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Designing scattering-free isotropic index profiles using phase-amplitude equations
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The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial
phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude
in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two
illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a
single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a “beam
shifter” at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.
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I. INTRODUCTION

Wave propagation through inhomogeneous media cannot
be solved analytically in most cases, even in one dimension.
The space of possible media is also too large to be able to
calculate reflection and transmission coefficients numerically
in a representative sample of cases, particularly in higher
dimensions where scattering can occur in various directions.
Instead, mathematical techniques have been used to make
progress, particularly with a view to designing nonscattering
media. In one dimension, media whose graded-index sus-
ceptibility satisfies the spatial Kramers–Kronig relations are
unidirectionally reflectionless for all angles of incidence [1,2]
and remain reflectionless in two dimensions when their profiles
are rescaled and translated along a second spatial coordinate.
The analogous problem in higher dimensions is much harder
to solve. Transformation optics [3,4] is a design procedure
that removes reflections but requires anisotropy and magnetic
properties in general. In this work we devise an alternative
mathematical method to design two-dimensional scattering-
free isotropic graded-index permittivity profiles based on
mapping out the amplitude distribution, and hence permittivity
profile, required to support a particular choice of phase in a
lossless medium.

Designing reflectionless planar media (with material prop-
erties varying in only one dimension) is a difficult problem in
itself and has been the consideration of considerable research
in recent years. There are a small number of cases which can be
solved exactly, such as the nonreflecting Pöschl–Teller media
[5,6] and Kay–Moses media [7]. The family of media whose
susceptibility satisfy the spatial Kramers–Kronig relations
[1,8] have been used to design disordered permittivity profiles
exhibiting perfect transmission [9,10] and perfectly absorbing
media [11]. Experimental realizations of near perfect absorbers
based on these media have been carried out in Refs. [12,13].

Finding reflectionless media that induce some specified
change in the wave is, unsurprisingly, a more difficult problem
than the one-dimensional analog. With the extra complications,
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however, comes a greater range of practical possibilities, such
as beam bending, shifting, or focusing, as well as cloaking.
Ray tracing (see, for example, Ref. [14]) can be used to design
inhomogeneous refractive index profiles that guide the wave’s
energy in some specified way. For example, radial index pro-
files, such as the Luneburg lens [15], can be used to focus light
from a plane wave to a single point. However, such an approach
relies on the validity of the geometrical optics approximation,
which will, for example, break down near the focus of the
lens, and also ignores the phenomenon of reflection. By
considering the exact wave problem, we are able to bypass such
difficulties, enabling a greater control of the sort of frequencies
to which our media can suppress diffraction. Transformation
optics [3,4] has been at the forefront of recent developments;
in particular leading to the practical possibility of cloaking
[16,17]. Instead of designing materials through coordinate
transformations, our approach is to put the exact phase rays at
the forefront and work out what sort of amplitude distribution
and permittivity profile is required to guide a wave through an
object without scattering. This “reverse engineering” approach
of working out the material properties leading to a prespecified
wave solution has been considered in two dimensions before
for long-range materials [18,19]. The nonmagnetic materials
designed in Ref. [18] are only designed to work approximately,
however, since the phase gradient specified does not have a
vanishing curl. We explore what nonmagnetic materials based
on exact reflectionless solutions can be found. We give two
applications of our method. First, we design media, periodic
in one direction, which transmit perfectly without reflection or
diffraction for waves incident perpendicular to the periodicity,
for a surprisingly large bandwidth, Second, we design two-
dimensional reflectionless beam shifters for a single frequency
and angle of incidence.

Consider the two-dimensional situation sketched in Fig. 1
for propagation of electromagnetic waves through a slab of ma-
terial embedded in free space. The out-of-plane component of
the electric field corresponding to a monochromatic transverse
electric (TE) polarized wave of frequency ω incident upon a
medium with permittivity ε satisfies the Helmholtz equation

[∇2 + k2
0ε

]
ϕ = 0, (1)
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FIG. 1. A wave of wave vector k = (kx,0,0) is incident from
free space onto a planar medium inhomogeneous in the (x,y) axis
characterized by a real-valued graded-index permittivity ε(x,y),
where ε → 1 as x → ±∞. The magnitude and direction of the
scattering from the medium will depend on the spatial variation
of ε.

where k0 = ω/c is the wave number. When ε is allowed to
be an arbitrary function of position, there are only a few
exactly solvable cases. Instead of attempting to solve directly,
it is convenient to rewrite the solution in terms of its positive
amplitude A and real-valued phase S as φ = A(x,y)eik0S(x,y).
Upon substitution back into Eq. (1) and separation into real
and imaginary parts, we obtain the following equations relating
the amplitude and phase to the permittivity, which we call the
phase-amplitude equations:

ε = (∇S)2 − ∇2A

k2
0A

,

0 = ∇ · (A2∇S), (2)

where we assume that the permittivity ε is real valued, such that
the second equation depends only on the amplitude and phase
of the wave. These two equations describe the intricate relation-
ship between amplitude and phase and are key to determining
the required distribution of amplitude (and hence permittivity)
needed to guide rays in a desired way. Reference [20] explores
special cases in which geometrical optics gives the exact
solution to Eqs. (2), i.e., when the “quantum potential” term
∇2A
A

vanishes. Instead, here we solve the second equation,
and use the first to obtain the corresponding permittivity.
The divergence-free quantity A2∇S is exactly proportional
to the time-averaged Poynting vector (more precisely S =

1
2μ0

A2∇S), and this equation is simply an energy-conservation
equation expressing the assumption that no current sources are
present in the medium. For any region of the (x,y) plane, the
rate of energy flow into the region via the electromagnetic field
must equal the rate of energy leaving the region; it is precisely
this simple principle that we exploit in our design of perfectly
transmitting two-dimensional lossless media.

For propagation in one dimension, where the energy flow
can only be forward or backward propagating, the second
phase-amplitude equation in (2) (the energy-conservation con-
dition) takes a particularly simple form:

d

dx

(
A2 dS

dx

)
= 0, (3)

which can immediately be integrated up to give

A = A0√
dS
dx

. (4)

By choosing a phase distribution S(x) corresponding to a plane
wave of unidirectional propagation asymptotically (e.g., S ∼ x

as x → ±∞), the corresponding amplitude is determined from
Eq. (4) and then a reflectionless permittivity profile can be
found from the first equation of (2). Alternatively, it is common
to take the geometrical optics limit k0 � |∇ε|/ε3/2, where
the remaining phase-amplitude equation is simply the eikonal
equation ε = ( dS

dx
)2 and the Wentzel–Kramers–Brillouin ap-

proximations are found [21].
Extending this to higher dimensions, where the energy

flow can be in a number of directions, is nontrivial. With
the aim of finding nonscattering media, we choose a phase
distribution S(x,y) corresponding to a plane wave of unidirec-
tional propagation asymptotically (i.e., still imposing S ∼ x

as x → ±∞) and then use Eqs. (2) to find a corresponding
amplitude and permittivity that permits such directional control
of the wavefronts.

II. THE CHARACTERISTIC METHOD

The second phase-amplitude equation in (2) can be written
as

∂S

∂x

∂A

∂x
+ ∂S

∂y

∂A

∂y
= −A

2
∇2S. (5)

This is now of the form for which the method of characteristics
may be applied (see, for example, Ref. [22] for a discussion of
this method). Therefore, the following set of equations should
be solved simultaneously:

dx

dλ
= ∂S

∂x
,

dy

dλ
= ∂S

∂y
,

dA

dλ
= −A

2
∇2S. (6)

Together with suitable boundary conditions, the resulting
parametric solution will map out a surface in (x,y,A) space.
The first two equations decouple from the third and can be
numerically solved to map out the rays (or characteristics) in
the (x,y) plane with the parameter λ parametrizing each ray (as
can be seen by taking their ratio dy

dx
= ∂yS

∂xS
). The different rays

are parametrized by a different parameter; say, μ, depending
on the specific form of the boundary condition. This is similar
to the method of transformation optics described in Ref. [4]
in that we start with a coordinate system (λ, μ) in which the
rays are globally straight and parallel as is supported by free
space, and then find a transformation (x(λ,μ), y(λ,μ)) to a
new coordinate system in which the rays behave in a particular
desired fashion. However, we do not confine our mappings to
be conformal (i.e., angle preserving). For example, we can just
as easily rescale the parameters λ and μ independently to our
convenience. In fact it is computationally quicker to rescale λ to
correspond to the actual distance along the ray when mapping
out the rays numerically, rather than the phase of the wave (so
curves of constant λ need not be the phase fronts). The situation
is described visually in Fig. 2.

In general, given a boundary condition for the amplitude
along a curve C in the (x,y) plane, there will be a unique
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FIG. 2. Plots of two of the rays. λ parametrizes the curve describ-
ing each ray while μ parametrizes the different rays.

solution in the region of the (x,y) plane spanned by the rays
passing through C. In particular, we can impose a uniform am-
plitude along a vertical line x = constant on the left (incident)
side of the medium. Together with a suitable choice of phase S,
this will correspond to a right-propagating plane wave incident
without reflection. As an example of this method, we describe
how periodic media can be designed to have no diffraction,
although we envisage the method being useful for the design of
other sorts of nonscattering media in two and three dimensions,
such as beam benders and lenses.

III. REFLECTION AND TRANSMISSION COEFFICIENTS
FOR A PERIODIC MEDIUM

To motivate the application of our method to designing
diffractionless gratings, we now review diffraction theory.
Consider a plane wave propagating in the positive x direction
impinging on a medium periodic in the y direction, with
periodicity a = 2π/kg , and sitting in free space: ε → 1 as
x → ±∞. Such a periodic medium will typically produce a
diffraction pattern. Relative to an angle of incidence θi with the
positive x axis, the possible angles for waves to scatter away
from the medium are

sin θn = sin θi + nkg

k0
. (7)

The periodicity of the profile ensures that the field outside the
medium can be naturally written as a Fourier series of reflected
and transmitted waves propagating in various directions:

ϕ =
{

eik0·x + ∑∞
n=−∞ ϕr,ne

ikr,n·x, x ∼ −∞∑∞
n=−∞ ϕt,ne

ikt,n·x, x ∼ +∞,
(8)

where

k0 =
√

k2
0 − k2

y x̂ + ky ŷ,

kr,n = −
√

k2
0 − (ky + nkg)2x̂ + (ky + nkg)ŷ,

kt,n =
√

k2
0 − (ky + nkg)2x̂ + (ky + nkg)ŷ. (9)

It is constructive to restrict ourselves to consideration of the
wave behavior in a single “unit cell” of the periodic medium.
More specifically, consider the region of the (x,y) plane
bounded by rays separated in the y direction by a distance
a. There can be no flow of energy into or out of such a region
when averaged over time, by construction. Therefore, any net
energy flow into the medium from x = −∞ must equate to the
energy flow exiting the medium at x = ∞. For example,∫ a/2

−a/2
dyS · x̂|x→−∞ =

∫ a/2

−a/2
dyS · x̂|x→+∞. (10)

Upon substitution of the periodic field (8) into the energy-
conservation equation (10), we obtain the following relation-
ship:

N∑
n=M

(Rn + Tn) = 1, (11)

where Rn and Tn are the nth reflection and transmission
coefficients, respectively, describing the power going into the
nth-order reflected and transmitted modes. They are given by

Rn =
√

k2
0 − (ky + nkg)2√

k2
0 − k2

y

|ϕr,n|2,

Tn =
√

k2
0 − (ky + nkg)2√

k2
0 − k2

y

|ϕt,n|2, (12)

where the coefficients in the solution, ϕr,n and ϕt,n, are
calculated as the Fourier components of Eq. (8) and the sum
is taken over all propagating modes (|ky + nkg| < k0). The
situation is illustrated in Fig. 3.

IV. THE NON-DIFFRACTING GRATING

In this section we apply the earlier method of characteristics
to the problem of designing a diffraction grating that does
not diffract. This means that all of the wave’s energy is

FIG. 3. A wave incident from the left upon a permittivity profile
ε(x,y) periodic in the y direction with period a. The resulting
diffraction pattern consists of a superposition of waves reflected and
transmitted at angles θn given by Eq. (7) with intensities given by
Eq. (12) (the reflected waves are not shown in this diagram to avoid
cluttering).

053818-3



C. G. KING, S. A. R. HORSLEY, AND T. G. PHILBIN PHYSICAL REVIEW A 97, 053818 (2018)

carried by the zeroth-order transmitted mode, with the rays
emerging undeviated. Strong diffraction is usually computed
numerically; however, we are giving a design procedure by
which one can specify where the diffraction is zero. There has
been some recent work on diffraction from periodic structures
exhibiting parity-time (PT) symmetry, illustrating the asym-
metry in the diffracted fields [23,24]. Also, the reflectivity
and transmissivity of discrete periodic gratings have been
studied as wavelength and incidence angle is varied in Ref. [25]
with a view to improving diffraction efficiency. In particular,
efficiency of diffraction to the first-order reflected mode has
been improved while suppressing the zeroth-order reflected
mode using plasmonic metasurfaces [26]. In our example we
show how to perform the polar opposite function; namely, to
improve the efficiency of energy going into the zeroth-order
transmitted mode by minimizing the energy going into all other
modes. However, our theory can be used to manipulate the
diffraction from a periodic structure in a quite arbitrary way.

Consider designing a profile for which diffraction is sup-
pressed for a particular wave number κ0 at and angle θi to the
x axis. Then, for a right-propagating plane wave with perfect
transmission without reflection, the phase should asymptot-
ically satisfy S ∼ cos θix + sin θiy as x → ±∞, and any
distortion in the rays should be confined within the medium. To
this end we make the following choice of phase: In the region
− a

2 < y < a
2 , let

S = cos θix + sin θiy + b erf
(x

c

)

+αxe−( x
d )2

[
1 + erf

( a
4 + y

h

)
erf

( a
4 − y

h

)]
, (13)

where erf(z) = 2√
π

∫ z

0 e−z̃2
dz̃ is the error function, which

switches smoothly from −1 to +1 with increasing argument.
This is then repeated periodically up and down the y axis.
For simplicity, propagation at normal incidence to the peri-
odicity (θi = 0) will be studied, with the understanding that
the method exactly extends to non-normal incidence. Due
to the y dependence of the phase, there will be a slight
discontinuity in the phase gradient across the edges of the
unit cell. However, the exponential decay of the error functions
ensures that this jump is exponentially small and therefore will
have a negligible effect in the calculation of the reflection and
transmission coefficients (indeed, with the parameter values
used in the example plotted in this section, the jump is five
orders of magnitude smaller than the maximal value of the
phase gradient).

The choice of phase given in Eq. (13) is of course by no
means a unique choice and it is therefore sensible to motivate
this particular choice. Bearing in mind that the aim is for
an invisible periodic profile, we need a phase corresponding
to a unidirectional wave either side of the medium and thus
we choose a phase with leading-order asymptotic behavior
S ∼ x as x → ±∞ corresponding to a right propagating wave
without lateral scattering. The x-dependent error function
determines the phase shift e2ik0b of the wave upon propagation
through the medium with the parameter c being a measure
of the scale upon which this shift occurs. This term has been
included to ensure that the relative permittivity remains above
unity so that the medium could be fabricated out of normal

FIG. 4. (a) The rays corresponding to the phase distribution
given in Eq. (13) in a unit cell where period a = 5λ0, b = 10λ0/π ,
c = d = 5λ0/π , h = 5λ0/4π , and α = 1/3. (b) The corresponding
amplitude resulting from solving the characteristic equations (6). (c)
The corresponding permittivity profile as determined from the first
equation in (2) corresponding to k0 = κ0.

dielectric media. The final term encodes the transverse depen-
dence of the phase, whose strength diminishes exponentially
away from the y axis. This term has been multiplied by x

to ensure an odd symmetry dependence of the phase on this
coordinate. This guarantees that the spacing between the rays
before and after propagation through the medium remains the
same i.e., the rays do not “bunch up” as a result of transmitting
through the medium.

Given a particular choice of wavelength λ0 = 2π/κ0 for
the incident plane wave, we have chosen a combination of
parameters in Eq. (13) which ensures that diffraction should be
possible (indeed the first four diffracted modes should be vis-
ible) but completely vanishes. The characteristic method can
then be used to numerically find the exact rays corresponding
to this choice of phase, as shown in Fig. 4(a). Notice that the
dependence of the medium transverse to the direction of prop-
agation acts to distort the rays (and correspondingly, the phase
fronts). However, upon propagation through the medium, the
rays respace evenly again. This method is exact and does not
rely on the approximation of geometrical optics, so a plane
wave incident upon the medium will emerge as a plane wave, if
the appropriate boundary condition for the amplitude, A → 1
as x → −∞, is applied. The final equation of (6) is solved
subject to this boundary condition and the resulting amplitude
is plotted in Fig. 4(b). The uniformity of the amplitude either
side of the medium implies that a monochromatic plane wave
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propagates through the medium without scattering (whether
in the form of reflection or diffraction). The corresponding
permittivity profile is plotted in Fig. 4(c). As expected, the
permittivity approaches that of free space as x → ±∞ with a
range of unity up to around 15 in the medium in this particular
example. We have chosen a combination of parameters such
that the absence of diffraction is a surprising result, but not
so high that the absence of reflection can be put down to
being in the geometrical optics limit, since the spatial variation
of the permittivity is on the order of a wavelength. In the
geometrical optics limit, the permittivity is simply given by the
eikonal equation ε = |∇S|2. However, in the exact wave optics,
to which the characteristic method applies, the permittivity
includes the quantum potential term −∇2A/k2

0A and this term
is significant (dominant) when the permittivity varies on a
scale on the order of (much shorter than) the wavelength. The
characteristic method can be used for any of these regimes.

The design process of such a nonscattering medium is
such that it is only expected to function for an incident plane
wave of frequency ω = cκ0 for normal incidence. For other
frequencies there is no reason not to expect a large amount
of scattering in the form of both reflected and transmitted
diffracted waves. We have investigated the effect of sending
in different frequencies of radiation through the permittivity
profile. Some plots of the electric-field norm are shown in
Fig. 5. Except at the wave number for which the medium
is designed to be nonscattering, we see intricate diffraction
patterns on both the incident and transmitted sides of the
medium, with the fineness of the pattern being on the order of

FIG. 5. The electric-field norm corresponding to a plane wave
propagating in the positive x direction through the permittivity profile
of Fig. 4(c) at four different wave numbers, simulated using Comsol
Multiphysics [27]. As expected, the field amplitude is uniform at
the wave number k0 = κ0 designed to give no scattering whereas
diffraction is visible at other wave numbers.

the wavelength. Variations in the electric-field norm on either
side of the medium indicate interference between plane waves
propagating in different directions. Upon calculation of the
reflected and transmitted intensities of these waves (12), plots
of the intensities as a function of wave number can be obtained
and are shown for this example in Fig. 6. For k0 < κ0/5, the
wavelength is longer than the periodicity, diffraction is not
possible and so only the zeroth-order modes corresponding
to lateral transmission and reflection are possible. As k0 is
increased beyond κ0/5, diffraction is expected and energy
is carried by the first-order modes via both reflection and
transmission. As k0 is increased further, higher-order modes
can carry energy. It appears from Fig. 6(c) that reflection is
well suppressed beyond about k0 = 0.6κ0. However, when
we plot out the individual mode intensities on a log scale in
Figs. 6(a) and 6(b), it can be seen that diffraction is strongly
suppressed only in a smaller band around k0 = κ0 with some
more significant diffraction outside this band. Also, since
these graphs compare intensities (which are proportional to the
square of the wave amplitude), diffraction is more prominent
in the wave amplitude plots in Fig. 5 outside the smaller

FIG. 6. The natural logarithm of the (a) reflected and (b) trans-
mitted intensities of the first five non-negative diffracted modes that
a right-propagating plane wave impinging on the permittivity profile
of Fig. 4(c) at normal incidence scatters into as a function of wave
number. (c) The total reflected R and transmitted T intensities and
their sum. Over 99% of the wave energy ends up in the T0 mode in the
band 0.92κ0 < k0 < 1.08κ0. Thus diffraction is suppressed in quite
a broadband region. Only positive Fourier components are plotted
because the reflectional symmetry in the profile ε(x, − y) = ε(x,y)
ensures that negative-mode intensities match the corresponding
positive-mode intensities at normal incidence. Despite the curves
appearing to lack the smoothness over the domain k0 ∈ [0,3κ0/2]
that would be expected of a continuous change of the wave number,
the graphs are in fact smooth, as can be seen from the closeups to the
right.
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band. While it is clear from Fig. 6 that the intensities fluctuate
very rapidly as the wave number is altered through different
sharp resonances, there is a noticeable band dip (broader than
the sharp resonances) in all but the zeroth-order transmitted
mode (the unscattered mode) around the wave number k0 = κ0

at which the structure is designed to be reflectionless and
perfectly transmitting. Thus, it is perfectly feasible for a
long Gaussian pulse (for example) consisting predominantly
of a small range of frequencies close to κ0c to scatter
negligibly.

Having considered the ability of this medium to suppress
scattering for different frequencies of incidence, it is natural
to also consider what happens when the angle of incidence
deviates from normal incidence. Again there is no reason to
expect transmission to be perfect at the design frequency at
other angles of incidence, and this is indeed seen to be the
case. The electric-field norm is plotted for various angles of
incidence at the design frequency ck0 = cκ0 in Fig. 7. Away
from normal incidence, a diffraction pattern is visible; the
electric-field norm has strong oscillations with a periodicity
commensurate with that of the medium. This is indicative of
other modes present in the solution for the field. Again we can

FIG. 7. The electric-field norm corresponding to a plane wave
propagating at various angles θi to the positive x axis through the
permittivity profile of Fig. 4(c) at wave number k0 = κ0, simulated
using Comsol Multiphysics [27]. For angles off normal incidence,
diffraction is again visible.

FIG. 8. The natural logarithm of the (a) reflected and (b) trans-
mitted intensities of the five middle diffracted modes that a plane
wave of wave number k0 = κ0 propagating at angle θ to the positive
x axis impinging on the permittivity profile of Fig. 4(c) scatters into
as a function of angle. (c) The total reflected R and transmitted T

intensities and their sum. It is only close to normal incidence that all of
the wave is transmitted without diffraction. Specifically, over 99% of
the wave energy ends up in the T0 mode in the region 0 < θi < π/60.

get a quantitative description of the diffracted-mode intensities.
This is plotted in Fig. 8.1

1The ability to carry out such calculations based on the numerical
simulations in Comsol is limited by the ability of the perfectly matched
layers (PMLs) [28] used in the simulations at the boundaries of the unit
cells to absorb any outgoing waves without reflection. The absorption
rate decays exponentially with the wave-vector component normal to
the PML boundary. Therefore any of the simulations in which there
are wave-vector components close to grazing incidence will not be
entirely diminished in the PML and will therefore introduce some
errors. This manifests itself in having a total reflected and transmitted
intensity summing to something other than unity. As such, angles

053818-6



DESIGNING SCATTERING-FREE ISOTROPIC INDEX … PHYSICAL REVIEW A 97, 053818 (2018)

FIG. 9. (a) The electric-field norm |E| at wave numbers k0 = 10
and k0 = 50 for a TE polarized incident wave onto the medium
described by the permittivity profile of Fig. 4(c), simulated using
Comsol Multiphysics [27]. (b) The magnetic-field norm multiplied
by impedance of free space η0|H| at the same wave numbers for a
TM polarized incident wave.

V. TRANSVERSE MAGNETIC POLARISATION AND
GEOMETRICAL OPTICS LIMIT

Having designed a periodic medium exhibiting no diffrac-
tion to a TE polarized wave of a particular frequency, we
now test its robustness to changing polarization. Due to the
symmetry in Maxwell’s equations, the medium corresponding
to having a permeability profile like that shown in Fig. 4(c)
together with unit permittivity will not diffract a transverse
magnetic (TM) polarized incident field. However, this need
not be the case for the corresponding nonmagnetic permittivity
profile discussed earlier.

The suppression of diffraction shown in the previous section
hinges on the idea of being able to exactly map out rays in such
a way that the energy flow is conserved [∇ · (A2∇S) = 0].
However, if the incident field is instead transverse magnetic
(TM) polarized, then the Helmholtz equation for the out-of-
plane component of the magnetic field is modified to[

∇ ·
(

1

ε
∇

)
+ k2

0

]
ϕ = 0. (14)

As a result the second phase amplitude equation in for the field
decoupled into amplitude and phase gets modified to

∇ ·
(

A2∇S

ε

)
= 0, (15)

for which the characteristic method now only solves for A/
√

ε.
The remaining phase-amplitude equation is then a generalized
version of the eikonal equation, which is difficult to solve for
the permittivity. It is only when one takes the geometrical optics
limit, valid when k0 � |∇ε|/ε3/2, that the permittivity can be
assumed locally homogeneous and thus for the conservation-
of-energy equation (15) to reduce to the more familiar ∇ ·
(A2∇S) = 0. The resulting fields for the two polarizations are
compared in Fig. 9. There is a visible diffraction pattern for
the TM polarization case at the wave number k0 = κ0 which

(wave numbers) with modes close to grazing incidence have been
removed from Fig. 8(c) [Fig. 6(c)].

diffraction is suppressed for TE polarization. However, the
difference between the polarizations diminishes as the wave
number is increased. This can be understood from the first
equation of (2), which reduces to the eikonal equation ε =
(∇S)2 in the geometrical optics limit for both polarizations.
With identical phase fronts, the factor of ε in Eq. (15) merely
serves to rescale the field amplitude when going from TE
polarization to TM polarization A → √

εA. This leads to a
greater amplitude of the TM polarized field inside the medium,
without altering the diffraction pattern outside it.

VI. THE BEAM SHIFTER

As a second example we use our formalism to design a beam
shifter. Beam shifters have largely been designed using the
coordinate transformations of transformation optics contained
in Ref. [3] using anisotropic media with graded permittivity
and permeability tensors (see, for example, Ref. [29]). Such
anisotropic profiles can be designed by using metamaterials;
for example, by using metallic rods [30] or tensor impedance
surfaces [31]. Experimental realizations have so far been fairly
limited but a structure based on transmission line metamaterials
has been successful [32] and also in acoustics with perforated
metamaterials [33]. All of these structures are based on trans-
formation optics requiring anisotropic or magnetic materials.
We instead propose an isotropic nonmagnetic medium which
laterally shifts a beam at a single frequency with negligible
reflection.

So far, we have seen that the characteristic method has
enabled the design of nonscattering permittivity profiles via
a mapping out of the rays. Such numerical approaches are
normally necessary to make progress due to the difficulty in
solving partial differential equations exactly. However, there is
a special case where the energy-conservation equation can be
solved exactly to give a permittivity profile with an interesting
property; namely, a wide beam is laterally shifted without
reflection. We refer to this as a beam shifter. We emphasize
that this is not just geometrical optics; the beam shifter we
design is exact for wave optics.

Motivated by being able to solve the conservation of energy
equation in one dimension [see Eqs. (3) and (4)], it is natural
to solve the analogous two-dimensional equation for a special
case by imposing that Eq. (3) holds for each of the individual
coordinates, i.e.,

∂

∂x

(
A2 ∂S

∂x

)
= 0,

∂

∂y

(
A2 ∂S

∂y

)
= 0, (16)

which can be solved separately to give two expressions for the
amplitude:

A = Ay(y)√
∂S
∂x

= Ax(x)√
∂S
∂y

. (17)

This can then be subsequently solved for the phase:

S = f [X(x) + Y (y)]. (18)

where X′ = 1/A2
x and Y ′ = 1/A2

y . The particularly neat thing
about this method of separating the equations for the different
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Cartesian coordinates is that the differential equation for the
rays takes a separable form,

dy

dx
= Y ′(y)

X′(x)
, (19)

and, in particular, by taking Y (y) = y, say, the slope of the
rays depends only on the x coordinate and thus the rays are
translationally invariant in the y direction. Meanwhile, Eq. (2)
gives the expression for the permittivity:

ε = (f ′)2((X′)2 + (Y ′)2)

+ 1

2k2
0

[
X′′′

X′ + Y ′′′

Y ′ − 3

2

(
(X′′)2

(X′)2
+ (Y ′′)2

(Y ′)2

)]

+ 1

2k2
0

[
((X′)2 + (Y ′)2)

(
f ′′′

f ′ − 3(f ′′)2

2(f ′)2

)]
, (20)

where only the first line would be retained in the geometrical
optics limit. As for the periodic grating, our medium should sit
in free space with a right-propagating plane wave incident on
the medium emerging totally as a right-propagating plane wave
without being scattered. To ensure that the rays are horizontal
on either side of the medium (X′ → +∞ as x → ±∞), we
choose, as a simple example,

X(x) = sinh(αx)
β

,

Y (y) = y, (21)

leading to rays y = 2β

α2 arctan[tanh( αx
2 )] + constant. These

bend and straighten with a lateral shift of π/α, as shown in
Fig. 10(a). To further ensure a right-propagating plane wave
either side of the medium, it is required that S ∼ x as x → ±∞
so it is natural to choose f to be the inverse of X:

f (z) = X−1(z) = arcsinh(βz)

α
, (22)

and we again choose a particular wave number of k0 = κ0

for the beam shifter to function at. With these choices the
permittivity profile obtained is shown in Fig. 10(b) and is given
by

ε(x,y) = β2 + α2cosh2(αx)

α2{1 + [βy + sinh(αx)]2} + O

(
1

κ2
0

)
, (23)

where the correction terms to the geometrical optics limit
have been included in the plot but have been left out of
Eq. (23) for brevity. However, this is enough to explain the
appearance of the permittivity profile. The denominator in
Eq. (23) reaches a minimum along y = −X(x). Along this
channel the permittivity is higher than the surroundings in order
to be able to bend the rays. In particular, as the channel’s slope
becomes increasingly vertical, the permittivity contrast needs
to be greater in order for the rays to be bent by the same amount.
As such, the permittivity in the channel increases quadratically
in y: ε(X−1(−y),y) = O(y2) as y → ±∞. Subsequently, this
is likely to be difficult to realize practically (and indeed in
simulations). However, with a wavelength of λ0 = 2π/κ0 and
a permittivity profile channel of similar width, it is possible
to simulate this using a Gaussian beam with a width of a few
wavelengths so that the contrast in the incident field has a
negligible effect on the functionality of the beam shifter. This
also enables the lateral shift of the beam to become clear to

FIG. 10. (a) The rays associated with the choices given in Eq. (21)
with α = 2 and β = 1. (b) The corresponding permittivity profile with
f = X−1 and k0 = κ0 in −25λ0/π < x < 25λ0/π and free space
either side. (c) The field norm corresponding to a right-propagating
incident Gaussian beam of width 20λ0/π , simulated using Comsol
Multiphysics [27]. The wave is transmitted with negligible reflection
and with a beam shift of 5λ0/4.

see. The resulting shift in the beam can then be seen in a plot
of the field norm, as shown in Fig. 10(c). From the appearance
of the permittivity profile only, we can explain how the rays
are laterally shifted, but not why there is also no reflection
from such a medium. However this is a general feature of the
graded-index media; it is not easy to see why certain profiles
with arbitrarily large contrasts are reflectionless, even in one
dimension (such as the spatial Kramers–Kronig media [1,2] or
the Pöschl-Teller media [5,6]).
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VII. QUANTIFYING THE EFFECT OF ERRORS IN
PERMITTIVITY

The design procedure used in this work is exact. However,
any errors in the permittivity, as seen in a realization of the
devices, will lead to errors in the corresponding field. Having
already seen that the nondiffracting medium is surprisingly
robust to slight changes in the wave number and the angle of
incidence, it is hoped that the same might extend to slight
changes in the profile. To quantify this, consider a slight
perturbation to the permittivity, and the corresponding change
to the field:

ε → ε̃ = ε + δε,

ϕ → ϕ̃ = ϕ + δϕ. (24)

The Helmholtz equation for the perturbed permittivity (∇2 +
k2

0 ε̃)ϕ̃ = 0 can then be solved for small perturbations as

δϕ(x) = −k2
0

∫
dx′G(x − x′)δε(x′)ϕ(x′), (25)

where G(x − x′) is the Green’s function for the two-
dimensional Helmholtz equation [∇2 + k2

0ε(x)]G(x − x′) =
δ(x − x′). In particular, the field response shows a linear
dependence with the perturbed permittivity profile, so errors in
the field can be made arbitrarily small by making the error in
the permittivity arbitrarily small. In general, the errors in the
permittivity, and in the reflection and the transmission, can be
quantified as

ηε = 1

a2

∫ 6λ0

−6λ0

dx

∫ a/2

−a/2
dy|δε(x,y)|,

ηr = 1

a

∫ a/2

−a/2
dy

|δϕ(−6λ0,y)|
|ϕ(−6λ0,y)| ,

ηt = 1

a

∫ a/2

−a/2
dy

|δϕ(6λ0,y)|
|ϕ(6λ0,y)| , (26)

respectively, where a is the period of the grating. Using a finite
difference method (FDM) to calculate the Green’s function,
we calculated the error due to a simple discretization of
the profile in Fig. 4(c) into a 20 by 20 rectangular grid of
homogeneous slabs. This corresponds to an error ofηε = 0.604
in the medium, and, by using Eq. (26), a fairly large error of
ηr = 0.372 and ηt = 0.191 in the field. This is not surprising
when we consider that it is the fine structure of the profile

which leads to the removal of scattering—something that a
simple 20 by 20 grid will not fully encapsulate. A finer 200 by
200 grid discretization corresponds to an error ηε = 0.0708,
and a very small error of ηr = 0.0108 and ηt = 0.00614 in
the fields, which would not be noticeable in the field plots.
When measuring the diffracted order energies (the squares of
the fields), the errors will be significantly smaller—virtually
all of the energy would be seen to transmit through the profile
undiffracted.

VIII. SUMMARY AND CONCLUSIONS

We constructed a recipe for designing lossless media and
scatter-free media by choosing the exact rays to behave in a
particular desired fashion and determining the corresponding
amplitude and permittivity profile required for this while
ensuring energy is conserved. This does not rely on the
assumption of geometrical optics so is not just confined to
the design of materials which vary on a scale much larger
than the wavelength. We have applied the method to the
design of nonscattering media whose spatial inhomogeneity is
confined to a plane. Specifically we have designed a periodic
graded-index permittivity profile with suppressed diffraction
for a single frequency at normal incidence and a “beam shifter,”
a graded-index permittivity profile which laterally shifts a
Gaussian beam of a few wavelengths, without reflection. We
expect that the method will also be useful for designing media
in three dimensions which guide light in a desired fashion,
such as three-dimensional gratings, beam benders, and beam
expanders. Additionally this work raises the question of how
well diffraction in periodic media can be controlled, e.g., one
could investigate the possibility of completely suppressing
diffraction over a broadband frequency range or for a range
of angles of incidence. Also, one could look at whether it is
possible to diffract perfectly into a pair of modes instead of
just one.
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