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Abstract 34 

Understanding what determines species’ geographic distributions is crucial for assessing 35 

global change threats to biodiversity. Measuring limits on distributions is usually, and 36 

necessarily, done with data at large geographic extents and coarse spatial resolution. 37 

However, survival of individuals is determined by processes that happen at small spatial 38 

scales. The relative abundance of coexisting species (i.e. ‘community structure’) reflects 39 

assembly processes occurring at small scales, and are often available for relatively extensive 40 

areas, so could be useful for explaining species distributions. We demonstrate that Bayesian 41 

Network Inference (BNI) can overcome several challenges to including community structure 42 

into studies of species distributions, despite having been little used to date. We hypothesized 43 

that the relative abundance of coexisting species can improve predictions of species 44 

distributions.  In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to 45 

incorporate community structure into Species Distribution Models (SDMs), alongside 46 

environmental information. Information on species associations improved SDM predictions 47 

of community structure and species distributions moderately, though for some habitat 48 

specialists the deviance explained increased by up to 15%. We demonstrate that most species 49 

associations (95%) were positive and occurred between species with ecologically similar 50 

traits. This suggests that SDM improvement could be because species co-occurrences are a 51 

proxy for local ecological processes. Our study shows that Bayesian Networks, when 52 

interpreted carefully, can be used to include local conditions into measurements of species’ 53 

large-scale distributions, and this information can improve the predictions of species 54 

distributions.  55 
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Quaternary syndromes. 58 

 59 

Introduction 60 

Current topics in ecology such as biological invasions or species responses to global change 61 

rely on a better understanding of the drivers governing species distributions [1,2]. Although 62 

at large geographical scales climatic conditions are the main factor determining species 63 

distributions (but see [3]), several studies have shown that non-climatic biotic and abiotic 64 

factors (e.g. landscape dynamics, disturbance regimes, micro-topography, biotic interactions 65 

between species such as competition or predation) are important at finer spatial resolutions 66 

[4–9]. Therefore, information reflecting local ecological processes would be valuable for 67 

improving forecasts of responses to environmental change by species distribution models 68 

(SDMs). Nevertheless this information is rarely included (but see [10]).  69 

A potential reason why local factors are not usually included in SDMs is the lack of suitable 70 

fine scale data over large areas. Although data on micro-environmental and biotic interactions 71 

are usually not available at a large scale, for many taxa, in particular plant species, the 72 

relative abundance of coexisting species in a community is well documented across large 73 

geographic areas (e.g. in vegetation databases such as SIVIM (http://www.sivim.info/sivi/), 74 

BDN (http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/), 75 

BIEN (http://bien.nceas.ucsb.edu/bien/)). An additional challenge specific to biotic 76 

interactions is finding statistical techniques to deal with the large amount of potential 77 

interactions. There have been previous attempts to include biotic information into SDMs [11], 78 

one approach is to focus on a small number of pair-wise species dependencies (< 25 species) 79 

http://bien.nceas.ucsb.edu/bien/)
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[12–15] and another to use surrogates for biotic interactions, such as species richness [16]. 80 

However, these approaches are either unable to assess all potential species interactions (there 81 

are N
2
 –N / 2 possible pair-wise interactions in a community that contains N species), or they 82 

rely on extremely detailed ecological knowledge. Finally, the statistical challenge is made 83 

much more complicated when considering that species live in complex interaction networks, 84 

where co-occurrence patterns are affected by not only pair-wise but also indirect interactions 85 

influenced by the presence of a third species [17,18]. 86 

Bayesian network inference (BNI) can be a useful tool to overcome these major challenges. 87 

These analyses are used to study the conditional dependencies (represented by directed 88 

edges) among a set of either abiotic (i.e. climatic, edaphic or land-use-related) and/or biotic 89 

(i.e. species abundances) variables (represented by nodes). BNI has been widely used to study 90 

interaction patterns in molecular biology, medical informatics, economics and social science 91 

research [19–23]. However, BNI has only been recently applied to ecological research 92 

questions: to microbial community ecology, to the study of assembly rules in invertebrate and 93 

bird species, to inform management decisions, and to disentangle direct and indirect 94 

associations between environmental variables and species distribution patterns [24–31]. BNI 95 

estimates the effect of specific interactions on a focal species considering all the potential 96 

direct and indirect relationships among the rest of species in the community. To calculate the 97 

effect of every direct and indirect interaction requires the estimation of a very high number of 98 

parameters (i.e. assigning a probability to each potential combination of states of every 99 

species). This is unfeasible using regression techniques, but is possible with BNI due to its 100 

heuristic nature. BNI uses a heuristic search of graphs proposed by different algorithms, 101 

which are sequentially compared to the dataset through goodness-of-fit statistics. The graph 102 

that best matches the relationships between variables in the data is kept [23]. In addition, BNI 103 

decomposes the global probability distribution of the abundance of a focal node (species), 104 
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into a local probability distribution, only affected by a set of conditioning variables [23]. 105 

Thus, BNI can combine abiotic and biotic information, and consider the potential effects of 106 

the composition and relative abundance of every species in a community (hereafter 107 

‘community structure’) on a focal species [23,32]. Based on this information, BNI 108 

summarizes the entire community structure by calculating the strength of the effect of ‘parent 109 

nodes’ on ‘child nodes’[23,32], and each species can be a parent or child to any other species. 110 

Larsen et al. (2012) [29] were the first to show that BNI can be combined with regression 111 

techniques to improve predictions of species’ relative abundances in a community. They 112 

suggested that BNI can be used to identify the most influential parent and child nodes for a 113 

target species. Each of these nodes (species) can be entered into SDMs, which are used to 114 

predict the target species’ distribution and resulting community structure.  115 

Although BNI can identify patterns in species associations, it cannot disentangle the two 116 

major underlying processes shaping the relative abundance of species in a community, biotic 117 

interactions and environmental filtering [33,34]. Biotic interactions can prevent a species 118 

from occupying all areas that are environmentally suitable for it (e.g. competition, predation), 119 

but at the same time extend the distribution of a given species into areas that would be 120 

environmentally unsuitable in the absence of the biotic interaction (e.g. facilitative 121 

interactions) [35,36]. Environmental filtering restricts species distributions to sites where 122 

environmental conditions are suitable for a given species. This includes environmental 123 

conditions that vary at large spatial scales (e.g. climate or lithology), and micro-124 

environmental factors that vary at local scales (e.g. pH, soil humidity or shade). At local 125 

scales, the presence of species with certain requirements could indicate the availability of 126 

suitable micro-environmental conditions for other species that share similar environmental 127 

requirements. Thus, the same pattern of species co-occurrence could be caused by both biotic 128 
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interactions and micro-environmental filtering. As the use of co-occurrences to study biotic 129 

interactions becomes more widespread, it is important to consider how these two processes 130 

could be disentangled. A solution to this problem might lie in addressing the ecological 131 

requirements of the species involved, as indicated by species traits, and we explore how this 132 

could be done.  133 

In this study, we hypothesized that the relative abundance of coexisting species can improve 134 

the predictions of species geographic distributions made by SDMs. For 1570 assemblages of 135 

68 Mediterranean woody plant species, we applied (BNI) to incorporate community structure 136 

into SDMs. We assessed the accuracy of predictions of species abundance and community 137 

structure based on SDMs with and without information on coexisting species. We used 138 

species trait data to interpret the ecological processes potentially underlying the species 139 

associations inferred by BNI.  140 

Materials and methods 141 

Overview of the methodology 142 

Following [29], we used BNI to infer a) the “overall network” (i.e. considering all species 143 

and environmental variables) and select the parent nodes of each focal species and the sign of 144 

the inter-specific association; and b) another network for each species, in which only the 145 

focal species and environmental factors were included. Then, for each species we fitted two 146 

SDMs in which the predictor variables were the parent nodes of the focal species in each of 147 

the two networks (hereafter called “Env+Bio” and “Env” predictors respectively). Next, we 148 

compared the ability of SDMs with the two predictor types to predict the abundance of each 149 

species, and the community structure of each site.  150 
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In order to explore the ecological processes underlying the inferred species associations, we 151 

classified 68 Mediterranean plant species into two groups, each consisting of similar 152 

combinations of life-history traits and ecological requirements (see Species syndromes 153 

below). We used a chi-square test to assess whether species with positive or negative 154 

abundance co-variance tend to be more similar (belong to the same group) or dissimilar 155 

(belong to different groups) than expected by chance. 156 

Study site and community structure database 157 

Within the Iberian Peninsula (mainland Portugal and Spain) (S1 Fig), we aimed to select a 158 

pool of plant species that do not have extremely different environmental requirements, for 159 

which differences in their distributions are entirely driven by the local conditions (for 160 

example avoiding the mix of plants from alpine and saltmarsh vegetation). In order to detect 161 

effects of the local environment or biotic interactions, the study species needed to differ in 162 

subtler aspects of their niche (for example shade or soil moisture requirements). The goal was 163 

to obtain assemblages that contain many of the same species, but that have different 164 

community structure (i.e. relative abundances). In order to obtain this species pool, we 165 

selected a species with restricted habitat requirements but which is broadly distributed 166 

throughout the Iberian Peninsula, the cork-oak (Quercus suber), and the pool of plant species 167 

associated with it. To determine the species associated with Q. suber, we used data from the 168 

SIVIM database (Sistema de Información de la Vegetación Ibérica y Macaronésica; 169 

http://www.sivim.info/sivi/). SIVIM compiles plant community information from 170 

phytosociological relevés (hereafter ‘plots’) consisting of directly submitted data, 171 

publications, and unpublished documents (e.g. theses or reports) [37]. For each plot the 172 

species composition and relative abundance (percentage of cover) of each species was 173 

reported (more details in Methods appendix). We extracted all SIVIM plots in the Iberian 174 

http://www.sivim.info/sivi/
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Peninsula in which Q. suber was present, and the relative abundances of co-occurring species 175 

in those plots. This resulted in 1570 plots occupied by 68 plant species (S1 Table). 176 

Environmental variables 177 

Each plot was characterized based on the following environmental variables: climate, 178 

geology, land use (agriculture or forest-shrub), orientation, and dominant growth-form of the 179 

vegetation (trees or shrubs). Climatic variables were obtained from a dynamical downscaling 180 

method using the Weather Research and Forecasting model [38] (more details in Methods 181 

appendix). Geological information was obtained from the digital geological map data 182 

provided by OneGeology-Europe (http://www.onegeology.org/), and each plot was assigned 183 

to the dominant geological type, i.e. that which covered ≥70% of the 10 km grid cell in which 184 

each plot was located. If no single type fulfilled this requirement, the plot was assigned to a 185 

type called “mix” (more details about geological types in Methods appendix). Land use 186 

information was extracted from the European Environment Agency website (Corine Land 187 

Cover 2006; http://www.eea.europa.eu/). We classified each 10 km UTM (Universal 188 

Transverse Mercator coordinates system) grid cell into just one of the two main land uses, 189 

agriculture and forest-shrub, based on the dominant land use type, or into a third category 190 

(mix) when neither of the land uses covered 70% of the surface. Orientation determines the 191 

solar irradiance a site receives, affecting the microclimatic conditions, and resulting in larger 192 

hydric stress in south oriented aspects. Plot orientation (North (N), South (S), East (E), West 193 

(W), North-East (NE), North-West (NW), South-East (SE), South-West (SW)) was extracted 194 

from the information included in each entry of the SIVIM database. The dominant growth 195 

form (trees or shrubs) was considered “tree” if the percent of tree cover reported for that plot 196 

was more than 50%, and “shrub” if tree cover was less than 25%. If the percentage of tree 197 

cover was between 25-50% the plot was considered a ‘mix’. In order to account for trends in 198 

http://www.onegeology.org/
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the data across large geographical distances, the longitude and latitude of the grid cell in 199 

which each plot was located was also used as an environmental variable. 200 

Network inference 201 

We used BNI to infer relationships between the relative abundance of the 68 plant species 202 

across the 1570 plots. BNI can identify which variables (i.e. the relative species abundance or 203 

environmental conditions in each plot) significantly condition the probability of finding a 204 

given abundance of a given species [39]. The nodes of these networks represent the variables, 205 

while the directed edges (links) show the dependency between the two variables involved. 206 

Directed edges point from parent to child nodes. As species abundance was recorded as 207 

ranges of percent cover, we used multinomial Bayesian networks, in which all the variables 208 

are categorical (see details about the criteria to define categories and selection of the 209 

algorithms to infer the network in the Methods appendix). 210 

Milns et al (2010) pointed out that directionality in a BN is hard to assess as there are 211 

multiple configurations of the network that can equally maximize the match with the 212 

observed relationships among variables. In order to overcome this issue, we used a two-step 213 

process following Sachs et al. [40]: (i) Candidate associations among random variables were 214 

identified using the 50% cut-off. The network structure is learned 500 times and the links and 215 

directions that consistently (i.e. in > 50% of the runs) show a given direction across the 500 216 

runs are selected). The number of runs in which a link showed the same direction was used to 217 

quantify the robustness of the direction. (ii) Significant associations were identified based on 218 

the threshold approach proposed by Scutari et al. (2013) [41]. For all significant links, we 219 

calculated the sign of the interaction using a Jonckheere trend test for ordered factors [42] 220 

(see Network inference section in Methods appendix for more details about the order of the 221 
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categorical variables). We partially constrained the inference by not allowing the species 222 

abundance to influence environmental variables and by not allowing any environmental 223 

variable to influence the following variables: the temperature in the warmest quarter of the 224 

year, mean annual precipitation, geological type and orientation. All analyses were performed 225 

using the package “bnlearn” implemented in the software R version 3.1.2 [32]. 226 

Similarity in species life-history traits and ecological 227 

requirements: species syndromes 228 

The plant species that currently co-exist in the Mediterranean basin are a mixture of species 229 

that originated at different times and under different environments [43]. The dry, hot 230 

summers of the Mediterranean climate originated in the late Pliocene [44]. At that time, most 231 

of the plants in the Mediterranean that required summer rain became extinct and 232 

predominantly those species with traits that confer tolerance to summer drought persisted 233 

until today [45–48]. However, other plant lineages that also currently inhabit Mediterranean 234 

areas originated more recently and have evolved under Mediterranean climate [44]. 235 

Differences in the selective pressures experienced by these two groups of Mediterranean 236 

plant lineages has resulted in different morphological-functional trait combinations and 237 

regeneration niche requirements, which we term “syndromes” [43,46]. The recent lineages 238 

(with a Quaternary syndrome) are characterized by non-sclerophyllous leaves, facultative 239 

summer deciduousness, hermaphroditic, large, colored flowers, small seeds and pollination 240 

by large insects. Ancient lineages (with a Tertiary syndrome) are evergreen plants with 241 

sclerophyllous leaves, reduced-greenish-unisexual flowers, medium to large seeds, fleshy 242 

fruits dispersed by vertebrates, and pollination by wind or small insects [49].  243 
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Most of the plant species considered in this study (60 out of 68) belong to genera that have 244 

been previously assigned to one of these two syndromes according to the outcome of a 245 

principal component analysis based on their ecological traits and regeneration niche 246 

requirements [43,46] (33 as Tertiary (T) and 27 as Quaternary (Q); S1 Table). We therefore 247 

restricted this part of the analysis to those 60 species. We used a χ
2 

test to assess whether 248 

positive abundance covariance between species that have similar (the same syndrome) or 249 

dissimilar (different syndromes) ecological requirements occur more frequently than 250 

expected by chance.    251 

Species distribution models 252 

We fitted SDMs to each of the 68 species. Following Larsen et al. (2012) [29] , we used the 253 

network structure learned using BNI to identify the parent nodes of each species and used 254 

those nodes as explanatory variables. We used the mean percent of cover of each species in 255 

each plot as the dependent variable to construct a generalized additive model (GAM) with a 256 

binomial error distribution, including the longitude and latitude interaction of the 10 km grid 257 

cell as a smoothing term [50–52]. Cross-validation was used to estimate the optimal amount 258 

of smoothing (λ). During cross-validation, the optimal λ, and the effective degrees of freedom 259 

was obtained by choosing different values of λ and then minimizing the sum of squares of the 260 

linear regression penalized by the smoothing splines. This was performed using “mgcv” 261 

package implemented in the software R version 3.1.2 (Wood 2011). We fitted the GAMs 262 

using all the parent nodes of each focal species identified by BNI (usually 1-4 variables per 263 

species, S2 Table). If the species did not have any parent node, the GAM was fitted using the 264 

intercept as the only explanatory variable (indicated as ~ 1, in S2 Table). For longitude, 265 

latitude, mean temperature of warmest quarter and annual mean precipitation we used 266 

continuous data in the GAMs. As we aim to compare predictions made with the best available 267 
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information on the drivers of each species distribution in the presence and absence of species 268 

co-occurrence data, the environmental predictors may differ between Env and Env+Bio 269 

SDMs for a given species (S2 Table). Finally, we also asked whether the models used 270 

following this procedure predicted the observed abundances better than the models based on 271 

randomly selected variables (Methods in appendix). 272 

 273 

Comparing SDMs with “Env+Bio” and ”Env” variables 274 

Following Larsen et al. (2012) [29], for each species we fitted two models using “Env+Bio” 275 

and “Env” predictor variables separately. To identify “Env+Bio” variables we inferred a 276 

single BN considering all species relative abundances and environmental variables, so that 277 

either species or environmental variables could be parent nodes of the focal species. For 278 

“Env” variables, we inferred network structure for each species, which contained the focal 279 

species’ relative abundance and all the environmental variables. In this way, the parent nodes 280 

of each species could only be environmental variables.  281 

The two sets of predictor variables represent different knowledge situations. ‘Env’ asks 282 

which environmental variables we would think are important if we knew nothing about co-283 

occurring species. Env+Bio asks which environmental variables and species co-occurrences 284 

are important when we have knowledge of both of these factors.  285 

In order to evaluate the explanatory power of the SDMs with and without biotic data, we 286 

randomly selected two thirds of the plots in which each species was present to construct 287 

GAMs with the two sets of relevant explanatory variables (‘calibration plots’). The same 288 

plots were used to evaluate SDMs with and without biotic data. In order to account for 289 

variation in the number of explanatory variables used in “Env+Bio” and “Env” models, we 290 
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calculated the Akaike Information Criterion (AIC) of each model, which penalizes against the 291 

addition of explanatory variables. We compared AICs between models using a paired t-test. 292 

We also calculated the percentage of variance explained by the two GAMs as a proxy for the 293 

absolute quality of the models. The analyses were performed using the R package “MASS” 294 

and “mgcv” implemented in the software R version 3.1.2 [53,54]. 295 

In order to evaluate the predictive power of SDMs, we used the GAMs constructed with 296 

calibration plots to predict the community structure (species composition and abundance) in 297 

the remaining one third of the plots (‘validation plots’). We calculated the Spearman 298 

correlation coefficient (rho) between the observed species abundance and the abundances 299 

predicted by the “Env+Bio” and “Env” predictors. A paired t-test on the rho values was used 300 

to test whether the predictions by the GAMs using “Env+Bio” or “Env” predictors correlate 301 

better with the observed abundances. Finally, we used the Bray-Curtis (BC) dissimilarity 302 

index to estimate the similarity between the predicted and observed community structure in 303 

each of the validation plots. Hereafter we will use the similarity index 1-BC (where 1 is the 304 

most similar, implying better predictions and 0 the most dissimilar and implying worse 305 

predictions) and refer it as “BC similarity index”. A paired t-test was used to test whether the 306 

BC similarity index was higher when the “Env+Bio” or “Env” predictors were used. These 307 

analyses were performed using the R package “vegan” implemented in the software R 308 

version 3.1.2 [55].  309 

Results  310 

Overall BNI network 311 
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The overall network, including all species and environmental variables, contained a total of 312 

138 significant links (Fig 1), 104 of which were positive (75%) and 20 (15%) negative. For 313 

14 links the Jonckheere trend was not strong enough to assign a sign. Of the 138 significant 314 

links, 75 occurred between species. Most species-species links (95%) were positive, 315 

indicating that the probability of finding a higher abundance of one species increases when 316 

the other species is also abundant. Only four links between species were negative (Table S3). 317 

On average, each species had 1.94 ± 0.08 (mean ± SE) parent nodes and 1.29 ± 0.18 children 318 

nodes.  319 

 320 

Figure 1. Network structure learned using Bayesian network inference. Only significant 321 

links are presented, and grey lines indicating links with no sign was detected. Grey and black 322 

circles represent species with a Quaternary and Tertiary syndrome respectively. White circles 323 

are either environmental variables (mean temperature in the warmest quarter of the year 324 

(Twarm), annual precipitation (anualP), soil types (soil), land use (landuse), orientation 325 

(orientation), dominant form (dom_form) and spatial location (spac)) or species with no 326 

syndrome associated. Continuous and dashed lines represent negative and positive 327 
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associations respectively. Complete names for species are provided in the appendix and 328 

environmental variable categories in the methods section. 329 

The accuracy of SDMs when informed by community structure  330 

Across all species, the “Env+Bio” predictors resulted in models of species abundance that 331 

have greater explanatory power than did the “Env” predictors (mean (±SE) decrement in AIC 332 

= -146 ± 100; tpaired = -3.97, df = 67, p-value < 0.0001) (S1 Table). Across all species, the 333 

models of species abundance using “Env+Bio” predictors explains a slight but significantly 334 

higher percentage of deviance than the models using “Env” predictors, (mean increment in 335 

the percentage of deviance explained (±SE) = 1.5 % ± 0.42; tpaired = 3.54, df = 67, p-value< 336 

0.001), but there was considerable variation across species, ranging from species for which 337 

the model using “Env+Bio” predictors decreased the deviance explained by 6% 338 

(Pterospartum tridentatum) to species in which the model using “Env+Bio” predictors 339 

increased the deviance explained by 15% (Salix atrocinerea). The models using “Env+Bio” 340 

predictors also predicted the observed abundances better than the models based on randomly 341 

selected variables; on average, Env+Bio predictors explained a higher percentage of deviance 342 

(3.18 % ± 1.29; tpaired = 2.36, df = 67, p-value= 0.01) (more details in Methods in appendix). 343 

Including community structure in SDMs improved the accuracy of the species’ observed 344 

abundance predictions, as there was a slight but significant higher correlation between the 345 

observed and the predicted abundances using “Env+Bio” predictors than using “Env” 346 

predictors (mean increment in rho (±SE) = 0.02 ± 0.006; tpaired = -3.1, df = 67, p-value < 347 

0.002) (Fig 2). However, there were six species for which the models using “Env+Bio” 348 

predictors resulted in an increment of the Spearman correlation coefficient above 0.10, 349 

indicating a considerably more accurate prediction of these species’ abundances (S2 Table). 350 
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Models using “Env+Bio” predictors also improved the predictions of the whole community 351 

structure in each plot. Overall, the Bray-Curtis similarity index was higher when using 352 

“Env+Bio” predictors than when using “Env” predictors (mean increment in Bray-Curtis 353 

similarity index (±SE) = 0.1 ± 0.004; N = 524; tpaired = 2.1861, df = 523, p-value < 0.0001) 354 

(Fig 3). 355 

 356 

Figure 2. Correlation between the prediction of “Env” and “Env + Bio” models. Rho 357 

coefficient of the correlation between the observed species abundances and abundances 358 

predicted by “Env+Bio” vs. the correlation coefficient between abundances observed and 359 
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predicted by “Env” models, for the 68 species. Black points above the line represent species 360 

with higher Spearman’s rho correlation coefficients values using “Env+Bio” rather than 361 

“Env” predictors. The opposite is true for white points below the line. 362 

 363 

Figure 3. Correlation between the Bray-Curtis similarity index using “Env” and “Env + 364 

Bio models”. Bray-Curtis similarity index between the observed community structure and the 365 

community structure predicted by “Env+Bio” vs. the similarity index between the observed 366 

community structure and that predicted by “Env” models, for the 524 validation plots. Values 367 

of Bray-Curtis similarity index closer to 1 imply that community structure is predicted more 368 



18 

 

accurately and values closer to 0 indicate less accurate predictions. Black points above the 369 

line represent plots with higher similarity between the observed values and those predicted 370 

using the “Env+Bio” rather than the “Env” predictors. The opposite is true for white points 371 

below the line. 372 

Potential ecological processes underlying abundance covariance 373 

between species 374 

The links between species inferred by BNI do not occur between random pairs of species. 375 

Positive links between species with the same syndrome (Tertiary-Tertiary (TT) or 376 

Quaternary-Quaternary (QQ)) are significantly more frequent than expected by chance (χ2 = 377 

26.68, df = 1, p-value < 0.0001). The links were significantly more frequent between species 378 

with the same syndrome than between species with a different syndrome (Number of links: 379 

QQ = 20, TT = 32, QT = 4, TQ = 7; χ2 = 63, df = 3, p-value < 0.0001), and especially 380 

between those sharing a Tertiary syndrome (Table S3). Only four of the significant links were 381 

negative, which prevented us from performing any statistical inference for negative links. 382 

Discussion 383 

For 80% of the 68 species, including information on community structure in SDMs appears 384 

to improve predictions of species distributions. The improvements in SDM performance are 385 

of a similar magnitude to those recently found by [56], who used BNs to directly model biotic 386 

interactions and shared habitat requirements’ relationships among species in a community. 387 

Positive associations between Mediterranean woody plants tend to occur between 388 

ecologically similar (i.e. ‘Tertiary’) species. This association pattern suggests that positive 389 

associations might be driven by a match between the requirements of similar species and the 390 
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presence of environmental conditions, in particular shade and moisture. The species 391 

associations we observe appear to reflect the conditions that occur within vegetation plots, 392 

and so at a much finer spatial resolution than is usually possible to study with most sources of 393 

climate data. Moreover, we selected a study system in which the macro-climatic conditions 394 

did not vary greatly. Thus, we propose that species distribution predictions might have been 395 

improved because information about the community structure acts as a proxy for micro-396 

environmental conditions, for which direct data are not available. 397 

Incorporating community structure in SDMs 398 

SDM predictions of species distribution and community structure improved when 399 

information on community structure was included. Several of the species for which 400 

community structure information improved SDMs have specific habitat requirements. 401 

Corynephorus canescens requires bare and sandy soils [57], Salix atrocinerea occupies river 402 

banks and permanently wet soils [58], and Quercus canariensis  occupies shaded and humid 403 

canyons [59]. By contrast, species for which community structure information does not 404 

improve SDMs often have wide distributions in the Mediterranean region (Quercus ilex [59]) 405 

or are highly generalist and exhibit invasive behaviour in non-native regions (Brachypodium 406 

sylvaticum, Hedera helix [60–62]) (S2 Table). Therefore, the micro-environmental data 407 

added by community structure might be especially informative for species with restrictive 408 

ecological requirements, and less relevant for more generalist species. 409 

Information about micro-climatic conditions is rarely available across large spatial extents 410 

such as the Iberian Peninsula (though climate data can be downscaled [63]). However, 411 

information about the community structure of coexisting plant species is often available 412 
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across large extents, and can act as a substitute for micro-climatic information that cannot be 413 

otherwise included in SDMs.  414 

Using traits to explore ecological processes underlying abundance 415 

covariance between species  416 

We caution against simply assuming that co-occurrence patterns reflect biotic interactions. 417 

Instead, we suggest that asking whether associations occur between species with similar or 418 

dissimilar ecological requirements can provide insight into the predominance of biotic 419 

interactions and environmental filtering. Community assembly theory suggests that biotic 420 

interactions and environmental filtering can affect the distribution of trait values within 421 

communities (i.e. by permitting different sets of species to co-exist). Environmental filtering 422 

leads to coexisting species having similar traits as a result of shared ecological tolerances 423 

[64,65]. However, non-consumptive interactions like competition and facilitation can have 424 

varying effects on traits, depending on the traits and details of the interaction. For example, 425 

most studies focusing on competition have been based on the common assumption that 426 

species with similar ecological strategies compete more intensely for resources than species 427 

with different strategies [66] resulting in co-existing species having different traits. On the 428 

other hand, competition can magnify the effects of environmental filtering by causing species 429 

with similar traits to co-occur. For example, competition for light in shaded environments can 430 

lead to species with the same light-adaptation traits outcompeting species with different traits 431 

[67]. Positive biotic interactions such as facilitation (i.e. one species directly promotes the 432 

presence of another [68]) can result in a positive association between ecologically dissimilar 433 

species, because this ecological process is frequent between phylogenetically distant plant 434 

species [35,69,70]. Alternatively, facilitative interactions driven by shared mutualists such as 435 
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pollinators, can result in a positive association between plants with similar floral traits, as 436 

similar flowers enhance the attraction of shared pollinators [71]. The potential for different 437 

trait co-occurrence patterns to arise from the same type of biotic interactions therefore adds 438 

complexity to the interpretation of trait data to explain species co-occurrence. However, we 439 

suggest that considering traits appropriate to the situation can be highly informative when 440 

interpreting causes of co-occurrence patterns.  441 

 442 

The tendency for Tertiary species (which are associated with humid, shaded areas) to co-443 

occur, suggests that their presence can provide information about micro-environmental 444 

conditions, specifically shade and soil moisture (Fig 4). An alternative explanation could be 445 

that the species are facilitating each other’s reproduction by attracting shared pollinators [71]. 446 

However, only two of the 14 morphological and functional traits used to define Quaternary 447 

and Tertiary syndromes relate to the pollination syndromes [49]. In addition, the plants 448 

studied showed neither entomophily or anemophilia, so there was little inter-specific 449 

variation in floral morphology. Therefore, although we cannot completely rule out the 450 

possibility that facilitation through enhanced attraction of shared pollinators underlies the co-451 

occurrence of ecologically similar plant species in our study, we consider it unlikely. 452 

 453 
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 455 

Figure 4. Expected covariance between species involved in biotic interactions and 456 

environmental filtering. The combination of 3-d shapes and colors represent four different 457 

species. Species with similar requirements (syndromes) are represented by the same shape 458 

(pyramids: Tertiary (T), cubes: Quaternary(Q)), but distinct colors. Environmental filters are 459 

represented as grey ellipses in which only species with certain traits can survive (e.g. moist 460 

and shaded environments on north facing slopes where species with a tertiary syndrome can 461 

survive, or sunny environments on south facing slopes where quaternary species can survive: 462 

the 3-d shapes must match the shape of the ellipse). In the case of negative abundance 463 

covariance, competition is expected to be more intense between species with similar traits 464 
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and ecological requirements resulting in spatial segregation between species with similar 465 

requirements and traits, while environmental filtering will result in spatial segregation 466 

between species with dissimilar requirements and traits. In the case of positive abundance 467 

covariance, facilitation promotes the co-occurrence between species with dissimilar 468 

requirements and traits, while habitat filtering results in the co-occurrence of species with 469 

similar requirements and traits. 470 

 471 

Although environmental filtering appears to explain the co-occurrence patterns found, 472 

environmental filtering would also be expected to result in negative links among species that 473 

inhabit different habitat types, with the same frequency as positive links [72,73]. The 474 

predominance of positive links in our network (Fig 1 and TS 3) might be because the study 475 

system is defined by the presence of Quercus suber which has relatively restricted habitat 476 

requirements, resulting in insufficient environmental variation to reveal strong segregation 477 

between Quaternary and Tertiary species. The predominance of positive species associations 478 

has been also reported in other studies of species associations [25,74–76]. 479 

Although our results suggest that environmental filtering drives species associations, plant-480 

plant facilitation (positive interactions) between species with Quaternary and Tertiary 481 

syndromes is known to have played a crucial role in the persistence of the latter [46]. It may 482 

be possible to detect facilitation at an even finer spatial resolution than we studied. 483 

Quaternary-Tertiary facilitation may often take the form of improved seedling recruitment 484 

under adult plants, which might be apparent if networks are created using plant abundance 485 

data on the scale of a few meters. The ecological processes captured by network inference 486 

may therefore depend on the spatial resolution of the analysis. 487 
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In conclusion, we show how BNIs can improve understanding of species distributions, and 488 

how this could improve SDMs. The network structure provided by the BNI can be combined 489 

with ecological trait data to explore potential processes underlying species associations. 490 

However, these interpretations should be made cautiously, given that different mechanisms 491 

could result in similar patterns. Taking this into account, we consider it likely that species 492 

abundance in Mediterranean woody plant communities, at the resolution studied, arise from 493 

micro-environmental associations that are rarely detectable using standard SDM approaches.  494 
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SUPPORTING INFORMATION 786 

METHODS APPENDIX. Word file. Further detailed information about plot characterization, 787 

environmental variables, climatic variables, geological information, network inference, 788 

variables selection, and “Env+Bio” and ”Env” comparison. 789 

SUPPLEMENATRY MATERIAL. 790 

S1 Table. Sp. Syndrome. Names of the species and code used for each of them, syndrome 791 

assigned and reference supporting the assignment to that syndrome 792 

S2 Table. Env+Bio and Env Models. Summary of the SDMs constructed used for each 793 

species. Spearman correlation between their predictions and the observed abundance for each 794 

species, considering the validated plots (“validate”) and those used in the analysis (“test”), 795 

the deviance and deviance explained for each model, and the difference between the 796 

correlation with the observed data obtained using the “Env+Bio” and “Env” model for each 797 

species. 798 

S3 Table. Links. Summary for all the significant links inferred between species. Species 799 

involved (from: parent node, to: children node), strength and direction of the association 800 

based on the number of times that the link appears in the resampled networks, sign and 801 

significance of the sign based on the Jonckheere trend test and the syndrome code for the 802 

interspecific association.  803 

S1 Fig. Sampling area and location of the plots used in the study. 804 
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