics as in this experiment (see Figure 3.9d).
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Figure 3.9: Applied voltage over devices (blue) and cells (red) together with the corresponding
current response for a), b) fast (80 ns) and c), d) slow (10µs) pulses [taken from [47]].

This, in turn, allowed the obtaining of a realistic temperature profile of the memory device

at the onset of memory switching using FE simulations (presented in Section 5.3).

3.2.3 a-COx Device Modelling

a-COx Cell Properties A model of an a-COx device in the LRS was developed in the

work of this thesis to investigate the temperature distribution during the read out of the

LRS of a-COx devices, as well as during the application of consecutive (partial) RESET

pulses (described in Section 6.5). These studies were carried out to ensure that the read

out does not affect the resistance state of the device (cf. Section 6.2) and to highlight the

role that temperature plays in achieving different resistance levels (see Section 6.3). The

73



Chapter 3 Experimental & Simulation Methods

conductivity of a-COx devices in the LRS was assumed to be almost entirely dominated

by a conductive filament consisting of highly reduced a-COx in an otherwise insulating

sp3-rich a-COx matrix. Such a conductive filament is established during the SET process,

similar to memory devices based on ta-C (see Section 2.5 and [63]). The sp2 content of

the conductive filament was (arbitrarily) set to 0.55 in the simulation. The choice of the

sp2 content of the conductive filament filament was found to affect the maximum temper-

ature reached in the centre of the simulated cell, whereby a higher sp2 content resulted in

a higher maximum temperature due to the lower heat conductivity of sp2 bonded carbon

(see Table 3.4). However, for sp2 contents higher than 0.55, the temperature in proxim-

ity to the W electrode where the oxygen species are located after the SET process [63]

remained at low temperatures (<200 ◦C) during the simulation of the resistance read out.

The film thickness of the simulated a-COx cell was 18 nm and the diameter was 100 nm.

These dimensions reflect the device dimensions used in the experiments and simulations

in Chapter 6. The conductivity was simulated on an a-COx device that was experimen-

tally SET into the LRS via an I-V sweep (see Section 6.5). In this case the SET process

led to a resistance of ≈2.5 kΩ. Therefore, the diameter of the conductive filament in the

simulation was set to 8.8 nm, so as to generate similar resistances to the measured device

resistances. This value (8.8 nm) is also in close agreement with a reported carbon filament

diameter of 10 nm as a consequence of a high amplitude quasi-static set pulse [43].

The diameter of the conductive filament was kept constant throughout the simulations,

but in order to account for the experimentally observed resistance increase during the

application of consecutive partial RESET pulses (see Figure 6.5), the conductivity of the

filament was adjusted such that the simulated read out of the resistance of the device

was equal to the experimentally obtained resistance of the device (cf. Figure 6.5a and

Figure 6.8). A schematic of the conductive filament embedded in the a-COx matrix is

shown in Figure 3.10. The conductive filament is highlighted in blue. Other aspects of
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y x

z
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Figure 3.10: Schematic of a conductive filament (blue) bridging top and bottom electrode
(electrodes are omitted for clarity) in an a-COx device.

the computational model are equivalent to the model used to investigate the temperature

distribution in the ta-C devices (see Figure 3.5). The most important material properties

used in the simulation of the a-COx devices (with the exception of the conductivity of the

conductive filament) are summarised in Table 3.4 in Section 3.2.4.

Electrical Switching Pulse The temperature distribution during the read out of the

LRS was simulated using a quasi-static trapezoidal pulse with an amplitude of 0.2 V and

a duration of 100 ms and a leading and trailing edge of 10 ms each. A slow quasi-static

pulse was chosen to account for the slow experimental read out using an SMU.

The temperature distribution that occurs during the application of a series of consecutive

(partial) RESET pulses was simulated using short (8 ns), low voltage (−0.9 V) pulses,

equivalent to the pulses used in the experiment (see Figure 6.5). The voltage applied

across the device is thus as plotted in Figure 3.11.
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Figure 3.11: A partial RESET pulse (out of a series of consecutive (partial) RESET pulses)
applied across an a-COx device in the LRS.

3.2.4 Simulation Parameters

The density of amorphous carbon is known to depend linearly on the sp3 content [70].

Within the framework of the simulation, literature data was fitted to provide the density

as function of the sp3 content of the simulation cell [70]. The specific heat capacity was

determined by Dr. Federico Zipoli at IBM Research Zurich (under the auspices of the

CareRAMM project) using MD dynamic simulations with a ta-C cell containing an sp3

content of 0.5. The thermal conductivity is linked linearly to the density [126], and so can

be extracted from it. The electrical conductivity of ta-C was determined in Chapter 5 and

was found to be field- and temperature-dependent. The most important material proper-

ties used in the simulation are given in Table 3.4. The same parameters were used for

ta-C and a-COx cases, with the exception in the latter case of the electric conductivity of

the conductive filament, which was adjusted for each simulation such that the simulated
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Section 3.2 Finite Element (FE) Simulations

device resistance was equal to the experimentally obtained device resistance.

Table 3.4: Material parameters of the ta-C and a-COx FE model [taken from [47]].

sp3-content (%)10 50
Beta (α, β)11 2.65, 2.65
σsp2 (S m−1) (cf. [113]) 1.2 × 105

σsp3,Ohmic @ 300 K (S m−1) 0.0115
σ00 (S m−1) 0.345 · exp

(
−220 K1/4

T 1/4

)
σsp3 (S m−1) σ00 · sinh

(
E

9.5·109
[

V
m

]) + σsp3,Ohmic

Threshold σsp2 (%) 92
ρ (kg m−3) [70] 3460 − 1880 × sp2

λ
(
W K−1 m−1

)
[126] 1.77 · ρ − 2.82

Cp,avg

(
J kg−1 K−1

)
12 2050

10 Determined using multi-wavelength Raman spectroscopy
11 Beta distribution with parameters α and β
12 Average heat capacity of a memory cell computed from

molecular dynamic simulations
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3.2.5 Summary

In this chapter the deposition methods and material properties of the ta-C and a-COx de-

vices that were used in the framework of this thesis were presented. Further, the design

of the ta-C and a-COx memory devices was provided, together with descriptions of the

experimental device test setups that were used to investigate the switching and retention

properties of the ta-C and a-COx memory devices, and the low temperature conduction

properties of the ta-C memory devices. Additionally, the material parameters and elec-

tric pulses used within the framework of the computational modelling are provided. It

was emphasised that the computational model that was developed to simulate the elec-

trical conductivity of pristine ta-C confined-cell devices accounts for local sp2 and sp3

variations, which in turn affect the local electrical conductivity, density and heat conduc-

tivity.
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Tetrahedral Amorphous Carbon (ta-C) De-

vices

Partial results of the presented work in this chapter have been published in:

• ”Carbon-Based Resistive Memories,” in 2016 IEEE 8th International Memory Work-

shop (IMW), pp. 1–4, IEEE, 2016. DOI: 10.1109/IMW.2016.7493569

• ”Temperature Evolution in Nanoscale Carbon-Based Memory Devices due to Local

Joule Heating,” in 2017 IEEE Transactions on Nanotechnology. IEEE, 2017. DOI:

10.1109/TNANO.2017.2674303

Electrical experiments on ta-C devices were done in two parts. A first basic electrical char-

acterisation was done on cross-bar devices with a carbon area coverage of 1 µm2, 4 µm2

and 16 µm2. The cross-bar devices had ta-C film thicknesses of 5 ± 1 nm, 10 ± 1 nm,

15 ± 1 nm and 20 ± 1 nm. The on-chip series load resistors were 3 kΩ to 14 kΩ. An

optical image of a cross-bar device is shown in Figure 4.1.

Reversible switching experiments were carried out using confined-cells, due to their low

capacitances and smaller cross-sectional area (see Section 3.1.1). The best switching

results were obtained on confined-cell devices with a film thickness of 5 ± 1 nm.
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Chapter 4 Tetrahedral Amorphous Carbon (ta-C) Devices

Figure 4.1: Optical image of a cross-bar device, as used for basic electrical characterisation
of ta-C devices.

Additional experiments were also performed on confined-cells with film thicknesses of

10 ± 1 nm, 15 ± 1 nm and 20 ± 1 nm.

For the remainder of this thesis the uncertainty in the film thickness of ± 1 nm will be

omitted for better readability and the given film thicknesses refer to the nominal film

thicknesses.

An overview of the tested confined-cell and cross-bar devices is provided in Tables B.1

and B.2 in Appendices B.2 and B.3. Details about the fabrication of the confined-cell

devices and the material properties of the confined-cell with a 5 nm thick ta-C film are

provided in Sections 3.1.1, 3.1.3 and 3.1.4.
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Section 4.1 Initial Characterisation

4.1 Initial Characterisation

4.1.1 Area Dependence

To investigate the current dependence of ta-C-based devices for different cell areas, more

than 90 cross-bar devices were switched from the pristine state into the LRS using quasi-

static IV measurements. To protect the device in the LRS from excessive current, the

current compliance was set to 25 mA. The current is shown as a function of the applied

voltage for three exemplar selected cross-bar devices in Figure 4.2, here for devices with

5 nm ta-C layers and contact areas of 1 µm2, 4 µm2 and 16 µm2.

The current increased strongly as the applied voltage is increased, and all devices switched
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Figure 4.2: IV curves of pristine cross-bar devices with 5 nm ta-C layers and contact areas of
1µm2, 4µm2 and 16µm2. The current compliance was set to 25 mA to protect the device in
the LRS.
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Chapter 4 Tetrahedral Amorphous Carbon (ta-C) Devices

from the HRS to the LRS. The conductivity of all devices in the LRS is high enough that

the current compliance ‘kicks-in’ at 25 mA. Further, the current required to induce di-

electric breakdown showed a correlation with the lateral dimensions of the ta-C devices.

This result suggests that a viable way to reduce the energy and power consumption of

ta-C-based memory devices is to reduce the lateral dimensions (i.e. smaller area). This

correlation between smaller lateral dimensions and a reduced switching current was also

confirmed by finite element simulations that were undertaken as part of this work (see

Section 5.6). The observation that the SET process occurs at higher currents and lower

voltages for devices with larger lateral dimensions, but same thicknesses, provides evi-

dence that the switching mechanism in ta-C cannot just depend on the applied electric

field (cf. Section 2.5.1). The lower switching voltages for devices with larger areas is

likely a consequence of their lower resistance and hence, higher power dissipation (see

equation 3.4).

The link between the lateral dimensions of the ta-C devices and the switching current

required to induce the SET process becomes clear from Figure 4.3, where the data shown

in Figure 4.2 is plotted as current density against applied voltage. The devices with larger

lateral dimensions (i.e. larger area) showed a lower current density at the onset of the SET

process for the same applied voltage. This shows that the threshold voltage (to switch the

devices from the HRS into the LRS) in ta-C-based memory devices does not — or only

indirectly — scale with the area.
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Figure 4.3: Current density of the pristine cross-bar devices presented in Figure 4.2.

4.1.2 Electric Field Dependence

To relate the current density to the electric field, more than 60 cross-bar devices with

different thicknesses and areas of the ta-C layer were studied. The DUTs had film thick-

nesses of 5 nm and 10 nm. The current density is plotted as a function of the electric field

in Figure 4.4 for two exemplar cross-bar devices with contact areas of 4 µm2. The current

compliance was set to 25 mA for the device with a 5 nm ta-C and to 10 mA for the more

resistive device with a 10 nm ta-C layer.

It can be seen in Figure 4.4 that at low electric fields, the current density was higher for the

devices with a 5 nm ta-C layer in comparison to the devices with a 10 nm layer. At high

electric fields, the current density increased more strongly for the devices with the 10 nm

ta-C layer. Additionally, the electric field required to induce the dielectric breakdown was

lower for the 10 nm case. The increased low field current density of the devices with the
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Chapter 4 Tetrahedral Amorphous Carbon (ta-C) Devices

5 nm thick ta-C layers can be explained with their higher sp2 content (0.5 vs. 0.4). As

discussed in Section 2.4.2, the low-field conductivity is reported to be governed by VRH.

A higher sp2 content leads to a higher density of states within the mobility gap, which in

turn leads to a reduced hopping distance. Assuming VRH transport at low electric fields,

the reduced hopping distance then leads to a higher conductivity in the devices with 5 nm

thick ta-C layers [99, 114].

The non-linear dependence of the current density on the electric field indicates that the

(electric) conductivity σ, which is linked to the electric field E and current density j

via equation 4.1, is field dependent [127]. The possibility of Schottky barriers (at the

electrode-carbon interfaces) dominating the obtained electrical conductivities was ad-

dressed and ruled out in Sections 4.5 and 5.2.

j = σ · E (4.1)

Further, the dielectric breakdown voltage in the tested devices is close to double the value

for the device with a film thickness of 10 nm, in comparison to the device with a film thick-

ness of 5 nm (as expected from equation 4.1). The field (and temperature) dependence of

the ta-C conductivity was studied in more detail on confined-cell devices in Sections 5.1

and 5.2.
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Figure 4.4: The current density is plotted as function of the electric field across pristine cross-
bar devices with ta-C layer thicknesses of 5 nm and 10 nm and contact areas of 4µm2.

4.2 Unipolar Switching

To explore the unipolar (cf. Section 1.4) switching capabilities of ta-C devices, confined-

cell structures were switched from their HRS to their LRS and then back again using

single polarity voltage pulses. An exemplar set of results is shown in Figure 4.5. Here,

a 100 nm diameter, 5 nm thick ta-C confined-cell device was SET from the HRS (not

pristine state) into the LRS using a SET pulse with an amplitude of 3.5 V and a duration

of 80 ns. The subsequent RESET pulse used to switch the device back into the HRS had

an amplitude of 3.3 V and a duration of ≈7 ns. The voltage drop is plotted across the

device (including the 13.4 kΩ load resistor) as well as across the ta-C confined-cell alone,

to highlight the load shift at the switching event. No load resistor was present during

the reverse switching from the LRS into the HRS. The timelines of the current signals are
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Figure 4.5: a) Applied voltage over a confined-cell device (100 nm diameter, 5 nm ta-C layer
thickness) including the 13.4 kΩ Rser (blue) and the voltage drop across the ta-C cell itself
(red) for a typical SET pulse. b) Current response of the device during the switching process.
c) RESET pulse and corresponding d) current during the reverse switching (RESET) process
[modified from [47]].

adjusted to the voltage output timelines, which allows the direct comparison of the current

response to the applied voltage.

The voltage in Figure 4.5a reached the plateau of the trapezoidal pulse after 15 ns, during

which little or no increase in current occurred (Figure 4.5b). Then, the current increased

to ≈80 µA before the dielectric breakdown set in after ≈30 ns. The dielectric breakdown

was accompanied by a current spike (Figure 4.5b), after which the current stabilised and

followed the voltage signal. This time lag between the voltage reaching its maximum and

the onset of the dielectric breakdown indicates that the electric field alone, in the absence

of sufficiently large currents, cannot initiate memory switching. The excess current at the
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dielectric breakdown event is caused by a capacitive discharge.

The current in Figure 4.5d increased with increasing voltage (Figure 4.5c) until the RE-

SET process ‘kicks-in’ after ≈3.6 ns, after which the current dropped significantly and

eventually became too small to be sensed due to the high resistance of the device in the

HRS (5.3 MΩ after reset).

These results show that the SET and RESET speeds of ta-C confined-cell devices ful-

fil the speed requirements for SCMs as depicted in Table 1.1 and are comparable to (or

indeed better than) the switching speeds of other emerging storage technologies (see Sec-

tion 1.5).

4.3 Data Retention

To explore the data retention capabilities of ta-C devices, confined-cell structures were

switched from their HRS to their LRS and annealed at 85 ◦C for 104 s. To investigate

the data retention capabilities of the HRS, ta-C confined-cell devices were switched into

the LRS and back again into the HRS and annealed at 85 ◦C for 104 s. An exemplar set

of results is shown in Figure 4.6. Here, a 100 nm diameter, 5 nm thick ta-C confined-

cell device was SET from the HRS into the LRS using a SET pulse with an amplitude

of 4.4 V and a duration of 60 ns. The series on-chip load resistor value was 13.4 kΩ. To

investigate the HRS data retention capabilities, a RESET pulse with an amplitude of 4.1 V

and a duration of ≈7 ns was applied to the (same) device to switch it back to its HRS. The

resistance values of both states (LRS and HRS) fluctuated around their initial values of

≈10 kΩ (LRS) and 2 MΩ (HRS), thus maintaining an HRS/LRS ratio greater than two

orders of magnitude. This good resistance contrast allows the distinction between the

two stored logic states (‘0’ and ‘1’) in ta-C confined-cell memory devices. The typical
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Figure 4.6: Data retention of LRS and HRS of a ta-C confined-cell, measured for 104 s at 85 ◦C
[taken from [46]].

requirement for data retention in non-volatile memories, however, is 10 years at 85 ◦C (see

Table 1.1). To take this into account a confined-cell device with a ta-C layer thickness

of 5 nm was exemplarily RESET into the HRS (4.6 MΩ) at room temperature and then

subsequently annealed from 170 ◦C to 270 ◦C in 20 ◦C steps, with the last annealing step

carried out at 300 ◦C. The device was annealed for 1000 s at each temperature step before

the temperature was increased. The resistance evolution is shown as a function of the

annealing time in Figure 4.7. For better visualisation only the annealing steps carried out

at temperatures of 170 ◦C, 230 ◦C and 300 ◦C are shown. The resistance of the confined-

cell device decreased from room temperature (4.6 MΩ) to around 1 MΩ at 300 ◦C.

After the annealing experiments were carried out, the resistance of the confined-cell de-

vice was measured again at room temperature (≈18 MΩ). This obtained high resistance

value of ≈18 MΩ indicates that the lower resistance values measured during the anneal-

88



Section 4.3 Data Retention

5x105

1 × 106

1.5 × 106

2 × 106

2.5 × 106

0 200 400 600 800 1000

R
es

is
ta

nc
e

(Ω
)

Time (s)

T = 170 ◦C
T = 230 ◦C
T = 300 ◦C

Figure 4.7: Data retention of a ta-C confined-cell, initially in the RESET state and annealed
for 1000 s at 170 ◦C, 190 ◦C, 210 ◦C, 230 ◦C, 250 ◦C, 270 ◦C and 300 ◦C.

ing experiments can be attributed to the temperature dependence of ta-C conductivity (see

Section 2.4.2) and not to an sp3 to sp2 conversion or to the formation/growth of sp2 clus-

ters (cf. [114]). In spite of the changes in resistance noted in Figure 4.7, the measured

resistances remained well above typical resistances of the LRS (typically below 100 kΩ)

during the entire annealing cycles, which makes devices based on ta-C potential candi-

dates for high temperature re-writable memory applications.

ta-C devices might also be suited to write-once-read-many (WORM) applications, and

so it is interesting to examine their high-temperature stability from a WORM context

also. In a WORM application it is likely that the device would be SET from its pristine

state to provide the two required memory states, so it is the temperature stability of the

pristine state that is of most interest in this case (since the LRS configuration formed

after a SET is the thermodynamically stable state). Thus, the resistance of a randomly
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selected pristine confined-cell device with a 5 nm thick ta-C layer was measured at room

temperature (17 MΩ), and then subsequently annealed in air at 200 ◦C, 300 ◦C, 350 ◦C,

450 ◦C, 500 ◦C, 550 ◦C and 600 ◦C. Each annealing step was carried out for 5 min. The

resistance was measured at room temperature in all cases and is plotted as the ratio of

R/R0, with R0 being the initial resistance of the confined-cell device, against the annealing

temperature in Figure 4.8. The data is shown up to 550 ◦C, which is the highest annealing

temperature at which the device remained functional. The resistance fluctuated around its

initial value and dropped to around 1/10th of the initial value after annealing at 500 ◦C,

and to 1/100th after annealing at 550 ◦C, which is the highest temperature at which the

device remained functional. The observed resistance drops for annealing temperatures

above 450 ◦C are in agreement with reports in [114]. Furthermore, this finding suggests

that devices based on ta-C as the active material can be employed as WORM data storage

devices in a high temperature environment. It has to be noted that it is not necessary to

examine the evolution of the LRS at elevated temperatures as it is the thermodynamically

stable state (see [114]).
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Figure 4.8: Variations of the ratio R/R0 during annealing of a ta-C confined-cell device in air,
with R0 being the initial resistance of a pristine device.

4.4 Switching Endurance

Besides the already demonstrated high switching speeds, the very good scalability and

data retention properties, a high switching endurance is required to use ta-C-based devices

for non-volatile re-writable memory applications (see Section 1.1). To evaluate the poten-

tial of ta-C-based devices for resistive memory applications that require a high switching

endurance, a slow quasi-static triangular pulse with 5 µs LE and TE edges was applied

to switch confined-cell structures with a 5 nm thick ta-C layer from the pristine state into

the LRS. Subsequently, the devices were cycled between the LRS and HRS using short

electric pulses. This alternated switching between HRS and LRS is exemplarily shown in

Figure 4.9, where a device was cycled more than 100 times between the LRS and HRS

using 55 ns SET pulses and 8 ns RESET pulses [46]. It can be seen that the HRS and
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Figure 4.9: SET and RESET switching cycles in a confined-cell device with a 5 nm thick ta-C
layer [taken from [46]].

LRS remained separated by at least an order of magnitude throughout the testing process.

However, the resistance levels of the LRS drifted to higher values with increasing cycles,

despite the fact that the set amplitudes (3.5 V) and pulse durations were not changed. To

get more insights of the resistance evolution in the LRS, it is important to obtain a better

understanding of the SET process and the LRS state, an aspect that is examined in more

detail below.

4.5 LRS Characteristics

Field Dependence To explore the field dependence of the LRS, confined-cell struc-

tures were switched from their HRS to their LRS. The field dependence of the LRS was

then determined by taking IV curves from 0 V to 0.35 V at temperatures of 85 K, 105 K,
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120 K, 135 K, 160 K, 180 K, 200 K, 220 K, 240 K, 280 K, 300 K, 325 K and 350 K. An

exemplar set of results is shown in Figure 4.10. Here, a 100 nm diameter, 5 nm thick ta-C

confined-cell device was SET from the pristine state into the LRS using a quasi-static tri-

angular SET pulse with an amplitude of 3.25 V and 5 µs LE and TE edges. The resistance

in the LRS was measured to 27 kΩ (read out at 0.2 V). For better visualisation only the

IV curves taken at temperatures of 85 K and 350 K are shown. It can be seen that the cur-

rent increased non-linearly with the applied voltage, which indicates that the electronic

transport in the LRS is not governed by a metal filament bridging the two electrodes, but

is likely a consequence of the formation of one or several conductive carbon filaments

as discussed in Sections 1.4 and 2.5. The symmetric current-voltage dependency sug-

gests that the observed non-linear IV characteristic is not a contact limited conduction

behaviour (cf. Section 5.2).
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Figure 4.10: Current of the LRS of a confined-cell with 5 nm thick ta-C layer as function of the
applied voltage for IV curves taken at 85 K and 350 K.
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Figure 4.11: Conductivity of the LRS, calculated from the data of Figure 4.10, as function of
the applied voltage for IV curves taken at 85 K and 350 K.

The non-linear dependence of the current on the applied voltage is also illustrated in Fig-

ure 4.11, where the conductivity is plotted as a function of the applied voltage. From

Figure 4.11 it is clear that the conductivity increased as a function of the applied voltage.

The increase is more pronounced at 85 K than 350 K, which is an indication for a tempera-

ture activated conduction behaviour (see equations 2.9 and 2.8). The observed non-linear

increase of the conductivity with the applied voltage is important with respect to the re-

verse switching process, where large temperatures and temperature gradients are expected

to play an important role in reverse switching (RESET) as discussed in Section 2.5.2.

Temperature Dependence To evaluate the temperature dependence of the LRS in

more detail, low field data from the Ohmic regime of the IV measurements (cf. Fig-

ure 4.10) was examined. The conductivity is plotted in Figure 4.12 as a function of the

temperatures at which the IV measurements were carried out.
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Figure 4.12: Conductivity of the LRS of a confined-cell device with a 5 nm thick ta-C layer.
The measurement was taken in the Ohmic regime for temperature ranging from 85 K to 350 K
(cf. Figure 4.10).

Generally, the conductivity increased with increasing temperature. This provides further

evidence against a metal filament formation during the SET process, since the temperature

coefficient of conductivity is typically negative in metals [128]. This result is important

as it not only helps to rule out metal filamentation as a possible source of switching,

but the occurrence of a positive temperature coefficient of resistance may contribute to

large temperature gradients during the reverse switching process, and hence may play an

important role in the reversible switching process in ta-C-based memory devices.
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4.6 Elemental Analysis and Bonding Ratio

To investigate the influence of the switching process on the sp2/sp3 ratio two randomly

selected confined-cell devices with 20 nm thick ta-C layers were switched from the pris-

tine state into the LRS and the elemental distributions within the two ta-C cells (in the

LRS) were analysed using energy-dispersive X-ray spectroscopy (EDX) and EELS (cf.

Section 2.3) and then compared to the elemental distributions within a randomly selected

pristine confined-cell device with the same ta-C layer thickness.

The first device (100 nm ta-C cell diameter) was SET into the LRS during an IV sweep up

to 8 V, labelled as HARDSET in the following description. The on-chip current limiting

load resistor during the SET process was 13.6 kΩ. The IV curve is shown in Figure 4.13,

with the current plotted as function of the applied voltage (blue) and voltage drop across

the ta-C cell (red).

Initially, most of the voltage in Figure 4.13 is dropped across the ta-C cell indicated by

the overlap of the red and blue curve. At around 2 V the conductivity of the ta-C cell in-

creased significantly and consequently, the voltage drop across the load resistor increased.

At around 3.7 V (across the ta-C cell) the switching process ‘kicked-in’ and the device

switched from the pristine state into the LRS, which was accompanied by a voltage snap

back (red) due to the sudden increase of the ta-C conductivity.

The second device (50 nm ta-C cell diameter) was SET using a quasi-static triangular

pulse with 5 µs LE and TE edges and an amplitude of 6.25 V, labelled as SET in the fol-

lowing. The on-chip current limiting load resistor during the SET process was 7.7 kΩ.

The voltage applied across the device is plotted (blue) in Figure 4.14a together with the
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Figure 4.13: IV curve on a confined-cell device with a 20 nm thick ta-C layer.

voltage drop across the ta-C cell (red) and the corresponding current in Figure 4.14b. Sim-

ilar as in the case of the HARDSET state, most of the voltage is dropped initially across

the ta-C cell as indicated by the overlap between the red and blue curve in Figure 4.14a.

At around 2.5 V the conductivity of the ta-C cell increased significantly and hence, the

voltage drop across the load resistor increased. At around 4.2 V (across the ta-C cell)

the switching process ‘kicked-in’ and the device switched from the pristine state into the

LRS, which was accompanied by a voltage snap back (red) due to the sudden increase of

the ta-C conductivity.

The above three devices in the HARDSET, SET and PRISTINE states were subsequently

cross-sectioned and elemental analysis was performed. The analysis of the HARDSET

and SET states was carried out using scanning transmission electron microscope (STEM),

EDX and EELS. Since no switching was performed on the PRISTINE state only EELS

was carried out to determine the sp2/sp3 ratio. The TEM related measurements were
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Figure 4.14: a) Slow forming pulse on a confined-cell device with a 20 nm ta-C layer using a
voltage pulse with an amplitude of 6.25 V and a duration of 10µs. b) Current response of the
device including dielectric breakdown switching the device into the LRS.

carried out by Dr. O. Cojocaru-Mirédin at RWTH Aachen within the framework of the

CareRAMM project. To get insights into the elemental distribution of the SET and

HARDSET states and to rule out metal filamentation as a possible source of switching,

TEM lamellae were prepared and inspected using high-angle annular dark field (HAADF)

imaging. The elemental distribution was investigated using EDX. The HAADF image and

the EDX image of the SET state is depicted in Figure 4.15a and of the HARDSET state in

Figure 4.15b, respectively. The HAADF image shows the SiO2 encapsulation was, during

the sample preparation process, etched away together with parts of the Pt top electrode.

The EDX chemical analysis showed a clear separation of Si, Pt and C in both cases (SET

and HARDSET). This provides further evidence that no metal filament was formed during

the SET processes.
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Figure 4.15: HAADF STEM images of cross-sections of confined-cells with 20 nm ta-C layers,
and the corresponding EDX spectrum images from the same cells in a) SET state and b)
HARDSET state showing the distribution of C, Si, and Pt elements.
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Chapter 4 Tetrahedral Amorphous Carbon (ta-C) Devices

To investigate the sp2/sp3 ratio, EELS analysis was performed to evaluate the π∗/σ∗ ra-

tio for the three devices PRISTINE, SET and HARDSET. The π∗ orbitals are linked to

sp2 bonded carbon and the σ∗ orbitals are linked to sp2 and sp3 bonded carbon (see Sec-

tion 2.3). The intensity is plotted as function of the energy loss in Figure 4.16, for energies

between 260 eV to 320 eV. The energies related to π∗ could be located at 285 eV and the

energies corresponding to σ∗ can be located at 300 eV. Although the change of the π∗/σ∗

ratio is not pronounced, it can be seen from Figure 4.16 that the π∗/σ∗ ratio is highest for

the HARDSET device, followed by the SET device and the PRISTINE device.

π*

σ*

Energy Loss (eV)

In
te

n
si

ty
 (
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u
.)

Figure 4.16: EELS spectra from 260 eV to 320 eV of PRISTINE, SET and HARDSET confined-
cell devices with 20 nm thick ta-C layers.
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Time Lag To investigate the stochasticity of the time lag between the applied voltage

reaching its maximum and the onset of the dielectric breakdown (see Figure 3.9), ran-

domly selected pristine confined-cell devices with ta-C layer thicknesses of 5 nm were

initially SET into the LRS using quasi-static triangular pulses with 5 µs LE and TE edges.

A (exemplarily selected) device was subsequently RESET and cycled using SET pulses

with amplitudes of 3.5 V and pulse durations of 75 ns. Four SET voltages across the ta-C

confined-cell device are exemplarily plotted in Figure 4.17a. The corresponding current

responses are plotted in Figure 4.17b. The LRS resistances were 3.7 kΩ, 15 kΩ, 12 kΩ

and 16 kΩ.

It can be seen from Figure 4.17 that the dielectric breakdown events occur at different

times, and that there is no obvious correlation between SET pulses and observed time lag.

This is expected since the electric field alone does not suffice to induce switching (see

Sections 2.5, 4.1.1 and 4.2) and the local temperature distribution in the ta-C cell — at the

onset of the dielectric breakdown — is caused by Joule heating (see Sections 2.5.1), which

depends on the local current density (see equations 3.4 and 3.5). The local current density

depends on the local atomic configuration of the HRS which is intrinsically stochastic

[129]. These findings also suggest that in order to reduce the time lag and benefit from

the fast switching speed of ta-C-based memory devices, higher voltages are required.

Also it is noted that the stochasticity of the dielectric breakdown event could potentially

be used as a hardware random number generator.
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Figure 4.17: a) Four SET pulses with amplitudes of 3.5 V and durations of 75 ns used to switch
a ta-C confined-cell device. b) Current responses of the device including the switching from
the HRS into the LRS.

4.7 Switching Characteristics

Fast Switching Pulse To explore the switching speeds that might be achievable with

ta-C devices, an exemplar pristine device (68 MΩ) with a 5 nm thick ta-C layer was

switched into the LRS (1.3 kΩ) using a SET pulse with an amplitude of −4.1 V and a

duration of 7 ns. The applied voltage across the device (blue) is plotted together with

the voltage drop across the ta-C (red) cell in Figure 4.18a. The corresponding current

response is plotted in Figure 4.18b.

The dielectric breakdown occurred after ≈5.0 ns, which is around 1.5 ns after the voltage

pulse reached the maximum amplitude and represents a significant reduction of the time
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Figure 4.18: a) Fast forming pulse using a voltage pulse with an amplitude of −4.1 V and
a duration of ≈7 ns. b) Current response of the ta-C confined-cell device including dielectric
breakdown switching the device into the LRS.

lag in comparison to the SET pulses shown in Figure 4.17. The peak current was around

−1.5 mA, which is high and is a consequence of the high voltage amplitude and the fact

that no voltage drop occurred across the load resistor prior to the switching event. This

is expected as the device was switched from the pristine state where no pre-formed con-

ductive percolation path is present. The energy consumption Ecell was determined to be

2.0 pJ using equation 4.2 [122], where E is the energy, I the current, V the voltage and t is

the time. The energy calculation is based on the voltage drop across the ta-C cell. This is

significantly faster than the previously reported switching speeds of ta-C-based memory

devices (see Table 2.2) and is around 50 times lower in energy than NAND flash cells and

is comparable to (or better than) other emerging technologies (see Tables 1.1 and 1.2).

Thus, the obtained switching speed and writing energy consumption of ta-C confined-cell
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devices fulfil the requirements for SCM as denoted in Table 1.1. Further, as depicted in

Figure 4.18, the device switched from the pristine state into the LRS in less than 1 ns, thus

indicating that ta-C confined-cell devices have the potential to carry out sub-ns memory

operations. This is in agreement with reports from MD simulations (see Section 2.5.1).

E =
∫

I · V dt (4.2)

Quasi-Static Switching Pulse Such high switching speeds (as demonstrated in Fig-

ure 4.18) come, however, at the cost of large currents and power requirements which may

be acceptable for WORM applications, but limit the switching endurance in re-writable

ta-C memories due to the formation of a large extended sp2 network that is difficult to

RESET [43, 46]. To reduce the switching current (and power), the time lag (see Fig-

ures 4.5a and 4.18) between the SET voltage pulse reaching its maximum amplitude and

the onset of the dielectric breakdown should be minimal. To investigate the effects of a re-

duced time lag on the switching current, long quasi-static SET pulses were used to switch

pristine devices into the LRS. Typical results are shown in Figure 4.19, for a randomly

selected confined-cell device with a 5 nm thick ta-C layer. The device was switched from

the pristine state into the LRS using a quasi-static triangular SET pulse with an amplitude

of 3.5 V and a duration of 10 µs. The current limiting on-chip load resistor was 13.5 kΩ.

For noise reduction a 200 MHz software filter is applied to the current and voltage signals

during post-processing with the exception of the actual switching event.

Figure 4.19 shows that the current increased steadily until the dielectric breakdown ‘kicked-

in’ after 4969 ns, which is before the voltage pulse reached the maximum amplitude.

Further, the maximum current flow was ≈296 µA, which is a significant reduction in

comparison to Figure 4.18. This decrease in current can be attributed to a lower para-

sitic capacitive discharge. The lower capacitive discharge can be attributed to the lower
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Figure 4.19: a) Slow forming pulse using a voltage pulse with an amplitude of 3.5 V and a
duration of 10µs. b) Current response of the device including the switching from the HRS into
the LRS.

switching voltage that was required to SET the device (cf. Figure 4.18) and to the fact that

some voltage dropped across the load resistor prior to the switching event. The observed

increase in conductivity could be explained by a temperature dependence of the conduc-

tivity (see Section 2.4.2), which in turn increased the conductivity in a runaway process,

ultimately triggering a temperature activated process leading to material modifications

during the switching event. Such a thermal runaway process is studied in more detail in

Sections 5.2, 5.3 and 5.4. To optimise cyclic endurance (see Figure 4.9) it was found es-

sential during the work of this thesis to use long, quasi-static SET pulses to switch pristine

confined-cell devices into the LRS (see Figure 3.9).
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4.8 Summary & Conclusion

In this chapter, it has been demonstrated that ta-C confined-cell devices can be operated

in unipolar (and bipolar) operational mode and switched from the HRS into the LRS (and

vice versa) below 10 ns, which represents an improvement of the SET speed by a factor of

5 in comparison to previous studies (see Table 2.2). Reversible switching was shown on a

ta-C confined-cell device with a 5 nm thick ta-C layer for more than 100 cycles. This is —

to the best of knowledge — the thinnest ta-C layer reported to show memory switching,

where solely ta-C was used as the active memory material. The reverse switching speed

from the LRS into the HRS was observed to be well below 8 ns, which is significantly

faster than in previous reports (cf. Table 2.2). In agreement with the literature it was

shown that the actual switching process from the pristine state into the LRS (i.e. the

dielectric breakdown event) takes place on a sub-ns time scale.

The tested ta-C confined-cell devices kept their initial resistance value up to a temperature

of 450 ◦C for 5 min and remained fully functional, i.e. read out of the resistance state was

possible, after an annealing step at 550 ◦C for 5 min. This is — to the best of knowledge —

the highest reported temperature for any ta-C-based memory device and shows that ta-C

confined-cell devices are suitable candidates for high temperature WORM applications.

For the application as re-writable SCM type formats, cyclic endurance has to be improved.

In agreement with literature it was found that a reduction of the current which is required

to switch the ta-C devices from the pristine state into the LRS, is paramount to achieve a

high cyclic endurance. In agreement with literature it was found on ta-C cross-bar struc-

tures that the switching current is reduced for ta-C devices with higher sp3 contents. It

was shown that the switching voltages (and currents) can be reduced by using long, quasi-

static SET pulses to switch ta-C confined cell devices from the pristine state into the LRS.
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Further, it was shown that the switching voltages (and currents) to SET pristine devices

into the LRS are lower for confined-cell devices with a thinner ta-C layer. It was found

that the reduction of the lateral dimensions (i.e. area) of ta-C cross-bar structures helped

to increase the switching performance in terms of reduced energy and power consump-

tions.

Evidence was also shown that the switching from the HRS into the LRS is likely caused

by the formation of a conductive sp2-rich carbon filament. The absence of scaling be-

tween switching voltage (and current) with the ta-C area in ta-C cross-bar structures ruled

out interfacial switching as cause for the resistance contrast between HRS and LRS. Fur-

ther, no electrode metal oxide layer was found in pristine devices using HAADF, EDX

and EELS analysis techniques. Further, it was shown for the first time — to the best of

knowledge — on ta-C memory devices that not only the HRS, but also the LRS is field-

and temperature-dependent. The positive temperature coefficient of resistance of the LRS

allowed the exclusion of metal filamentation (originating from the metal electrodes) as a

possible source of switching from the HRS into the LRS. Additionally, no evidence of the

presence of metal atoms was found in the LRS using HAADF, EDX and EELS analysis

techniques.

Additionally, it was shown that the time lag between the voltage reaching its maximum

and the onset of the dielectric breakdown indicates that the electric field alone, in the

absence of sufficiently large currents, cannot initiate switching from the HRS into the

LRS in ta-C memory devices.
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Chapter 5

Joule Heating Effects in ta-C Devices

Partial results of the presented work in this chapter have been published in:

• ”Joule Heating Effects in Nanoscale Carbon-based Memory Devices,” in 2016 IEEE

Nanotechnology Materials and Devices Conference (NMDC)., pp. 1–2, IEEE,

2016. DOI: 10.1109/NMDC.2016.7777081

• ”Temperature Evolution in Nanoscale Carbon-Based Memory Devices due to Local

Joule Heating,” in 2017 IEEE Transactions on Nanotechnology. IEEE, 2017. DOI:

10.1109/TNANO.2017.2674303

A key challenge for amorphous carbon-based memory is cyclic endurance, as discussed

in Sections 2.5 and 4.4. To improve the cyclic endurance it is necessary to get a better

understanding of the conditions at the onset of the dielectric breakdown. A computa-

tional model was therefore developed to help shine light on the conditions at dielectric

breakdown, especially the temperature distribution due to the Joule heating effect. In the

first part of this chapter, the role of Joule heating and the resulting temperature distribu-

tions at the onset of memory switching are investigated on the basis of the experimental

data presented in Chapter 4. The experimental data is then compared with computational

modelling results. The second part of this chapter has the aim to provide a guideline
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for the optimisation of ta-C confined-cell devices with respect to achieving higher cyclic

endurances.

5.1 Temperature-Dependent Conductivity

To get insights into the conditions at the onset of dielectric breakdown, it is necessary to

study both the field- and the temperature dependence of the electrical conductivity sepa-

rately. The temperature dependence of pristine confined-cell devices with 5 nm thick ta-C

layers was determined by measuring IV curves for temperatures from 85 K to 300 K at

low electrical fields. At low electrical fields, electronic transport in amorphous carbon

is reported to be mainly governed by variable-range-hopping in localised states (see Sec-

tions 2.4.2 and 2.4.3) [92–95]. The conductivity in localised states typically follows a

power law and is, here, plotted against T−1/4 in Figure 5.1 for the Ohmic regime (iden-

tified using the measured IV curves for temperatures from 85 K to 300 K). Each data

point was obtained from a fit of the Ohmic region at the corresponding temperature (cf.

Figure 5.2 for 300 K).

This type of conductivity behaviour describes VRH as introduced by Mott (see equa-

tion 5.1) [96].

σ00 = σ0 · exp
(
−

[T0

T

]1/4)
(5.1)

The conductivity is denoted as σ00 and σ0 and T0 were fitted to the data shown in Fig-

ure 5.1 and have the values 0.345 S m−1 and 220 K. The linear dependence over the whole

temperature range confirms that electrical transport in the ta-C confined cell devices ex-

amined here is governed by hopping between localised states [88, 89, 96].

It has however to be noted that the range of applicability of the Mott law is still a matter of
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Figure 5.1: Conductivity of a pristine carbon memory device measured at low voltages from
85 K to 300 K [taken from [8]].

debate [98, 99, 130]. The main criticism, as pointed out by Marshall et al. [99], originates

from the fact that equation 5.1 was derived by setting the dominant hopping distance

of localised charge carriers equal to the maximum hopping distance within a spherical

volume that contains one (localised) charge carrier at its centre. This assumes that de-

fects are equally distributed and ignores spatially closer empty jumping sites and hence,

does not take different jumping probabilities for different jumping distances into account

[99]. However, in the work of this thesis equation 5.1 is only used — together with the

field-dependent part of the conductivity — with the aim to reproduce the experimentally

determined conductivity prior to dielectric breakdown. A more in-depth discussion of

VRH can be found in [86, 95, 98, 99, 101, 102, 131].
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5.2 Electric Field-Dependent Conductivity

The field-dependent part of the conductivity was determined at room temperature with

the aim of developing a computational model that is capable of describing the experi-

mentally obtained conductivity in ta-C confined-cell memory devices (see Chapter 4 and

Section 5.3) over the range from Ohmic conduction until the onset of the dielectric break-

down. To determine the field-dependent part of the conductivity of ta-C confined-cell

devices, and to distinguish it from the Ohmic conduction, IV curves were taken up to

a maximum of 0.8 V. In Figure 5.1 the Ohmic part of the conductivity of a randomly

selected ta-C confined-cell device is shown, and the field-dependent part of the conduc-

tivity of the same device is shown in Figure 5.2 for the whole IV curve taken at room

temperature.
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Figure 5.2: Field-dependence of the conductivity of a carbon memory device measured at
300 K.
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From Figure 5.2 it can be seen that initially, the conductivity remained constant until

≈0.1 V, where the transition from Ohmic to field-dependent conduction took place. To

exclude noise as the origin for the observed constant conductivity at low electrical fields,

the same experimental data is plotted in Figure 5.3 and shows that the data is well above

the system noise floor even for low applied voltages.

From then on, the conductivity increased exponentially with the applied voltage, which

is in agreement with a Poole-type conduction behaviour [106]. A Poole-type conduction

behaviour is also in agreement with reports of a high defect density in ta-C [65].

With the assumption of a Poole-type conduction, the transition from Ohmic conduction

to the field-dependent conduction can be described using equation 5.2 [21, 104, 132].

I = A · sinh
(

eVas
2kBTt

)
(5.2)

The current is denoted as I, A is a fitting constant, e is the elementary charge, kB the

Boltzmann constant, T the temperature (here 300 K), t the thickness (here 5 nm) and s

is a fitting constant that describes the dominating distance between Coulomb (i.e. trap)

centres as defined in [21].

The applied voltages, during taking of the IV curve used to generate Figure 5.2, were low

enough (<0.8 V) to keep the Joule heating small (below 1 K). Thus the temperature was

set constant to 300 K (note that the temperature evolution in the ta-C cell as function of the

applied voltage was verified a posteriori with simulation results presented in Section 5.4)

and the experimental IV curve fitted to the Poole model for the range of voltages from

0.1 V to 0.8 V, as shown in Figure 5.3. The fit can be seen to be good.
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Figure 5.3: Fit of the field-dependent part of the conductivity of a ta-C confined-cell device
using equation 5.2.

For applied voltages below 0.1 V, VRH was chosen to describe the low-field conduction

of the tested ta-C confined- cell devices, as shown in Figure 5.1 and discussed in Sec-

tions 2.4.2 and 5.1.

Accordingly, the low field conduction of ta-C confined-cell devices was implemented in

the computational model using VRH, and the field-dependent part of the conductivity was

implemented using a Poole-type conduction model. The most important parameters used

in the simulation of ta-C (and a-COx) confined-cell devices are provided in Table 3.4.

To exclude a metal-insulator junction as a possible alternative to explain the obtained IV

data, the Schottky emission process is briefly reviewed in the following.
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Schottky-Barrier The Schottky emission process is based on an energy barrier at a

metal-insulator interface [133, 134]. In the case of an insulator, the energy barrier φB is

much larger than the thermal energy kBT . This allows a description of the energy barrier

φB0 and the observed lowering due to the electric field F as [128]:

φB = φB0 −

√
eF

4πεε0
(5.3)

The elementary charge is denoted as e, with ε and ε0 being the relative permittivity and

vacuum permittivity, respectively. Furthermore, since the mean free path of electrons in

amorphous solids is typically short [135], the diffusion theory of metal-semiconductor

rectification is typically used to describe the Schottky emission [21, 136]. The current

density is thus given in equation 5.4, using the Einstein relation Dn = kBTµn/e [128]:

jn ≈ eµnNCFexp
(
−

eφB

kBT

) [
exp

(
eVa

kBT

)
− 1

]
(5.4)

where the DOS close to the interface is NC, the free carrier mobility µn and the applied

voltage V .

As a consequence of the use of two different electrode materials in the ta-C confined-cell

devices (W and Pt) and their different potential barriers, equation 5.4 predicts a strong

increase in current density when the ta-C devices are biased in a forward direction and

a significantly smaller increase in reverse direction. However, this behaviour was never

observed for the ta-C devices examined here, as they can be operated in a unipolar manner

in both directions, as discussed in Section 2.5. For example, the current is plotted as

function of the applied voltage for a randomly selected pristine confined-cell device with

a 5 nm thick ta-C layer in Figure 5.4 for an IV curve taken from −0.3 V to 0.3 V. It can be

seen that the current increase was symmetric, polarity independent, and solely a function

of the amplitude of the applied voltage. In addition, as shown in Figure 4.17, the ta-C

115



Chapter 5 Joule Heating Effects in ta-C Devices

10−8

10−7

10−6

10−5

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

C
ur

re
nt

(A
)

Voltage (V)

0
50

100
150
200

−70−35 0 35 70

C
ur

re
nt

(n
A

)

Voltage (mV)

Figure 5.4: Current as function of the applied voltage for a randomly selected pristine
confined-cell device with a 5 nm thick ta-C layer (inset shows the IV curve on linear scales).

devices have an almost linear current-voltage dependence after switching, indicating an

Ohmic contact at the electrode-(t)a-C interface. Thus, Schottky emission can be ruled

out as a significant contributor to the electrical transport properties of the ta-C devices

examined here.

5.3 Model Validation

Isothermal Field-Dependent Conductivity To validate the computational model in-

troduced in Section 3.2.2, the simulated conductivity of confined-cell devices with 5 nm

thick ta-C layers was matched to the experimental results for low- and intermediate elec-

tric fields, prior to the onset of Joule heating. This was done with the aim to obtain a

realistic conductivity of confined-cell devices with 5 nm thick ta-C layers, which were
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extensively investigated in the work of this thesis. It is important to reproduce the exper-

imentally obtained conductivity using the computational model in order to gain insights

into the temperature distribution at the onset of the dielectric breakdown, where Joule

heating is expected to play an important role (see Sections 2.5.1 and 4.6). The most im-

portant material properties used in the simulation of the confined-cell devices with 5 nm

ta-C layers are provided in Table 3.4. To obtain the temperature distribution in the ta-C

cell, a finite element software package (COMSOL®) was used to solve the coupled heat

and Laplace equations (see equations 3.2 and 3.3). More details regarding the electro-

thermal model are provided in Section 3.2.1.

To justify the isothermal approach that was used to determine the conductivity for the

computational model at low- and intermediate electric fields (see Figures 5.2 and 5.3) a

posteriori, the simulated maximum temperature within the ta-C cell is plotted as a function

of the applied voltage in Figure 5.5. The temperature increase remained <1 K within the

fitted voltage range of Figure 5.3, thus justifying the assumption of a constant temperature

at low voltages.

The simulated conductivity is compared with experimental data in Figure 5.6. The simu-

lation (red) described the isothermal part of the conductivity (blue) very well up to electric

fields of around 2 × 108 V m−1 (|V | = 1 V).
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Figure 5.5: Local temperature evolution in a ta-C confined-cell device as function of the ap-
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Figure 5.6: Measured and simulated conductivity of a ta-C confined-cell device as function of
the absolute value of the applied voltage [taken from [47]].
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Joule Heating Effects at Dielectric Breakdown To validate the computational model

(see Section 3.2.2) at high electric fields and to investigate Joule heating effects at the on-

set of dielectric breakdown, a randomly selected confined-cell device with a 5 nm thick

ta-C layer was experimentally switched from the pristine state into the LRS using a quasi-

static triangular switching pulse with an amplitude of −3.5 V and 5 µs leading and trailing

edges. To increase the computational speed, a device with the smallest available ta-C

confined-cell diameter of 50 nm (see Section 3.1.1) was used in both experiment and sim-

ulation. A quasi-static pulse was chosen to exclude any time lag between the applied

voltage and the onset of the dielectric breakdown (cf. Figure 4.19). For both experi-

ment and simulation a 13.3 kΩ load resistor was used. The applied voltage across the

device (blue) is plotted together with the voltage drop across the ta-C (red) cell in Fig-

ure 5.7a. For noise reduction a 200 MHz software filter was applied to the current and

voltage signals of the quasi-static SET pulse in Figure 5.7 during post-processing. The

corresponding current response is plotted in Figure 5.7b. The current always followed the

voltage pulse until dielectric breakdown occurred after 4.4 µs and hence, no time lag was

observed.

Note that the oscilloscope was programmed to ensure to proper capture of the currents

present at dielectric breakdown and, as a consequence, was insensitive to low currents

at low voltages. Therefore, the experimental data originating from the quasi-static pulse

in Figure 5.7a is shown in Figure 5.6 only for voltages from |V | = 2.2 V until the onset

of the dielectric breakdown (i.e. |V | = 2.7 V). There, the simulated conductivity (using

COMSOL®) is compared with experimental data for the entire conductivity range prior

to dielectric breakdown. The simulation (red) reproduced the isothermal part of the con-

ductivity (blue) and the field-dependent part (green) very well.
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Figure 5.7: a) Quasi-static SET pulse on a confined-cell device with a 5 nm ta-C layer using a
voltage pulse with an amplitude of −3.5 V and a duration of 10µs. b) Current response of the
device including dielectric breakdown switching the device into the LRS.

5.4 Temperature Distribution at Dielectric Breakdown

The very good agreement between simulated and experimentally determined conductivity,

as shown in Figure 5.6, indicates that the computational model can be used with confi-

dence to investigate the local temperature distribution on the device-scale using realistic

switching pulses. The temperature increase due to Joule heating is calculated by solving

the coupled heat and Laplace equations (see equation 3.5) using (COMSOL®). The tem-

perature distribution within the ta-C confined-cell using the quasi-static SET pulse shown

in Figure 5.7 is thus as presented in Figure 5.8 (for 4.4 µs into the SET pulse). The applied

voltage (blue) at the onset of the dielectric breakdown was 3.15 V and the voltage drop

120



Section 5.4 Temperature Distribution at Dielectric Breakdown

Temperature (K)
1600

1400

1200

1000

800

600

400

x
y

z

z

y
x

Figure 5.8: Simulated temperature distribution in a confined ta-C cell with a 5 nm thick ta-C
layer and 50 nm cell diameter at dielectric breakdown after 4.4µs into the SET pulse (see
Figure 5.7); top shows distribution in the x,y-plane (at z = 3.3 nm), bottom shows distribution
in the y,z-cross-section (indicated by the dotted line) with the hottest area at z = 3.3 nm
(bottom to top); applied voltage is −3.15 V and voltage drop across the ta-C cell is −2.7 V
[taken from [47]].

across the ta-C confined-cell (black) in Figure 5.7 was |V | = 2.7 V, and so these values

were also used for the simulations.

In Figure 5.8 it can be seen that the highest temperatures were obtained at z = 3.3 nm,

close to the mid-plane of the 5 nm thick ta-C layer. The temperature of the electrodes re-

mained close to room temperature, 311 K at the Pt/ta-C interface and 337 K at the W/ta-C

interface, which is expected as the metal electrodes acted as heat sinks [46]. The observed

high temperatures close to the mid-plane of up to 1615 K are in agreement with reports

from molecular dynamic (MD) simulations that were carried out by Dr. F. Zipoli under
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the auspices of the EU FP7 project CareRAMM [46]. The obtained hot spots are likely to

indicate the origin of sp2 filament formation(s) after dielectric breakdown take(s) place.

The above findings emphasise the relevance of taking local variations in conductivity into

account and underline the importance of numerical modelling to obtain a detailed tem-

perature profile of the ta-C memory cell, which is not accessible otherwise. To illustrate

this, a comparison between the average temperature in the memory cell and the maximum

temperature is plotted in Figure 5.9 as a function of the absolute value of the voltage drop

across the memory cell.

The average temperature of the cell remained at moderate temperatures and reaches a

maximum value of 320 K, which agrees well with values reported in [67]. However, the

localised temperature can obviously be much higher, high enough to lead to the formation

of sp2 filaments and so induce resistive switching. This finding is important as it em-

phasises that localised Joule-heating does not significantly affect the average temperature

within the memory cell as long as the size of the hot spot is negligible in comparison to

the lateral dimensions. Also, the highly localised hot spots prior to a filament formation

provide evidence that memory switching in carbon-based devices is a temperature acti-

vated process, which is in agreement with reports from MD simulations [46, 111, 112].

Note that an increase of the sp2 content would lead to a reduced distance between the sp2

conducting clusters in the insulating sp3 matrix. This in turn would result in larger cur-

rents and higher temperatures due to Joule heating being more effective. Once the lateral

dimensions of the device approach the filament dimensions, it is suggested that the whole

device can be re-amorphised using a standard reset pulse, which is expected to increase

the cycling endurance significantly [43].
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Figure 5.9: The maximum temperature inside the simulated ta-C confined-cell (cf. Figure 5.8)
is plotted together with the average temperature as function of the absolute value of the volt-
age drop across the ta-C confined-cell [taken from [47]].

5.5 Influence of Load Resistor

To achieve a high cycling endurance in ta-C devices, a current limiting load resistor is

required that has a resistance small enough to allow for efficient Joule-heating, but large

enough to limit the current after memory switching has occurred. This is to ensure that

the device can be reversibly switched from the thermodynamically stable LRS into the

HRS.

To visualise the influence of the current limiting on-chip load resistor on the voltages

necessary to achieve dielectric breakdown in ta-C confined-cell devices, the load resistor

is varied from 2.5 kΩ to 50 kΩ, using the computational model introduced in Section 5.3.

The conductivity of the ta-C cell is plotted as a function of the applied voltage for the
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Chapter 5 Joule Heating Effects in ta-C Devices

different load resistor values in Figure 5.10. The maximum temperature (T = 1615 K)

within the ta-C cell at the onset of the dielectric breakdown (cf. Figure 5.9) is indicated

by the red dashed line. The simulation results from Figure 5.10 show that the voltage

that has to be applied to the device (including the load resistor) to induce the dielectric

breakdown increases with increasing load resistor values from 2.70 V for Rser= 2.5 kΩ,

2.85 V for Rser= 7.5 kΩ, 3.15 V for Rser= 13.3 kΩ, 3.37 V for Rser= 25 kΩ, to 4.11 V

for Rser= 50 kΩ.

The strong increase of the applied voltage that was required to induce the dielectric break-

down in the device with Rser= 50 kΩ, in comparison to the devices with lower load re-

sistor values, suggests that localised Joule heating becomes less effective for higher load

resistor values due to the increased voltage drop across the resistor.

This finding suggests that the load resistor used in the experimental switching of ta-C

confined-cell devices with sp3 contents of 0.5 (as in the work of this thesis) should be

below 50 kΩ. Further, it has to be noted that lower switching voltages are also preferable

to minimise the excess current that flows through the ta-C device as a consequence of the

dielectric breakdown (see Section 4.2) [43, 45].
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across the device (including Rser). The maximum temperature at the onset of the dielectric
breakdown event (see Figure 5.7) at T = 1615 K is indicated by a red dashed line.

5.6 Influence of Confined-Cell Lateral Dimension

To evaluate the device performance for smaller lateral confined-cell dimensions, the max-

imum temperature within the ta-C cell of devices with ta-C cell radii of 15 nm and 10 nm

are compared to the maximum temperature obtained from the simulation of a ta-C confined-

cell with a cell radius of 25 nm, which was used in the experiments (see Figure 5.6).

To assess the performance, the current which was required to reach the maximum temper-

ature of 1615 K present at the dielectric breakdown event (see Figure 5.9), is compared

for ta-C cell radii of 25 nm, 15 nm and 10 nm in Figure 5.11.

The current required to reach the temperature present at the onset of the dielectric break-

down decreased from 34 µA for a cell with a radius of 25 nm, to 20 µA for a cell with
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Figure 5.11: The maximum temperature inside the ta-C memory cell is plotted as function of
the current flow for different ta-C confined-cell dimensions (radii). The maximum temperature
at the dielectric breakdown event is indicated by a red dashed line.

a radius of 15 nm and to 8 µA for a cell with a radius of 10 nm. This corresponds to

a four times lower power consumption at the onset of the dielectric breakdown event.13

Therefore, a viable way to reduce the power and energy consumption in ta-C confined-cell

devices for cyclic switching is to reduce the lateral dimensions of the ta-C cell.

5.7 Summary & Conclusion

In this chapter, it has been shown that the developed electro-thermal simulation model

(which consisted of randomly distributed sp2-rich clusters in an sp3-rich insulating matrix

to constitute the material composition of ta-C confined-cell memory devices, sp2 content

13The applied voltage is used to calculate the power reduction.
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dependent heat conductivities, and field- and temperature-dependent conductivities of the

sp3-rich clusters see Table 3.4), could successfully reproduce the experimentally obtained

conductivity ranging over ≈4 orders of magnitude, all the way from Ohmic conduction

until dielectric breakdown.

This very good agreement between experiment and simulation allowed for the first time

— to the best of knowledge — to show, on the device-scale and using realistic electrical

switching pulses, that local variations in conductivity between sp2-rich and sp3-rich clus-

ters in ta-C confined-cells cause localised Joule heating, which in turn, leads to locally

very high temperatures (here 1615 K) at the onset of the dielectric breakdown. The pres-

ence of one or several hot spots as a consequence of localised Joule heating via randomly

distributed conductive sp2-rich clusters in an otherwise insulating sp3 matrix, is likely the

origin of the formation of one (or several) conductive filament(s) that is/are established

during electrical switching from the HRS into the LRS. This finding is in agreement with

reports from MD simulations that suggest that the switching event from the HRS into the

LRS is triggered by a temperature activated process.

Further, it has been shown that the choice of the series load resistor has a great impact on

the required applied voltage that is necessary to achieve these high temperatures. It has

been shown for ta-C confined-cell devices with an sp2 content of 0.5 that Joule heating

becomes inefficient for load resistors with resistance values of 50 kΩ due to the increased

voltage drop across the series load resistor.

It has also been shown, for confined-cell devices with 5 nm thick ta-C layers, that a de-

crease of the lateral dimensions (area) from 50 nm diameters to 10 nm diameters led to

a significant reduction of the current and power that is required to achieve the high tem-

peratures present in the ta-C cell at the onset of the dielectric breakdown. This finding
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is likely to have important consequences in terms of addressing the issue of limited cy-

cling endurance in ta-C memory devices (i.e endurance should be improved by the scaling

down of cell size).
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Chapter 6

Oxygenated Amorphous Carbon (a-COx) De-

vices

As discussed in the previous chapters, a key challenge for amorphous carbon-based mem-

ory is cyclic endurance primarily due to the thermodynamical stability of the LRS. Be-

sides, if fast and reliable SCM systems were to be successfully developed, a more funda-

mental problem limits the performance of current computer systems, namely the need for

the constant transfer of data between the central processor (CPU) and the memory in or-

der to carry out logic and arithmetic operations. This physical separation between storage

and memory, the so-called von Neumann bottleneck, leads to limitations in computational

speed and significant ‘wasted’ power (see Section 1.6). The limitations caused by the von

Neumann bottleneck can be overcome or alleviated by carrying out certain logic and arith-

metic operations directly in the memory and hence, overcoming the physical separation

between logic and memory (see Section 1.6). This so-called memcomputing approach

can be carried out using memristive devices.

To investigate the memristive capabilities of amorphous carbon based devices and to over-

come the poor cyclic endurance of ta-C, confined-cell devices based on oxygenated amor-

phous carbon were employed due to their superior cyclic endurance in comparison to ta-C

[63]. Details about the device fabrication are provided in Section 3.1.2 and [63], testing
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methods are provided in Section 3.1.3 and an overview of the electro-thermal model used

to model the temperature distribution during reverse switching from the LRS into the HRS

is provided in Sections 3.2.1 and 3.2.3.

In the first part of this chapter, the switching energies of confined-cell devices with

18 ± 2 nm thick a-COx layers are investigated and their resilience towards high SET ener-

gies and powers is demonstrated. Further, the role played by oxygen atoms in the switch-

ing process is highlighted. For the remainder of this thesis the uncertainty in the film

thickness of ± 2 nm will be omitted for better readability and the given film thicknesses

refer to the nominal film thicknesses.

The second part, and main focus of this chapter, is on the examination of the memristive

capabilities of a-COx confined-cell devices, and in particular their ability to provide the

multilevel and accumulation properties that underpin memcomputing type applications.

The last part of this chapter aims to shine light on the accumulation properties of a-COx

confined-cell devices by investigating the role temperature plays during a series of input

pulses. The temperature distribution was obtained using computational (FE) modelling of

experimentally applied (accumulative) input pulses.

Partial results of the presented work in this chapter have been published in:

• ”Carbon-Based Resistive Memories,” in 2016 IEEE 8th International Memory Work-

shop (IMW), pp. 1–4, IEEE, 2016. DOI: 10.1109/IMW.2016.7493569

• ”Memristive Effects in Oxygenated Amorphous Carbon Nanodevices,” in 2017 Nan-

otechnology., vol. 29, no. 3, p. 035201, 2017. DOI: 10.1088/1361-6528/aa9a18
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Section 6.1 Switching Characteristics

6.1 Switching Characteristics

To explore the resilience of confined-cell devices with 18 nm thick a-COx layers towards

high SET energies and powers, a randomly selected confined-cell device with a 100 nm

diameter was SET from the pristine state (65 MΩ) into the LRS (23 kΩ) using an SMU

IV sweep from 0 V to 7 V. Afterwards, the device was cycled more than ten times to

ensure that it was still functional, using RESET pulses with amplitudes of −2.0 V and

durations of 7 ns and SET pulses with amplitudes of 3.2 V and durations of 50 ns. It has

to be noted that during the work of this thesis reversible switching after an initial SMU

SET was only achieved in confined-cell devices based on a-COx (and not on ta-C).

Exemplar results for a pair of RESET and SET pulses applied to the a-COx confined-cell

device are shown in Figure 6.1. The RESET pulse that switched the device back into the

HRS (1.4 MΩ) is shown in Figure 6.1a, with the corresponding current response shown in

Figure 6.1b. No load resistor was present during the reverse switching from the LRS into

the HRS. The timelines of the current signals are adjusted to the voltage output timelines,

which allows the direct comparison of the current response to the applied voltage. The

energy required to RESET the device was 1.0 pJ. The subsequent SET pulse that switched

the device from the HRS into the LRS (29 kΩ) is shown in Figure 6.1c. The voltage drop

is plotted across the device (including the 40 kΩ load resistor) as well as across the a-COx

confined-cell, to highlight the load shift at the switching event. The corresponding current

response shown in Figure 6.1d. The energy required to SET the device was 2.3 pJ. The

energy calculation is based on the voltage drop across the a-COx cell.

The RESET speed shown in Figure 6.1 is significantly faster than previously reported

RESET speeds of a-COx-based memory devices (see Table 2.2), the cycling between

states is more than 40 times lower in energy than NAND flash cells and is comparable
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Figure 6.1: a) Applied RESET voltage over a confined-cell device (100 nm diameter) with an
18 nm thick a-COx layer. b) Current response of the device during the reversible switching
from the LRS into the HRS. c) SET pulse including the 40 kΩ Rser (blue) and the voltage drop
across the a-COx cell itself (red). d) Current response during the switching (SET) process
[taken from [46]].

to (or better than) other emerging technologies (see Tables 1.1 and 1.2). The obtained

switching speed and writing energy consumption of a-COx confined-cell devices fulfil

the requirements for SCM as denoted in Table 1.1. Furthermore, the RESET speed and

current is comparable to devices based on ta-C (see Figure 4.5), which indicates that

the reverse switching speed — at least for ns-pulses — is not adversely affected by the

addition of oxygen.
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6.2 Thermal Annealing

As mentioned in Section 6.1, for sub-10 ns RESET pulses the reverse switching currents

in a-COx are similar to the RESET currents observed in ta-C-based devices (see Fig-

ure 4.5). However, the addition of oxygen and a bipolar operation mode was found to

greatly enhance the switching endurance [63]. Since the RESET process is the endurance

limiting step for reversible cycling of memories based on amorphous carbon, it is likely

that a different kind of thermal behaviour, due to the role played by oxygen atoms in

the switching process, is responsible for the high switching endurance in a-COx-based

memory devices.

To confirm (or otherwise disprove) the expectation of a different thermal dependence

of the resistance for a-COx-based devices than for ta-C films and devices, a randomly

selected confined-cell device with a 100 nm diameter and an 18 nm thick a-COx layer was

SET into the LRS (RLRS = 3.6 kΩ) via an I-V sweep to 11 V (see Figure 6.2a), and then

the device resistance monitored during various heating and cooling cycles.

The evolution of the resistance is shown in Figure 6.2b during the annealing cycle of this

confined-cell device as it was heated from 40 ◦C to 300 ◦C (at 2 ◦C min−1), when it was be-

ing held at 300 ◦C for 5 min, and then during the cooling down cycle (also at 2 ◦C min−1).

Between 40 ◦C and 236 ◦C, the resistance decreased with temperature and showed, as

previously observed [63]. A thermally-activated behaviour can be well described by a

logσR ∼ Ea/(kBT ) behaviour between RT and 118 ◦C with Ea being the activation energy

for conduction (here Ea = 36 meV), kB the Boltzmann constant and T the temperature

in Kelvin. Between 236 ◦C and 300 ◦C however, the resistance of the a-COx confined-

cell device increased, with the increase being quite dramatic (three orders of magnitude)

between 260 ◦C and 300 ◦C. Such increases of resistance with temperature are in stark
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Figure 6.2: a) I-V curve for an a-COx confined-cell device (used to SET the device into LRS
for the measurements reported in b). The voltage was measured across the device itself (i.e.
with the voltage drop across the series resistor subtracted) and the inset shows the I-V curve
with the current on a log scale. b) The variation of resistance as a function of annealing
temperature for the device of a) in the LRS; the fit of the activation energies Ea,LRS and Ea,HRS

is shown in b) [taken from [137]].

contrast to that reported for films and devices based on elemental amorphous carbon,

where the resistance decreases continuously with increasing temperatures (cf. Figure 4.8)

[65, 92, 114, 116]. The resistance increase with increasing temperature in the a-COx case

can be linked to a re-distribution of oxygen within the cell during heating, with the oxygen

breaking up the low-resistivity C-C sp2 (graphite-like) rings and inducing high-resistivity

C sp3 (diamond-like) hybridization (see [63]). Upon cooling down to 40 ◦C, the resis-

tance of the a-COx devices followed again a logσR ∼ Ea/(kBT ) type behaviour, with an

activation energy in this case of Ea = 93 meV. The value of the activation energy, to-

gether with the high resistance of the device, suggests that electrical transport was mainly

governed by hopping between localised states (see Section 2.4.2). However, without de-

tailed knowledge of the DOS it is not possible to determine the activation energy more
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accurately (see discussion in Section 5.1) and hence, the value provided for Ea should be

interpreted as an estimation.

The data shown in Figure 6.2b indicate that, in addition to the electrochemical mecha-

nism already identified [63] as the main driving force for the resistive switching process

in a-COx-based devices, there is most likely also a thermal component involved in the

switching, most probably as a result of thermally-driven diffusion of oxygen ions. In any

case, the results of Figures 6.2a and 6.2b indicate that, by appropriate control of a-COx

cell excitation conditions, it should be possible to access intermediate resistance levels,

lying between the LRS and the HRS, something that has not been previously reported and

so is explored in the next sections.

6.3 Multilevel States

To evaluate the possibility of accessing multilevel resistance states, a-COx confined-cell

devices were SET from the pristine state into the LRS (via an I-V sweep), input excita-

tions (voltage pulses) of various amplitudes and durations were applied, and the resulting

device resistance measured. Typical results are shown in Figure 6.3. Here, the device

was first cycled six times between a partial RESET state, with a resistance of roughly (on

average) 1 MΩ, and the SET state by a sequence of (partial) RESET pulses having a dura-

tion of 7 ns and an amplitude of −2.1 V (top electrode grounded) and SET pulses of 60 ns

duration and 3.2 V amplitude. Following this, a sequence of seven 7 ns/−2.5 V RESET

pulses was applied, again interleaved with 60 ns/3.2 V SET excitations, and a significantly

higher HRS resistance of around (on average) 50 MΩ was achieved. The results of Fig-

ure 6.3 show that multilevel states can indeed be accessed in a-COx confined-cell devices,
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Figure 6.3: Cycling between multilevel resistance states in a-COx confined-cell devices. Here
three programmed states are shown, one LRS (0-level) state and two HRS (1-level and 2-
level) states. The 0-level is accessed (programmed) using 60 ns/3.2 V pulses, while the 1-level
and 2-level states are accessed using 7 ns/−2.1 V and 7 ns/−2.5 V pulses respectively. (Note
that the dashed lines are simply guides for the eye [taken from [137]].)

although in this case cycle-to-cycle variation in resistance is not insignificant. Nonethe-

less, three distinct and readily distinguishable resistance levels are observed, equivalent to

the storage of 11/2 bits per cell (specifically, in this case, the 0-level (SET level) has resis-

tances between 41 kΩ to 88 kΩ, the 1-level (partial RESET level) has resistances between

450 kΩ to 2.7 MΩ and the 2-level (full RESET) lies between 9.5 MΩ to 59 MΩ).

6.4 Memristive Effects

The exploitation of accumulation properties has previously been used successfully in

phase-change memory type devices to carry out addition, subtraction, multiplication and
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division directly in high-order bases (e.g. base-10), as well as more complex arithmetic

processing such as parallel factorisation [19, 62]. Moreover, once such arithmetic com-

putations are completed, the result is automatically stored in the device (which is in it-

self a non-volatile memory) that carried out the calculation. Thus, processing and mem-

ory can be carried out simultaneously by one and the same device, providing a form of

computing-in-memory, or memcomputing (see Section 1.6). An alternative view of this

kind of processing is as a form of non-von Neumann computing, in which the need (of

a conventional von Neumann computer) to constantly transfer data between the process-

ing unit and an external memory is removed, so potentially saving significant amounts of

energy and potentially increasing computation speeds.

As a first step to test the memristive capability of a-COx confined-cell devices for the po-

tential use in memcomputing applications, the effect of short (nanosecond), low amplitude

(partial) RESET pulses on the resistance state of a randomly selected a-COx confined-cell

with an 18 nm thick a-COx layer was investigated. Here, the device was switched from

the pristine state into the LRS (1.8 kΩ) during an IV sweep to −14 V. Subsequently,

16 gradual RESET pulses with a duration of 8 ns and an amplitude of −0.5 V were ap-

plied. To study the effect of the amplitude on the resistance state, this was followed by

15 partial RESET pulses with the same duration and an amplitude of −0.7 V. The resis-

tance of the device was read out after each RESET pulse and is shown in Figure 6.4 as a

function of the pulse number. The resistance increased monotonously with every RESET

pulse. The observed resistance increase is likely a consequence of high temperatures due

to Joule heating (see Section 6.2), with the potential aid of the electric field helping to

re-distribute the oxygen away from the tungsten electrode (this correlation between resis-

tance and temperature evolution in the device is examined in more detail in Section 6.6)

[63]. A subsequent increase of the amplitude to −0.7 V causes further increase of the

resistance, which is attributed to more efficient Joule-heating accompanied by a larger
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Figure 6.4: Resistance evolution of the LRS in a confined-cell device with an 18 nm thick
a-COx layer as a function of partial RESET pulses with durations of 8 ns and amplitudes of
−0.5 V and −0.7 V, respectively.

electric field affecting the oxygen distribution in the cell. This finding suggests that short

RESET pulses of varying amplitude allow for the control of cell resistance when moving

from the LRS to the HRS configurations. Hence, the observed accumulation response

of a-COx confined-cell devices to partial RESET pulses makes a-COx-based devices vi-

able candidates for memcomputing type applications. The memcomputing capabilities of

a-COx confined-cell devices are investigated in the following section in more detail.

6.5 Low Energy Memcomputing

The basic process of accumulation-based computing involves the excitation of a memory-

type device by a predetermined number of identical electrical pulses. Note that, unlike in
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the case for multilevel storage, accumulation does not require that all individual resistance

levels are distinguishable, merely that it is possible to (reliably and repeatably) determine

that the pre-set resistance threshold has been reached/passed (cf. Section 1.6). This in

turn requires that (or at least is easier to do if) the cell resistance changes monotonically

as the number of input pulses increases, and that the window between the resistances of

the cell after the input of (n-1) and n input pulses is sufficiently large.

To investigate the memcomputing capabilities of a-COx confined-cell devices, a randomly

selected device with an 18 nm thick a-COx layer was SET into the LRS state via an I-V

sweep (in this case leading to a SET resistance of ≈2.5 kΩ). Then, a series of short (8 ns),

low voltage (−0.9 V) input pulses was applied, while the resistance was measured after

each applied partial RESET pulse. The results are shown in Figure 6.5a, here for the case

of 30 successive input pulses. The variation in resistance with pulse number displays a

sigmoidal-like response, which is well-suited to the implementation of an accumulator

[62]. Moreover, between pulses 13 and 16 the resistance changes are well separated,

allowing the ready placement of a suitable detection threshold. For example we could, as

shown in Figure 6.5a, place the decision threshold between state-15 and state-16 (since

the resistance window between those states is relatively large) and this would yield a

base-16, or hexadecimal, accumulator. Such an accumulator would also have relatively

low energy consumption, since the energy consumed per input pulse is around the pJ level

or lower (see Figure 6.5b).

The response as obtained in Figure 6.5a could for instance be used for hexadecimal ad-

dition. For example, to add 710 and 1110 (i.e. 7 + B in hexadecimal notation) one would

first input 7 pulses (the augend of the addition that is being carried out) to an a-COx

confined-cell device having the accumulator response of Figure 6.5a; this would take the

cell to state-7 on the R vs. PulseNumber curve. Then, input pulses equal in number to
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Figure 6.5: a) An accumulator-type response in an a-COx confined-cell obtained by the input
of a series of identical −0.9 V/8 ns pulses. Also shown is position of a (resistance) decision
threshold for use as a base-16 accumulator. b) The energy consumed per pulse (first 20
pulses only shown) for the accumulator of a) [taken from [137]].

the addend (1110) would be applied to the device. However, in this case after receipt of

pulse #9 of this addend sequence of 11 pulses, the cell resistance would cross the pre-set

decision threshold (set between state-15 and state-16), this would be detected (by addi-

tional circuitry) and the cell would be SET back into the LRS state before the remaining

addend pulses (i.e. pulses #10 and #11) were inputted (cf. Section 1.6). After completion

of this whole process the a-COx cell would be in state-2, and one SET process would have

been carried out. By this means the cell has computed the addition 7 + B in hexadecimal

and the result is given by the number of times the cell has been SET (due to passing the

decision threshold) along with the number stored in the cell itself. To access this stored

number, further identical input pulses to the cell are required until it again crosses the

decision threshold. Fourteen (14) pulses would be needed in this case, which is the (base-

16) complement of the number we require (2). Thus 710 + 1110 = 1810 (or in hexadecimal,
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7 + B = 12).

To carry out the accumulator based computation of the hexadecimal addition (716 +B16) as

above requires additional circuitry for both the detection of the crossing of the (resistance)

decision threshold, the recovery of a number from its complement and the carry-over op-

eration. However, such circuitry is not necessarily complicated; for example crossing of

the decision threshold could be achieved by standard circuits used for resistive memory

read out, in tandem with a comparator, while the generation of a number from its comple-

ment can be achieved by using a complementary accumulator cell (see [62]).

Moreover, it should be noted that the major benefit of using the accumulator approach is

that a single nanoscale a-COx memory cell has, in the above example, carried out the core

part of the task of adding two hexadecimal numbers and, importantly, stored the result

in the self-same cell. Furthermore, the process is relatively fast (here 8 ns), fairly energy

efficient (≈1 pJ per pulse) and easily parallelised (for the provision of multi-integer or

fixed-point numbers).

Thus, it would seem that a-COx memory-type devices are potentially well-suited to mem-

computing type operations. While the above example demonstrated the use of an ac-

cumulator arranged for base-16 or hexadecimal operation, other bases can of course be

implemented by using different input pulse amplitudes and/or durations. In addition, it

should be noted that programming the accumulator response as a form of gradual RE-

SET (i.e. moving from the LRS to the HRS state) not only unlocks the high switching

speeds inherent to the RESET process, but leads to a reduction in energy consumption

as a computation proceeds. This is due to the decreasing current flow with increasing

pulse number, as shown in Figure 6.6. Indeed, after around 20 input pulses the switching

current is here comparable to the noise in the measurement circuit.
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Figure 6.6: a) The switching current in the a-COx confined-cell accumulator of Figure 6.5a
for input pulse #1, #11 and #20 (inset shows the applied voltage pulse). b) The variation of
(maximum) current during accumulator switching as a function of input pulse number [taken
from [137]].

6.6 Thermal Analysis

The last part of this chapter aims to shine light on the role temperature plays in the a-COx

confined-cell accumulator response of Figure 6.5a, and further aims to validate that the

SMU read out at 0.2 V did not affect the resistance state of the DUT during the experi-

ments carried out to obtain the accumulator response of Figure 6.5a.

The computational model introduced in Section 3.2.3 assumed that the conductivity of

the a-COx confined-cell devices in the LRS (the starting state of the accumulation-based

experiments) is almost entirely dominated by a conductive filament consisting of highly

reduced a-COx in an otherwise insulating sp3-rich matrix [63].
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The conductivity of the conductive, sp2-rich filament was set equal to the sp2 carbon

conductivity and the diameter of the conductive filament was chosen such that the re-

sistance of the a-COx confined-cell matched the experimentally determined resistance of

Figure 6.5a. Therefore, the diameter of the conductive filament was set to 8.8 nm for

the simulation of the first gradual RESET pulse of Figure 6.5a. This is in good agreement

with a reported carbon filament diameter of 10 nm [43]. The sp2 content of the conductive

filament was set to 0.55 in the simulation.The diameter of the conductive filament (in the

simulation) was reduced and adjusted to ensure that the simulated resistance corresponded

to the experimentally measured resistance state of the preceding gradual RESET pulse in

the results of Figure 6.5. More details about the computational model are provided in

Section 3.2.3 and the most important material parameters are provided in Table 3.4.

The maximum temperatures that were obtained in the simulation of the first gradual RE-

SET pulse (−0.9 V/8 ns) on the LRS (2.5 kΩ) of Figure 6.5a are shown in Figure 6.7a.

The highest temperatures, with T ≈ 2.5 × 103 ◦C, were reached in the mid-plane of the

filament at z = 9 nm after ≈3.6 ns into the gradual RESET pulse. The obtained high tem-

peratures seem reasonable bearing in mind that the resistance of the initial LRS was fairly

low (2.5 kΩ). In addition, it was reported that conductive carbon filaments can withstand

even higher temperatures [43]. Further, the obtained maximum temperatures are well

above the temperatures that were found necessary in Figure 6.2 to induce the transition

from the LRS into the HRS, and confirm that despite the presence of high electric fields,

temperature is likely to play an important role in the reverse switching process from the

LRS into the HRS in a-COx devices.

The maximum temperatures that were obtained in the simulation of the read out of the re-

sistance level (0.2 V/100 ms) of the LRS (2.5 kΩ) of Figure 6.5a are shown in Figure 6.7b.

The maximum temperature T = 137 ◦C was reached in the mid-plane of the filament at
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Figure 6.7: a) Simulated maximum temperature distribution in the conductive filament of an
a-COx confined-cell after ≈3.6 ns into the gradual RESET pulse (−0.9 V/8 ns) on the initial LRS
(2.5 kΩ) of Figure 6.5a. b) Maximum temperature during read out (0.2 V/100 ms) of the (same)
LRS as in a).

z = 9 nm and remained significantly below the temperature threshold of 236 ◦C that was

found necessary in Figure 6.2 to induce the transition from the LRS into the HRS (in the

absence of aiding electrical fields), thus confirming that the read out of the resistance state

at 0.2 V did indeed not alter the resistance state itself.

To investigate the relation between the different resistance levels (a consequence of the ac-

cumulator response) in Figure 6.5a and the temperatures in the conductive filament during

the simulation of the gradual RESET pulses, the highest temperatures Tmax obtained (in

the simulation) are compared with the experimentally measured device resistances in Fig-

ure 6.8. The maximum temperatures are normalised by the highest temperature Tmax,initial

that was obtained for the initial LRS (2.5 kΩ) in Figure 6.5a.

The ratio of maximum temperature Tmax/Tmax,initial decreased strongly with the device re-

sistance increasing, and dropped to ≈10 % (≈250 ◦C) of its original value at around 30 kΩ.
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Figure 6.8: Evolution of the normalised maximum temperature in the conductive filament
Tmax/Tmax,initial of an a-COx confined-cell device during the accumulator response shown in
Figure 6.5a.

This is close to the temperature threshold of 236 ◦C that was found necessary in Figure 6.2

to induce the transition from the LRS into the HRS (in the absence of aiding electri-

cal fields) and provides an explanation why the resistance level of the HRS stabilises at

≈100 kΩ in Figure 6.5a and did not increase further, despite the fact that the gradual

RESET pulse (−0.9 V/8 ns) was kept constant.

Further, this finding highlights the importance of a current limiter to control the resistance

of the LRS during the switching from the HRS into the LRS, which is crucial for amor-

phous carbon-based memories that do not have a dopant (like oxygen) that facilitates the

RESET process.
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6.7 Summary & Conclusion

In this chapter, it has been shown that a-COx confined-cell devices can be reversibly

switched from the LRS into the HRS using sub-10 ns pulses. In addition, the resilience of

a-COx-based devices (in contrast to ta-C-based devices) was shown by resetting devices

after they have been switched from the pristine state into the LRS using long, quasi-static

IV sweeps. This capability of devices based on a-COx as the active material could be

linked to the presence of oxygen by showing that the transition from the LRS into the

HRS can solely be induced by high temperatures (>236 ◦C), in the absence of aiding

electric fields. A solely temperature induced transition from the LRS into the HRS is in

contrast to devices based on ta-C as the active material.

Additionally, it has been shown that simple two-terminal, nanoscaled, a-COx confined-

cell devices, in addition to their previously demonstrated non-volatile binary memory

functionality, possess memristive type capabilities including the ability to provide the

multilevel and accumulation properties that underpin computing type applications. Specif-

ically, the storage of 3-levels ( 11/2 bits) per individual cell was successfully demonstrated,

as well as an accumulator-like response suited to the provision of arithmetic processing.

Exemplarily, a base-16, or hexadecimal, accumulator was implemented and it was shown

how such a device can carry out hexadecimal addition and simultaneously store the result-

ing sum in a single a-COx confined-cell, all using fast (sub-10 ns) and low-energy (sub-pJ)

input pulses.
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Conclusions & Future Work

7.1 Conclusions

In Chapter 1 the performance gap between DRAM and NAND Flash was identified and

the performance characteristic of different contenders for so-called storage class memo-

ries that lie in this gap were presented. The different contenders were classified according

to the International Technology Roadmap for Semiconductors (2015) to either ‘Prototyp-

ical Storage Technologies’ or ‘Emerging Storage Technologies’. It was pointed out that

insulating amorphous carbon memory devices (e.g. based on ta-C or a-COx), whose op-

erating principle is based on the reversible formation of a conductive sp2 network, in an

otherwise amorphous, insulating carbon matrix, have recently gained traction due to their

fast switching speeds, good scalability and simple deposition techniques.

It was pointed out in Chapter 2 that a clear understanding of the resistance switching

mechanism in carbon-based resistive-switching memories is still lacking, and that the

main challenges to achieve high cycling endurances in memories based on elemental tetra-

hedral amorphous carbon originate from their current sensitivity during the SET process.

This is exacerbated by the fact that fast switching speeds lead to a high parasitic capacitive

current, making it difficult to reset the device from the LRS into the HRS. Oxygenated
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amorphous carbon was presented as an alternative to ta-C with potentially better cycling

(switching endurance) properties, due to oxygen facilitating the RESET process.

The device characteristics and the material properties of ta-C and a-COx active layers were

presented in Chapter 3. The experimental device setups that were used to evaluate the

switching performance of (spatially) confined ta-C and a-COx devices were introduced,

together with the characteristics of the finite-element model that was used to study the

Joule heating effects in both, ta-C and a-COx confined-cell devices.

In Chapter 4, the switching performance of ta-C-based confined-cell devices with a 5 nm

thick ta-C layer, which is — to the best of knowledge — the thinnest ta-C layer reported

to show switching thus far, was presented. Notably, evidence was provided that the SET

process is not governed by the electric field alone. The achieved switching speeds were

well below 10 ns, which is – to the best of knowledge – the fastest SET speed reported

to date for ta-C-based devices. In agreement with literature it was shown that the ac-

tual switching process from the pristine state into the LRS (i.e. the dielectric breakdown

event) takes place on a sub-ns time scale. Further, data retention was obtained for >300 s

at 450 ◦C, which is — to the best of knowledge — the highest reported temperature for

any ta-C-based memory device thus far, showing the potential suitability of ta-C mem-

ories for high temperature applications. The reverse switching speed from the LRS into

the HRS was observed to be well below 8 ns, which is significantly faster than in previ-

ous reports. Additionally, and in agreement with literature, evidence was shown that the

switching from the HRS into the LRS is likely caused by the formation of a conductive

sp2-rich carbon filament. Moving to smaller cells should therefore improve the cyclability

(switching endurance) of ta-C devices, since smaller switching currents lead, in general,

to the formation of smaller and more easily disrupted sp2 filaments.

In Chapter 5, it was shown that the developed electro-thermal computational model,
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which used randomly distributed sp2 and sp3-rich clusters, can successfully reproduce

experimentally obtained conductivity ranging over ≈4 orders of magnitude, all the way

from Ohmic conduction until dielectric breakdown. It was also shown — to the best of

knowledge — that as a result of the local variations in conductivity between sp2 and sp3-

rich clusters, Joule heating caused locally very high temperatures that, in turn, triggered

a temperature activated process leading to material modifications (i.e. switching) in tetra-

hedral amorphous carbon. Further, it was shown that Joule heating becomes inefficient

for high load resistor values. Additionally, it was shown that smaller lateral dimensions of

the ta-C cell reduce the required switching current and hence, the energy consumption.

In Chapter 6, the switching performance, temperature stability and memristive capa-

bilities of spatially confined oxygenated carbon memory devices was investigated. The

achieved RESET speeds were also below 10 ns, which is – to the best of knowledge – the

fastest switching speeds reported for a-COx-based devices. The SET speeds were around

50 ns, which is en par with the fastest SET speeds reported previously. Additionally,

the improved resilience of a-COx in comparison to ta-C was demonstrated by reversibly

switching devices that had been initially set to the LRS using quasi-static IV sweeps up

to 12 V. It was shown that the observed resilience towards large currents can be attributed

to the presence of oxygen and further, it was shown that the transition from the LRS into

the HRS can solely be induced by high temperatures (>236 ◦C), in the absence of large

aiding electrical fields.

Multilevel storage in a-COx (3-levels or 11/2 bits per individual cell) was also achieved for

the first time, paving the way for an increased storage density. Further, the accumulator-

like response of a-COx confined-cell devices towards partial RESET pulses was investi-

gated. The latter was used to demonstrate the potential suitability of a-COx confined-cell

devices for arithmetic processing in a non von Neumann computational architecture. For
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this purpose it was shown that a base-16, or hexadecimal, accumulator can be successfully

implemented. Further, it was shown how hexadecimal addition can be carried out, while

the result is simultaneously being stored. It was shown that this arithmetic processing

can be carried out in a single a-COx confined-cell, using fast (sub-10 ns) and low-energy

(sub-pJ) input pulses.

The updated version of Table 2.2, including the results achieved within the framework of

this thesis is presented in Table 7.1. The state-of-the-art benchmarks that were achieved

in the work of this thesis are highlighted (*). Further, it has was shown that the actual

switching event switching a ta-C confined-cell memory device, from the HRS into the

LRS, is faster than 1 ns.

In conclusion, the work of this thesis has contributed to the development of new insights

and understanding of the switching processes in ta-C and a-COx memory devices, it has

demonstrated enhanced switching performances in such devices (e.g. in terms of switch-

ing speed, switching power/energy, cell size) and it has also successfully demonstrated

that a-COx devices can offer additional functionalities including multi-level storage and

memcomputing (the latter via the accumulation regime).
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Table 7.1: Specifications of device performances for ta-C and a-COx.

ta-C a-COx

Maturity Emerging Emerging

Film
5 nm(*) 18 nm(*,15)

Thickness

Device
50 nm(*) 50 nm(*,15)

Diameter

SET Speed 7 ns(*) 50 ns(*,15)

RESET Speed 7 ns(*) 7 ns(*)

Retention
300 s @ 450 ◦C(*) 104 s @ 85 ◦C(15)

Time

Endurance
103(14) 4 × 104(15)

Cycles

Write Energy
<1 pJ(14) ≈2 pJ(*)

per Bit

(*) Achieved within the framework of this thesis
(14) Taken from [119]
(15) Taken from [63]
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7.2 Future Work

The presented work demonstrated the switching capabilities of memory devices based on

ta-C and a-COx and shed light on the challenges of cyclic endurance in ta-C based devices.

To improve the cycling endurance, precise current control is paramount. Improvements

in this direction can include the use of a transistor as current control unit and a reduction

of parasitics to lower the excess current. Further, an improved device performance can be

achieved by reducing the lateral and vertical dimensions. The latter would additionally

increase the temperature gradient during the reset process, which is assumed to aid the

reversible switching process. To shine more light onto the switching process in ta-C,

the full cycling dynamics including dielectric breakdown and reversible switching could

be investigated and potentially be described, in simulations, by implementing a cluster

re-organisation that is based on a rate equation approach.

Additional functionalities, like multilevel storage and beyond von Neumann computation

seem to be better addressable in filamentary memories based on a bipolar operation mode

and hence, a-COx appears as a good candidate for potential memcomputing applications

due to the low energy consumption of partial RESET series input pulses. Future work in

this respect could include further development of the accumulator approach to carrying

out arithmetic computations, for example by examining the time-stability of the interme-

diate resistance states of the accumulator, and by exploring intra- and inter-cell variations

in switching properties (i.e. does each cell switch after the same number of pulses on

repeated accumulations, is there significant inter-cell variability in the accumulator re-

sponse). The use of multi-level resistance states and the accumulator response might also

be explored for neuromorphic computing approaches, where the inherent stochastic nature

of the conductive filament is beneficial in mimicking artificial synapses and neurons.
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Appendix A

MD Simulations

The MD simulations were carried out in collaboration with work in this thesis by Dr.

Federico Zipoli at IBM Research Zurich (under the auspices of the EU FP7 project

CareRAMM). The MD model used a constant volume approach which reflects that the

volume of the ta-C cell cannot change due to the spatial confinement between the elec-

trodes and the side walls (see Figure 3.2). The initial sp3 content was set to 0.5 in all

simulations.

Partial results of the presented work in this chapter have been published in:

• ”Carbon-Based Resistive Memories,” in 2016 IEEE 8th International Memory Work-

shop (IMW), pp. 1–4, IEEE, 2016. DOI: 10.1109/IMW.2016.7493569

A.1 Dihedral Angle

The influence of the dihedral angle, discussed in Section 2.4.1, on the conductivity of ta-C

is visualised in Figure A.1. The delocalised, bonding π orbitals are approximated by 3D

Gaussians and centred between the carbon atoms, whereas the anti-bonding π∗ orbitals are

approximated by 3D Gaussians centred on the carbon atoms. The conducting π orbitals
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are indicated as ‘good’ bonds (red). The anti-bonding π∗ orbitals are indicated as ‘bad’

bonds (blue).
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Figure A.1: The delocalised π orbitals (‘good’ bonds) are shown in red and the anti-bonding
π∗ orbitals (‘bad’ bonds) in blue.
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A.2 Thermostat

Figure A.2: The electrode temperature TL (bottom), the side wall temperature TL (side) and
the temperature of the cylindric area around the conductive filament TH were controlled in the
MD model.
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Section A.3 SET Process

A.3 SET Process

Figure A.3: Formation of a conjugated π-network after TH was set to 2500 K. A conductive
percolation path bridging the two electrodes is established after 11.0 ns (red).
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Section A.3 SET Process

Figure A.5: The diameter of the conductive filament - formed in the SET process - is confined
to small dimensions (few nanometers) in the presence of large lateral temperature gradients
(TL – TH).
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Appendix A MD Simulations

A.4 RESET Process

Figure A.6: Rupture of the percolating, conductive filament (bottom left in red) after the device
was quenched by setting the thermostat temperatures TH = 1800 K, TL(side) = 1200 K and
TL(bottom) = 1000 K to 500 K within 0.2 ns (top right). The conductive path is ruptured after
0.7 ns (bottom right), i.e. after the quenching step [modified from [46]].
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Section A.4 RESET Process

Figure A.7: The reverse switching process is promoted by large temperature gradients at the
filament-electrode interface (TL – TH).
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Appendix A MD Simulations

A.5 Summary

The results of the MD simulations have shown that large lateral temperature gradients

help to confine the diameter of the thermodynamically stable, sp2-rich filament that is

formed during the SET process. Further, simulations of the RESET process have shown

that large temperature gradients at the filament-electrode interface help in destabilising

the conductive filament and thus, promote the reverse switching process. These findings

are important as they show ways of improving the cyclic endurance in ta-C based devices

(see discussion in Section 2.5).

Figure A.8: Large lateral temperature gradients assist in confining the conductive filament
laterally, and large temperature gradients at the filament-electrode interface aid the rupture of
the filament.
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Appendix B

Device Characterisation

B.1 Raman Spectroscopy

The multi-wavelength Raman measurements and analysis was carried out by Dr. A. K.

Ott at Cambridge University under the auspices of the FP7 project CareRAMM.
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Section B.1 Raman Spectroscopy

Fi
gu

re
B

.2
:G

pe
ak

di
sp

er
si

on
,Y

ou
ng

’s
m

od
ul

us
,d

en
si

ty
an

d
sp

3
co

nt
en

to
f5

nm
,1

0
nm

,1
5

nm
an

d
20

nm
th

ic
k

as
-d

ep
os

ite
d

ta
-C

fil
m

s.

165



Appendix B Device Characterisation

B.2 Cross-Bar Devices

Table B.1: Properties of ta-C cross-bar devices.

Thickness sp3 content Density Young’s Modulus

Batch 1 5 nm 0.5 2.63 g cm−3 417 GPa

Batch 2 10 nm 0.7 2.87 g cm−3 541 GPa

Batch 3 15 nm 0.6 2.71 g cm−3 462 GPa

Batch 4 20 nm 0.7 2.92 g cm−3 571 GPa
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Section B.3 Confined-Cell Devices

B.3 Confined-Cell Devices

Table B.2: Properties of ta-C confined-cell devices.

Thickness sp3 content Density Young’s Modulus

Batch 5 5 nm 0.5 2.66 g cm−3 439 GPa

Batch 6 10 nm 0.5 2.62 g cm−3 419 GPa

Batch 7 15 nm 0.4 2.53 g cm−3 372 GPa

Batch 8 20 nm 0.5 2.62 g cm−3 419 GPa
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Appendix B Device Characterisation

B.4 X-ray Photoelectron Spectroscopy (XPS)

Figure B.3: a) The C1s peak area analysis indicates that carbon is predominantly sp2 bonded
at zero oxygen partial pressure during the carbon thin film deposition; and predominantly sp3

bonded in b), in the presence of oxygen forming gas (p = 2.5 µbar) in the deposition chamber
[Figure adapted from [63]].
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Reihe Schlüsseltechnologien / Key Technologies. Jülich: Forschungszentrum

Jülich GmbH Zentralbibliothek, Verlag, Feb. 2016, vol. 113. Cited on pages 10,

11, 13, 14, 15, 16, I, and XIII.

[33] T. Baiatu, R. Waser, and K.-H. Hardtl, “dc Electrical Degradation of Perovskite-

Type Titanates: III, A Model of the Mechanism,” Journal of the American Ceramic

Society, vol. 73, no. 6, pp. 1663–1673, Jun. 1990. Cited on page 10.

XIX



Bibliography

[34] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching

memories–nanoionic mechanisms, prospects, and challenges,” Advanced Materi-

als, vol. 21, no. 25-26, pp. 2632–2663, 2009. Cited on page 11.

[35] R. Mahapatra, A. B. Horsfall, and N. G. Wright, “Forming-Free Reversible Bipolar

Resistive Switching Behavior in Al-Doped HfO2 Metal–Insulator–Metal Devices,”

Journal of Electronic Materials, vol. 41, no. 4, pp. 656–659, Feb. 2012. Cited on

page 11.

[36] R. Mahapatra, S. Maji, A. B. Horsfall, and N. G. Wright, “Temperature impact on

switching characteristics of resistive memory devices with HfOx/TiOx/HfOx stack

dielectric,” Microelectronic Engineering, vol. 138, pp. 118–121, Apr. 2015. Cited

on page 11.

[37] D. Ielmini, R. Bruchhaus, and R. Waser, “Thermochemical resistive switching:

materials, mechanisms, and scaling projections,” Phase Transitions, vol. 84, no. 7,

pp. 570–602, Jul. 2011. Cited on page 11.
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