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Abstract  
Fully automated vehicles are expected to have a significant share of the road network traffic in the 

near future. Several commercial vehicles with full-range Adaptive Cruise Control (ACC) systems or 

semi-autonomous functionalities are already available on the market. Many research studies aim at 

leveraging the potential of automated driving in order to improve the fuel efficiency of vehicles. 

However, in the vast majority of those, fuel efficiency is isolated to the driving dynamics between a 

single follower-leader pair, hence overlooking the complex nature of traffic. Consequently fuel 

efficiency and the efficient use of the roadway capacity are framed as conflicting objectives, leading 

to fuel-economy control models that adopt highly conservative driving styles.  

This formulation of the problem could be seen as a user-optimal approach, where in spite of 

delivering savings for individual vehicles, there is the side-effect of the deterioration of traffic flow. 

An important point that is overlooked is that the inefficient use of roadway capacity gives rise to 

congested traffic and traffic breakdowns, which in return increases energy costs within the system. 

The optimisation methods used in these studies entail high computational costs and, therefore, 

impose a strict constraint on the scope of problem.  

In this study, the use of car-following models and the limitation of the search space of optimal 

strategies to the parameter space of these is proposed. The proposed framework enables 

performing much more comprehensive optimisations and conducting more extensive tests on the 

collective impacts of fuel-economy driving strategies. The results show that, as conjectured, a 

“short-sighted” user-optimal approach is unable to deliver overall fuel efficiency. Conversely, a 

system-optimal formulation for fuel efficient driving is presented, and it is shown that the objectives 

of fuel efficiency and traffic flow are in fact not only non-conflicting, but also that they could be 

viewed as one when the global benefits to the network are considered.   

 



1. Introduction 
During the past decade, environmental concerns have placed the energy efficiency of 

vehicles at the centre of researchers’ efforts. Great leaps have been made in this area by 

employing a wide range of technologies that improve fuel efficiency, such as the use of 

lighter materials in car manufacturing, the adoption of more aerodynamic designs, and the 

introduction of techniques such as pulse and gliding. However, an important factor that is 

somewhat overlooked is the impact of the behaviour of drivers and of driving strategies on 

fuel consumption. A search of the relevant literature reveals that this could be due to the 

difficulties associated with the formulation of energy efficiency in the car following regime.  

The algorithms proposed in this area are sometimes based on simplistic assumptions and 

usually lack comprehensive investigations on their collective impacts and stability features. 

This is due to the fact that the proposed models often rely on complex and computationally 

demanding machine learning and optimal control theory-based methods, which make their 

use in large-scale simulations impractical.  

In this study, a new approach is proposed which makes use of car-following models in 

optimisation. The use of car-following models as the basis of control has already been 

addressed in the literature (Kesting, et al., 2010). The incorporation of car-following models 

in simulation-based optimisation significantly reduces the complexity of the latter, which 

then allows its application to much more comprehensive scenarios. Additionally, the 

provision of control on the basis of car-following models benefits from the remarkable 

advantage of the extensive knowledge that exists on the collective properties of these 

models through the numerous studies that are available in the literature on aspects such as 

stability features and traffic flow characteristics.  

Two distinct approaches to the question of fuel efficiency are investigated in the present 

study; 1. individual vehicles are considered and their fuel consumptions are minimised, and 

2. fuel efficiency is considered from a broader, network-level perspective. While much of 

the studies in the literature revolve around the former, the latter is somewhat overlooked. 

A comprehensive analysis of the results sheds light on the important and fundamental 

differences between the driving strategies produced by the two approaches. 



In section 2 a literature review is presented and subsequently the gap in the literature is 

identified. In section 3 two new approaches for optimisation of fuel consumption are 

formulated to cope with the shortcomings of the existing approaches. In section 4 the 

results are presented. Finally, conclusions and future work are presented in section 5. 

2. Literature review    
Wu et al. (2011) developed an advisory system that minimised fuel consumption in the 

acceleration phase before reaching desired velocities and the deceleration phase before 

coming to a standstill. The system was shown to deliver reductions of 12% to 31% in fuel 

consumption and the objective was defined as the minimisation of the cumulative fuel 

consumption, given by the VT-micro instantaneous fuel consumption model (Ahn, 1998), 

within the time interval of interest (deceleration/acceleration period). For this purpose the 

objective function was discretised and the resulting optimisation problem was then solved 

using the Lagrange Multiplier Method (LMM).  

Themann et al. (2015) proposed a control model for Adaptive Cruise Control systems (ACC) 

that relied on the optimisation of the velocity profile with respect to fuel consumption. This 

study used Dijkstra’s algorithm to find the optimal velocity profile for known road 

topography. Porsche’s Innodrive ACC has also adopted a similar approach, resulting in about 

10% reduction in fuel consumption (Markschläger, et al., 2012). Hellström et al. (2010) 

developed a fuel-optimal control model for trucks. In this study, prior knowledge of road 

topography was used in order to optimise fuel consumption and gear-shifting, and the 

problem was formulated as a dynamic programming optimisation. In all these studies, fuel 

economy is obtained by producing a smooth velocity performance and avoiding 

unnecessary accelerations. Kohut et al. (2009) achieve the same objective by adopting a 

Model Predictive Control (MPC) framework. This study highlights the trade-off between fuel 

savings and trip time.  

The development of optimal fuel economy control models in the car-following regime of 

driving is a more challenging task due to the highly unpredictable nature of drivers’ 

behaviours. In the study by Li et al. (2008), cars’ tracking capabilities and fuel efficiency were 

considered in the development of ACC, and in order to ensure fuel efficiency, accelerations 

were penalised in the objective function. The problem was then formulated as an MPC 



optimisation, and the testing of the control model was carried out by considering its 

performance in an urban driving scenario and a highway driving scenario; fuel savings of 

8.8% and 2% were obtained in each scenario respectively. Kamal et al. (2013) developed an 

MPC-based controller for the car-following regime that saved an average of 13% in fuel 

consumption in urban driving scenarios. Similar approaches can be found in other studies 

(Luo, et al., 2015; Zhao, et al., 2017).  

Zhang & Ioannou (2006) designed a Proportional-Integral-Derivative (PID) controller for the 

car-following regime for trucks. The proposed method reduced fuel consumption by 

avoiding unnecessary accelerations and braking, and the objective of the controller was set 

to track the velocity of the preceding vehicle while maintaining a specified range of spacing. 

A different approach in tackling the problem of fuel efficiency is based on the use of new 

technologies. The potential of technologies such as hybrid electric powertrains and 

telematics, providing traffic-related information (Manzie, et al., 2007) and techniques such 

as pulse and gliding (Li, et al., 2012) in the reduction of fuel consumption has been 

investigated in the literature. 

Considering studies seeking more fuel-efficient driving behaviour, two categories can be 

defined. The first category includes studies seeking to optimise fuel consumption for simple 

scenarios, where there are no additional complexities caused by interactions between 

vehicles. In this case information about roadway topography or the position of traffic signals 

is used in order to formulate an optimisation problem and obtain the optimal velocity 

profile (Wu, et al., 2011; Themann, et al., 2015; Markschläger, et al., 2012; Hellström, et al., 

2010; Kohut, et al., 2009).  The second category, on the other hand, consists of studies 

targeting driving conditions, where interaction between vehicles is the defining factor in 

driving behaviour. In these studies often simplistic assumptions are made about the 

relationship between fuel consumption and acceleration or driving dynamics in order to 

reduce the complexity of problem. More importantly, due to the computational cost of the 

methods used and the natural complexity of the car-following regime of driving, these 

studies often narrow down the scope of the problem to a single pair of follower-leader and, 

therefore, overlook the potentially negative impacts of their proposed control strategies on 

traffic flow and fuel consumption within the network (Li, et al., 2008; Kamal, et al., 2013; 

Luo, et al., 2015; Zhao, et al., 2017). 



3. Methodology 
The modelling of car-following behaviour has been an active area of research for more than 

six decades. Simple models that effectively describe the microscopic and macroscopic 

features of traffic have been developed and have been widely studied. As a result, a good 

understanding of different aspects of these models, namely their collective features and 

stability characteristics, has been established over the years. Some of these models are also 

integrated in the control of partially automated vehicles. In the present study the potential 

of these models is leveraged in order to develop a control model that is not only efficient 

with respect to fuel consumption but also takes into account the collective impacts of the 

control model on traffic flow. 

3.1 The IDM Car-following model 

The Intelligent Driving Model (IDM) car-following approach has been selected for the 

present study on the basis of its merits. Specifically, the studies available on the 

macroscopic and microscopic calibration of the IDM point to the good performance of this 

model on both aspects (Treiber , et al., 2000; Treiber & Kesting, 2013; Punzo & Simonelli, 

2007). Moreover, the IDM has a simple mathematical form with a small number of 

parameters, each corresponding to a driving attribute. Finally, numerous studies are 

available on different aspects of this model, such as calibration, stability and other 

microscopic and macroscopic properties (Wilson & Ward, 2011; Kesting & Treiber, 2009). 

The IDM model is given by the following general equation; 
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where,   is the maximum acceleration,    is the desired speed,   is the acceleration 

exponent,    and    determine the jam distances in fully stopped traffic and in high 

densities respectively,   is the safe time headway, and   is the comfortable deceleration. 

The input variables are the speed of the subject vehicle,  , the speed of the preceding 



vehicle,   , and the distance headway,  . Finally, the output variable,  ̇, determines the 

acceleration of the subject vehicle. 

3.2 Optimisation framework 

The coefficients of car-following models can vary according to driving strategies. Given a 

sufficient number of model parameters, one can reproduce a variety of driving strategies 

simply by changing the value of model parameters. For example, one set of parameters can 

represent a sporty driving style with intense accelerations and braking, while another set of 

model parameters can deliver a more conservative driving style that is less sensitive to the 

lead vehicle’s braking by maintaining sufficient spacing. In other words, a car-following 

model with   model parameters provides a    space, where each point in this space may 

be regarded as a distinctive driving style. Therefore, one can seek to find the set of model 

parameters within this space that minimises an objective function of choice. In this light, 

calibration studies may be regarded as attempts to find the representations of particular 

driving behaviour, given by particular trajectories, within the space of model parameters of 

car-following models. 

It is important to note that the space of strategies that is represented by the space of model 

parameters of a given car-following model is only a subspace of all possible driving 

strategies. Constraining the search space to the space of model parameters of a car-

following model has two direct consequences, an advantage and a disadvantage. On the one 

hand this approach limits the search space to a space where important criteria such as 

safety, stability, and producing acceptable driving behaviour could be satisfied. This 

significantly reduces the complexity of the optimisation and mitigates the so-called “curse of 

dimensionality” that is often encountered in dynamic programming-based approaches. On 

the other hand, car-following models have shortcomings. A single set of model parameters 

cannot always produce a realistic driving behaviour. Similarly, one cannot expect a single set 

of model parameters to always provide a fuel-efficient driving strategy in all driving 

conditions. Nevertheless, similar to calibration studies, one can obtain model parameters 

that can deliver fuel efficiency in particular driving conditions. 

In this study, two new and distinctive approaches in achieving fuel efficiency relying on the 

selected car-following model, are investigated: a) an optimisation approach for fuel 



consumption for a pair of vehicles, or a platoon of vehicles, subject to  microscopic 

constraints on the vehicle headways so as to ensure an efficient traffic flow and adequate 

tracking capabilities; and b) an optimisation approach of the total fuel consumption within a 

link, subject to a direct constraint on the traffic throughput. Due to the highly nonlinear 

formulation of the problem, simulation-based optimisation is carried out to investigate the 

two approaches. 

3.2.1 Microscopically formulated optimisation 

First the problem of a single pair of follower-leader is considered. The objective is to find the 

optimal model parameters of the IDM that minimise fuel consumption. For this purpose the 

problem is formulated as follows. Given a particular trajectory of the leader,   , the 

objective is to find the model parameters,  , for the IDM car-following model that result in 

the minimum fuel consumption for the follower. 
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where,   is the fuel consumption of the follower, calculated by a modified version of the VT-

micro model (Ahn, 1998). This model is discussed in section 3.3. 

In order to ensure that the results have an acceptable tracking capability and meet flow-

related requirements, a wide range of constraints have been considered based on different 

criteria suggested in the literature (Zwaneveld & van Arem, 1997; Bierstedt & et al., 2014; 

Marsden, et al., 2001). The following constraints have produced good results and are, 

therefore, selected in this study.  
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where    is the time series of headways of the follower,   
̅̅ ̅ is the mean value of this time 

series, and     and    are constants. Since the definition of headway becomes problematic 

in low velocities, a threshold of 18 
  

  
 is considered in the calculation of headways and the 

application of the constraints above. 



The results obtained using Equation (2) have been observed to be highly sensitive to the 

initial conditions and the trajectory of the leader. Therefore, the optimisation framework 

has been modified to include a platoon of vehicles that follow the trajectory of the lead 

vehicle. By doing so, string stability features are also implicitly incorporated within the 

framework.  
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where   is the number of vehicles in the platoon. Additionally, in order to further improve 

the robustness of optimisation results, the optimisation framework has been further 

modified to consider more than one trajectory for the leader.  
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This optimisation formulation is depicted in Figure 1. 

 

Figure 1 Schematic representation of the microscopic optimisation scenario 

The problem formulation presented in this section is similar to studies related to the car-

following regime of driving that were addressed in the literature review section. This 

approach is, in essence, a user-optimal approach in which individual vehicles seek to 

minimise their individual fuel consumption while respecting certain constraints that ensure 

an adequate tracking capability and traffic flow.  



The approach presented in this section does not address a key aspect of the road network, 

that is the role of individual entities in forming the collective features of the traffic flow and 

the mutual impacts that individual agents and their collective behaviour have on one 

another. The system-optimal optimisation approach presented next captures such user-

system dynamics and mutual impacts.  

3.2.2 Macroscopically formulated optimisation 

For this purpose the horizon of the optimisation problem is broadened in order to,  

1. impose macroscopic constraints on the traffic flow, as opposed to the microscopic, 

headway-based constrains that were previously used, and 

2. capture the fuel efficiency properties of the traffic flow in a broader sense than just a 

platoon of vehicles.  

The optimisation problem is modified to the following. Given a particular trajectory,   ,  for 

a stretch of a roadway of particular length,  , for the simulation time of   seconds, and given 

the inflow rate of  , the objective is to find the model parameters,  , of the IDM car-

following model that result in the minimum fuel consumption within the link. This is shown 

in Equation (6). 

  (    )     
      

  ∑   (          )

 

   

   
 

( ) 

subject to,  

                   

where the operator      denotes expected value,   ( ) is the fuel consumption of the     

vehicle following the lead trajectory    calculated by the fuel consumption model,   is the 

number of vehicles in the scenario, and   is a coefficient that sets a minimum threshold for 

the acceptable throughput as a percentage of the expected number of vehicles that enter 

the scenario, which is equal to  . The intervals at which vehicles enter the simulation 

scenario are modelled with the exponential distribution with the average of         This 

optimisation framework is schematically presented in Figure 2. 



Figure 2 Schematic representation of the macroscopic optimisation scenario 

3.3 Modified fuel consumption model 

The VT-micro fuel consumption model is specifically developed for investigations related to 

the operational level of driving, since the only input variables of the model are 

instantaneous velocity and acceleration (Ahn, 1998). Although the model has a relatively 

simple structure compared to some other fuel consumption models reviewed in Faris et al. 

(2011) and Zhou et al. (2016), its dual regime, exponential structure, and large number of 

terms (16 for each regime), impose a significant computational cost on the optimisation. In 

order to address this issue a simplified version of the model is developed. The original 

model and the new simplified model are given by equations (7) and (8), respectively.  
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where   is acceleration,   is speed, and      are model coefficients.  

 

The new model is validated by comparing its estimates with the original model for the 

Federal Test Procedure (FTP) drive cycle, which is representative of urban driving. The 

results are demonstrated in Figure 3. 
  



 

Figure 3 The comparison of fuel consumption prediction between VT-micro and the new model. a, b) Fuel consumption 
for the whole envelope of velocities and accelerations using VT-micro and the new model respectively. c) Instantaneous 

fuel consumptions for the FTP drive cycle. 

In spite of the much simpler equation of the new model, estimates that are sufficiently close 

to the original VT-micro model are produced. In particular, the percentage error in total fuel 

consumption for the FTP drive cycle using the new model is 10.4%, which, for the purposes 

of fuel-consumption-based optimisation, can be deemed acceptable. 

3.4 Datasets  

Two datasets are used in this study: the reconstructed NGSIM-I80 (Montanino & Punzo, 

2015) and the Naples (Punzo, et al., 2005) datasets. The NGSIM-I80 dataset provides 

trajectory data extracted from a stationary camera that covers a 500-meter long stretch of a 

six-lane highway, which allows the derivation of information about the traffic flow and the 

overall fuel consumption. Because the original NGSIM-I80 dataset contains unrealistically 

high accelerations which would bias the estimates of fuel consumption, a reconstructed 

dataset is used in the present study.  The Naples dataset, on the other hand, has been 

obtained by instrumenting four vehicles and measuring their velocities and gaps while they 

drive through three different routes in Naples (Punzo, et al., 2005). It consists of five 



different sets of data, three of which report spacing and velocity values of the platoon of 

vehicles while they drive through the three different routes, and the remaining two of which 

obtained from two previously examined routes on different dates.  

Unlike the NGSIM-I80 dataset, the Naples dataset does not provide any information about 

the surrounding traffic conditions for the subject platoon; however due to the longer period 

of trajectories for individual vehicles, the absence of lane changes, and the existence of 

diverse driving conditions , the Naples dataset provides a better insight into car-following 

behaviour compared to the NGSIM-I80 set. Therefore, in order to make the results of the 

optimisations relevant to a broader spectrum of car-following conditions, the Naples 

dataset is used here. The NGSIM-I80 dataset, on the other hand, is used as a reference case 

for validation purposes. Figure 4 depicts the velocity profiles of the platoon of vehicles in 

the Naples dataset for trajectories 25B and 30B. 

 

Figure 4 Velocity measurements of the platoon of vehicles in the Naples datasets 25B and 30B. 

In order to examine the impacts of the optimal driving strategies in different driving 

conditions in the validation stage, two trajectories are extracted from lanes 1 and 2 of the 

NGSIM-I80 dataset. Lane 1 is a High Occupancy Vehicle (HOV) lane and is not disturbed by 

shockwaves. On the contrary, traffic in lane 2 is congested and numerous shockwaves 

travelling upstream at a speed of 14 
  

  
 can be identified. 

The first trajectory used in validation is drawn from lane 1 and relates to the vehicle with ID 

441. This vehicle drives with the speed of about 90 
  

  
. The second trajectory is extracted 

from lane 2 and refers to the vehicle with ID 1845. This vehicle drives with an average speed 



of 18 
  

  
 and is subject to the main shockwave within the observation period. In the 

simulations that are presented in section 4, these trajectories are used as the trajectory of 

the first vehicle that enters the simulated roadway and the vehicles that follow it drive 

according to the fuel-consumption-optimised models. The two different trajectories clearly 

lead to different conditions for the following vehicles; the way in which these conditions 

affect the flow of vehicles and fuel consumption is examined in section 4. 

 

Figure 5  NGSIM-I80 dataset. Trajectories of a) the vehicle with ID 441 from lane 1 and b) the vehicle with ID 1845 from 
lane 2 

 

The frequent occurrence of lane changes in the NGSIM-I80 dataset poses a challenge for the 

evaluation of fuel consumption within a lane. Hence, fuel consumption results pertaining to 

the real case are calculated from the vehicles that remain in the subject lane for the whole 

period of observation. This is depicted in Figure 6. 

 

Figure 6 Vehicles that remain in the lane for the whole period of observation are denoted with red 



 

3.5 Sensitivity Analysis  

In order to further reduce the complexity of the optimisation a sensitivity analysis is 

conducted to identify the parameters that have the highest impact on fuel consumption. In 

this study, the global sensitivity framework is adopted, details of which and of its application 

to the calibration of car-following models can be found in the litrature (Ciuffo, et al., 2014; 

Saltelli, et al., 2010; Jacques , et al., 2006; Punzo, et al., 2015). The result is illustrated in  

Figure 7Error! Reference source not found..  

 

 

 

 

 

 

 

 

 

Figure 7 Total sensitivity indices for the effects of the IDM model parameters on fuel consumption in a scenario where 
the trajectory of the leader is that of the leader in the Naples dataset 25B 

It can be seen that parameter   has the highest impact on fuel consumption, followed by 

parameters      and  . Parameter    has a negligible impact on fuel consumption and is 

therefore set to its default value of           throughout this study. Parameter    has a 

higher impact on fuel consumption compared to parameter  . However,    along with   

define the spacing between vehicles. Since the two parameters are correlated (Jiwon & 

Mahmassani, 2011) and the impact of    on spacing is also captured by  , parameter    is 

also set to its default value of 2 m. Although this sensitivity analysis suggests that parameter 

  has a marginal impact on fuel consumption, this parameter together with   have a strong 

impact on the stability features of the IDM. Therefore   is also included in the optimisation. 

Table 1 demonstrates the lower and upper bound values used in the sensitivity analysis. The 

same bounds are used for parameters     and   in the optimisations. The results of the 

sensitivity analysis for other datasets are also shown.  



Table 1 Lower and upper boundaries used and total sensitivity indices 

   Total sensitivity indices for datasets: 

Parameters LB UB 25B 25C 30A 30B 30C 

  0.5 5 52% 37% 85% 82% 77% 

  0.5 5 1% 1% 2% 4% 2% 

   20 33 0% 2% 1% 0% 0% 

   2 5 26% 2% 7% 17% 18% 

  0.5 2 39% 60% 21% 14% 30% 

 

3.6 Overview of the methodology 

The present study includes a number of components that were separately described in 

section 3. Figure 8 provides a schematic representation of how these components are used 

within different stages of this study.  

 

Figure 8 Schematic representation of the present study 

The VT-micro-based fuel consumption model provides estimates of fuel consumption 

throughout this study, i.e. in the simulated scenarios for the NGSIM-I80 and the Naples 

trajectories. The top rectangle on the right-hand-side in Figure 8 corresponds to the 

sensitivity analysis that was carried out in section 3.5. Based on this analysis the three IDM 

model parameters, namely  ,   and  , are selected as the set of minimisers in the 

optimisations. The rectangle in the middle on the right-hand-side depicts the optimisation 

stage where the optimal sets of parameters are determined. The microscopic and 

macroscopic optimisations are carried out in section 4. Finally, the bottom rectangle on the 



right-hand-side corresponds to the validation stage. In this stage a number of scenarios are 

simulated where vehicles drive according to the optimal model and the fuel consumption 

values in the simulated scenarios are compared with fuel consumption in its corresponding 

reference case, given by the NGSIM trajectories. 

4. Results  

4.1 Microscopically formulated optimisation 

In this section the results relating to the microscopically formulated optimisation problem 

denoted by Equation (5) are reported. In order to ensure that the results are as robust as 

possible and deliver fuel efficiency in a wide range of driving conditions, all the trajectories 

available within the five Naples datasets are used as the trajectory of the lead vehicle in the 

optimisation. Also, the number of vehicles in the platoon is set to 4, and parameters    and 

   are set to 3 and 0.5 seconds respectively.  

The setting of the values of    and    is a result of a thorough investigation conducted in 

order to examine the mean and standard deviation of the headways in different driving 

conditions and for different drivers within the Naples dataset. The mean and standard 

deviation of headways averaged over the five Naples datasets and all drivers are 1.1 and 0.4 

s respectively. These values are highest for the third driver in all five datasets and reach the 

values of 1.7 and 0.5 s respectively in dataset 25B. Additionally, numerous combinations of 

   and    have been tested and it has been confirmed that        and          produce 

realistic driving behaviour. The micro-optimal parameters obtained using these parameters 

and in a scenario where a platoon of three vehicles follow the leader,      are   

          ,           , and        . 

The optimal set of model parameters results in a 12% improvement in the fuel consumption 

of the three following vehicles compared to the total fuel consumption in all five Naples 

datasets (3.43 litres in the simulated scenario and 3.78 litres in the real case, as estimated 

by the simplified VT-micro model). The saving is higher in driving conditions where 

accelerations, stops, and speeding are more dominant. For instance, the reduction in fuel 

consumption is 13.5% in dataset 25B and 8.2% in dataset 30A.   



Figure 9 demonstrates the driving behaviour reproduced by the optimal set of model 

parameters when the trajectory of the lead vehicle is that of the leader in datasets 25B and 

30A. 
   

Figure 9  a) position, b) velocity, c) acceleration and d) spacing profiles produces using the optimal parameters compared 
to the real ones for the when the trajectory of the lead vehicle 

It can be seen that the high value of parameter   has resulted in a more conservative driving 

style, which demonstrates itself through large spacing and a smoother velocity profile. 

Although such a conservative driving style contributes to the reduction of fuel consumption, 

it also leads to a reduction of traffic capacity. The deterioration of the traffic capacity means 

that congested traffic states, intense shockwaves and traffic breakdowns could all occur in 

lower traffic flows, leading to an increase in fuel consumption for the system. The impact of 

traffic congestion on fuel consumption was investigated in Treiber et al. (2008) and it was 

found that traffic congestion could lead to an increase of about 80% in fuel consumption. 

In order to investigate the collective impacts of adopting such driving strategy, a simulation 

is carried out where the trajectory of the leader is that of vehicle with ID 1845 and the 

average inflow is set to that of lane 2 between times 540 [s] to 840 [s], which is equal to 



1284       . Figure 10 compares the spatio-temporal velocity profile in the real scenario 

with the simulated one. 

 

 

Figure 10 Comparison of the spatiotemporal velocity profile of the modelled scenario with the real data when the 
trajectory of the lead vehicle is     =1845 (marked with the black solid line) 

It can be seen that in the simulated scenario the shockwave triggers a homogenous 

congested traffic state with an average speed of 14 
  

  
. The analysis of the fuel consumption 

in both scenarios shows that the user-optimal parameters, in spite of delivering fuel savings 

for the immediate followers, lead to an increase in the average fuel consumption within the 

link. In particular, the average fuel consumption for the 10 followers of the vehicle with ID 

1845 in the real data is 10.5 
      

     
. In the simulated dataset this value is reduced to 9.5 

      

     
 (average value in 100 simulations). However, the average fuel consumption for all 

vehicles that follow the vehicle with ID 1845 is 10.3 
      

     
 in the real scenario, while for the 

simulated dataset this is equal to 13.8 
      

     
 litres, i.e. a 34% increase in fuel consumption.  

It is important to highlight the impact of the values of    and    on the optimal values. A 

relaxation of these constraints leads to optimal parameters that have the following values: 

the lower bound for parameter  , the upper bound for parameter  , and the upper bound 

for parameter  . While this combination of these values produces more savings for the 

immediate followers, they result in a much more sluggish driving behaviour. Parameter   

determines the headway and parameters   and   together define how agile the following 

driver’s response is to changes in the velocity of the leader. High values of   and low values 

of   produce a highly reactive driving behaviour, while low values of   and high values of   



produce a driving behaviour that is much less sensitive to changes of the velocity of the 

leader. A sluggish response to changes is beneficial for the fuel consumption of individual 

vehicles.  

The optimal parameters are also largely affected by the trajectory of the leader in the 

optimisation. For instance, speeding and stops are much more present in dataset 25B 

compared to dataset 30A, and the transition from stops to higher speeds occurs faster in 

dataset 25B. The selection of trajectories from dataset 25B in the optimisation leads to the 

optimal parameters    
 

  ,       
 

  , and      , while the selection of dataset 30A 

leads to       
 

  
,       

 

  
, and      .  

As discussed, less sensitivity to changes of the velocity of leader generally contributes to 

more fuel savings for individual vehicles. However, the optimal parameters for dataset 25B 

(   
 

  ,       
 

  ) produce more agile driving compared to the optimal parameters for 

all five datasets (     
 

  ,     
 

  ). In order to address this contradiction, an analysis has 

been conducted on the acceleration profiles produced by the two sets of parameters. This 

analysis has revealed that in a driving condition in which changes in the velocity of the 

leader occur frequently, such as dataset 25B, a less agile driving style produces accelerations 

of smaller magnitudes. However, this also means that longer periods of 

acceleration/deceleration must be performed to reach the desired speed, and this could 

lead to an increase in the fuel consumption. Similar results, i.e.       
 

  ,    
 

   and 

     , are found when the number of vehicles in the simulated platoon is increased to  

       

Performing the optimisation using a number of trajectories from lane 1 of the NGSIM-I80 

dataset, namely the trajectories belonging to vehicles with IDs 441, 452, 453, and 467, 

confirms this finding. This set of trajectories belongs to a platoon of four vehicles that have a 

steady speed during the observation period. The optimal parameters found in this case are: 

      
 

  
,     

 

  
, and      . 

Microscopic simulation-based optimisation as described above, naturally, has its potential 

shortcomings. Namely: 



1. The optimal values obtained, while producing savings for the immediate followers, 

could be detrimental to traffic flow and thereby lead to an increase in fuel consumption 

within the network. This is demonstrated in Figure 11, where a comparison is carried 

out on the impacts of the model parameters on the flow. In one case the micro-optimal 

parameters for the case of     (     
 

  ,     
 

  ,     ) are used, and in the 

second case the calibration results reported in Punzo & Simonelli (2007) are used. The 

use of the calibrated model parameters from Punzo & Simonelli (2007) is particularly 

interesting since in that study the same dataset (Naples dataset) was used for the 

calibration of the model parameters.  

 

 

Figure 11 One-hour-long simulation with the inflow of 1800 
   

  
. The trajectory of the leader is that of the leader in the 

Naples-25B dataset. a) The user-optimal parameters      ,          the rest of the parameters are set to their 
default values,        ,    ,     ,      b) The calibrated values from Punzo & Simonelli (2007),      , 

              ,       ,       ,              

 

The results for the two scenarios are summarised in Table 2. 
 

Table 2 The comparison of the micro optimal results with the calibrated set of model parameters from Punzo & 
Simonelli (2007) 

 Micro optimal 
parameters when      

Calibrated parameters  
(Punzo & Simonelli, 2007) 

AFC  within the scenario  
   

          
  8.12 7.18 

AFC for 10 immediate followers 10.14 11.09 

Traffic throughput  
   

  
  1298 1764 

¹AFC=Average Fuel Consumption 

 

2. Similarly to calibration studies, this type of optimisation is highly sensitive to the driving 

condition and the set of trajectories used within the optimisation (Punzo, et al., 2015).  



It worth mentioning that the evaluation of fuel consumption based on car-following models 

that are purely calibrated with respect to individual trajectories or traffic may not produce 

accurate results for individual vehicles. This subject is thoroughly discussed in Vieira da 

Rocha et al. (2015). However, the same study concludes that fuel consumption estimates 

are more reliable when the aggregate fuel consumption for platoons or the total traffic is 

considered.  

The results obtained in this section show that a user-optimal fuel economy driving strategy 

can be characterised by high headway values. The relaxation of the headway requirements 

yields the lower bound value for the acceleration parameter and the upper bound value for 

the deceleration parameter. These parameters have the combined effect of maintaining 

large spacing between the vehicles in order to afford less sensitivity to minor 

brake/accelerations of the lead vehicle, hence producing smoother acceleration behaviour. 

In terms of stability, low values of the parameter   and high values of the parameter   lead 

to more instability, however, this is compensated by the increase in the value of the 

parameter   (Treiber & Kesting, 2011). 

It is clear that increased values for parameter   reduce the capacity of the roadway 

however, this has a negligible impact on the traffic flow when the inflow of vehicles is low 

and traffic is not in congested states. In other words, an increase in parameter   does not 

change the shape of the left branch of the fundamental diagram for the IDM car-following 

model. However, as seen above, user-optimal optimisation remains oblivious to the broader 

perspective of traffic flow and the strategies obtained using such narrowly-framed 

optimisation formulations can lead to congested traffic states and traffic breakdowns, which 

in return increase the cost of the trip in terms of fuel consumption within the network.  

In what follows, a system-optimal formulation of the problem is presented, where a direct 

constraint is placed on traffic throughput and the total fuel consumption within the system 

is the subject of the minimisation. 

4.2 Macroscopic optimisation 

The objective of this section is to broaden the horizon of the optimisation scenario in order 

to:  



1. impose macroscopic constraints on the traffic flow characteristics, as opposed to the 

microscopic headway-based constraints that were previously used; 

2. capture the fuel efficiency properties of the traffic flow in a broader sense than just a 

platoon of vehicles; and  

3. reduce the sensitivity of the optimal parameters to driving conditions. 

For this purpose the optimisation framework described in sub-section 3.2.2 is applied here.  

The input values of the optimisation scenarios are given in Table 3. 

Table 3 Features of the simulation scenarios used in the macroscopically formulated optimisations 

       1.2 – 2    according to the trip length in the Naples 

datasets. 

         5 and 60 minutes. 

         [
    

  
] 

Different values within the range [1080 2664] and 

with increments of 200. 

   trajectories from the datasets 25B, 25C, 30A, 30B, 

and 30C, from the Naples dataset. 

      70% 

 

Three simulation parameters are changed in the optimisation scenario in order to 

investigate their impact on the optimal parameters: the inflow of vehicles, the trajectory of 

the lead vehicle, and the simulation time. The variation of the inflow and the lead trajectory 

allows investigating how robust the optimal parameters are to changes of traffic conditions. 

The variation of the simulation time enables an assessment of how the consideration of fuel 

efficiency as both a short-term and a long-term objective affects the optimal strategy.   

The optimisation is carried out using a genetic algorithm. Running the optimisation takes 

between one to three days on a High-Performance Computing (HPC) cluster. Each cluster 

node consists of two 2.5Ghz Intel Xeon E5-2670v2 processors, with 40 processors dedicated 

to the task.   

For the short simulation time of         the following optimal values are obtained: 

     ,    ,    . Given the loose throughput requirement and the short timeframe, 



these values are understandably similar to the user-optimal results with relaxed headway 

requirements.  

When the simulation time is extended to one hour the following parameters are obtained: 

   ,      ,      . Conversely to what was previously observed, the lower bound 

value for headway is obtained, which ensures an increase in the capacity of traffic flow. The 

upper bound value for the acceleration parameter and the lower bound value for the 

deceleration parameter compensate the instability that arises from the low value of  . 

Interestingly the results are almost completely robust to changes of the leader’s trajectory, 

variation of the inflow, and even further relaxation of the throughput requirement by 

reducing   to 50% (small variations in the value of parameter   take place when the inflow 

of vehicles goes above 2200 
   

  
). These results are somewhat counterintuitive, as the 

driving behaviour produced using these parameters is highly agile, and this contradicts the 

assumptions made in many studies. 

Figure 12 demonstrates the comparison of the system-optimal parameters with the user-

optimal ones in a simulation where the trajectory of the first vehicle that enters the 

scenarios is that of the leader in the Naples dataset 25B and the inflow of vehicles is 1800 

   

  
.  The flow-density diagrams are obtained by placing three virtual detectors at 500 m 

intervals and using the equations below to calculate the average flow and density. The 

derivation of the fundamental diagram for homogenous traffic is discussed in Treiber et al. 

(2000). 

   
  

 
                   ̅  

 

  
∑  

  

   

                           ̅    ( ) 

where   is the time interval equal to   min,    is the vehicle count at time interval  , and    

is the velocity of vehicle   that crosses the detector during interval  . 

 



 

Figure 12 Spatio-temproal graph obtained when the macroscopically optimal parameters for the two-hour-long scenario 
are used, a)    vehicle ID 441  b)    = ID 362 

The use of the system-optimal model parameters results in an average traffic throughput of 

about 1800 
   

  
 and an average fuel consumption of about 6.68 

     

          
, compared to the 

traffic throughput of 1298 
   

  
 and the average fuel consumption of 8.12 

     

          
 for the 

user-optimal parameters; this significant saving in the total fuel consumption comes at the 

cost of a 12% increase in the fuel consumption of the 10 immediate followers of the first 

vehicle entering the scenario. These values are obtained in a two-hour-long simulation and 

are averaged over 100 independent simulations. This highlights the fundamental differences 

between the two approaches to fuel efficiency. 

Finally, Table 4 provides a comprehensive comparison of the results when the trajectories of 

the vehicles with IDs 441 and 1845 (from the HOV lane and lane 2 respectively) are used in 

the simulation. These values are obtained in one-hour-long simulations. The inflow of 

vehicles is adjusted to the real scenario, that is 1284 
   

  
 for the scenario when           

and 1344 
   

  
 when         . The reported values are averaged over 100 simulation runs. 



Table 4 Results obtained in different optimisations described previously for when the dataset 

Parameters’ values 

And results 

Micro, 

   , 

    , 

       

Micro 

    , 

    , 

       

Macro  

         

Macro 

         

Real 

        1.7 4.3 0.5 5 NA 

        1 3 5 0.5 NA 

     2 2 2 0.5 NA 

Lead Vehicle ID 441 1845 441 1845 441 1845 441 1845 441 1845 

AFC   
   

          
  7.1 13.8 7.3 14.2 8.5 11.3 6.4 6.9 6.9 10.3 

AFC (10 followers) 6.7 9.5 6.3 9.4 6 11 7.6 10.1 6.3 10.5 

TTh         ¹ 1344 963 1344 937 1135 1075 1344 1284 1344 NA² 

¹AFC=Average Fuel Consumption, TTH= Trafic Throughput 

²  Not possible to estimate due to the large number of lane-changes 

5. Conclusion and future work 
In this study, a new framework for conducting user- and system-oriented optimisation 

related to fuel efficiency in the car-following regime was presented. The framework builds 

on the extensive literature available on car-following models and limits the search space of 

optimisation to a sub-space of possible driving strategies that is modelled by a car-following 

model. Depending on the car-following model, this sub-space could represent a search 

space where important criteria of driving, such as stability, safety, comfort and driver 

acceptability, are satisfied. Unlike the dynamic programming-based or optimal-control-

theory-based methods that can be seen in the literature, the proposed method allows 

performing large-scale, scenario-based optimisation, and testing the impacts of optimal 

strategies on the collective features of traffic flow. In this study the focus was on fuel 

consumption, while other objectives can also be investigated within this framework. 

Firstly, similarly to numerous studies in the literature, the question of fuel efficiency was 

formulated as the minimisation of the fuel consumption of a vehicle (or a small number of 

vehicles) while following the leader. The optimal parameters found using the proposed 

approach produce a driving behaviour that is consistent with the control models proposed 

in other studies. The optimal parameters yield a driving behaviour that ensures sufficiently 

large gaps between the vehicles. Furthermore, this strategy is insensitive to minor 

accelerations/decelerations of the lead vehicle. It was shown that this approach produces a 



user-optimal driving strategy that, while delivering savings for the immediate followers, 

leads to a drastic deterioration of traffic capacity. Consequently, the fuel costs of trips 

significantly increase within the network.  

The relationship between fuel consumption and traffic flow is a complex one. Adopting 

narrowly framed optimisation frameworks based on a single pair of vehicles cannot 

adequately capture the complex nature of traffic. In order to address this, a system-optimal 

optimisation was formulated. The system-optimal driving strategy was shown to vary 

significantly from the user-optimal one. In particular, the user-optimal driving strategy 

encourages a sluggish driving style with large gaps between the vehicles, while the system-

optimal driving strategy encourages short headways and a highly agile driving behaviour, 

leading to traffic flow efficiency, as well as network-wide reductions of fuel consumption. 

The key finding of the present study is that the application of the user-optimal control 

models that are widely seen in the literature may be suitable to free-flow conditions, but for 

more congested states, as is commonly encountered in urban areas, a system-optimal 

approach, like the one proposed, appears to be more appropriate. And while the study has 

thrown some light into the topic of energy-efficient ACC, work in this direction continues. 

Specifically, the next step of the research entails the consideration of the effects of lane 

changing and of the heterogeneous nature of traffic, which were not addressed here. These 

subjects and their impacts on the results will be thoroughly analysed in a future study, 

where the model will be implemented in a realistic urban network consisting of mixed 

traffic. Further future research will also investigate the use of other suitable car-following 

models and the application of the framework to different objectives.  
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