

City, University of London Institutional Repository

Citation: Khani, S. (2018). Self-reconfigurable, intrusion-tolerant, web-service
composition framework. (Unpublished Doctoral thesis, City, Universtiy of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/19833/

Link to published version:

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Self-Reconfigurable, Intrusion-Tolerant,

Web-Service Composition Framework

by

Shahedeh Abdolhossein Khani

Submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy

in the

City, University of London

School of Mathematics, Computer Science and Engineering

Department of Computer Science

MAY 2018

2 | P a g e

Table of Contents

List of Figures ... 6

List of Tables ... 9

List of Abbreviations... 10

Acknowledgements .. 11

Abstract .. 12

Chapter 1 Introduction ... 14

1.1 Motivation .. 15

1.2 Context .. 17

1.3 Research Questions .. 18

1.4 Contributions .. 19

1.5 Research Distinctions ... 19

1.6 Outline ... 19

1.7 Publication .. 21

Chapter 2 Background and Motivation.. 22

2.1 Web Services Overview ... 23

2.1.1 Web Services’ Core Technologies .. 25

2.1.2 Summary ... 27

2.2 Web Services’ Security Challenges and Issues ... 28

2.2.1 Security Vulnerabilities Concerning WSs ... 30

2.2.2 Existing Countermeasures and their Limitations ... 36

2.2.3 Summary ... 42

2.3 Dependability and Intrusion-Tolerance .. 43

2.3.1 Fault-Prevention ... 43

2.3.2 Fault-Tolerance ... 44

2.3.3 Fault-Removal ... 48

2.3.4 Fault-Forecasting ... 49

2.3.5 Intrusion-Tolerance .. 49

2.3.6 Summary ... 49

2.4 Penetration Testing ... 50

2.5 Principal Component and Cluster Analysis ... 51

2.5.1 Cluster Analysis .. 51

2.5.2 Principal Component Analysis .. 53

3 | P a g e

2.5.3 Application of PCA in Cluster Analysis ... 54

2.5.4 Summary ... 54

2.6 WS Orchestration and Choreography .. 55

2.6.1 WSCI .. 56

2.6.2 BPML .. 56

2.6.3 BPEL .. 56

2.6.4 Summary ... 60

2.7 Summary ... 61

Chapter 3 Architecture of Reconfigurable ITWS framework 62

3.1 Objective ... 62

3.2 Assumptions ... 64

3.3 Architecture... 64

3.4 Summary ... 71

Chapter 4 ITWS Formed Based on Penetration Test Results of Candidate WSs ... 72

4.1 Penetration Testing Tool, WS-Attacker .. 72

4.1.1 WS-Attacker Framework ... 74

4.1.2 WS-Attacker Plugin .. 74

4.2 Case Study: Feasibility of ITWS Formed Based on Penetration Test Results of

Candidate WSs ... 78

4.2.1 WSs Preparation .. 79

4.2.2 Penetration Tests Settings .. 79

4.2.3 WSs’ Penetration Test Results .. 79

4.2.4 ITWS Implementation .. 80

4.2.5 ITWS’s Penetration Test Results ... 81

4.3 Summary ... 81

Chapter 5 Effects of BPEL on WSs’ XML-Related Security Vulnerabilities 82

5.1 Case Study: Effects of BPEL on WSs’ XML-Related Security Vulnerabilities 82

5.1.1 WS Preparation .. 82

5.1.2 WS Wrapped within BPEL process ... 83

5.1.3 Penetration Tests Settings .. 84

5.1.4 Attack Elements for Test SOAP Messages .. 84

5.1.5 Penetration Tests Results ... 86

5.2 Summary ... 89

Chapter 6 Security-Aware Selection of Optimal Group of WSs using PCA and CA,

for Implementation of TWS ... 90

4 | P a g e

6.1 Case Study: Security-Aware Selection of Optimal Group of WSs using PCA

and CA, for Implementation of ITWS .. 90

6.1.1 WS Preparation .. 91

6.1.2 WSs Wrapped within BPEL processes ... 91

6.1.3 Penetration Tests Settings .. 92

6.1.4 Attack Elements for Test SOAP Messages .. 93

6.1.5 Penetration Test Results of Candidate WSs .. 93

6.1.6 Principal Components Analysis of Candidate WS’s Penetration Test

Results ... 106

6.1.7 Cluster Analysis based on Principal Component Analysis Results 114

6.1.8 WS-Groups Ordering using Penetration Testing 116

6.2 Summary ... 122

Chapter 7 Dynamic Reconfiguration of ITWS Using BPEL and JAVA as BPEL

Extension ... 123

7.1 Setups for Case Studies ... 123

7.1.1 WS Preparation .. 123

7.1.2 DB Preparation ... 124

7.1.3 Communication with DB .. 125

7.2: Case Study: Dynamic Reconfiguration Using a Combination of Java as BPEL

Extension and BPEL Constructs .. 125

7.3: Case Study: Dynamic Reconfiguration Using Only Java as BPEL Extension

 .. 130

7.4: Summary .. 134

Chapter 8 Evaluation ... 135

8.1 Advantages and Limitations of the Presented ITWS 136

8.1.1 Advantages of the Presented ITWS .. 136

8.1.2 Extensibility of the Presented ITWS .. 136

8.1.3 Limitations of the Presented ITWS .. 137

8.2 Feasibility of Implementing ITWS Based on Penetration Testing Results of

Candidate WSs ... 137

8.3 Feasibility of PCA and CA Utilization in Security-Aware Service Selection . 138

8.4 Feasibility of Implementing Self-Reconfigurable ITWS Using BPEL and JAVA

as BPEL Extension .. 143

Chapter 9 Literature Review ... 151

9.1 Intrusion Detection, Prevention and Tolerant Systems 151

9.1.1 Related Security Standards .. 151

5 | P a g e

9.1.2 Related ID/IP Approaches .. 152

9.1.3 Related Intrusion-Tolerant Systems .. 153

9.2 Service Selection ... 154

9.3 Reconfiguration/Adaptation .. 155

Chapter 10 Conclusions and Future Work ... 157

10.1 Summary... 157

10.2 Future Work .. 159

10.3 Conclusions .. 159

References .. 161

Appendix A: WSDL of Axis1-4 WS running on apache-tomcat-6.0.18 server 169

Appendix B: WSDL of Axis2-1.5.1 WS running on apache-tomcat-6.0.18 server . 172

Appendix C: WSDL of Axis2-1.6.1 WS running on apache-tomcat-6.0.18 server . 176

Appendix D: WSDL of CXF-2.5.11 WS running on apache-tomcat-7.0.72 server . 180

Appendix E: WSDL of CXF-2.3.10 WS running on apache-tomcat-6.0.18 server . 182

Appendix F: WSDL of CXF-2.6.3 WS running on apache-tomcat-7.0.72 server ... 184

Appendix G: Java Class for Communication between ITWS and Database 186

Appendix H: Java Class for Dynamic WS Invocation Using RPC Library 188

Appendix I: Java Class for Dynamic WS Invocation through RPC and Java Multi-

Threading Libraries .. 191

Appendix J: Remaining Java Codes for Chapter 7 ... 194

6 | P a g e

List of Figures

Figure 2.1: The Service Oriented Operational Architecture [1] 24

Figure 2.2: Simple WS Interaction [1] ... 25

Figure 2.3: Discrete Components in a WS Architecture [1] ... 26

Figure 2.4: Composite WS [1] .. 27

Figure 2.5: UT Model [23] ... 29

Figure 2.6: Security Vulnerabilities Affecting SOA (implemented using WSs

technology) .. 30

Figure 2.7: Web services Security Standards – National Reference Model [46] 37

Figure 2.8: The Dependability Tree [56] ... 43

Figure 2.9: Sequential Alternative Pattern [63] .. 46

Figure 2.10: Parallel Selection Pattern [63] .. 47

Figure 2.11: Parallel Evaluation Pattern [63] ... 47

Figure 2.12: PCA in CA [102] ... 54

Figure 2.13: WSCI Collaboration [107] ... 56

Figure 2.14: BPEL4WS Process Flow [107] .. 57

Figure 3.1: Overview of the Framework’s Objective ... 63

Figure 3.2: General Architecture, the dotted lines indicate the external systems 64

Figure 3.3: Combined SM and SGM Operation Intervals. The solid lines and dotted

lines indicate SM and SGM operation intervals, respectively 69

Figure 4.1: Overview of WS-Attacker and Its Processing Steps [18] 73

Figure 4.2: Component Diagram for WS-Attacker .. 73

Figure 4.3: BPEL Diagram of the ITWS .. 80

Figure 5.1: BPEL Process for Wrapping the Developed WSs. 83

Figure 5.2: The Component Diagram for Direct Penetration Testing of the 86

Figure 5.3: The Component Diagram for Penetration Testing of the WS in this Case

Study while it is wrapped in a BPEL Process. ... 86

Figure 5.4: Results from Direct Penetration Testing Axis2-1.6.1 WS(for information

about each test see Table 5.1) ... 88

Figure 5.5: Penetration Test Results for Axis2-1.6.1WS while it was wrapped in a

BPEL Process (for information about each test see Table 5.1) 88

Figure 6.1: Penetration Tests Results for Tests 1-8 Performed on Axis1-4 WS (for

information about each test and WS see Table 6.1 and Section 6.1.1, respectively)

 .. 94

Figure 6.2: Penetration Tests Results for Tests 9-16 Performed on Axis1-4 WS for

information about each test and WS see Table 6.1 and Section 6.1.1, respectively95

Figure 6.3: Penetration Tests Results for Tests 1-8 Performed on Axis2-1.5.1 WS for

information about each test and WS see Table 6.1 and Section 6.1.1, respectively96

Figure 6.4: Penetration Tests Results for Tests 9-16 Performed on Axis2-1.5.1 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 97

Figure 6.5: Penetration Tests Results for Tests 1-8 Performed on Axis2-1.6.1 WS for

information about each test and WS see Table 6.1 and Section 6.1.1, respectively98

7 | P a g e

Figure 6.6: Penetration Tests Results for Tests 9-16 Performed on Axis2-1.6.1 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 99

Figure 6.7: Penetration Tests Results for Tests 1-8 Performed on CXF-2.3.10 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 100

Figure 6.8: Penetration Tests Results for Tests 9-16 Performed on CXF-2.3.10 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 101

Figure 6.9: Penetration Tests Results for Tests 1-8 Performed on CXF-2.5.11 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 102

Figure 6.10: Penetration Tests Results for Tests 9-16 Performed on CXF-2.5.11 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 103

Figure 6.11: Penetration Tests Results for Tests 1-8 Performed on CXF-2.6.3 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 104

Figure 6.12: Penetration Tests Results for Tests 9-16 Performed on CXF-2.6.3 WS

for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively ... 105

Figure 6.13: Plot of Candidate WSs’ Penetration Tests Results, to be used as PCA

inputs (for information about each test and WS see Table 6.1 and Section 6.1.1,

respectively) .. 107

Figure 6.14: Variance Explained by each PC .. 112

Figure 6.15: Scree Graph ... 113

Figure 6.16: The WSs’ Original Penetration Test Results against the First Two PCs

 .. 113

Figure 6.17: Component Diagram for Penetration Testing Each Group of WSs ... 116

Figure 6.18: Penetration Test Results for WS-Group1 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 118

Figure 6.19: Penetration Test Results for WS-Group2 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 118

Figure 6.20: Penetration Test Results for WS-Group3 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 119

Figure 6.21: Penetration Test Results for WS-Group4 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 119

Figure 6.22: Penetration Test Results for WS-Group5 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 120

Figure 6.23: Penetration Test Results for WS-Group6 (for information about each

test and WS-group see Table 6.12 and Section 6.1.7, respectively) 120

Figure 6.24: WS-Groups Sorted in Ascending Order According to their Penetration

Test Results (for information about each test and WS-group see Table 6.12 and

Section 6.1.7, respectively) ... 121

Figure 7.1: BPEL Diagram of Dynamically Reconfigurable ITWS, Implemented

Using a Combination of Java as BPEL Extension and BPEL Constructs 126

8 | P a g e

Figure 7.2: Process Execution Time (ms) for Dynamic ITWS Implemented using

Combination of Java as BPEL Extension and BPEL constructs (ran with three

diverse WSs) ... 129

Figure 7.3: Process Execution Time (ms) for Dynamic ITWS Implemented using

Combination of Java as BPEL Extension and BPEL constructs (ran with five diverse

WSs) ... 129

Figure 7.4: BPEL Diagram of Dynamic Reconfigurable ITWS, Implemented Using a

Combination of Java as BPEL Extension and BPEL Constructs 130

Figure 7.5: Process Execution Time (ms) for Dynamic ITWS Implemented using

Java as BPEL Extension only (ran with three diverse WSs) 133

Figure 7.6: Process Execution Time (ms) for Dynamic ITWS Implemented using

Java as BPEL Extension only (ran with five diverse WSs) .. 133

Figure 8.1: Penetration Test Results for WS-Group7 (for information about each test

see Table 6.12) ... 139

Figure 8.2: Average of Penetration Test Results for WS-Groups1-6 against Average

of Penetration Test Results for WS-Group7 .. 139

Figure 8.3: BPEL Diagram of Static ITWS Implemented for Evaluation Purpose .. 143

Figure 8.4: Process Execution Time (ms) for Static ITWS Implemented using BPEL

Constructs only (ran with three diverse WSs from Section 7.1.1) 146

Figure 8.5: Process Execution Time (ms) for Static ITWS Implemented using BPEL

Constructs only (ran with five diverse WSs from Section 7.1.1) 146

Figure 8.6: Average of Process Execution Times (ms) for Static ITWS against the

Average of Process Execution Timess (ms) for Dynamic ITWSs 147

Figure 8.7: Dynamic Reconfiguration Time (ms) for ITWS Implemented using

Combination of Java and BPEL Constructs ... 149

Figure 8.8: Dynamic Reconfiguration Time (ms) for ITWS Implemented using Java

only ... 149

9 | P a g e

List of Tables

Table 3.1: Services Repository (SR) ... 67

Table 3.2: Penetration Tests Repository (PTR) .. 68

Table 3.3: Services Penetration Tests Results Repository (SPTRR) 68

Table 3.4: Service-Groups Repository (SGR) ... 68

Table 3.5: Groups Penetration Tests Results Repository (GPTRR) 68

Table 3.6: Failure Records Repository (FRR) ... 68

Table 4.1: WS-Attacker’s DoS Attack Success Metrics [40] 77

Table 4.2: WS-Attacker’s DoS Attack’s Effect Metrics on Third-Party Users [40].... 78

Table 4.3: Results of Testing DoS Attack Plugins on a Number of Web service

Frameworks [40] ... 78

Table 4.4: WS-Attacker’s Settings ... 79

Table 4.5: Penetration Tests Results .. 81

Table 5.1: WS-Attacker’s Settings ... 84

Table 6.1: WS-Attacker’s Settings ... 92

Table 6.2: WSs’ Penetration Test Results to be used as PCA input (for information

about each test and WS see Table 6.1 and Section 6.1.1, respectively) 108

Table 6.3: Mean Matrix of the Penetration Test Results .. 108

Table 6.4: Mean Adjusted Penetration Test Results .. 108

Table 6.5: Covariance Matrix of the Mean Adjusted Penetration Test Results 109

Table 6.6: Eigenvectors for the Covariance Matrix of the Mean Adjusted Penetration

Test Results .. 109

Table 6.7: Ordered Eigenvalues .. 110

Table 6.8: Ordered Eigenvectors ... 110

Table 6.9: Calculated Principal Components ... 110

Table 6.10: Results of CA on selected PCs ... 115

Table 6.11: Distance between Each WS and the Cluster Centres (in 1.0e+04 scales)

 .. 115

Table 6.12: WS-Attacker’s Settings ... 117

Table 7.1: Service Table Storing Necessary Information for Invoking Candidate WSs

 .. 124

Table 8.1: 2-Samples Tests Results for Coercive Parsing Attack 141

Table 8.2: 2-Samples Tests Results for Hash Collision Attack 141

Table 8.3: Execution Time Overheads.. 147

Table 8.4: 2-Sample Tests Results for ITWS ran with three WSs 148

Table 8.5: 2-Sample Tests Results for ITWS ran with five WSs 148

10 | P a g e

List of Abbreviations

API
AOP
BP
BPEL
BPEL4WS
BPML
CA
DII
DOM
DoS
FRR
GPTRR
HashDoS
ID
IP
ITWS
NVD
OSVDB
OTSC
OTSWSs
OWASP
PCA
PCs
PTR
QoS
RPCs
SAML
SAX
SB-WS
SGM
SGR
SM
SOA
SOAP
SPTRR
SQ-WS
SR
UDDI
WA
WASC
WSCI
WSDL
WSFL
WSs
XACML
XML
XSD

Application Programming Interface
Aspect Oriented Programming
Business Process
Business Process Engineering Language
Business Process Execution Language for Web services
Business Process Modelling Language
Cluster Analysis
Dynamic Invocation Interface
Document Object Model
Denial of Service
Failure Records Repository
Groups Penetration Tests Results Repository
Hash Collision
Intrusion Detection
Intrusion Prevention
Intrusion-Tolerant Web Service
National Vulnerability Database
Open Source Vulnerability Database
Off-The-Shelf Components
Off-The-Shelf Web Services
Open Web Application Security Project
Principal Component Analysis
Principal Components
Penetration Tests Repository
Quality-of-Service
Remote Procedure Calls
Security Assertion Markup Language
Simple API for XML
Stock Broker WS
Service-Groups Manager
Service-Groups Repository
Services Manager
Service Oriented Architecture
Simple Object Access Protocol
Services Penetration Tests Results Repository
Stock Quote WS
Services Repository
Universal Description, Discovery and Integration
Web Application
Web Application Security Consortium
Web Service Choreography Interface
Web Service Description Language
Web Services Flow Language
Web Services
Extensible Access Control Markup Language
Extensible Markup Language
XML Schema Definitions

11 | P a g e

Acknowledgements

I would like to express my gratitude to my two supervisors, Dr Cristina Gacek

and Dr Peter Popov. I am very grateful to them for their invaluable inspiration

on this dissertation and all their supports. As their student I have learnt so

many things. I would like to thank my examiners Professor Stefano Russo

and Dr Evangelia Kalyvianaki for their useful suggestions.

Thanks go to Stephanie Wilson, Dr Andrew Macfarlane, David Mallo-Ferrer

and everyone in the Centre for Software Reliability (CSR) for being so friend-

ly and supporting me throughout these years.

I am immensely grateful to my family for their love and support. Thank you!

12 | P a g e

Abstract

The Internet has provided an opportunity for businesses to offer their

services as Web Services (WSs). WSs are used to implement Service Ori-

ented Architecture (SOA). They enable composition of independent services

with complementary functionalities to produce value-added services, which

results in less development effort, time consumption and cost, enabling com-

panies and organizations to implement their core business only and out-

source other service components over the Internet, either pre-selected or on-

the-fly.

Simple Object Access Protocol (SOAP) based WSs are at risk of se-

curity vulnerabilities related to their specific implementation technologies

such as Extensible Markup Language (XML) as well as those of their under-

lying platforms (e.g., operating systems and frameworks) and their applica-

tions (e.g., vulnerability to SQL Injection attacks). Cyber-attacks on WSs may

cause unavailability, loss of confidentiality and/or integrity as well as signifi-

cant monetary penalties. Security issues become more challenging when Off-

The-Shelf Web Services (OTSWSs) are used since they are beyond the con-

trol of their clients.

The central question underlying this work is:

Can a self-reconfigurable Intrusion-Tolerant Web Ser-

vice, implemented using N-version programming and diversity formed by

composing Off-The-Shelf Web Services that are selected through penetration

testing, Principal Component Analysis, and Cluster Analysis process-

es mitigate XML-related security vulnerabilities?

While aiming to answer the above question, this dissertation presents

a novel framework to increase dependability by constructing an Intrusion-

Tolerant Web Service (ITWS) in which N-version programming and diversity,

formed by composing SOAP-OTSWSs, is used. It describes how penetration

testing can be used as a measure of security vulnerabilities of available

SOAP-OTSWSs (that offer the required functionality) and the resultant ITWS,

13 | P a g e

how Principal Component Analysis (PCA) and Cluster Analysis (CA) and be

utilized to group the SOAP-OTSWSs based on their security vulnerabilities

diversity and how a further penetration testing on each group of diverse

SOAP-OTSWSs can be used to select the optimal set (most secure among

the groups) for construction of ITWS.

This dissertation also demonstrates how the dynamic reconfiguration

of ITWS, created in Business Process Engineering Language (BPEL), can be

enabled using a combination of BPEL constructs and Java as BPEL exten-

sion approach and using only Java as BPEL extension approach.

The novelty of the work presented in this dissertation is twofold. On

the one hand, it is security informed and on the other hand, it demonstrates

the use of Java (as BPEL 2.0 extension) to implement self-reconfigurable

composite WS. It has the advantage of, at the same time, facilitating a de-

pendable service to users and exploiting existing standard technologies. This

work also assesses the effectiveness of the proposed solutions through vari-

ous case studies and discusses the implications of the proposed framework.

14 | P a g e

Chapter 1 Introduction

CHAPTER

 Introduction

This dissertation is concerned with improving the dependability of

Simple Object Access Protocol (SOAP) based Web Services (WSs) when

Off-The-Shelf Web Services (OTSWSs1) are employed. Its focus is on the

security vulnerabilities related to WSs’ implementation technologies. It intro-

duces a novel framework to increase dependability by constructing Intrusion-

Tolerant Web Service (ITWS) in which N-version programming and diversity,

formed by composing OTSWSs, is used. It also demonstrates how dynamic

reconfiguration of ITWS can be enabled by using a combination of Business

Process Engineering Language (BPEL) constructs and Java as BPEL exten-

sion approach and using only Java as BPEL extension approach.

This chapter starts by describing the motivation for the problem ad-

dressed by this dissertation (Section1.1). It then presents the context of (Sec-

tion1.2) and the central question underlying (Section1.3) this work. Afterward,

it enumerates the contributions (Section1.4) and lists the research distinc-

tions (Section1.5). Finally, it outlines the remaining chapters of this disserta-

tion (Section1.6) and presents its publication (Sec-tion1.7).

1 The focus of this dissertation is on the SOAP-based WSs and the term “*WS”, wherever used in this
dissertation, refers to this type of services.

1

15 | P a g e

1.1 Motivation

Service Oriented Architecture (SOA) is a popular paradigm for system

integration and interoperation. It employs services as fundamental elements

for developing applications. A service is a self-contained unit of software that

provides a particular function. WSs are an implementation of the SOA. A WS

can be as simple as a logging service or as complex as an organization’s

business logic that is decided to be exposed to the outside world [1]. WSs

can advertise their services (e.g., OTSWSs) through a registry. Hence, desir-

able WSs can be looked up (via their description) and used individually or

integrated into a composite WS.

In WSs, all documents and data are in Extensible Markup Language

(XML) format. This property has simplified the interoperability of the various

technologies employed in the development of WSs [1]. It has also provided

other attractive features such as simple request-response service exchange

architecture (ease of use), platform independence, the ability to transport lots

of information over the Internet and capability to compose loosely coupled

components [1]. Because of these features, WSs are being employed in the

development of various critical applications, such as banking, booking, e-

business, e-science, etc. [2], [3]. Hence, ensuring their security has received

considerable attention from researchers: security standards [4], authorization

[5], access control [6], [7], anomaly detection [8], etc.

In addition to the above attractive features, XML has also introduced

its specific security vulnerabilities that cannot be detected by Intrusion Detec-

tion and Intrusion Prevention systems. For example, a malformed message

that does not comply with expected message structure can make the server

unavailable or cause unintended operations. Use of WS-* security standards

[4] and message validation (before they reach the business logic) are often

cited as sufficient countermeasures to safeguard against attacks exploiting

this type of security vulnerabilities [9]–[11].

The WS-* security standards are members of WSs specifications and

apply integrity and confidentiality through SOAP extensions (e.g., XML Sig-

16 | P a g e

nature and XML Encryption). They also provide communication of several

security token formats (e.g., Security Assertion Markup Language, Kerberos,

and X.509). However, they have the following limitations:

 Equipping a SOAP message with these standards may require chang-

es to the message's structure since their use may introduce additional

elements which did not exist previously.

 If their use is revoked, the message structure may require significant

changes.

 They may cause security vulnerabilities themselves. For example,

McIntosh and Austel [12] have shown that the content of a SOAP

message, which is protected by an XML Signature (as specified in

WS-Security standard) can get changed without invalidating the signa-

ture.

A SOAP message validator checks whether the message adheres to

the specified schema and discards the message if it does not. However, this

approach also has various limitations such as:

 Often such validators rely on XML Schema Definitions derived from

Web Service Description Language document or hand-coded by pro-

grammers, which may make them prone to cyber-attacks.

 Similarly to the previous limitation, manual unguided schema updates

that rely entirely on the skills of a programmer may also make the vali-

dator prone to cyber-attacks.

 If the schema used by the validator is loosely defined, it may allow ma-

licious messages to pass through.

 They cannot safeguard against some cyber-attacks exploiting XML-

related security vulnerabilities. For example, Jenson et al. [13] have

shown that even the most restrictive XML Schema validators may fail

to defend against XML Signature Wrapping attacks.

The security issue gets more challenging when OTSWSs are em-

ployed since they are ready-made black boxes of unknown quality and their

security is out of the control of their clients. However, any attacks exploiting

17 | P a g e

their security vulnerabilities will also affect the services offered by their cli-

ents. Also, OTSWSs may be updated (which may increase or decrease their

security) or more secure OTSWSs (offering the same required functionality)

may become available. Therefore, their clients should be able to replace

them to maintain or even improve the overall security, if they wish to. The

replacing to a more secure OTSWS may need to be done dynamically as

switching off the client’s system might not be acceptable.

To address these challenges, a self-reconfigurable, intrusion-tolerant

WS remains an interesting choice, which is the motivation for the work pre-

sented in this dissertation and one of its key benefits is the possibility of en-

suring correct behaviour in the presence of attacks.

This dissertation presents a novel framework to increase dependability

by constructing ITWSs in which N-version programming and diversity, formed

by composing OTSWSs, is used. It uses penetration testing as a measure of

security vulnerabilities (XML-related) of available OTSWSs (that offer the re-

quired functionality) and the resultant ITWS. It employs Principal Component

Analysis (PCA) and Cluster Analysis (CA) to group the OTSWSs based on

their security vulnerabilities diversity then performs further penetration testing

on each group to select the optimal set (most secure among the groups) for

construction of ITWS. It also investigates the dynamic reconfiguration of

ITWS, created in Business Process Engineering Language (BPEL), using a

combination of BPEL constructs and Java as BPEL extension approach and

using only Java as BPEL extension approach.

1.2 Context

This section discusses how the current work can be used.

Assume a Stock Broker WS (SB-WS), which uses a third-party Stock

Quote WS (SQ-WS). If this SQ-WS becomes unavailable for any reason or

returns incorrect stock prices, it will affect the SD-WS business and reputa-

tion. These problems can be diminished through redundancy approaches.

For example, through SD-WS using SQ-WSs (offered by various vendors)

18 | P a g e

simultaneously to get the stock price then performing majority voting on the

returned stock prices. In this way, SD-WS can continue to provide reliable

service as long as the majority of the employed SQ-WSs return the correct

stock price. This approach (redundancy) can also improve the overall securi-

ty of the SD-WS if the utilized services have security vulnerabilities diversity.

Otherwise, any common security vulnerabilities will be a window of opportuni-

ty for compromising all the SQ-WSs, having the targeted security vulnerabil-

ity, at the same time that will also affect the SD-WS’s business and reputa-

tion. Also, SQ-WSs may become upgraded (which may increase or decrease

their security) or more secure SQ-WSs may become available. Therefore,

SD-WS should be able to perform dynamic (since switching off SD-WS will

cause significant monetary penalties) self-reconfiguration to use the optimal

set of SQ-WSs (set of SQ-WSs with most security vulnerabilities diversity).

The framework presented in this dissertation addresses the above

needs of SD-WS as follows:

1. Redundancy: through a composite WS constructed using BPEL (a de

facto language for WSs composition).

2. Security vulnerabilities diversity: by identifying the security vulnerabili-

ties of each available SQ-WS through penetration testing then group-

ing these services based on their security vulnerabilities diversity us-

ing PCA and CA approaches and finally selecting the optimal set

(most secure) through a further penetration testing.

3. Dynamic reconfiguration: through a combination of BPEL constructs

and Java as BPEL 2.0 extension approach or using only Java as

BPEL extension approach.

1.3 Research Questions

The central question underlying this work is:

Can a self-reconfigurable ITWS, implemented using N-version pro-

gramming and diversity formed by composing OTSWSs that are selected

19 | P a g e

through penetration testing, PCA, and CA processes mitigate XML-related

security vulnerabilities?

1.4 Contributions

In particular, this dissertation makes the following contributions:

1. A general architecture for an ITWS (formed by composing OTSWSs)

that mitigates XML-related security vulnerabilities.

2. The integration of penetration testing, PCA, and CA to group OTSWSs

based on their overall XML-related security vulnerabilities for ITWS

implementation.

3. An approach to reconfiguring the ITWS (implemented in BPEL) using

a combination of BPEL constructs and Java snippets (as BPEL 2.0 ex-

tension).

4. A method for reconfiguring the ITWS (implemented in BPEL) using on-

ly Java as BPEL 2.0 extension.

1.5 Research Distinctions

The major novelties of this work are as follows:

1. Consideration of XML-related security vulnerabilities in selecting

OTSWSs and implementing ITWS.

2. Use of PCA and CA analysis on penetration tests results of OTSWSs

in choosing a diverse group of services regarding their security vul-

nerabilities to implement ITWS.

1.6 Outline

The rest of this dissertation is organised as follows:

 Chapter 2 further explains the motivation for the work of this thesis

and describes its background. In particular, it elaborates on main areas that

constitute the current context, namely, WSs’ architecture and characteristics,

their security issues, their composition and self-reconfiguration capabilities

20 | P a g e

and penetration testing them as well as dependability (N-version program-

ming and diversity), PCA and CA approaches.

Chapter 3 explains the architecture of proposed framework and the

assumptions made.

 This dissertation demonstrates the proposed framework through

some case studies. Chapter 4 introduces the penetration testing tool, utilized

in the case studies presenting the proposed service selection framework. It

then demonstrates the feasibility of ITWS implementation based on penetra-

tion test results of the candidate WSs.

Chapter 5 shows that BPEL could affect the XML-related security vul-

nerabilities of the candidate (for ITWS implementation) WSs and argues that

these effects should be considered in service selection process.

Chapter 6 shows, how penetration test results of the candidate WSs,

PCA, and CA could be used to group WSs based on their XML-related secu-

rity vulnerabilities and how these groups could be sorted using further pene-

tration testing.

Chapter 7 demonstrates the implementation of self-reconfigurable WS

using a combination of BPEL constructs and Java as BPEL 2.0 extension

approach and utilizing only Java as BPEL extension approach through two

case studies.

Chapter 8 evaluates the work presented in this dissertation using the

outcomes of the case studies covered in Chapters 4-7.

 Chapter 9 reviews recent related work.

Finally, Chapter 10 provides a summary, conclusions, and discusses

future work.

21 | P a g e

1.7 Publication

The following publication is based on this dissertation:

S. Khani, C. Gacek, and P. Popov, “Security-aware selection of Web Ser-

vices for Reliable Composition,” ArXiv151002391 Cs Math, Oct. 2015.

22 | P a g e

Chapter 2 Background and Motivation

CHAPTER

 Background and Motivation

Simple Object Access Protocol (SOAP) based Web Services (WSs)

have attractive features such as simplified interoperability of the various

technologies employed in their development. However, they may also have

Extensible Markup Language (XML) related security vulnerabilities that can

be mitigated through appropriate countermeasures such as the use of WS-*

security standards and message validation (before a message reaches the

business logic). But each of these approaches has its limitations especially

when Off-The-Shelf Web Services (OTSWSs) are employed.

This chapter presents the background and motivation for this disserta-

tion and identifies Intrusion-Tolerant Web Service (ITWS), created using N-

version programming and diversity (formed by composing OTSWSs with se-

curity vulnerabilities diversity), as an interesting choice to safeguard against

cyber-attacks exploiting WSs’ security vulnerabilities (including XML-related

security vulnerabilities). In this work, a combination of penetration testing,

Principal Component Analysis (PCA), and Cluster Analysis (CA) approaches

are employed to select a set of most diverse OTSWSs regarding their securi-

ty vulnerabilities and its motivation is given throughout this chapter.

In particular, this chapter is divided into the following sections, each

corresponding to a different dimension that shapes this dissertation:

2

23 | P a g e

Section 2.1 provides an overview of the architecture and the charac-

teristics of the WSs.

Section 2.2 provides an overview of security issues concerning WSs

including their XML-related security vulnerabilities, the existing countermeas-

ures to safeguard against cyber-attacks exploiting this type of security vul-

nerabilities and the limitations of such countermeasures. It then concludes

that an ITWS remains an interesting choice to protect against cyber-attacks

threatening WSs including those exploiting XML-related security vulnerabili-

ties especially when OTSWSs are employed.

Section 2.3 presents a concise overview of the concepts and tech-

niques of dependability and how intrusion-tolerance can be achieved using

such methods.

Sections 2.4 and 2.5 briefly discusses penetration testing, PCA, and

CA approaches and explains how they can be employed to achieve diversity

(regarding security vulnerabilities) for ITWS purpose.

Section 2.6 provides an overview of WSs’ composition and how it can

be used to implement ITWS. It then argues the usefulness of self-

reconfigurable ITWS for security and reviews the capabilities and limitations

of Business Process Engineering Language (BPEL) 2.0 in this matter.

Finally, Section 2.7 summarizes the discussions provided in this chap-

ter and the motivations for the work presented in this dissertation.

2.1 Web Services Overview

A publically available service is a self-contained process (deployed

over standard middleware such as J2EE) that can be described, published,

discovered and invoked over a network [14]. It can be as simple as a logging

service or as complex as an organization’s business logic (e.g., holiday book-

ing service).

Service Oriented Architecture (SOA) is an architectural style for im-

plementing software systems out of loosely coupled, interoperable services

24 | P a g e

[15]. This approach supports the development of rapid, low-cost and easy to

compose distributed applications [14]. An SOA typically consists of the fol-

lowing roles (the operational architecture of the SOA roles is shown in Figure

2.1):

 Provider: is the owner of the service that hosts its implementation, de-

fines its description and publishes it to a registry [1].

 Requester: it can be either a person or another WS. It uses the ser-

vice registry to identify its desirable service(s) through its (their) de-

scription then binds to it (them) using the binding information provided

in its (their) description [1].

 Registry: it is a searchable registry of service descriptions (published

by their owners) [16].

Figure 2.1: The Service Oriented Operational Architecture [1]

WSs are the standards-based realization of SOA [17]. They are modu-

lar, self-describing, self-contained software components, which are network

accessible (e.g., they are accessible through HTTP) [14]. Each service con-

sists of an implementation (which is accessible over a network) and an inter-

face (which is based on XML). The interface contains the service’s descrip-

tion including its datatypes, operations, protocol bindings and the network

location for its implementation (e.g., the URL for the service’s implementa-

tion) [1]. The characteristics of WSs include:

 They are XML-based: XML is a specification language and can be

used to transmit or store data. In WSs, XML is used for invoking the

25 | P a g e

services and representing the data. Forasmuch as it can accommo-

date any data type and structure, it enables interoperability of the

technologies adopted in the development of WSs [1], [18].

 They are loosely coupled: in WSs, the client and the server logics

are loosely coupled. Therefore, any changes in either of these inter-

faces do not require an update in the other interface [1].

 They are coarse-grained: unlike object-oriented technologies that

expose the services through several fine-grained methods, WSs only

expose coarse-grained services [1].

 They can be synchronous or asynchronous: WSs can be either

synchronous (the client should wait until the last service invocation is

completed before invoking the next service) or asynchronous (the cli-

ent can invoke different services concurrently) [1].

 They support RPCs: clients of the WSs can invoke procedures, func-

tions, and methods on remote objects through an XML-based protocol

[1].

 They support document exchange: in WSs, complex documents

can be represented in XML format, which enables WSs to exchange

them [1].

2.1.1 Web Services’ Core Technologies

Figure 2.2: Simple WS Interaction [1]

SOAP [19], Web Service Description Language (WSDL) [20] and Uni-

versal Description, Discovery and Integration (UDDI) [21] are WSs’ major

technologies [22], whose interaction is demonstrated in Figure 2.2.

Applications

SOAP

Client

Service

Discrete

Business

Logic

SOAP

HTTP request

HTTP response

UDDI

Registry

WSDL

26 | P a g e

SOAP

 SOAP is a simple and lightweight protocol for exchanging the XML

data over the Web [22]. It enables interoperability among the WSs’ heteroge-

neous clients and servers [1]. A SOAP message contains an Envelope (iden-

tifies the XML document as a SOAP message), a Header (contains Metadata

such as timestamps) and a Body (contains call and response information)

elements [1].

WSDL

WSDL is an XML language for describing a WS including its data type

definitions, the operations it offers, its input/output message format, its net-

work address, its protocol binding, etc. [22]. It assists the clients to under-

stand how the interaction with the WS can be set.

UDDI

Figure 2.3: Discrete Components in a WS Architecture [1]

UDDI provides a registry where the WSs can be advertised and dis-

covered by their names, specifications, etc. [1]. In the example presented in

Figure 2.3, an application is acting as a client, which has submitted the in-

formation (e.g., specification) about its desirable services to a UDDI. The

UDDI has identified the suitable services, based on the client’s requirements,

and has returned the location of their WSDL to the client. The client is then

R
e
q

u
e

s
t

One-way

Applications

SOAP

Client

UDDI

Registry

Service

SOAP Processor

Applications

Applications

WSDL

Service

SOAP Processor

Discrete

Business

Logic

WSDL

R
e
s
p

o
n

s
e

27 | P a g e

communicating with the identified services through SOAP messages and

contact information provided in their WSDL files.

Sometimes the client may need to communicate with another client,

which itself is communicating with a number of other WSs (see Figure 2.4) to

perform a task. In this case, the target client and the WSs that it communi-

cates with can be combined and encapsulated to form a composite service

[1].

Figure 2.4: Composite WS [1]

2.1.2 Summary

This section briefly presented the architecture of the WSs and showed

that they are modular, self-describing, self-contained software components,

which are accessible through HTTP. These features allow companies to save

on their costs by speeding the application(s) implementation and integration

processes [23]. On the other hand, WSs also have security issues that have

to be addressed. The next section first explains the concept of security prop-

erties, vulnerabilities, and attacks as well as security in distributed software

systems. It then presents security vulnerabilities concerning WSs followed by

an overview of a number of existing countermeasures against cyber-attacks

exploiting WSs’ XML-related security vulnerabilities (as the focus of the work

in this dissertation is on this type of security vulnerabilities). It then explains

Service

Service

S

Applications

SOAP

Client

SOAP processor
HTTP request

HTTP response

UDDI

Registry

WSD

L

R
e
q

u
e

s
t

One-way

Applications

SOAP

Client

Service

SOAP processor

Applications

Applications

WSDL

Service

SOAP processor

Discrete

Business

Logic

WSDL

R
e
s
p

o
n

s
e

WSDL

28 | P a g e

some of the limitations of these countermeasures and concludes that an

ITWS is a suitable countermeasure to safeguard against cyber-attacks

threatening WSs including those exploiting XML-related security vulnerabili-

ties, especially when OTSWSs are employed.

2.2 Web Services’ Security Challenges and Issues

Security Properties

The security objective of computer systems is to protect the stored in-

formation and the data that should be transferred over the networked devic-

es. To achieve these objectives, the following main security properties should

be satisfied [24]:

 Authorization: to ensure that users do not take action or access the

resources and information beyond their specified rights.

 Authenticity: to ensure that the people or systems taking part in the

communication are who they claim to be.

 Confidentiality: to ensure that the information will only be disclosed

to the authorised people.

 Integrity: to ensure that the information will only be altered by the au-

thorized people.

 Non-repudiation: to ensure that the involvement of the legitimate

people or systems in a transaction cannot be denied.

 Availability: to ensure that authorized parties can access the infor-

mation when needed.

Cyber-attacks and Vulnerabilities

Any action violating any of the above properties is an attack and any

possibility (loophole in the security architecture of the computer system) ena-

bling an attacker to harm the resources is a vulnerability [24]. Cyber-attacks

can be divided into Passive and Active groups.

 Passive attacks: eavesdropping or accessing unauthorised data are

the objectives of Passive attacks [23].

29 | P a g e

 Active attacks: this type of attacks attempt to change the unauthor-

ised data by making a modification or adding false data [23]. Active at-

tacks can be further divided into the following groups:

o Masquerade: one entity tries to gain access to unauthorised

data or resources by pretending to be an entity with this access

right [23].

o Replay: replaying the message back to the sender as if it was

the reply from the receiver [23].

o Unauthorised access: getting access and using unauthorised

data/resources [23].

o Unauthorised alteration: illegitimate modification, removal or

alteration of the data [23].

o Repudiation of action: a party denies an action it has per-

formed [23].

o Unauthorised DoS: one party denies other entities authorised

access to the resources [23].

Security in Distributed Software Systems

Figure 2.5: UT Model [23]

Figure 2.5 illustrates the association between the security properties

(explained previously) and a distributed software system such as SOA, im-

plemented using WS technology. It is known as UT model [23], because it

resembles the shape of the alphabet letters U and T. the legs of the U repre-

sent various layers of the distributed system and the T demonstrates the se-

30 | P a g e

curity properties and their management that may be required across the lay-

ers of the distributed system [23].

2.2.1 Security Vulnerabilities Concerning WSs

SOA Security Vulnerabilities

Security vulnerabilities affecting SOA implemented using WS technol-

ogy can be divided into four major groups (see Figure 2.6); Classical Vulner-

abilities in hardware, operating systems and software used to build SOA

middleware; Web Application (WA) vulnerabilities as SOA is commonly built

on top of the Web protocols; and vulnerabilities due to the nature of SOA de-

sign, and new protocols and message formats supporting an SOA (the grey

layers in Figure 2.6) [23]. All these security vulnerabilities are briefly dis-

cussed in the remainder of this section.

Business Process Layer Vulnerabilities

Web Services Layer Vulnerabilities

Web Application Vulnerabilities

Classical Vulnerabilities in Hardware, Operating Systems and Software

Figure 2.6: Security Vulnerabilities Affecting SOA (implemented using WSs technology)

Layers [23]

Classical Security Vulnerabilities

Classical security vulnerabilities refer to security vulnerabilities in the

existing operating systems, software and hardware infrastructure that could

be exploited without the use of more recent web technologies (e.g., buffer

overflow) [23]. These vulnerabilities are listed and updated in the U.S. NVD

[25], OSVDB [26], US-CERT Vulnerability Notes Database [27], MITRE

Common Vulnerabilities and Exposure [28] and SecurityFocus [29].

The existing operating systems, software and hardware infrastructure

are employed to implement and deploy WSs hence, their related security

vulnerabilities (listed in the above databases) also affect WSs.

31 | P a g e

Web Application Vulnerabilities

Web Application security vulnerabilities are related to the middleware

and application layer of WSs. These vulnerabilities are classified in WASC

[30], and a list of their most critical types is maintained by the OWASP [31].

WSs’ Specific Security Vulnerabilities

This type of security vulnerabilities is due to the WSs’ specific imple-

mentation technologies. Jensen et al. [9], [32] have presented a list of such

security vulnerabilities, which are identified through exemplary attacks on

widespread WS implementations. According to them, some of these vulnera-

bilities are due to implementation weaknesses, but the majority of them are

due to protocol flaws. Similarly, Suriadi et al. [33] have investigated WSs’

specific security vulnerabilities to DoS attacks in well-known WS platforms

including Java Metro, Apache Axis, and Microsoft .NET. The results from

their experiments indicate that the majority of the WS platforms cope well

with attacks targeting memory exhaustion. However, they are still vulnerable

to attacks that target the CPU-time exhaustion. A number of WSs’ specific

security vulnerabilities are as follows:

WSDL Scanning

As explained in Section 2.1, WSDL is an interface of a WS and adver-

tises its operations, parameters, data types and network bindings. A WS may

contain operations that should be accessed from the local network only, as

well as operations that are intended to be offered to the outer network. In this

case, separate WSDL, advertising the information about the external opera-

tions only, could be provided to the external clients to avoid these clients to

get access to the internal operations. However, to invoke the external opera-

tions, the external clients should have access to the WS’s endpoint [32].

Therefore, an attacker can still try to guess the omitted operations and try to

invoke them, which is called WSDL Scanning [32].

32 | P a g e

Metadata Spoofing

The metadata document of a WS contains all information, necessary

for its invocation (e.g., message format, network location, and security re-

quirements). This document is published by the WS’s owner and is available

to its clients. It is usually distributed using HTTP or mail communication pro-

tocols, which brings a Metadata Spoofing possibility. WSDL Spoofing and

Security Policy Spoofing are two examples of attacks that exploit these vul-

nerabilities. For example, a WSDL Spoofing attacker may modify the network

endpoint to perform man-in-the-middle attack for eavesdropping or modifying

data [32].

Attack Obfuscation

As it will be introduced later, WS-Security [34] is a very flexible securi-

ty standard that allows signing and encrypting only parts of the message,

which contain sensitive data. However, an attacker may use an encrypted

part to conceal malicious code for cyber-attacks such as Oversize Payload,

Coercive Parsing, etc. [32]. Hence, the encrypted parts of the message

should be inspected for the existence of such attacks. To enable examining

the encrypted parts, they should first be decrypted, which is a disadvantage

of using this standard. This type of attack may affect the availability of the

WS in two ways [32]:

 If the message is decrypted after the schema validation: its mali-

cious contents may pass the validation.

 If the message is decrypted before schema validation: the re-

quired XML and cryptographic processing may cause a long delay

since decryption can be a performance-intensive process especially if

the message contains malicious contents.

Oversized Cryptography

In WS-Security, there is no limit for the parts of the message that can

be encrypted and for the size of the encrypted content. The flexibility of this

standard allows a variety of security elements to be used in the WS-Security

33 | P a g e

header, which prevents strict schema validation and gives the possibility of

the Oversized Cryptography attack [32]. This type of attack may affect the

availability of the WS in three ways [32]:

 If an oversized security header is used and the target system

processes the entire security header: the attack can have a similar

effect on the targeted WS as an Oversized Payload attack.

 If chained encrypted keys are used within the security header:

each encrypted key is used to encrypt the next key. Hence, the de-

cryption process produces a very high CPU load.

 If the SOAP message contains a large number of nested encrypt-

ed blocks: a large number of cryptographic operations produce a very

high CPU load.

BPEL Scanning

As it will be explained later, BPEL [35] is a de-facto standard and an

executable business process modelling language enabling the modelling of

the behaviour of a composite WS. Hence, it contains important information

that can be used by an adversary to plot BPEL Scanning attacks (similar to

WSDL scanning) on the business processes [23].

BPEL State Deviation

Many instances of a BPEL process may run concurrently, and their

communication endpoints will be open for incoming messages at any time,

which can be used by an attacker to plot BPEL State Deviation attack [32].

Two examples of such attack are as follows [32]:

 An attacker may flood a BPEL engine with messages that are correct

in terms of their message structure but have no meaningful content

(no correct instance identifier). These messages will eventually be dis-

carded by the BPEL engine but after a significant amount of redundant

work (reading and searching all existing process instances for a pro-

cess matching the message). This redundant work can exhaust the

computational resources of the BPEL.

34 | P a g e

 An attacker may use messages which contain correct instance identi-

fiers but target a receive activity that is not enabled in the running

business process instance.

SOAPAction Spoofing

As described in Section 2.1, a SOAP message package consists of a

transport protocol header and an envelope (which itself consists of a header

and a body). The first child element of the body contains the operation ad-

dressed by the SOAP request [32]. If HTTP transport protocol is used, an

additional operation identifier element called SOAPAction can be added to

the request’s header [32]. However, it gives the possibility of SOAPAction

Spoofing attack in the following cases [32]:

 When the requested operation is solely identified based on the

SOAPAction value: a man-in-the-middle attacker may try to invoke a

different operation than the one specified in the SOAP body by adding

the malicious operation to the SOAPAction header (HTTP header is

not protected by WS-Security so it can be easily modified).

 When the requested operation is solely identified based on the

first child element of the SOAP body: an attacker may bypass the

HTTP gateway if it is configured only to accept the value added to the

SOAPAction header. Then the WS’s logic will execute the operation in

the first child element of the SOAP body regardless of the SOAPAc-

tion value.

XML Injection

An XML Injection attacker targets the integrity of the XML stream (e.g.,

SOAP message) by overwriting its static portions (e.g., by adding some con-

tents containing XML tags) [32]. Using this method, an attacker may get ac-

cess to restricted data.

XML Denial of Service

Early steps in processing a request SOAP message include parsing

and transforming the contents of the message to be usable for the WS’s

35 | P a g e

backend applications. Therefore, an XML parser is an essential part of the

WS’s application logic. SAX [36] and DOM [37] are two typical XML parsers.

DOM parsers read the whole XML stream into memory then create hi-

erarchical objects for each node (an element, an attribute, etc.) that is refer-

enced by the application logic. An attacker can plot a DoS attack on a DOM-

based WS by inputting a large XML file [38]. Such attacks (e.g., Oversize

Payload and Coercive Parsing) affect the availability of the WS by exhaust-

ing its resources and eliminate the legitimate user’s access [39].

On the other hand, SAX parsers perform XML parsing at the start or

end of a node without loading the whole XML stream into memory (they load

a maximum of two elements into memory at a time) [38]. Whenever the par-

ser reaches a node, it triggers an event, and the program’s event handler

starts processing the data [38].

StAX is another event-based XML parsing approach. However, in-

stead of triggering an event, it waits for a method call to parse its correspond-

ing operation [40].

DoS attacks are one of the most popular attacks, which can be per-

formed through a variety of techniques. This type of attacks exploit the vul-

nerabilities in XML-based documents (e.g., SOAP messages) targeting the

parsing mechanisms and other resources, affecting the availability of the WS.

A large number of these attacks, targeting well-known companies such as

VISA and PayPal suggests that they can be a serious threat to today’s IT in-

frastructure [41]. Some XML DoS attacks include:

 HashDoS: hash tables can be employed within a SOAP message to

store values and their references (e.g., attributes and their corre-

sponding namespace). Ideally, each key should represent a unique

value. If different keys represent the same value, a collision will hap-

pen, which results in resource-intensive computation. An attacker can

exploit the weak hash function to perform a DoS attack [42], [43].

 Oversize Payload: according to Meiko Jenson et al. [32], the majority

of WS frameworks employ DOM-based XML processing models.

36 | P a g e

These parsers consume a memory much bigger than the size of the

message (factor 2 to 30) [32]. Therefore, one easy way to perform

DoS attack on WSs would be to query the service using a very large

request message (Oversize Payload).

 Coercive Parsing: making XML parsing as complex as possible using

a large number of namespace declarations, oversized prefix

names/namespace URIs or very deeply nested XML structures are

other ways to perform DoS attack on WSs and is called Coercive

Parsing [9], [32].

 SOAP Array Attack: an attacker may add a SOAP array (with a large

number of elements) into the SOAP message, forcing the WS to re-

serve a large space in memory for these elements before parsing the

message [44].

 XML Attribute Count Attack: XML does not limit the size of the con-

tents (elements, attributes and attributes’ value) between the XML

tags. Hence, an attacker may add a large number of attributes into the

SOAP message and perform XML Attribute Count attack if no such

limit is enforced by the developers of the WS [45].

 XML Element Count Attack: similarly to XML Attribute Count attack,

an attacker may add a large number of non-nested elements into the

SOAP message and perform XML Element Count attack if no limit is

enforced to the size of the contents between the XML tags by the de-

velopers of the WS [45].

2.2.2 Existing Countermeasures and their Limitations

 The previous subsection (2.2.1) introduced a number of security vul-

nerabilities, specific to WSs. Here, we present a number of existing counter-

measures against these security vulnerabilities followed by a number of their

limitations.

Countermeasures

 Some of the existing countermeasures against previously introduced

WSs’ specific security vulnerabilities are as follows:

37 | P a g e

WSs Security Standards

As described in Section 2.1, the communication between WSs is sup-

ported by XML-based protocols (e.g., SOAP messages) that are vulnerable

to XML attacks [32]. As a result, organizations such as the OASIS and W3C

consortia have developed various security standards, an overview of which is

presented in Figure 2.7. The most commonly implemented security stand-

ards are described below [46]:

Figure 2.7: Web services Security Standards – National Reference Model [46]

 WS-Security: it describes how to use XML to sign, verify, encrypt and

decrypt SOAP message exchanges [18]. It defines a SOAP extension

within the security header of the SOAP message, enabling the associ-

ation of the security tokens (UsernameToken, BinarySecureToken,

and XML Tokens) with the message. In addition to message authenti-

cation, it provides message integrity and confidentiality through XML

Signature and XML Encryption in conjunction with security tokens, re-

spectively. WS-Security is very flexible and allows signing and en-

crypting only parts of the message that contain sensitive data.

 WS-Security Policy: the characteristic of the WS-Security, which al-

lows parts of the XML document to be signed and encrypted, requires

WS servers and clients to negotiate a security policy. This security pol-

icy allows defining the WS-Security elements that can be used (e.g.,

the algorithms and the required security tokens) and requires the

38 | P a g e

SOAP message to contain all the defined security tokens as a mini-

mum. The WS-Security Policy standard provides the XML syntax for

such security policy [47].

 SAML: it defines how authentication should be securely exchanged

among the services [48].

 XACML: it is an XML-based technology for writing access control po-

lices enabling developers to determine the resources that are allowed

to be accessed by a user [49].

 XML Encryption: this standard provides data confidentiality by ena-

bling the encryption of fragments of an XML. The encrypted fragment

will be replaced with an EncryptedData element containing the cipher-

text for the encrypted fragment. This standard also enables the crea-

tion of an EncryptedKey element, inside the security header, for hybrid

encryption [50].

 XML Signature: this standard provides data integrity and authenticity

by enabling the digital signature of fragments of an XML. The result of

the signing operation will be added to the signature element of the se-

curity header [12].

Schema Validation and Schema Hardening

 Schema Validation: this approach is effective in defending against at-

tacks that use messages not conforming to the WS’s description. It

validates the incoming message against the XML schema generated

from the WSDL of the WS [32].

 Schema Hardening: this approach is about restricting the WS’s de-

scription constructs to finite boundaries, removal of non-public opera-

tions from the WS description, etc. For example, Nils Gruschka and

Norbert Luttenberger [51] proposed a system that generates XML

schemas from the WSDL file of a WS, hardens it (e.g., converts the

unbounded elements, maxOccurs=”unbounded” to a finite number of

elements, maxOccurs=” finite number”), then advertises the modified

description to the WS’s clients. It also validates the incoming messag-

es against this hardened description.

39 | P a g e

Possible usages of schema-hardening and schema validation to de-

fend against cyber-attacks exploiting WSs’ specific security vulnerabilities

are as follows:

 Attack obfuscation: validating the decrypted message [32].

 XML Injection: a strict schema validation on SOAP messages, includ-

ing data type validation, to eliminate the possibility of an attacker get-

ting access to restricted data [32].

 Oversized Cryptography: to only accept the security elements that

are explicitly defined in the security policy (this approach is called

Strict WS-SecurityPolicy Enforcement) [32]. However, more security

tokens may be added to the SOAP message than those defined in the

WS-Security Policy, making the system vulnerable to unbounded

number of additional tokens that an attacker may add to a SOAP mes-

sage, which may cause costly cryptographic computations. This side

effect can be mitigated by putting a limit on the number of security to-

kens that the SOAP message may contain and rejecting messages

exceeding this limit [32], [52].

 Oversize Payload: restricting the message size to a pre-defined limit

and rejecting any larger messages. Currently, .NET 2.0 framework

employs this method and rejects any message larger than 4MB, by

default [32]. A more appropriate approach is to modify the XML sche-

ma used in the WS’s description then validate incoming SOAP mes-

sages against this schema [51].

 Coercive Parsing: using schema validation to defend against deeply

nested XML [32].

 SOAP Array: enforcing strict schema validation on the maximum

number of array elements. If it is not possible to put a limit on the

number of array elements, comparing and validating the declared and

existing number of elements in a SOAP array thereafter dropping the

SOAP packet at the WS layer if the validation is failed [44].

 XML Attribute Count and XML Element Count: to put a limit on the

size of the components (e.g., elements and attributes) within an XML

40 | P a g e

tag by the developers of the WS since the XML standard doesn't im-

pose such limit [45], [53].

 SOAPAction Spoofing: identifying the requested operation based on

the first child element of the SOAP message. Additionally, the identi-

fied operation should be compared with the SOAPAction value and get

rejected if it does not match [32].

 Metadata Spoofing: checking all metadata documents for authenticity

[32].

Firewall

Sometimes an XML firewall is a more appropriate countermeasure

against the attacks exploiting the WSs’ XML-related security vulnerabilities,

such as:

 WSDL Scanning: all request messages (internal and external) have

the same destination IP address, TCP port, and HTTP URL. There-

fore, to reject invocation of the internal operation by the external cli-

ents, only a WS-aware XML firewall can distinguish whether an opera-

tion should be accessed by an external client [32].

 BPEL State Deviation: Gruschka et al. [54] proposed a firewall for

processing and rejecting the invalid messages using as few computa-

tional resources as possible.

 BPEL Scanning: enforcing appropriate access control mechanisms

on the internal operations [23].

Other countermeasure approaches

 Establishment of trust relationship prior to the communication (coun-

termeasure against Metadata Spoofing) [32].

 Deploying internal and external operations on separate WSs, prefera-

bly on different servers (countermeasure against WSDL Scanning

and BPEL Scanning) [32]

41 | P a g e

Limitations of the Introduced Countermeasures

 Here, we present a number of the limitations related to the counter-

measure approaches introduced previously:

 Equipping a SOAP message with WS-* security standards may re-

quire changes to the structure of the message since their use may in-

troduce additional elements which did not exist previously.

 If the employed standard is revoked, the message structure may re-

quire significant changes.

 The difficulty, variety, and limitations of the WS-* standards as well as

unfamiliarity of the developers with all of these standards have result-

ed in the development of WSs that are still vulnerable to cyber-attacks

[18]. For example:

o McIntosh and Austel [12] have shown that the content of a

SOAP message, which is protected by an XML Signature (as

specified in WS-Security) can be changed without invalidating

the signature. The authors have shown that a signed element

can be replaced with a fake element so that the signature re-

mains valid.

o The WS-Security standard is an important defence against the

WSs’ specific cyber-attacks but only when its corresponding

WS-SecurityPolicy is defined correctly. Otherwise, it may cause

integrity and confidentiality vulnerabilities, for example, it may

no longer require the SOAP message to contain all the security

tokens as a minimum (see Section 2.2.2 for more details) [12],

[55].

o WS-SecurityPolicy header schema allows any kind and amount

of security tokens and the encrypted blocks are allowed nearly

everywhere within the SOAP message, which may cause costly

cryptographic computations [32].

o Improper use of SOAPAction standard opens a window to

SOAPAction Spoofing attack.

42 | P a g e

 Schema validation may cause high CPU load and large memory con-

sumption [32].

 In XML specifications, there is no limit specified for the number of

namespace declarations per XML element and for the length of the

namespace URIs (which enables Coercive Parsing attack). Arbitrary

restrictions can be enforced on the number and length of the

namespaces to defend WSs against the attacks misusing namespace

declarations. However, it can result in unpredictable rejection of the

messages [32].

 Often validators rely on XSD derived from WSDL document or hand-

coded by programmers, which may make them prone to cyber-attacks.

 Similar to the previous limitation, manual unguided schema updates

that rely entirely on the skills of a programmer may also make the vali-

dator prone to cyber-attacks.

 If the schema used by the validator is loosely defined, it may allow ma-

licious messages to pass through.

 Schema restriction and validation cannot safeguard against some

cyber-attacks exploiting XML-related security vulnerabilities. For ex-

ample, Jenson et al. [13] have shown that even the most restrictive

XML Schema validators may fail to defend against XML Signature

Wrapping attacks.

 The approaches explained above will be effective only when event-

based message processing (e.g., SAX) is employed [32]. Otherwise,

these protection systems themselves will be vulnerable to similar at-

tacks [32].

 Each countermeasure only defends against specific cyber-attacks.

2.2.3 Summary

This section presented the security issues related to the WSs and a

number of the existing countermeasures against WSs’ specific security vul-

nerabilities (since the focus of the work presented in this dissertation is on

the WSs’ XML-related security vulnerabilities). It then explained a number of

limitations related to the presented approaches.

43 | P a g e

In addition to all the discussions presented in this section, the security

issue gets more challenging when OTSWSs are employed since they are

ready-made black boxes of unknown quality and their security is out of the

control of their clients. Hence, ITWS is a more appropriate approach to toler-

ating the security issues when OTSWSs are used, which is about making the

system to live with the security vulnerabilities of its constituent OTSWSs to

ensure delivery of sufficiently dependable service. This approach is the moti-

vation for the work presented in this dissertation, and one of its key benefits

is the possibility of ensuring correct behaviour in the presence of attacks. The

next section gives a concise overview of the concepts and techniques of de-

pendability and its relation to intrusion-tolerance.

2.3 Dependability and Intrusion-Tolerance

Dependability of a computing system is the capability to avoid failures

that are more frequent or more severe, and outage durations that are longer

than is acceptable to the user(s) [56]. It consists of threats to, the attributes

of, and the means by which the dependability is attained (see Figure 2.8).

Sections 2.3.1-2.3.4 present the dependability means.

Figure 2.8: The Dependability Tree [56]

2.3.1 Fault-Prevention

Faults may be prevented through utilization of quality control tech-

niques during the process of design and manufacturing hardware and soft-

FAULTS

ERRORS

FAILURES

AVAILABILITY

RELIABILITY

SAFETY

CONFIDENTIALITY

INTEGRITY

MAINTAINABILITY

FAULT PREVENTION

FAULT TOLERANCE

FAULT REMOVAL

FAULT FORECASTING

THREATS

ATTRIBUTES

MEANS

DEPENDABILITY

44 | P a g e

ware. These approaches may prevent operational physical faults, interaction

faults and malicious faults [56].

2.3.2 Fault-Tolerance

Initially, practical techniques (e.g., error control code, diagnostics to

locate failed components, etc.) were used to improve the reliability of the ear-

ly computers [56]. At the same time Neumann, Moore, Shannon, and their

successors developed theories of using redundant less reliable components

to create reliable logics and structures [56]. Then Pierce unified these theo-

ries to the concept of failure tolerance and Avizienis [57] integrated redun-

dancy with practical techniques (e.g., error detection and recovery) into the

concept of Fault-Tolerance systems. Thereafter, Randell [58] introduced

software Fault-Tolerance, which was later complemented by N-version pro-

gramming [59].

The objective of Fault-Tolerance is to retain the delivery of correct

service in the presence of active faults (faults that cause an error). It is gen-

erally implemented using error detection and subsequent system recovery

approaches [56]:

 Error detection: it generates error signals or messages (within the

system) and is divided into concurrent and preemptive error detection

techniques, which operate at the run time and while service delivery is

suspended, respectively.

 Recovery: it transforms the system state containing error(s) and/or

fault(s) into a state without any discovered errors and faults. It consists

of:

o Error handling: eliminates errors from the system state and

may have the following forms:

 Rollback: returning the system back to a checkpoint

state (the state saved prior to error detection).

 Compensation: eliminating error through redundancies

within an erroneous state.

45 | P a g e

 Roll-Forward: transforming the system state to a new

state with no detected errors.

o Fault handling: prevents determined faults from being activat-

ed again in four steps:

 Fault diagnosis: identifying and recording the location

and type of the cause(s) of error(s).

 Fault isolation: excluding the faulty component(s),

physically or logically, from further participation in service

delivery.

 System reconfiguration: switching to use spare com-

ponent(s) or appointing the task(s) to fit component(s).

 System re-initialization: checking, updating and record-

ing the new configuration and updating system data and

records.

The classes of faults that can be tolerated and the choice of Fault-

Tolerance implementation are directly related to the underlying fault assump-

tion [56]. However, redundancy is widely employed to implement Fault-

Tolerance and is surveyed in the various literature [60]–[62]. Assuming that

hardware components have an independent failure, channels with identical

design may be used to tolerate operational physical faults. Whereas, to toler-

ate solid design faults, channels providing the same functionalities via sepa-

rate designs and implementations (design diversity) should be used [56].

Redundancy

Antonio Carzaniga and his colleagues [63] describe redundancy as a

system's capability of executing the same functionality in several execution

environments or various ways (e.g., using different execution paths). Redun-

dancy is believed to be a valid defence against physical faults. Running mul-

tiple replicas of the system and switching to the functioning one when a fail-

ure occurs is an example of using redundancy to overcome hardware faults

[64]–[66]. Redundancy can also be applied to the code, data, and environ-

ment of a software system to overcome its non-physical faults (e.g., partial or

46 | P a g e

complete replication of the code, input data or execution environment, includ-

ing the execution processes themselves) [67].

Redundancy from Architectural Viewpoint

From a software architecture point of view, redundancy can be divided

into intra-components, which only changes the structure of a single compo-

nent (e.g., wrappers that filter component interactions) and inter-components

groups [63]. The Figures 2.9-2.11 present three different inter-component

redundancy patterns: Sequential Alternative Pattern, Parallel Selection, and

Parallel Evaluation.

Sequential Alternative Pattern

Figure 2.9: Sequential Alternative Pattern [63]

In Sequential Alternative pattern (see Figure 2.9), an alternative pro-

gram will be executed if the execution of the current program fails. In this de-

sign, a separate Adjudicator (e.g., a voting system) is connected to the end of

each program to detect its failure and to validate its output. This pattern is

employed in recovery blocks, service substitution approaches, etc. [63].

Parallel Selection Pattern

47 | P a g e

Figure 2.10: Parallel Selection Pattern [63]

Parallel Selection pattern (Figure 2.10), consists of the concurrent ex-

ecution of several programs. In this pattern, a separate Adjudicator (e.g., a

voting system) is connected to the end of each program to detect its failure

and to validate its output. This pattern is employed in self-checking pro-

gramming [63].

Parallel Evaluation Pattern

Parallel Evaluation pattern (Figure 2.11), consists of the concurrent

execution of several systems/programs and an Adjudicator (e.g., a voting

system), which evaluates the result from those parallel executions to produce

a correct result. This pattern is employed in N-version programming [63].

Figure 2.11: Parallel Evaluation Pattern [63]

N-version programming

N-version programming is a technique that concurrently executes N

different systems/programs, which provide the same functionality but are im-

plemented differently and are fed with the same input configuration, then

48 | P a g e

forms a consensus on the output from all these systems/programs to produce

the final output [68]. The purpose of this technique is to achieve fault toler-

ance, assuming that these different systems/programs will exhibit failure di-

versity [68].

Diversity

In 1975, Randell [58] introduced design diversity as a mechanism for

software fault tolerance. He proposed using backup components (with an in-

dependent design from the main components) when main components are

failed. Design diversity is now a recognised defence against design faults,

and a comprehensive survey of its benefits is presented in [69].

 Joseph and Avizienis [70] proposed the use of diversity as a means

of improving security and discussed the feasibility of using diverse compilers

(implemented using N-version programming) to detect and mask Trojaned

compilers that infect the generated executables with viruses. Later, Forrest et

al. [71], [72] and Littlewood and Strigini [73] argued the validity and effective-

ness of using diversity to mitigate the effects of cyber-attacks. Classifications

of diversity techniques for improving security are presented in [74], [75].

2.3.3 Fault-Removal

Fault-Removal may be performed during the development phase and

operational life. The fault removal process during the development phase

starts by checking whether the system adheres to given properties (verifica-

tion phase). If it does not, the diagnosis phase starts checking for identifica-

tion of the fault that is preventing the verification condition to be fulfilled. Fol-

lowing on identification of the fault, necessary corrections are performed (cor-

rection phase). Finally, the system goes through verification again to make

sure that the correction has not caused any undesirable consequences.

Fault-Removal during the operational life of a system can be divided into two

groups of corrective maintenance and preventive maintenance. The correc-

tive maintenance removes the faults after they have produced an error.

Whereas, the preventive maintenance uncovers and removes the faults be-

fore they produce an error [56].

49 | P a g e

2.3.4 Fault-Forecasting

Fault-Forecasting is about the evaluation of the system behaviour

(through modelling and testing, e.g., fault injection) with respect to fault oc-

currence or activation and has two aspects [56]:

 Qualitative, or ordinal, evaluation (e.g., failure mode and effect

analysis): identification, classification, and ranking of the failure

modes or the events that would lead to system failures.

 Quantitative, or probabilistic, evaluation (e.g., Markov chains and

stochastic Petri nets): evaluation in terms of probabilities of the ex-

tent to which some of the attributes of dependability are satisfied.

2.3.5 Intrusion-Tolerance

Fault-Tolerance is not restricted to accidental faults [56]. Research on

the integration of fault tolerance and the defences against deliberately mali-

cious faults (e.g., security threats) was started in the mid-80’s [70], [76], [77]

and since, designs have been proposed for the tolerance of intrusions, mali-

cious logic and viruses [56]. Hence, dependability approaches may also be

employed to implement Intrusion-Tolerance.

2.3.6 Summary

This section presented an overview of the concepts and techniques of

dependability. It briefly introduced Fault-Prevention, Fault-Tolerance (includ-

ing redundancy, N-version programming, and diversity), Fault-Removal and

Fault-Forecasting concepts and explained that dependability approaches

could also be employed to implement Intrusion-Tolerance.

As discussed previously, WSs allow companies and organizations to

implement their core business only and outsource other service components

(e.g., OTSWSs) over the Internet, either pre-selected or on-the-fly. WSs are

at risk of security vulnerabilities related to their specific implementation tech-

nologies such as XML as well as those of their underlying platforms (e.g.,

operating systems and frameworks) and their applications (e.g., vulnerability

50 | P a g e

to SQL Injection attacks). Security issues become more challenging when

OTSWSs are used since they are beyond the control of their clients. Hence,

tolerating their security vulnerabilities through dependability techniques is a

more appropriate approach.

In this work, the focus is on tolerating XML-related security vulnerabili-

ties of WSs when OTSWSs are employed. It utilizes WSs’ composability,

PCA, CA and penetration testing to implement an ITWS formed by N-version

programming and diversity, providing Fault-Tolerance and Fault-Prevention.

Also, the penetration test results of the OTSWSs give the providers of these

services an opportunity to improve their security (Fault-Removal) in the future

releases. The following sections briefly introduce each of these concepts and

explain their role in this work.

2.4 Penetration Testing

Penetration testing is an attempt to break into a system not to exploit

it, but rather to identify its weaknesses [78]. According to Tran and Dang [79],

penetration testing is the simulation of attacks (that could be performed by

real hackers) to identify security vulnerabilities of the target system. However,

penetration testing is not a measure of true security, but it enables improving

security by eliminating the anticipated security vulnerabilities. Despite ad-

vantages such as identifying security vulnerabilities hence providing coun-

termeasures for them and assisting organizations to acknowledge the effec-

tiveness or ineffectiveness of the implemented security measures, penetra-

tion testing may cause information disruption, denial of services, and infor-

mation leakage, as the individuals performing penetration tests, are usually

granted access to substantial amounts of sensitive information [80]. Hence, it

might not be performed on the actual operational environment, which in turn

may affect the test results. It also has other limitations, such as limitations of

known exploit and experiment.

There are two types of penetration testing, black-box and white-box

[78]. The black-box approach is commonly employed to test WAs. Regarding

the WSs these tests are performed as follows:

51 | P a g e

 Black-box penetration testing: the service under test is seen from

the point of view of an attacker. The tester maliciously manipulates the

SOAP messages being sent to the WS, then analyses the WSs’ re-

sponse and its program execution.

 White-box penetration testing: similar to static code analysis, this

approach looks into the source code of the WS to identify its potential

vulnerabilities.

Both black-box and white-box techniques can be used to assess the

security of a WS [81]. However, the former approach enables the under-

standing of what an unknown attacker can achieve. It can be scripted and

performed automatically by a penetration testing tool [18], [82]. Regarding the

WSs’, automatic penetration testing tools can be divided into tools testing the

security vulnerabilities specific (e.g., WS-Attacker [18]) and nonspecific (e.g.,

w3af [83]) to WSs. Otherwise, penetration testing can be done manually us-

ing other tools such as SoapUI [84].

In the work presented in this dissertation, penetration testing is used

to identify the security vulnerabilities of the candidate OTSWSs, which ena-

bles the selection of the optimal set (set of OTSWSs with the most diverse

security vulnerabilities) to implement the Intrusion-Tolerance. Diversity is par-

ticularly important because any common security vulnerabilities among

OTSWSs (participating in ITWS) opens a window of opportunity for compro-

mising all the OTSWSs, suffering from the targeted security vulnerability, at

the same time. Hence, such effect should be diminished as much as possi-

ble.

2.5 Principal Component and Cluster Analysis

This section briefly introduces the PCA and CA and their role in the

work presented in this dissertation.

2.5.1 Cluster Analysis

 When dealing with large amounts of data, it is very important to be

able to classify and group them according to various criteria. CA allows split-

52 | P a g e

ting a group of objects (e.g., data) into a number of homogeneous subgroups

(or clusters) using various clustering algorithms [85]. Clustering is widely

adopted in a variety of fields, ranging from engineering (e.g., machine learn-

ing and pattern recognition), computer sciences (e.g., web mining), medical

sciences (e.g., genetics), to earth sciences (e.g., geography), social sciences

(e.g., psychology), and economics (e.g., marketing) [86].

There is no universally agreed selection of features and clustering

schemes [87]. Most researchers describe a cluster based on the internal ho-

mogeneity (within objects in each cluster) and the external separation

(among the objects in different clusters) [88], [89]. Xu and Wunsch [86] have

classified the clustering algorithms (each having various descriptions), some

of which are presented below:

 Hierarchical: organizing data into a hierarchical structure according to

the proximity matrix, which can be further divided to:

o Agglomerative: starting with n clusters each containing only

one object, followed by a series of merge operations until one

cluster containing all the objects is left. Based on the different

definitions for the distance between two clusters (e.g., single

linkage, complete linkage), there are many agglomerative clus-

tering algorithms.

o Divisive (e.g., MONA and DIANA [90]): in contrast to agglom-

erative analysis, the divisive analysis starts with a cluster con-

taining all the objects then follows a series of divisive opera-

tions, dividing objects among different clusters until only one

object is left in each cluster.

 Squared Error-Based (e.g., K-means [91]): aims to partition

n objects into k clusters so that each object belongs to the cluster with

the nearest mean.

 pdf Estimation via Mixture Densities (e.g., GMDD [92]): from the

probabilistic point of view, data objects are assumed to be generated

according to several probability distributions. Hence, pdf Estimation

53 | P a g e

algorithm uses the probability distributions of the data objects to form

clusters.

 Graph Theory-Based (e.g., Chameleon [93]): this algorithm uses

graph theory to distribute objects among different clusters.

 Combinatorial Search Techniques-Based: aims to find the global or

approximate optimum global for combinatorial optimization.

 Fuzzy (e.g., FCM [94]): in the fuzzy algorithm, there is no restriction

for each object to only belong to one cluster, and an object can belong

to all the clusters with certain membership degree.

 Neural Networks-Based (e.g., SOFM [95]): this algorithm uses neu-

ral networks to distribute objects among different clusters.

2.5.2 Principal Component Analysis

PCA [96], is a useful statistical technique for analysing datasets with

high dimensions (when patterns are difficult to be found) by reducing their

dimensions while retaining the variations among their data as much as pos-

sible [97]. Hence, it has found application in fields such as face recognition

[98] and is a common technique for finding patterns in data of high dimen-

sions [99]–[101].

Principal Components (PCs) are linear transformations of the original

set of variables, which are uncorrelated and are ordered in a way that the first

few PCs contain the most variation within the original dataset [97].

54 | P a g e

2.5.3 Application of PCA in Cluster Analysis

Figure 2.12: PCA in CA [102]

Sometimes (when the first few PC’s contain cluster information) in lit-

erature, PCA is employed to reduce the dimensions of the dataset before CA,

hoping to reduce the running time for CA’s computation using a fewer num-

ber of PCs [102]. However, the first few PC’s may not always contain cluster

information [103]. Figures 2.12a and 2.12b illustrate two fictitious situations

where the PCA pre-processing step before CA may and may not help, re-

spectively. Figure 2.12a shows that the projection of the data points on the

first PC (the diagonal line) clearly highlights the separation between the two

clusters in the data. Whereas, in Figure 2.12b, the projection of the data

points on the first PC (in the direction of x2) does not preserve the separation

between the two clusters in the data. Therefore, there is a need to investigate

the effectiveness of PCA as the pre-processing step to CA before adopting

such approach.

2.5.4 Summary

This section briefly introduced the concepts of CA and PCA. It then

explained the utilization of PCA, prior to CA, as a means of extracting the

structure of the clusters through reduction of dimensions of the dataset and

showed (Figure 2.12) that such approach may not always be useful and its

effectiveness should be investigated before being adopted. Hence, for the

purpose of this work first, the effectiveness of PCA as a pre-processing step

55 | P a g e

to CA on results from penetration testing candidate OTSWSs is investigated.

Then both PCA and CA along with further penetration testing are used to

identify the optimal (most diverse in terms of their security vulnerabilities) set

of OTSWSs for implementation of Intrusion-Tolerance.

2.6 WS Orchestration and Choreography

SOA enables the composition of several services with complementary

functionalities to form a single value-added composite service and offer it to

the clients through a single interface. Hence, a composite WS may consist of

various other single and/or composite WSs.

The constituent services of a composite WS may become unreacha-

ble for various reasons (e.g., becoming the victim of a DoS attack), which

may impact its dependability (e.g., its integrity as it may not be able to pro-

vide the requested service). Also, more suitable (in terms of their QoS) ser-

vices, offering similar functionality as covered by composite WS’s constituent

services, may become available. Hence, WSs capable of dynamic reconfigu-

ration would be a practical solution to address such changes. In this way,

composite WSs can react to the changes in a timely manner while using the

most suitable available resources and avoiding long service disruptions due

to off-line repairs. Therefore, an increasing number of today’s services are

developed using dynamic composition of the available resources to address

the clients’ complex demands.

Each building block of a composite service consists of its constitutive

WSs (among which the tasks are divided) and a description of data, man-

agement and control flow between them [104]. Hence, a variety of specifica-

tions and standards has been introduced to support the implementation of

composite WSs. This section reviews Web Service Choreography Interface

(WSCI) [105], Business Process Modelling Language (BPML) [106], and

BPEL [35].

56 | P a g e

2.6.1 WSCI

Figure 2.13: WSCI Collaboration [107]

Sun, SAP, BEA, and Intalio developed the WSCI specification, which

enables the description of the message to flow between the aggregated WSs

in XML format. However, it does not support the definition of executable

business processes. WSCI choreography is an extension to WSDL and de-

scribes the interactions between the operations described in the WSDL. It

requires a WSCI interface for each WS participating in the interaction. It also

supports conditional looping, parallel and sequential processing, and excep-

tion handling [107]. Figure 2.13 illustrates WSCI collaboration.

2.6.2 BPML

BPML is developed by Intalio, Sterling Commerce, SUN, and CSC. It

has the underlying process execution as WSCI and similar process flow con-

structs and activities as BPEL. A developer can describe the public interac-

tions between the WSs and develop private implementations using WSCI

and BPML, respectively [107].

2.6.3 BPEL

Initially, Microsoft and IBM developed XLANG [108] and Web Services

Flow Language [109], respectively, to support business flow design. Later

Microsoft, IBM, Siebel Systems, and SAP combined these standards and

57 | P a g e

formed version 1.1 of the BPEL4WS, called BPEL. BPEL is a de-facto stand-

ard and an executable business process modelling language for implement-

ing composite WSs. It is a workflow language used for composition, orches-

tration, and coordination of WSs. It provides an XML-grammar to model the

behaviour of a composite WS, for example, sharing the tasks between the

aggregated WSs and describing the control logic among them [107].

Figure 2.14: BPEL4WS Process Flow [107]

BPEL is a layer on top of WSDL. It communicates with other WSs

through their WSDL interfaces. In standard BPEL processes, the interactions

with other WSs are modelled as PartnerLinks, which are defined statically.

Each PartnerLink has a PartnerLinkType, indicating two WSDL PortTypes,

one to be used by the external WS (partner) to communicate with the BPEL

and the other to be used by the BPEL to communicate with the external WS.

BPEL only abstractly refers to other WSs, and it is the responsibility of the

execution engine to indicate which port (and therefore binding) should be

used for each PortType [110]. In contrast with WSDLs, BPEL-based WSs are

stateful and may have long-running interactions with other WSs. Hence,

BPEL also supports the correlation of application data to the process in-

stances.

W
S

D
L
 W

S
D

L

Step

3C

Step

3B

Step2

Step

3A

Roles and

partners

Sequential Flow

Parallel Flow

Step1

Exception

handling and

transaction

Persistence

and variables

Web

service

Invoke

Invoke

Invoke

Web

service

Web

service

Receive

Receive

Reply

Reply

Web

service

Web

service

58 | P a g e

BPEL supports modelling of executable2 and abstract3 business pro-

cesses and offers basic (e.g., receive, reply, assign, invoke, etc.), structural

(e.g., sequence, pick, while, forEach, etc.) and exceptions-handling activities

[107]. It also supports synchronous and asynchronous processes [111]. Fig-

ure 2.14 presents a BPEL4WS process.

BPEL Basic Activities

A BPEL process starts with a receive activity, which accepts the ser-

vice request. The reply activity returns the response from the BPEL process,

in the request-response processes. BPEL’s invoke and assign activities, in-

voke a partner WS and copy data from one location within the BPEL process

to another, respectively.

BPEL Structural Activities

BPEL’s structural activities consist of other BPEL activities (basic or

structural) and define the business logic among them. BPEL supports se-

quential (through sequence activity) and parallel (e.g., forEach activity) pro-

cesses, which are the aggregation of activities that will be executed in an or-

dered sequence and simultaneously, respectively:

 pick activity: enables the selection of one of the alternative BPEL

paths [111].

 if activity: is a conditional construct for implementing a BPEL branch

[111].

 while and forEach activities: provide loop constructs [111].

 flow activity: provides concurrent execution of BPEL activities [111].

BPEL Variables

BPEL’s variables are typed (WSDL message type, XML schema primi-

tive type or XML schema element) and are used to store messages that are

2 Behaviour of the web services in a specific business process that can be executed by an

orchestration engine
3 Message exchange between the participating web services

59 | P a g e

exchanged within the business process or to hold data that relates to the

state of the process [111].

BPEL Fault and Compensation Handling

A BPEL process can be divided into hierarchically organized parts us-

ing scope activities, which provide behavioural context for other BPEL activi-

ties [111]. Scope activities allow the definition of faults, compensations, ter-

mination and event handlers for activities within their boundary. When a fault

occurs within a business process (e.g., a fault is thrown by the BPEL pro-

cess), the process may successfully complete its operation only if the fault is

handled by a scope [111]. BPEL allows defining fault-handling activities

(catch or catchAll) within a faultHandler construct. When a fault handler

catches a fault, the execution of the activities within the scope (to which it is

related) stops, and exception handling process begins. If no catch is selected

and catchAll is not present, the fault will be re-thrown to the immediately en-

closing scope, if present. Otherwise, the process will terminate abnormally

[111].

In business processes, the compensation behaviour must be explicitly

defined to reverse the effects of non-completed processes. A compensa-

tionHandler gathers all activities that have to be carried out to compensate

the fault. If a compensationHandler is not defined for any given scope, the

BPEL engine implicitly creates a default compensationHandler, which com-

pensates all inner scopes [111].

BPEL Extensibility

BPEL is extensible and supports the inclusion of Java code snippets

directly into the BPEL process. The benefits of this approach are speed and

transactionality. However, the best practice is to incorporate only small seg-

ments of Java code (short utility-like operations rather than business code).

Otherwise, the separation of the business logic from implementation will be

lost [112].

60 | P a g e

BPEL Development Tool

There are different providers of BPEL engines (open source and

commercial). Open source BPEL engines include ActiveBPEL [113],

ApacheODE [114], Open ESB [115] and jBPM [116]. Commercial BPEL en-

gines include Oracle BPEL Process Manager [117], SAP Exchange Infra-

structure [118] and WebSphere Process Server [119].

2.6.4 Summary

This section briefly explained the composition of WSs and introduced

three composition approaches (BPEL, WSCI, and BPML) among which

BPEL and BPML support development of the executable business processes

and WSCI provides a more choreographed approach [107]. As it is ex-

plained, BPEL enables concurrent invocation of WSs, which is used in this

work to implement Intrusion-Tolerance (through N-version programming and

diversity) in ApacheODE BPEL.

Also, OTSWSs may be updated (which may increase or decrease

their security) or more secure OTSWSs (offering the same required function-

ality) may become available. Therefore, their clients should be able to re-

place them with more secure OTSWS, if they wish to. The replacement for a

more secure OTSWS may need to be done dynamically as switching off the

client’s system might not be acceptable. But, BPEL constructs only allow in-

vocations of OTSWSs that either already have a statically defined Part-

nerLinks or have exactly the same interface matching an existing Part-

nerLink. Otherwise, to perform the replacement, the BPEL process has to be

redeployed. However, dynamic invocations may still be achieved through Ja-

va snippet activities that are available as BPEL extensions. Hence, this work

also demonstrates the reconfiguration of the ITWS using a combination of

BPEL constructs and Java as BPEL extension approach as well as using on-

ly Java as BPEL extension approach, in Oracle BPEL.

61 | P a g e

2.7 Summary

This chapter first presented the overview of WSs’ architecture and in-

troduced their main technologies (SOAP, WSDL, and UDDI). It then ex-

plained that WSs are at risk of security vulnerabilities related to their specific

implementation technologies (e.g., XML) as well as those, of their underlying

platforms (e.g., operating systems) and WAs (e.g., vulnerability to SQL Injec-

tion attacks).

Afterward, it presented a number of existing countermeasures against

attacks targeting XML-related vulnerabilities followed by a list of their limita-

tions. It then argued that the issue gets more challenging when OTSWSs are

employed, as they are ready-made black boxes of unknown quality and their

security is out of the control of their clients, thus, tolerating their security vul-

nerabilities through a reconfigurable ITWS is a more appropriate approach.

Then, it briefly introduced dependability approaches and explained

that ITWS could be achieved using these techniques which (Fault-Tolerance

and Fault-Prevention), in this work, are achieved through utilization of WSs’

composability, PCA, CA and penetration testing. Finally, it briefly introduced

each of these concepts and explained the motivation for their adoption in this

work. Next chapter presents the architecture of this reconfigurable ITWS.

62 | P a g e

Chapter 3 Architecture of Reconfigurable ITWS framework

CHAPTER

 Architecture of Reconfigurable ITWS

 Framework

The previous chapter briefly introduced Web Services (WSs) and their

related security issues and discussed that a reconfigurable Intrusion-Tolerant

Web Service (ITWS) is a suitable solution to their security issues, especially

when Off-The-Shelf Web Services (OTSWSs) are employed.

This chapter presents the architecture of the proposed self-

reconfigurable ITWS, which can be deployed by the clients of OTSWSs to

diminish the impact of WSs’ (specifically XML-related) security vulnerabilities.

It begins by explaining the overall objective (Section 3.1) followed by as-

sumptions made (Section 3.2), the overview of the architecture (Section 3.3)

and a summary of the discussions presented in this chapter (Section 3.4).

3.1 Objective

The objective of this architecture is to enable the transformation of an

ordinary BPEL process that employs OTSWS(s) into a self-reconfigurable

ITWS as depicted in Figure 3.1.Through this architecture, every OTSWS can

be replaced by its equivalent self-reconfigurable4 ITWS (a group of OTSWSs

from various vendors, offering the desired functionality with security vulnera-

bilities diversity, that majority vote on their responses is considered as the

final response).

4 If one group of OTSWSs fails the business process switches to an alternative group

3

63 | P a g e

Figure 3.1: Overview of the Framework’s Objective

The steps to achieve the above objective are as follows:

1. Finding as many OTSWSs (offering the desired functionality) as pos-

sible.

2. Penetration testing each of these services to identify their security vul-

nerabilities.

3. Performing statistical analysis on the penetration test results (from

step 2) to form groups of 2f+1 services with security vulnerabilities di-

versity. This is because, with 2f+1 services, the majority of the re-

sponses remain correct even after as many as f failures (e.g., unavail-

ability as a result of DoS attacks in the context of this work) [120],

[121]. A system consisting of a number of distinct components is f-

fault-tolerant if it satisfies its specification provided that no more than f

of those components become faulty during some interval of interest

64 | P a g e

[120]. The f-fault-tolerant is a measure of the Fault-Tolerance support-

ed by the system architecture [120].

4. Penetration testing each group (from step 3) to identify the optimal set

(the most secure among the groups) as well as to order each group in

terms of their overall security vulnerabilities (ascending order starting

with the most secure group).

5. Starting the business process with the first group (most secure group)

and switch to the next group if the first group fails and so on.

6. Perform majority voting on the responses from OTSWSs within the

running group to indicate the response of the ITWS.

3.2 Assumptions

This section presents the assumptions made in this framework:

 There are a sufficient number of candidate OTSWSs (offering the de-

sired functionality) to implement Intrusion-Tolerance.

 Permission is granted by the owners of OTSWSs to perform penetra-

tion testing on these services since it may cause information disrup-

tion, denial of services and/or information leakage.

 It is possible to integrate the external penetration testing tool into this

framework.

3.3 Architecture

Figure 3.2: General Architecture, the dotted lines indicate the external systems

65 | P a g e

The architecture (see Figure 3.2) of this framework consists of various

repositories, an Administrator, a Services Manager (SM), a Service-Groups

Manager (SGM), a Business Process (BP) and two other business processes

(one for testing OTSWSs and one for testing groups of OTSWSs). It is nec-

essary to test OTSWSs inside a business process as they may eventually

participate in the BP. Hence, any effect from the business process engine

should be taken into account when testing OTSWSs. Also, separate business

processes (with the exact setup as BP) than BP should be used for testing

purposes to eliminate the effects of penetration testing on the operation of BP

that executes the business logic.

Based on the case studies presented in Chapter 7, the dynamic adap-

tation using Java as BPEL extension only, and a combination of Java snip-

pets and BPEL constructs can be implemented using about 400 and 260

lines of codes, respectively. The service selection is performed manually in

the case studies (Chapters 4-6) aiming to evaluate the proposed service se-

lection approach.

Repositories

 This architecture consists of the following repositories:

 Services Repository (Table 3.1): is managed by the Administrator

and is used by SM, SGM, and BP. It stores required information for in-

voking candidate OTSWSs. Each OTSWS may offer more than one

service, which may be invoked at different stages of the BP, or have

different versions. Hence, this repository stores each of these services

separately with a unique Id.

o ID: a unique Id is assigned to each service.

o Service Name: stores the name of the OTSWS.

o Endpoint: stores the web address (URL) of the OTSWS

through which the operations provided by the OTSWS are ac-

cessible.

o Target Namespace: stores the namespace of the OTSWS.

66 | P a g e

o Invocation Id: indicates at which stage of the BP this service

may be invoked.

o Operation Name: each OTSWS may offer more than one ser-

vices (operations). This column stores the name of the service

that could be used in the BP.

o Input: stores the type and order of the service’s inputs parame-

ters.

o Output: stores the type of the service’s output parameter.

 Penetration Tests Repository (Table 3.2): is managed by the Ad-

ministrator and is used by SM and SGM. It stores information about

available penetration tests and their settings (the Administrator makes

these decisions).

o Test Id: each test may be performed with various settings (e.g.,

Coercive Parsing may be performed with various numbers of

open tags). Hence, this repository stores each test separately

with a unique Id.

o Test Name: stores the name of the test.

o Test Setting: stores the setting to be used for the test.

 Services Penetration Tests Results Repository (Table 3.3): is

managed by SM and is used by SGM. It stores the information about

penetration test results of each OTSWS.

o Service Id: stores the Id of the tested OTSWS.

o Test Id: stores the Id of the penetration test performed on the

OTSWS.

o Test Date: stores the date when the penetration test is per-

formed on the OTSWS.

o Test Result: stores the penetration test result (e.g., whether

the penetration test has been successful or not).

 Service-Groups Repository (Table 3.4): is managed by SGM and is

used by BP. Recall (see section 3.1) that in this framework OTSWSs

are grouped based on their penetration test results and that the result-

ant groups are ordered in terms of their overall security vulnerabilities

(ascending order starting with the most secure group), this repository

stores information about service groups.

67 | P a g e

o Service-Group Id: it associates services to different service

groups identified by a Service-Group Id.

o Service Id: stores the Id of the OTSWSs enabling BP to re-

trieve, from the SR, the required information for invoking them.

o Invocation Id: indicates at which stage of the BP the services

from this group should be invoked.

o Order Number: indicates the order of the selection of the

groups. The service group with the lowest orderNumber has the

highest overall security among other groups, and the business

process should start with that group and switch to the next

group if it fails and so on.

 Groups Penetration Tests Results Repository (Table 3.5): is man-

aged and used by SGM. It stores the information about penetration

test results of each group of OTSWS.

o Service-Group Id: stores the Id of the tested service group.

o Test Id: stores the Id of the penetration test performed on the

service group.

o Test Date: stores the date when the penetration test is per-

formed on the service group.

o Test Result: stores the penetration test result (e.g., whether

the penetration test has been successful or not).

 Failure Records Repository (Table 3.6): is managed by BP and is

used by the Administrator. It stores information about runtime failures

of each OTSWS.

Table 3.1: Services Repository (SR)

ID

Service Name

Endpoint

Target
Namespace

Invocation Id

Operation
Name

Input

Output

S1

Service1

http://...

a.b.c

Inv1

Op1

type in1,

… type inn

type out

S2

Service1

http://...

a.b.c

Inv6

Op2

type in1,

… type inn

type out

: : : : : : : :

Sn

Servicen

http://...

d.e.f

Inv1

Op1

type in1,

… type inn

type out

68 | P a g e

Table 3.2: Penetration Tests Repository (PTR)

Test Id Test Name Test Setting

T1 Coercive Parsing 1500 open tags

T2 Coercive Parsing 2000 open tags

: : :

Tn Hash Collision 1000 colliding attributes

Table 3.3: Services Penetration Tests Results Repository (SPTRR)

Service Id Test Id Test Date Test Result

S1 T1 dd/mm/yyyy Passed

S1 T2 dd/mm/yyyy Failed

: : : :

Sn Tn dd/mm/yyyy Failed

Table 3.4: Service-Groups Repository (SGR)

Service-Group Id Service Id Invocation Id Order Number

G1 S1 Inv1 1

G1 S2 Inv1 1

: : : :

Gn Sn Inv1 x

Table 3.5: Groups Penetration Tests Results Repository (GPTRR)

Service-Group Id Test Id Test Date Test Result

G1 T1 dd/mm/yyyy Passed

G1 T2 dd/mm/yyyy Failed

: : : :

Gn Tn dd/mm/yyyy Failed

Table 3.6: Failure Records Repository (FRR)

Failure Id Service Id Failure Date Failure Time

F1 S1 dd/mm/yyyy .. : ..

: : : :

Fn S1 dd/mm/yyyy .. : ..

Administrator

 An Administrator is a person (the only human in this architecture) who

is in charge of:

 Instantiating the framework.

 Designing the BP.

 Finding desired OTSWSs and adding their records to the SR.

 Recording new versions of an existing OTSWS as a new service into

SR (it facilitates N-version programming).

 Removing the record of OTSWSs from SR, FRR, and SPTRR, if they

should no longer be used (are no longer available or their number of

failures, reported by BP, is very high).

69 | P a g e

 Recording the information about available penetration tests along with

their setting (a separate record for each setting) into the PTR.

 Removing the records for penetration tests (that are no longer availa-

ble) from the PTR and SPTRR.

Services Manager

The role of the SM is to test the services and record the test results

through the following steps:

1. Retrieves the information about the service from the SR.

2. Adds to the ‘Service Test Business Process’, the information required

for invoking the service.

3. Retrieves the information about penetration tests and their settings

from PTR.

4. Uses the ‘Service Test Business Process’, tests information collected

in step 3, and the external penetration testing tool to test the service.

5. Records the test result into SPTRR.

Figure 3.3: Combined SM and SGM Operation Intervals. The solid lines and dotted lines indicate
SM and SGM operation intervals, respectively

SM performs steps 1-5 above in the following cases:

 Periodically (refer to Figure 3.3, every i time units) tests all services

recorded in SR. OTSWSs may go under un-versioned updates, which

may affect their security vulnerabilities, for example, switching off the

schema validation through WS’s source code: [(BindingProvider)

wsClient).getRequestContext().put("set-jaxb-validation-event-handler",

"false"]. Or services may be removed from SR. Hence, SM periodically

tests all the services available in SR and updates SPTRR.

t-k

t

t+k

t+j

t+2k

t+2j

t+3k

t+i

t+4k

t+2i

time

i time units j time units

k time units

t-i

70 | P a g e

 Periodically (refer to Figure 3.3, every j time units) checks whether a

new service or a new failure is recorded in SR and FRR, respectively,

and if it is, it tests that particular service. The runtime failure of an

OTSWS, reported by BP, might be as a result of un-versioned chang-

es to that service. Hence, it should be tested.

Service-Groups Manager

The role of the SGM is to group and test services having the same in-

vocationId. It fulfils this task through following steps:

1. Retrieves, from the SPTRR, the penetration tests results of all the

OTSWSs having the same invocationId.

2. Performs statistical analysis and groups OTSWSs based on their se-

curity vulnerabilities diversity and record the result into SGR.

3. For every group:

a. Retrieves from the SR the record of every OTSWS in that

group.

b. Adds the information required for invoking the group to the

‘Group Test Business Process’.

c. Retrieves the information about penetration tests and their set-

tings from PTR.

d. Uses the ‘Group Test Business Process’, tests information col-

lected in the previous step, and external penetration testing tool

to test the group.

e. Records the test result into GPTRR.

f. Assigns an orderNumber to each group after comparing their

penetration test results.

SGM repeats the above steps for every invocationId. Also, every k

time units (Refer to Figure 3.3) it checks SPTRR for changes related

to the addition of a new penetration test record or deletion of an exist-

ing one. In the event of these changes, SGM repeats the above steps

for all the services having the same invocationId as the service that

the change is related to. It then performs the grouping process from

71 | P a g e

scratch since addition or removal of an OTSWS requires the re-

creation of all related groups.

Business Process

BP uses SR and SGR to add groups of OTSWSs into the business

process. It starts with the groups having the lowest orderNumber (the most

secure among other groups). To catch any failure, BP invokes each group of

OTSWSs from inside a scope activity (introduced in the previous chapter)

and uses its faultHandler facility. In the event of group’s execution failure, BP

repeats their execution one more time, and if it fails again, BP records the

failure and switches to the group with the next orderNumber. BP adopts the

same approach throughout the business process execution cycle.

3.4 Summary

 This chapter presented the architecture for the proposed framework

along with its objectives and the assumptions made. It then explained the

role of each of its components and the interactions among them. The next

chapter evaluates this framework through various case studies.

72 | P a g e

Chapter 4 ITWS Formed Based on Penetration Test Results of Candidate WSs

CHAPTER

 ITWS Formed Based on Penetration Test

 Results of Candidate WSs

Previous chapters have presented the background and motivations,

and the architecture for the proposed framework. As discussed previously,

diversity is a valid and effective approach to mitigating the effects of cyber-

attacks. In this work, diversity is achieved through penetration testing candi-

date OTSWSs. This chapter uses a case study to evaluate the feasibility of

using penetration test results of candidate OTSWSs as a means of achieving

diversity for implementation of ITWS.

In particular, Section 4.1 briefly introduces the third-party penetration

testing tool that is used in the case studies presented in this work. Section

4.2 demonstrates the feasibility of ITWS; formed based on penetration tests

results of candidate OTSWSs, in terms of mitigating the XML-related security

vulnerabilities. Section 4.3 provides the summary of the discussions present-

ed in this chapter.

4.1 Penetration Testing Tool, WS-Attacker

The proposed framework is not based on any specific penetration test-

ing tool or method (the penetration testing tool itself is not part of the frame-

work). Therefore, the type of penetration tests and how they should be per-

formed depends on the selected penetration testing tool.

For evaluation of the proposed framework, a third-party penetration

testing tool was required. WS-Attacker [18], SoapUI [84], WSFuzzer [122],

4

73 | P a g e

and WSFAggressor (which is also based on WS-Attacker) [123] enable pene-

tration testing WSs for XML-related security vulnerabilities, which is the focus

of this work. However, except WS-Attacker, they either support fewer num-

bers of attack types and do not provide attack evaluation (in the case of

SoapUI and WSFuzzer) or require access to the system under test (in the

case of WSFAggressor) [40]. Hence, WS-Attacker is selected, which also

enables automatic penetration testing.

WS-Attacker is an open source penetration testing tool, which enables

automatic tests for XML-specific security vulnerabilities. It consists of a

framework and plugin architecture (see Figure 4.1).

Figure 4.1: Overview of WS-Attacker and Its Processing Steps [18]

Figure 4.2 presents the component diagram for WS-Attacker, which

shows that each plugin connects to its framework through an interface.

Figure 4.2: Component Diagram for WS-Attacker

< component >

Plug-in n

< component >

Plug-in 2

< component >

Plug-in 1

< component >

WS-Attacker

Plug-in 1 API Plug-in n API Plug-in 2 API

74 | P a g e

4.1.1 WS-Attacker Framework

WS-Attacker’s framework is based on SoapUI [84] and sets up an en-

vironment for attacking WSs to identify their XML-related security vulnerabili-

ties. It requires the user to load the Web Service Description Language

(WSDL) document of the WS that should be tested. It then parses the loaded

WSDL, presents the extracted operations to the user and generates Simple

Object Access Protocol (SOAP) requests based on the extracted information.

To setup the WS-Attacker’s environment, the user should:

1. Select the target operation

2. Send a test request to the target operation through the user interface

provided by WS-Attacker. From the response of the WS to the test re-

quest, WS-Attacker can identify the normal state of the WS and ana-

lyse the attack results accordingly.

3. Select and configure the attack plugins related to the attacks against

which the WS should be assessed.

4. Run the framework to perform the selected attacks on the WS.

Upon successful attack completion, WS-Attacker presents the attack re-

sult to the user. The attack result indicates whether the attack has been suc-

cessful and its criticality score [18]. The attack‘s success (true or false) de-

pends on whether a security vulnerability is detected. The score indicates the

potential damage the attack can cause and is calculated by WS-Attacker in

different ways for each attack plugin (for example, see SOAPAction Spoofing

attack plugins in Section 4.1.2).

4.1.2 WS-Attacker Plugin

In WS-Attacker, the attacks are implemented as plugins. Each plugin

is an implementation of a model of an adversary performing one type of at-

tack and allows the user to set various parameters, such as the number of

parallel attack threads, number of requests per thread, milliseconds between

every test-probe request, and milliseconds between every attack request.

75 | P a g e

WS-Attacker is extendable and provides a plugin interface enabling

new attack plugins to be added [18]. A number of attack plugins have been

developed for WS-Attacker by its developers and other researchers [18], [40],

[41].

SOAPAction Spoofing Attack Plugins

SOAPAction Spoofing is one of the attack plugins of WS-Attacker [18].

It provides automatic and manual attack options. In the automatic mode, it

generates attack requests with all possible SOAPAction headers and sends

them to the WS under test. However, in manual mode, the user is allowed to

set the SOAPAction header manually. According to the developers of this

attack plugin, possible responses from a WS to a SOAPAction Spoofing at-

tack are as follows:

a) A SOAP fault message, which is the proper response to a SOAPAc-

tion Spoofing attack.

b) A server error or misconfiguration message.

c) Execution of the first operation in the body of the message, meaning

that the SOAPAction header is only checked by the HTTP firewall

while it is ignored by the WS’s logic.

d) Execution of the operation defined in the SOAPAction header, mean-

ing that the operation to be executed is solely selected based on the

SOAPAction value.

This plugin interprets (b), (c) or (d) responses (listed above) as a success-

ful attack [18]. It also rates the vulnerability to the performed attack in per-

centage, based on the difficulty of the execution of the attack and the impact

it may have on the WS under test. For example, response (d) indicates a

more vulnerable WS because the attack is easier to execute, it only requires

changes to the SOAPAction element [18].

Mainka et al. [18] have tested this plugin on Apache Axis2 v1.6.1,

JBossWS Native 6.0, JBossWS CXF 7.0 and .Net WSs 3.0, WS frameworks

and the results have shown the vulnerability of all these frameworks to this

type of attack. Within the named frameworks, Apache Axis2 and .Net WSs

76 | P a g e

are identified as the most vulnerable frameworks, as they always execute the

operations defined in the SOAPAction header.

Denial of Service Attack Plugins

Denial of Service (DoS) attacks are one of the most popular attacks,

which can be performed through a variety of techniques [40]. History of such

attacks, targeting well-known companies, such as VISA and PayPal, indi-

cates that they can be a serious threat to today’s IT infrastructure [40]. Other

examples of this type of attacks are called HashDoS attacks, which exploit

the weakness of a hash-mapping algorithm implementation [42], [43]. Re-

garding the WSs, DoS attacks can exploit the vulnerabilities in XML-based

documents (e.g., SOAP messages) targeting the parsing mechanisms and

other resources, affecting the availability of the WS.

Falkenberg et al. [40] have developed a number of fully automatic DoS

attack plugins for WS-Attacker enabling the identification of the WSs’ vulner-

ability to Coercive Parsing, SOAP Array, XML Attribute Count, XML Element

Count, XML Entity Expansion, XML External Entity, XML Overlong Names

and HashDoS attacks. In implementing these plugins, they have assumed

that the tester does not have direct access to the WS under attack, and can

only examine its vulnerability by sending payloads to its server then evaluat-

ing its response time. They have defined the response time as the time when

the last byte of the request is sent to the server until the first byte of the re-

sponse is received from the server. These attack plugins test a WS for vul-

nerability to DoS attacks as follows [40]:

1. They send the user-defined untampered requests (extended to the

size of the tampered requests) to the WS then log the response times.

According to the developers of these attack plugins, the extension to

the size of the untampered requests does not cause DoS attack and if

it does it will be clearly indicated in the result to eliminate false posi-

tive.

77 | P a g e

2. After a user-defined elapsed time, they send the tampered requests

(with the same load patterns as the untampered ones) to the WS then

log the response times.

3. They calculate the ratio of the median of the response times of the last

10 (or the maximum number of requests if less than 10 requests are

sent) tampered requests to the median of the last 10 (or the maximum

number of requests if less than 10 requests are sent) untampered re-

quests (see Equation 4.1). The attack success is decided according to

the threshold values (see Table 4.1) that are chosen based on pre-

tests on vulnerable and non-vulnerable WSs.

𝐴𝑅𝑇𝑅 =
𝑚𝑒𝑑𝑖𝑎𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 10 𝑡𝑎𝑚𝑝𝑒𝑟𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑚𝑒𝑑𝑖𝑎𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 10 𝑢𝑛𝑡𝑎𝑚𝑝𝑒𝑟𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (4.1)

Table 4.1: WS-Attacker’s DoS Attack Success Metrics [40]

Metric Value Rating

ARTR < 3 Payload ineffective

3 ≤ ARTR < 6 Payload effective

6 ≤ ARTR Payload highly effective

In designing these attack plugins, all major errors, such as the in-

crease in response time because of various message sizes or various net-

work loads, are eliminated [40].

These plugins also test for DoS attack’s effect on third-party users

(who visit the WS under attack) by continuously sending test requests to the

target WS at constant user-defined intervals and in parallel to testing the WS

for vulnerability to DoS attack. The attack’s effect on the third-party users is

decided by comparing the median of the response times of all simulated

third-party requests (MRTTPR), after starting to send first tampered request,

with the threshold values (see Table 4.2) that are considered an acceptable

response time by the developers of these attack plugins. They believe that

longer response times than these thresholds exponentially increases the us-

ers’ annoyance level [40].

78 | P a g e

Table 4.2: WS-Attacker’s DoS Attack’s Effect Metrics on Third-Party Users [40]

Metric Value Rating

MRTTPR < 2 sec no or small effect on third-party users

2 ≤ MRTTPR < 5 third-party users are affected

5 ≤ MRTTPR third-party users are highly affected

Falkenberg et al. [40] have tested a number of these attack plugins on

Apache Axis2, Apache CXF, Metro, and ASP .Net frameworks as well as the

IBM DataPower XI50 XML Security Gateway. The results of these tests (see

Table 4.3) show that ASP .Net and IBM XI50 are not vulnerable to any of

these DoS attacks while Apache Axis2, Apache CXF, and Metro frameworks

are vulnerable to at least one of these DoS attack.

Table 4.3: Results of Testing DoS Attack Plugins on a Number of Web service Frameworks [40]

Attack Name

Axis2

CXF

Metro

ASP .Net

IBM XI50

Coercive Parsing Yes Yes x x x

DJBX31A Hash Collision Yes Yes Yes x x

DJBX33A Hash Collision x x x x x

DJBX33X Hash Collision x x x x x

XML Attribute Count Yes Yes Yes x x

XML Element Count x Yes x x x

XML Entity Expansion x x x x x

XML External Entity x x x x x

XML Overlong Names x x x x x

4.2 Case Study: Feasibility of ITWS Formed Based on
Penetration Test Results of Candidate WSs

This section uses a case study (the author’s work published in [124]),

to demonstrate the feasibility of using penetration test results of candidate

OTSWSs as a means of achieving diversity for implementation of ITWS.

The objective of this case study is to exemplify the implementation of

an ITWS using WSs selected based on their security vulnerabilities identified

through penetration testing, and testing its effectiveness as a defence against

XML-related DoS attacks. The remainder of this section presents the proce-

dure of this case study.

79 | P a g e

4.2.1 WSs Preparation

For this case study the following stock purchase WSs is developed:

 Two WSs developed using Apache Axis2 1.5.1 framework and were

deployed on Apache Tomcat 6.0.18 running on Intel® Core™ i5-

3320M CPU @ 2.60GHz system with 7.88GB usable RAM and 64-bit

Operating System.

 Two WSs developed using .NET 4.0 framework and were deployed on

Intel® Core™ 2 Duo CPU P8400@ 2.26GHz system with 3.00GB

RAM and 32-bit Operating System.

Also, one third-party ASP.NET WS [125], which provides similar stock

purchase functionality, is employed.

4.2.2 Penetration Tests Settings

In this study, Coercive Parsing attack is performed on these services

with WS-Attacker’s settings presented in Table 4.4.

Table 4.4: WS-Attacker’s Settings

Test Message Settings

WS-Attacker’s other Settings

Coercive Parsing with 75,000 open
tags plotted in the body of the SOAP

message

2 parallel attack threads,
4 requests per thread,
500 milliseconds between every testprobe request,
750 milliseconds between every attack request,
4 seconds server recovery time,
5 seconds stop after the last tampered request

4.2.3 WSs’ Penetration Test Results

Each WS is tested individually for security vulnerability to Coercive

Parsing attack, using WS-Attacker’s settings shown in Table 4.4. The pene-

tration test results of these WSs are presented in Table 4.5. In this table,

100% indicates that the WS is vulnerable to Coercive Parsing attack and 1%

shows that it does not have this security vulnerability.

mailto:CPU@2.60GHz
mailto:CPU@2.60GHz

80 | P a g e

4.2.4 ITWS Implementation

The ITWS is implemented through the composition of the three

ASP.NET services and one of the Axis2 services (four highlighted services in

Table 4.5), using BPEL 2.0 plugin for Eclipse 3.4. It is then deployed on

Apache Ode 1.2 runtime (on top of Apache Tomcat 6.0.18 server) on the

same machine that is hosting the Axis2 WSs (Intel® Core™ i5-3320M CPU

@ 2.60GHz system with 7.88GB usable RAM and 64-bit Operating System).

Figure 4.3 presents the overview of this BPEL process.

Figure 4.3: BPEL Diagram of the ITWS

The operation of this ITWS is as follows:

1. Receives client’s request.

2. Initializes variable associated to each concurrent invocation process

(each invocation process is responsible for invoking one of the ITWS’s

four constituent services) to 0.

3. Passes the client’s request to each of the parallel invocation process-

es.

4. Each concurrent invocation process invokes its associated WS.

5. Each concurrent invocation process sets its associated variable to 1

upon receiving a response from its associated WS.

mailto:CPU@2.60GHz
mailto:CPU@2.60GHz

81 | P a g e

6. Once three responses are returned by three of the constituent ser-

vices (three of the variables associated to the invocation processes

are having the value of 1), the BPEL scope (the concurrent invocation

processes are wrapped within a BPEL scope which provides excep-

tion handling, see Section 2.6 for further details) throws an exception.

7. The exception handler terminates the concurrent invocation process-

es.

8. The business process replies to the client.

4.2.5 ITWS’s Penetration Test Results

The ITWS is tested for security vulnerability to Coercive Parsing attack

using WS-Attacker with the same settings that were used to test individual

services (see Table 4.4).

Table 4.5: Penetration Tests Results

 WS Framework

Axis2
WS

Axis2
WS

ASP.Net

WS

ASP.Net

WS

ASP.Net

WS

ITWS

Penetration test result for
Coercive Parsing attack

100%

100%

1%

1%

1%

1%

The last column of Table 4.5 presents the penetration test result for

this ITWS and indicates that it is not vulnerable to Coercive Parsing DoS at-

tack (1% denotes that the WS under test does not have this security vulnera-

bility).

4.3 Summary

This chapter briefly introduced the penetration testing tool that is used

in the case studies presented in this work. It then demonstrated the feasibility

of ITWS formed using WSs with security vulnerabilities diversity (identified

through penetration testing) using a case study. Chapter 8 uses the outcome

of this case study to evaluate the proposed framework.

82 | P a g e

Chapter 5 Effects of BPEL on WSs’ XML-Related Security Vulnerabilities

CHAPTER

 Effects of BPEL on WSs’ XML-Related

 Security Vulnerabilities

In this work, Intrusion-Tolerance is implemented using Business Pro-

cess Engineering Language (BPEL). Hence, the effect of BPEL on the secu-

rity vulnerabilities of Off-The-Shelf Web Services (OTSWSs) should be con-

sidered in the selection of these services. This chapter uses a case study to

demonstrate that BPEL could affect the security vulnerabilities of WSs.

Hence, penetration testing for service selection should be performed while

OTSWSs are wrapped in a BPEL process.

Sections 5.1 and 5.2 demonstrate the case study and the summary of

the discussions presented in this chapter, respectively.

5.1 Case Study: Effects of BPEL on WSs’ XML-
Related Security Vulnerabilities

This section uses a case study to demonstrate (from the point of view

of WS-Attacker) that BPEL could affect the XML-related security vulnerabili-

ties of WSs. The remainder of this section presents the procedure of this

case study.

5.1.1 WS Preparation

For this case study, a simple WS is developed using the source code

presented in Code 5.1 and Axis2 1.6.1 WS framework. This service is de-

ployed on Apache Tomcat 6.0.18 server running on Intel® Core™ i5-3320M

5

83 | P a g e

CPU @ 2.60GHz system with 7.88GB usable RAM and 64-bit Operating Sys-

tem. This WS provides two simple sum and factorial services (see Code 5.1).

Code 5.1: Source Code for the Developed WSs

5.1.2 WS Wrapped within BPEL process

Figure 5.1: BPEL Process for Wrapping the Developed WSs.

package Axis_Tom_6;

public class Axis_Tom_6_sum {

 public int addIntegers (int firstNum, int secondNum) {

 return firstNum + secondNum;

 }

 public int factorial(int n) {

 int result = 1;

 for (int i = 1; i <= n; i++) {

 result = result * i;

 }

 return result;

 }

}

mailto:CPU@2.60GHz

84 | P a g e

The service from Section 5.1.1 is wrapped in a BPEL process (see

Figure 5.1) developed using BPEL 2.0 plugin for Eclipse Neon.2 4.6.2. And

was deployed on Apache 1.3.4 runtime (on top of Tomcat 5.5.26 server)

running on Intel® Core™ i5-3320M CPU @ 2.60GHz system with 7.88GB

usable RAM and 64-bit Operating System. The operation of this BPEL pro-

cess is as follows:

1. Receives client’s request.

2. Assigns the client’s request to the invocation process that invokes the

WS (from Section 5.1.1).

3. Invokes the WS.

4. Assigns the response from the WS to the output of the BPEL process.

5. Replies the response from the WS to the client.

5.1.3 Penetration Tests Settings

In this study, Coercive Parsing, DJBX31A Hash Collision, and XML At-

tribute Count attacks are performed on these services (WSs from Sections

5.1.1 and 5.1.2). Table 5.1 presents the WS-Attacker’s settings for each of

these tests.

Table 5.1: WS-Attacker’s Settings

Test ID

Test Message Settings

WS-Attacker’s other Settings

Test 1

Coercive Parsing attack with 3,000
open tags plotted in the header of the
SOAP message

2 parallel attack threads,
4 requests per thread,
500 milliseconds between every testprobe
request,
750 milliseconds between every attack
request,
4 seconds server recovery time,
5 seconds stop after the last tampered
request

Test 2

Coercive Parsing attack with 11,000
open tags plotted in the body of the
SOAP message

Test 3

DJBX31A Hash Collision attack with
2,000 paired keys/values plotted in the
header of the SOAP message

Test 4

XML Attribute Count attacks with
50,000 paired keys/values plotted in the
header of the SOAP message

5.1.4 Attack Elements for Test SOAP Messages

 In the penetration tests performed on these services, the attack ele-

ment is either plotted in the header or the body of the test SOAP message as

presented in Message 5.1 and Message 5.2, respectively.

mailto:CPU@2.60GHz

85 | P a g e

Message 5.1: Test SOAP Message with Attack Element Plotted in its Header

Message 5.2: Test SOAP Message with Attack Element Plotted in its Body.

In each type of attack, the attack element is replaced as follows:

 Coercive Parsing Attack: AttackElement is replaced with various

number of open tags (e.g., <X><X>…</X></X>).

 DJBX31A Hash Collision Attack: AttackElement is replaced with

<attackElement $$PAYLOADATTR$$> test </attackElement> and

$$PAYLOADATTR$$ element is replaced with various number paired

keys/values (e.g., tttttt="0" ttttuU="1" ttttv6="2").

 XML Attribute Count Attack: AttackElement is replaced with <at-

tackElement $$PAYLOADATTR$$> test </attackElement> and

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://Axis_Tom_6">

 <soapenv:Header> AttackElement </soapenv:Header>

 <soapenv:Body>

 <axis:addIntegers>

 <axis:firstNum>1</axis:firstNum>

 <axis:secondNum>2</axis:secondNum>

 </axis:addIntegers>

 </soapenv:Body>

</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://Axis_Tom_6">

 <soapenv:Header></soapenv:Header>

 <soapenv:Body>

 AttackElement

 <axis:addIntegers>

 <axis:firstNum>1</axis:firstNum>

 <axis:secondNum>2</axis:secondNum>

 </axis:addIntegers>

 </soapenv:Body>

</soapenv:Envelope>

86 | P a g e

$$PAYLOADATTR$$ element is replaced with various number paired

keys/values (e.g., a0="0" a1="1" a2="2").

5.1.5 Penetration Tests Results

The services developed in Sections 5.1.1 and 5.1.2 are tested using

WS-Attacker’s settings shown in Table 5.1. Figures 5.2 and 5.3 show the

component diagram for direct penetration testing the Axis2 WS (WS from

Section 5.1.1) and for penetration testing this WS while it is wrapped in a

BPEL process (WS from Section 5.1.2), respectively.

Figure 5.2: The Component Diagram for Direct Penetration Testing of the
WS in this Case Study

Figure 5.3: The Component Diagram for Penetration Testing of the WS in this Case Study while
it is wrapped in a BPEL Process.

< component >

Composite WS

< component >

OTSWS

< component >

Plug-in n

< component >

Plug-in 2

< component >

Plug-in 1

< component >

WS-Attacker

Plug-in 1 API Plug-in n API Plug-in 2 API

OTSWS-WSDL Composite WS-WSDL

< component >

OTSWS

< component >

Plug-in n

< component >

Plug-in 2

< component >

Plug-in 1

< component >

WS-Attacker

Plug-in 1 API Plug-in n

API

Plug-in 2 API

OTSWS-WSDL

WSWSDL

87 | P a g e

Figures 5.4a-5.4d and 5.5a-5.5d show the penetration test results for

each test attack performed on Axis2 WS (WS from Section 5.1.1) when it is

tested directly and when it is tested while wrapped in a BPEL process (WS

from Section 5.1.2), respectively. The penetration test results show the vul-

nerability of these WSs to the performed attacks in percentage so that 100%

indicates that the WS is very vulnerable to the attack and 1% shows that it

does not have this security vulnerability.

Each test is repeated ten times (to increase the confidence of the out-

come of these tests) and the average of the results is considered. Because,

these test plugins decide on the security vulnerability of the WSs based on

their response times that slightly differs every time the same test is per-

formed. The vertical and horizontal lines in these graphs (Figures 5.4a-5.4d

and 5.5a-5.5d) show the result of the penetration test every time the same

test is performed and the average of the penetration test results for each test,

respectively.

These results demonstrate that BPEL affects the XM-related security

vulnerabilities of WSs (from the point of view of WS-Attacker). In some cases

(Coercive Parsing plotted in the header, DJBX31A Hash Collision, and XML

Attribute Count attacks) it has improved the vulnerability, and in other cases,

it has worsen it (Coercive Parsing plotted in the body attack). Hence, it is a

better approach to perform penetration testing while OTSWSs are wrapped in

a BPEL process, as in this framework the ITWS is implemented using BPEL

so its effects on the security vulnerabilities of the OTSWSs should also be

taken into account.

88 | P a g e

Figure 5.4: Results from Direct Penetration Testing Axis2-1.6.1 WS(for information about each
test see Table 5.1)

Figure 5.5: Penetration Test Results for Axis2-1.6.1WS while it was wrapped in a BPEL Process
(for information about each test see Table 5.1)

5
9
%

5
5
%

5
3
%

5
9
% 5
0
%

5
8
%

5
4
%

5
6
%

6
0
% 5

0
%

55.4%

0%

20%

40%

60%

80%

100%

Figure 5.4a: Results from Test 1

Test 1 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 5.4b: Results from Test 2

Test 2 Results Average of tests results

8
0
%

8
5
%

8
3
%

8
6
%

9
0
%

8
8
%

8
6
%

8
3
%

8
1
%

9
2
%

85.4%

0%

20%

40%

60%

80%

100%

Figure 5.4c: Results from Test 3

Test 3 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 5.4d: Results from Test 4

Test 4 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 5.5a: Results from Test 1

Test1 Results Average of tests results

9
7
%

9
1
%

1
0
0
%

1
0
0
% 9
2
%

1
0
0
%

1
0
0
%

9
8
%

9
9
%

1
0
0
%

97.7%

0%

20%

40%

60%

80%

100%

Figure 5.5b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 5.5c: Results from Test 3

Test3 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 5.5d: Results from Test 4

Test4 Results Average of tests results

89 | P a g e

5.2 Summary

This chapter used a case study to demonstrate (from the point of view

of WS-Attacker) that BPEL could affect the XML-related security vulnerabili-

ties of WSs. It improved the security vulnerabilities to Coercive Parsing (plot-

ted in the header), DJBX31A Hash Collision and XML Attribute Count at-

tacks while increasing security vulnerability to Coercive Parsing (plotted in

the body) attack. The outcome of this case study is used in the service se-

lection case study, presented in the next chapter.

90 | P a g e

Chapter 6 Security-Aware Selection of Optimal Group of WSs using PCA and CA, for Implemen-
tation of TWS

CHAPTER

 Security-Aware Selection of Optimal Group

 WSs using PCA and CA, for

 Implementation of ITWS

In this work, ITWS is achieved through penetration testing candidate

OTSWSs, grouping these services based on their security vulnerabilities di-

versity (using PCA and CA), ordering the groups according to their overall

security vulnerabilities (identified through penetration testing), and starting

the ITWS with services from the most secure group and switch to the next

group if it fails and so on.

This chapter uses a case study to explain and exemplify the proposed

service selection framework. Sections 6.1 and 6.2 demonstrate the case

study and the summary of the discussions presented in this chapter, respec-

tively.

6.1 Case Study: Security-Aware Selection of Optimal
Group of WSs using PCA and CA, for Implementation
of ITWS

This section uses a case study to evaluate the effectiveness of PCA

and CA utilization in security-aware service selection based on penetration

tests results of the candidate OTSWSs. The objective of this case study is to

explain and exemplify the proposed service selection framework. The re-

mainder of this section presents the procedure of this case study.

6

91 | P a g e

6.1.1 WS Preparation

As previously discussed, this framework is based on diverse

OTSWSs (open source WSs). However, OTSWSs could not be used for this

case study because

1. There was not an adequate number of third-party WSs offering similar

services (e.g., third-party WSs offering stock purchasing service).

2. We did not have permission to perform penetration testing on the

available third-party WSs.

Hence, for this case study, six WSs are developed using the source

code presented in Code 5.1 (Chapter 5) and various WSs’ frameworks.

These services are deployed on either Apache Tomcat 6.0.18 or Apache

Tomcat 7.0.72 servers running on Intel® Core™ i5-3320M CPU @ 2.60GHz

system with 7.88GB usable RAM and 64-bit Operating System. However, in

the utilization of this framework if more in-house WSs should be used (e.g.,

lack of adequate number of OTSWSs), these WSs can be run on different

servers (other than the one running the ITWS) to avoid scalability issues.

The details of the six services developed for this case study are as

follows:

 S1: Axis1 4 deployed on Apache Tomcat 6.0.18 server

 S2: Axis2 1.5.1 deployed on Apache Tomcat 6.0.18 server

 S3: Axis2 1.6.1 deployed on Apache Tomcat 6.0.18 server

 S4: CXF 2.3.10 deployed on Apache Tomcat 6.0.18 server

 S5: CXF 2.5.11 deployed on Apache Tomcat 7.0.72 server

 S6: CXF 2.6.3 deployed on Apache Tomcat 7.0.72 server

The Web Service Description Language (WSDL) files of these ser-

vices are presented in Appendices A-F.

6.1.2 WSs Wrapped within BPEL processes

Recall from the result of the case study presented in Chapter 5 that

penetration testing should be performed on the services while they are

mailto:CPU@2.60GHz

92 | P a g e

wrapped in a BPEL process (to also take into account the effects of the

BPEL on the security vulnerabilities of the WSs), each of the WSs developed

in the previous section are wrapped in the BPEL process as presented in

Section 5.1.2 (see Chapter 5).

These business processes are developed using BPEL 2.0 plugin for

Eclipse Neon.2 4.6.2 and are deployed on Apache 1.3.4 runtime (on top of

Tomcat 5.5.26 server) running on Intel® Core™ i5-3320M CPU @ 2.60GHz

system with 7.88GB usable RAM and 64-bit Operating System.

6.1.3 Penetration Tests Settings

Table 6.1: WS-Attacker’s Settings

Test ID

Test Message Settings

WS-Attacker’s other Settings

Test 1

Coercive Parsing attack with 8,000 open tags plotted
in the header of the SOAP message

2 parallel attack threads,
4 requests per thread,
500 milliseconds between every
testprobe request,
750 milliseconds between every
attack request,
4 seconds server recovery time,
5 seconds stop after the last
tampered request

Test 2

Coercive Parsing attack with 9,000 open tags plotted
in the header of the SOAP message

Test 3

Coercive Parsing attack with 10,000 open tags plotted
in the header of the SOAP message

Test 4

Coercive Parsing attack with 11,000 open tags plotted
in the header of the SOAP message

Test 5

Coercive Parsing attack with 12,000 open tags plotted
in the header of the SOAP message

Test 6

Coercive Parsing attack with 13,000 open tags plotted
in the header of the SOAP message

Test 7

Coercive Parsing attack with 8,000 open tags plotted
in the body of the SOAP message

Test 8

Coercive Parsing attack with 9,000 open tags plotted
in the body of the SOAP message

Test 9

Coercive Parsing attack with 10,000 open tags plotted
in the body of the SOAP message

Test 10

Coercive Parsing attack with 11,000 open tags plotted
in the body of the SOAP message

Test 11

Coercive Parsing attack with 12,000 open tags plotted
in the body of the SOAP message

Test 12

DJBX31A Hash Collision attack with 2,000 paired
keys/values plotted in the body of the SOAP message

Test 13

DJBX31A Hash Collision attack with 3,000 paired
keys/values plotted in the body of the SOAP message

Test 14

XML Attribute Count attack with 40,000 paired
keys/values plotted in the body of the SOAP message

Test 15

XML Attribute Count attack with 50,000 paired
keys/values plotted in the body of the SOAP message

Test 16

XML Attribute Count attack with 60,000 paired
keys/values plotted in the body of the SOAP message

mailto:CPU@2.60GHz

93 | P a g e

In this study, Coercive Parsing, DJBX31A Hash Collision, and XML

Attribute Count attacks are performed on these services. Table 6.1 presents

the WS-Attacker’s settings for each of these tests. In the remainder of this

section, these tests are referenced by their Id as presented in Table 6.1.

6.1.4 Attack Elements for Test SOAP Messages

In the penetration tests performed on these services, the test SOAP

messages and their attack elements were set as it is explained in Section

5.1.4.

6.1.5 Penetration Test Results of Candidate WSs

The services developed in Sections 6.1.2 are tested using WS-

Attacker’s settings shown in Table 6.1. Figures 6.1-6.12 show the penetra-

tion test results for test attacks performed on these services (every two fig-

ures show the tests results related to one of these services). Due to the

space limitation, the Id of the penetration tests are used in these graphs, for

information about each test, see Table 6.1.

The penetration test results show the vulnerability of these WSs to the

performed attacks in percentage so that 100% indicates that the WS is very

vulnerable to the attack and 1% shows that it does not have this security

vulnerability.

Each test is repeated ten times (to increase the confidence of the out-

come of these tests) and the average of the results is considered. Because,

these test plugins decide on the security vulnerability of the WSs based on

their response times that slightly differs every time the same test is per-

formed. The vertical and horizontal lines in these graphs (Figures 6.1-6.12)

show the result of the penetration test every time the same test is performed

and the average of the penetration test results for each test, respectively.

94 | P a g e

Figure 6.1: Penetration Tests Results for Tests 1-8 Performed on Axis1-4 WS (for information
about each test and WS see Table 6.1 and Section 6.1.1, respectively)

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.1a: Results from Test 1

Test1 Results Average of tests results
1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.1b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.1c: Results from Test 3

Test3 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.1d: Results from Test 4

Test4 Results Average of tests results

7
2
%

7
9
% 6

8
%

7
5
%

8
2
%

6
8
%

7
6
% 7
0
%

6
6
%

8
2
%

73.80%

0%

20%

40%

60%

80%

100%

Figure 6.1e: Results from Test 5

Test5 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.1f: Results from Test 6

Test6 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.1g: Results from Test 7

Test7 Results Average of tests results

5
2
%

6
2
%

5
9
%

5
5
%

5
1
%

6
0
% 5
2
%

6
3
% 5

1
%

5
5
%

56%

0%

20%

40%

60%

80%

100%

Figure 6.1h: Results from Tesst 8

Test8 Results Average of tests results

95 | P a g e

Figure 6.2: Penetration Tests Results for Tests 9-16 Performed on Axis1-4 WS for information
about each test and WS see Table 6.1 and Section 6.1.1, respectively

7
1
%

7
7
%

8
1
% 7

0
%

8
2
% 7
6
%

7
2
%

7
4
%

7
1
%

8
1
%

75.5%

0%

20%

40%

60%

80%

100%

Figure 6.2a: Results from Test 9

Test9 Results Average of tests results

1
0
0
% 9
3
%

9
9
%

1
0
0
%

1
0
0
%

9
8
%

1
0
0
%

9
6
%

1
0
0
%

1
0
0
%

98.6%

0%

20%

40%

60%

80%

100%

Figure 6.2b: Results from Test 10

Test10 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.2c: Results from Test 11

Test11 Results Average of tests results

7
5
% 6
5
%

6
8
%

6
5
%

7
2
%

6
8
% 6
0
%

7
0
% 6
2
%

6
0
%

66.5%

0%

20%

40%

60%

80%

100%

Figure 6.2d: Results from Test 12

Test12 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.2e: Results from Test 13

Test13 Results Average of tests results

6
2
%

6
9
% 6
2
%

6
4
% 5
6
%

6
5
%

7
3
%

6
8
%

7
0
% 5

8
%

64.7%

0%

20%

40%

60%

80%

100%

Figure 6.2f: Results from Test 14

Test14 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.2g: Results from Test 15

Test15 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.2h: Results from Test 16

Test16 Results Average of tests results

96 | P a g e

Figure 6.3: Penetration Tests Results for Tests 1-8 Performed on Axis2-1.5.1 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.3a: Results from Test 1

Test1 Results Average of tests results

6
1
% 5
5
%

5
2
%

5
0
%

5
3
%

6
0
% 5

0
%

6
3
% 5
5
%

5
6
%

55.5%

0%

20%

40%

60%

80%

100%

Figure 6.3b: Results from Test 2

Test2 Results Average of tests results

7
4
%

7
2
%

6
8
%

6
6
%

6
5
%

7
2
%

7
4
% 6
5
%

6
2
%

6
9
%

68.7%

0%

20%

40%

60%

80%

100%

Figure 6.3c: Results from Test 3

Test 3 Results Average of tests results

8
2
%

8
8
%

8
9
% 8
3
%

8
6
%

9
5
% 8
6
%

8
8
%

8
4
%

9
3
%

87.4%

0%

20%

40%

60%

80%

100%

Figure 6.3d: Results from Test 4

Test4 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.3e: Results from Test 5

Test5 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.3f: Results from Test 6

Test6 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.3g: Results from Test 7

Test7 Results Average of tests results

5
8
%

5
6
%

5
8
%

5
5
%

6
0
%

5
7
%

6
2
%

6
5
% 5
8
%

6
3
%

59.2%

0%

20%

40%

60%

80%

100%

Figure 6.3h: Results from Test 8

Test8 Results Average of tests results

97 | P a g e

Figure 6.4: Penetration Tests Results for Tests 9-16 Performed on Axis2-1.5.1 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

7
0
%

7
9
% 7
1
%

7
9
%

7
5
%

7
3

%

8
1
%

7
6
%

7
1
%

7
5
%

75%

0%

20%

40%

60%

80%

100%

Figure 6.4a: Results from Test 9

Test9 Results Average of tests results

1
0
0
% 9
2
%

9
6
%

1
0
0
%

1
0
0
% 9
1
%

1
0
0
%

1
0
0
% 9
3
%

1
0
0
%

97.2%

0%

20%

40%

60%

80%

100%

Figure 6.4b: Results from Test 10

Test10 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.4c: Results from Test 11

Test11 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.4d: Results from Test 12

Test12 Results Average of tests results

1
0
0
%

9
8
%

9
6
%

1
0
0
%

1
0
0
%

9
5
%

1
0
0
%

1
0
0
% 9
3
%

1
0
0
%

98.2%

0%

20%

40%

60%

80%

100%

Figure 6.4e: Results from Test13

Test13 Results Average of tests results

9
1
%

9
0
%

9
1
% 8
1
%

9
1
% 8
4
%

8
7
%

8
8
%

9
0
% 8
4
%

87.7%

0%

20%

40%

60%

80%

100%

Figure 6.4f: Results from Test 14

Test14 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.4g: Results from Test 15

Test15 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.4h: Results from Test 16

Test16 Results Average of tests results

98 | P a g e

Figure 6.5: Penetration Tests Results for Tests 1-8 Performed on Axis2-1.6.1 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.5a: Results from Test 1

Test1 Results Average of tests results

5
6
%

6
3
% 5

2
%

6
3
% 5
6
%

5
4
%

5
8
%

6
1
%

6
3
% 5
5
%

58.1%

0%

20%

40%

60%

80%

100%

Figure 6.5b: Results from Test 2

Test2 Results Average of tests results

9
2
% 8
5
%

9
1
%

8
7
%

9
0
% 8
2
%

8
6
%

8
8
%

8
7
%

8
4
%

87.2%

0%

20%

40%

60%

80%

100%

Figure 6.5d: Results from Test 4

Test4 Results Average of tests results

7
5
% 6

4
%

7
0
%

7
2
%

6
8
%

6
7
%

7
3
% 6
4
%

6
0
%

6
6
%

67.9%

0%

20%

40%

60%

80%

100%

Figure 6.5c: Results from Test 3

Test3 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.5f: Results from Test 6

Test6 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.5e: Results from Test 5

Test5 Results Average of tests results

5
5
%

5
9
%

6
2
%

5
8
%

5
9
%

5
7
%

6
0
%

5
6
%

5
8
%

6
0
%

58.4%

0%

20%

40%

60%

80%

100%

Figure 6.5h: Results Test 8

Test8 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.5g: Results from Test 7

Test7 Results Average of tests results

99 | P a g e

Figure 6.6: Penetration Tests Results for Tests 9-16 Performed on Axis2-1.6.1 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

9
7
%

9
1
%

1
0
0
%

1
0
0
% 9
2
%

1
0
0
%

1
0
0
%

9
8
%

9
9
%

1
0
0
%

97.7%

0%

20%

40%

60%

80%

100%

Figure 6.6b: Results from Test 10

Test10 Results Average of tests results

7
9
%

8
0
%

7
8
% 7
1
%

7
4
%

7
9
% 7
2
%

7
4
%

7
2
%

7
6
%

75.5%

0%

20%

40%

60%

80%

100%

Figure 6.6a: Results from Test 9

Test9 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.6d: Results from Test 12

Test12 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.6c: Results from Test 11

Test11 Results Average of tests results

8
8
%

9
0
%

8
6
%

8
1
%

8
7
%

8
5
%

9
0
%

8
8
%

8
5
%

8
8
%

86.8%

0%

20%

40%

60%

80%

100%

Figure 6.6f: Results from Test 14

Test14 Results Average of tests results

9
7
%

9
5
%

1
0
0
%

1
0
0
%

9
6
%

1
0
0
%

1
0
0
%

9
8
%

9
9
%

1
0
0
%

98.5%

0%

20%

40%

60%

80%

100%

Figure 6.6e: Results from Test 13

Test13 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.6h: Results from Test 16

Test16 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.6g: Results from Test 15

Test15 Results Average of tests results

100 | P a g e

Figure 6.7: Penetration Tests Results for Tests 1-8 Performed on CXF-2.3.10 WS for information
about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.7h: Results from Test 8

Test8 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.7g: Results from Test 7

Test7 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.7f: Results from Test 6

Test6 Results Average of tests results

8
7
%

1
0
0
% 9
1
%

1
0
0
%

9
8
%

9
5
%

1
0
0
%

9
5
%

9
6
%

1
0
0
%

96.2%

0%

20%

40%

60%

80%

100%

Figure 6.7e: Results from Test 5

Test5 Results Average of tests results

7
1
% 6

1
%

7
8
% 6

8
%

7
0
%

7
4
%

7
1
% 6
5
%

6
9
%

6
6
%

69.3%

0%

20%

40%

60%

80%

100%

Figure 6.7d: Results from Test 4

Test4 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.7c: Results from Test 3

Test3 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.7b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.7a: Results from Test 1

Test1 Results Average of tests results

101 | P a g e

Figure 6.8: Penetration Tests Results for Tests 9-16 Performed on CXF-2.3.10 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.8h: Results from Test16

Test 16 Results Average of tests results

7
9
% 6

6
%

7
9
%

7
7
% 6

5
%

7
0
%

7
5
% 6
6
%

6
7
%

7
3
%

71.7%

0%

20%

40%

60%

80%

100%

Figure 6.8g: Results from Test 15

Test 15 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.8f: Results from Test 14

Test 14 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.8e: Results from Test 13

Test13 Results Average of tests results

6
5
%

6
1
%

6
8
% 6
1
%

6
5
%

7
0
% 6
3
%

6
2
%

6
7
%

6
3
%

64.5%

0%

20%

40%

60%

80%

100%

Figure 6.8d: Results from Test 12

Test12 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.8c: Results from Test 11

Test11 Results Average of tests results

7
6
%

8
4
%

9
3
%

8
9
%

9
8
%

8
2
%

9
3
%

1
0
0
%

8
4
%

9
7
%

89.6%

0%

20%

40%

60%

80%

100%

Figure 6.8b: Results from Test 10

Test10 Results Average of tests results

6
6
% 5
7
%

6
1
%

6
6
%

6
3
%

6
5
%

6
3
%

6
4
% 5
7
%

6
0
%

62.2%

0%

20%

40%

60%

80%

100%

Figure 6.8a: Results from Test 9

Test9 Results Average of tests results

102 | P a g e

Figure 6.9: Penetration Tests Results for Tests 1-8 Performed on CXF-2.5.11 WS for information
about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.9h: Results from Test 8

Test 8 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.9g: Results from test 7

Test 7 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.9f: Results from Test 6

Test 6 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.9e: Results from Test 5

Test 5 Results Average of tests results

6
3
%

6
4
%

7
5
% 6
9
%

7
5
% 6
5
%

6
9
%

6
8
%

7
0
%

7
3
%

69.1%

0%

20%

40%

60%

80%

100%

Figure 6.9d: Results from Test 4

Test 4 Results Average of tests results

6
0
%

5
6
%

5
3
%

5
8
%

6
0
% 5
0
%

5
4
%

5
2
%

5
9
% 5
1
%

55.3%

0%

20%

40%

60%

80%

100%

Figure 6.9c: Results from Test 3

Test 3 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.9b: Results from Test 2

Test 2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.9a: Results from Test 1

Test 1 Results Average of tests results

103 | P a g e

Figure 6.10: Penetration Tests Results for Tests 9-16 Performed on CXF-2.5.11 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.10h: Results from Test 16

Test 16 Results Average of tests results

7
3
%

7
8
%

7
5
%

7
9
%

8
0
% 6

7
%

7
1
%

7
8
% 6

7
%

7
3
%

74.1%

0%

20%

40%

60%

80%

100%

Figure 6.10g: Results from Test 15

Test 15 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.10f: Results from Test 14

Test 14 Results Average of tests results

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

1
0
0

%

100%

0%

20%

40%

60%

80%

100%

Figure 6.10e: Results from Test 13

Test 13 Results Average of tests results

8
1
%

8
0
%

8
3
%

8
8
%

8
7
% 8
0
%

9
0
% 8
2
%

9
0
%

8
9
%

85%

0%

20%

40%

60%

80%

100%

Figure 6.10d: Results from Test 12

Test 12 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.10c: Results from Test 11

Test 11 Results Average of tests results

9
8
%

8
2
%

1
0
0
%

9
8
%

7
8
%

7
6
%

7
8
%

1
0
0
%

9
8
% 8

7
%

89.5%

0%

20%

40%

60%

80%

100%

Figure 6.10b: Results from Test 10

Test 10 Results Average of tests results

6
4
%

6
2
%

5
8
%

6
7
%

6
6
%

6
1
%

5
8
%

5
7
%

6
2
%

6
8
%

62.3%

0%

20%

40%

60%

80%

100%

Figure 6.10a: Results from Test 9

Test 9 Results Average of tests results

104 | P a g e

Figure 6.11: Penetration Tests Results for Tests 1-8 Performed on CXF-2.6.3 WS for information
about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.11h: Results from Test 8

Test 8 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.11g: Results from Test 7

Test 7 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.11f: Results from Test 6

Test 6 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.11e: Results from Test 5

Test 5 Results Average of tests results

6
9
%

6
5
%

6
8
%

6
3
%

7
5
% 6

2
%

7
3
%

7
2
% 6
3
%

7
1
%

68.1%

0%

20%

40%

60%

80%

100%

Figure 6.11d: Results from Test 4

Test4 Results Average of tests results

5
4
%

5
5
%

5
4
%

5
5
%

5
1
%

5
9
%

5
5
%

5
0
%

5
5
%

5
9
%

54.7%

0%

20%

40%

60%

80%

100%

Figure 6.11c: Results from Test 3

Test3 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.11b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.11a: Results from Test 1

Test1 Results Average of tests results

105 | P a g e

Figure 6.12: Penetration Tests Results for Tests 9-16 Performed on CXF-2.6.3 WS for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.12h: Results from Test 16

Test 16 Results Average of tests results

7
0
%

7
4
%

7
7
%

8
1
%

7
8
%

7
6
%

7
8
% 6

7
%

7
0
%

7
6
%

74.7%

0%

20%

40%

60%

80%

100%

Figure 6.12g: Results from Test 15

Test 15 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.12f: Results from Test 14

Test 14 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.12e: Results from Test 13

Test 13 Results Average of tests results

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

100%

0%

20%

40%

60%

80%

100%

Figure 6.12c: Results from Test 11

Test 11 Results Average of tests results

9
6
%

7
9
%

9
9
% 9
1
%

9
4
%

9
7
% 8

3
%

9
7
%

8
1
%

8
0
%

89.7%

0%

20%

40%

60%

80%

100%

Figure 6.12b: Results from Test 10

Test 10 Results Average of tests results

6
6
%

6
4
%

6
8
% 5
8
%

6
8
% 6
2
%

5
7
%

5
9
%

6
7
% 6
0
%

62.9%

0%

20%

40%

60%

80%

100%

Figure 6.12a: Results from Test 9

Test 9 Results Average of tests results

8
7
%

8
2
%

8
4
%

8
1
%

8
8
%

9
0
%

8
5
%

8
0
%

8
6
%

8
0
%

84.3%

0%

20%

40%

60%

80%

100%

Figure 6.12d: Results from Test 12

Test 12 Results Average of tests results

106 | P a g e

6.1.6 Principal Components Analysis of Candidate WS’s

Penetration Test Results

The objective of the service selection framework in this dissertation is

to select group of OTSWSs with security vulnerabilities diversity (identified

through penetration testing) for implementation of ITWS. To facilitate this

service selection approach, OTSWSs should be divided into a number of

groups according to their security vulnerabilities similarity, so that ITWS can

be formed using services selected from these diverse groups.

Division of the OTSWSs can be achieved through CA. However, most

CA algorithms cannot deal with data with high dimensionality (e.g., in the

case of the proposed service selection framework, more than one OTSWSs

each with various penetration test results) [86]. Hence, dimensionality reduc-

tion is important in CA, which reduces the computational costs and provides

users with visual examination of the data. However, it causes loss of infor-

mation. One practical approach for dimensionality reduction is to extract im-

portant components from the original data, which can contribute to forming

the clusters [86].

PCA is one of the typical dimensionality reduction approaches, which

is mainly used to reduce the dimensionality of the dataset while retaining the

maximum information. Also, it is a common technique for finding patterns in

data of high dimensions. Consequently, Principal Components (PCs) may be

used as inputs for CA.

This section explains the steps for finding PCs of the WSs’ penetra-

tion test results, obtained in Section 6.1.5. It also demonstrates the effec-

tiveness of PCA in reducing the computational complexity of CA in the pro-

posed service selection approach.

Step1: Collecting the Dataset

The first step in PCA is about collecting the dataset (e.g., observa-

tions in an experiment). In this work, the input to the PCA is the penetration

test results of the WSs from Section 6.1.5, which has 16x6 dimensions (six-

107 | P a g e

teen penetration test results for each of the six WSs). Table 6.2 and Figure

6.13 show the tabular and graphical representations of this data, respective-

ly.

Figure 6.13: Plot of Candidate WSs’ Penetration Tests Results, to be used as PCA inputs (for
information about each test and WS see Table 6.1 and Section 6.1.1, respectively)

Step2: Subtracting the Mean

For PCA to work properly, the mean (the average across each data

dimension) should be subtracted from each of the data dimensions to ensure

that the first PC describes the direction of maximum variance, which elimi-

nates misleading directions. The mean matrix (average of each test’s re-

sults) and mean adjusted penetration test results are presented in Tables

6.3 and 6.4, respectively.

Step3: Calculating the Covariance Matrix

PCA uses correlation/covariance matrices of the original variables to

find new directions. In literature, a number of authors prefer to use correla-

tion matrix to find principal components [102]. However, the general rule of

thumb is to use correlation matrix if the variables are of different units (scale)

as it standardises the data (see [97] for further information and examples).

Since in this case study the penetration test results are of the same unit, the

covariance matrix (presented in Table 6.5) is used for PCA calculation, and it

is worked out using mean adjusted penetration test results (from Table 6.4)

and MATLAB’s cov() command.

108 | P a g e

Table 6.2: WSs’ Penetration Test Results to be used as PCA input (for information about each test and WS see Table 6.1 and Section 6.1.1, respectively)

Table 6.3: Mean Matrix of the Penetration Test Results
Average
of Test1
results

Average
of Test2
results

Average
of Test3
results

Average
of Test4
results

Average
of Test5
results

Average
of Test6
results

Average
of Test7
results

Average
of Test8
results

Average
of Test9
results

Average
of Test10
results

Average
Test11
results

Average
Test12
results

Average
Test13
results

Average
Test14
results

Average
Test15
results

Average
Test16
results

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

1.0000 19.6000 41.4333 63.6833 95.0000 100.00 1.0000 29.4333 68.9000 93.7167 100.00 50.3833 99.4500 40.3667 86.7500 100.0000

Table 6.4: Mean Adjusted Penetration Test Results
Test1 -

Average
of Test1
results

Test2 -
Average
of Test2
results

Test3 -
Average of

Test3
results

Test4 -
Average of

Test4
results

Test5 -
Average
of Test5
results

Test6 -
Average
of Test6
results

Test7 -
Average
of Test7
results

Test8 -
Average of

Test8
results

Test9 -
Average
of Test9
results

Test10 -
Average
of Test10
results

Test11 -
Average
of Test11
results

Test12 -
Average of

Test12
results

Test13 -
Average
of Test13
results

Test14 -
Average of

Test14
results

Test15 -
Average
of Test15
results

Test16 -
Average of

Test16
results

0 -18.6 -40.4333 -62.6833 -21.2 0 0 26.5667 6.6 4.8833 0 16.1167 0.55 24.3333 13.25 0

0 35.9 27.2667 23.7167 5 0 0 29.7667 6.1 3.4833 0 -49.3833 -1.25 47.3333 13.25 0

0 38.5 26.4667 23.5167 5 0 0 28.9667 6.6 3.9833 0 -49.3833 -0.95 46.4333 13.25 0

0 -18.6 -40.4333 5.6167 1.2 0 0 -28.4333 -6.7 -4.1167 0 14.1167 0.55 -39.3667 -15.05 0

0 -18.6 13.8667 5.4167 5 0 0 -28.4333 -6.6 -4.2167 0 34.6167 0.55 -39.3667 -12.65 0

0 -18.6 13.2667 4.4167 5 0 0 -28.4333 -6 -4.0167 0 33.9167 0.55 -39.3667 -12.05 0

 Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 Test11 Test12 Test13 Test14 Test15 Test16

S1 1 1 1 1 73.8 100 1 56 75.5 98.6 100 66.5 100 64.7 100 100

S2 1 55.5 68.7 87.4 100 100 1 59.2 75 97.2 100 1 98.2 87.7 100 100

S3 1 58.1 67.9 87.2 100 100 1 58.4 75.5 97.7 100 1 98.5 86.8 100 100

S4 1 1 1 69.3 96.2 100 1 1 62.2 89.6 100 64.5 100 1 71.7 100

S5 1 1 55.3 69.1 100 100 1 1 62.3 89.5 100 85 100 1 74.1 100

S6 1 1 54.7 68.1 100 100 1 1 62.9 89.7 100 84.3 100 1 74.7 100

109 | P a g e

Table 6.5: Covariance Matrix of the Mean Adjusted Penetration Test Results

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.831 0.5995 0.5271 0.1116 0 0 0.6553 0.1419 0.0835 0 -1.1022 -0.0245 1.0462 0.2957 0

0 0.5995 1.0164 0.742 0.2426 0 0 0.1765 0.0348 0.0115 0 -0.5892 -0.0178 0.4119 0.0899 0

0 0.5271 0.742 1.025 0.3242 0 0 -0.1435 -0.0427 -0.0387 0 -0.5852 -0.0156 0.0162 -0.0822 0

0 0.1116 0.2426 0.3242 0.1102 0 0 -0.1176 -0.0295 -0.0225 0 -0.0952 -0.0033 -0.0976 -0.058 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.6553 0.1765 -0.1435 -0.1176 0 0 0.9713 0.2194 0.14 0 -0.9645 -0.0194 1.3517 0.4521 0

0 0.1419 0.0348 -0.0427 -0.0295 0 0 0.2194 0.0498 0.0319 0 -0.2095 -0.0042 0.3031 0.1025 0

0 0.0835 0.0115 -0.0387 -0.0225 0 0 0.14 0.0319 0.0205 0 -0.1261 -0.0024 0.191 0.0655 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -1.1022 -0.5892 -0.5852 -0.0952 0 0 -0.9645 -0.2095 -0.1261 0 1.537 0.0326 -1.4984 -0.4308 0

0 -0.0245 -0.0178 -0.0156 -0.0033 0 0 -0.0194 -0.0042 -0.0024 0 0.0326 0.0007 -0.031 -0.0087 0

0 1.0462 0.4119 0.0162 -0.0976 0 0 1.3517 0.3031 0.191 0 -1.4984 -0.031 1.9276 0.6259 0

0 0.2957 0.0899 -0.0822 -0.058 0 0 0.4521 0.1025 0.0655 0 -0.4308 -0.0087 0.6259 0.2117 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.6: Eigenvectors for the Covariance Matrix of the Mean Adjusted Penetration Test Results

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0.0339 0.0174 -0.0362 0.1167 0 0 0 0 0.0006 -0.1694 -0.0402 -0.2966 -0.8257 -0.0988 -0.1697 0.3807

-0.1008 -0.0308 -0.1167 0.0391 0 0 0 0 0.0001 0.0452 -0.1483 0.1586 0.0608 0.7843 -0.5047 0.2256

0.2816 0.1795 0.0716 -0.1005 0 0 0 0 -0.0005 0.273 0.2111 -0.322 0.289 -0.33833 -0.6572 0.143

-0.1041 -0.1006 0.6527 -0.2149 0 0 0 0 -0.0003 -0.6069 0.1838 0.2198 0.0305 -0.04 -0.2315 0.0152

0 0 0 0 0.9855 0.1696 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.1696 -0.9855 0 0 0 0 0 0 0 0 0 0

0.1848 0.4519 0.3634 -0.0884 0 0 0 0 -0.0003 -0.0378 -0.4979 -0.2606 0.2091 0.1362 0.3125 0.3803

-0.2299 0.5635 0.2689 0.1189 0 0 0 0 0.0007 0.4139 0.3973 0.3895 -0.2186 0.041 0.0762 0.0839

-0.085 -0.0802 -0.0784 -0.9334 0 0 0 0 -0.005 0.2485 -0.0401 0.0497 -0.1915 0.0249 0.056 0.0513

0 -0.0004 0.0011 0.0052 0 0 0 0 -1 0 0.0001 0 0 0 0 0

0.1904 0.1146 0.1894 -0.068 0 0 0 0 -0.0002 -0.005 0.3341 -0.5359 -0.1456 0.4571 0.0989 -0.5209

-0.0097 -0.5628 0.5519 0.1743 0 0 0 0 0.0017 0.5402 -0.2088 -0.0437 -0.1033 0.0028 0.005 -0.0113

-0.2173 -0.2832 -0.0499 0.009 0 0 0 0 0.0002 -0.0083 0.5401 -0.2829 0.2522 0.1238 0.3032 0.5722

0.849 -0.1346 -0.0192 -0.0155 0 0 0 0 0 -0.0025 0.2094 0.379 -0.0798 0.1176 0.1502 0.1742

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

110 | P a g e

Table 6.7: Ordered Eigenvalues

5302.7 2021.2 376.3 0.9 0.1 0 0 0 0 0 0 0 0 0 0 0

Table 6.8: Ordered Eigenvectors

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0.3807 -0.1697 -0.0988 -0.8257 -0.2966 0.0339 -0.0402 0.0174 -0.1694 -0.0362 0.1167 0.0006 0 0 0 0

0.2256 -0.5047 0.7843 0.0608 0.1586 -0.1008 -0.1483 -0.0308 0.0452 -0.1167 0.0391 0.0001 0 0 0 0

0.1433 -0.6572 -0.3383 0.289 -0.322 0.2816 0.2111 0.1795 0.273 0.0716 -0.1005 -0.0005 0 0 0 0

0.0152 -0.2315 -0.04 0.0305 0.2198 -0.1041 0.1838 -0.1006 -0.6069 0.6527 -0.2149 -0.0003 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.9855 0.1696 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.1696 -0.9855 0 0

0.3803 0.3125 0.1362 0.2091 -0.2606 0.1848 -0.4979 0.4519 -0.0378 0.3634 -0.0884 -0.0003 0 0 0 0

0.0839 0.0762 0.041 -0.2186 0.3895 -0.2299 0.3973 0.5635 0.4139 0.2689 0.1189 0.0007 0 0 0 0

0.0513 0.056 0.0249 -0.1915 0.0497 -0.085 -0.0401 -0.0802 0.2485 -0.0784 -0.9334 -0.005 0 0 0 0

0 0 0 0 0 0 0.0001 -0.0004 0 0.0011 0.0052 -1 0 0 0 0

-0.5209 0.0989 0.4571 -0.1456 -0.5359 0.1904 0.3341 0.1146 -0.005 0.1894 -0.068 -0.0002 0 0 0 0

-0.0113 0.005 0.0028 -0.1033 -0.0437 -0.0097 -0.2088 -0.5628 0.5402 0.5519 0.1743 0.0017 0 0 0 0

0.5722 0.3032 0.1238 0.2522 -0.2829 -0.2173 0.5401 -0.2832 -0.0083 -0.0499 0.009 0.0002 0 0 0 0

0.1742 0.1502 0.1176 -0.0798 0.379 0.849 0.2094 -0.1346 -0.0025 -0.0192 -0.0155 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6.9: Calculated Principal Components

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

-6.770 89.713 8.129 -0.009 -0.004 0 0 0 0 0 0 0 0 0 0 0

90.429 -15.185 -1.152 1.443 0.082 0 0 0 0 0 0 0 0 0 0 0

90.454 -15.547 -2.15 -1.439 -0.081 0 0 0 0 0 0 0 0 0 0 0

-59.471 -2.828 -36.263 0.029 -0.001 0 0 0 0 0 0 0 0 0 0 0

-57.446 -28.594 15.897 0.208 -0.533 0 0 0 0 0 0 0 0 0 0 0

-57.195 -27.556 15.545 -0.232 0.539 0 0 0 0 0 0 0 0 0 0 0

111 | P a g e

Step4: Calculating the Eigenvectors and Eigenvalues of the Covariance

Matrix

Eigenvectors and eigenvalues are important, as they provide useful

information (e.g., patterns in the data) about the dataset. In this case study,

they are worked out using covariance matrix of the mean adjusted penetra-

tion test results (from Table 6.5) and following MATLAB’s command:

[eigenvector,eigenvalue] = eig(covarience_matrix);

The calculated eigenvectors are presented in Table 6.6. In general, to

order the PCs according to their significance, the eigenvalues should be

sorted in descending order. The ordered eigenvalues should be used to sort

the eigenvectors. The ordered eigenvalues and eigenvectors are presented

in Tables 6.7 and 6.8, respectively and are calculated using following

MATLAB’s commands:

% sorting eigenvalues in descending order

[sorted_eigenvalue,index]=sort(-abs(diag(eigenvalue)));

% sorting eigenvectors using eigenvalues

sorted_eigenvector=eigenvector(:,index);

Step5: Calculating the PCs

PCs are the outputs of the PCA and are a set of linearly uncorrelated

variables created from the original observation values. In this case study,

they are calculated from the multiplication of the ordered eigenvectors (from

Table 6.8) and mean adjusted penetration test results (from Table 6.4) and

are presented in Table 6.9.

Step6: Choosing the PC’s

This is the final step in PCA where the dimensionality reduction takes

place. At this stage, the PCs with lesser significance can be ignored. There

are some common rules of thumb to choose the number of PCs while retain-

ing maximum information:

112 | P a g e

1. The first common rule is to choose the smallest number of PCs such

that the desired percentage of explained variation is exceeded [102].

The total variance is the sum of variances of all PCs and the variance

explained by a PC is the ratio between the cumulative variance of that

PC and the total variance. For example, in this case study, the per-

centage of variance explained by PC1 and PC2 can be calculated as

follows:

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑃𝐶1 = 5302.655

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑃𝐶2 = 2021.133

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑃𝐶𝑠 = 7701.035

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑃𝐶1 =
5302.655

7701.035
∗ 100 = 68.86%

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑃𝐶2 =
5302.655 + 2021.133

7701.035
∗ 100 = 95.10%

2. The second common approach is to use a scree graph, in which the

eigenvalues are plotted against their respective component numbers.

The number of PCs is then chosen so that the line in the scree graph

is “steep” to its left but not to its right (elbow point) since the remaining

eigenvalues (on the right-hand side of the elbow point) are relatively

small and all about the same size [102].

Figure 6.14: Variance Explained by each PC

0 2 4 6 8 10 12 14 16
65

70

75

80

85

90

95

100

Number of Principal Component

V
a
ri
a
n
c
e
 E

x
p
la

in
e
d
 b

y
 e

a
c
h
 P

C
 (

%
)

113 | P a g e

Figure 6.15: Scree Graph

Figures 6.14 and 6.15 illustrate the plots of the percentage of variance

explained by each PC (from Table 6.9) and scree graph for this case study,

respectively. As presented in Figure 6.14, the first three PCs have about

100% of the variations in the penetration test results. Hence, they are se-

lected as inputs to CA.

Figure 6.16: The WSs’ Original Penetration Test Results against the First Two PCs

Recall from Section 2.5 that sometimes in literature PCA is employed

to reduce the dimensions of the dataset before CA, hoping to reduce the

running time for CA’s computation using a fewer number of PCs. Figure 6.16

illustrates the plot of the original penetration test results of the WSs, in this

case study, against the first two calculated PCs (from Table 6.9), which have

about 95% of the variations in penetration test results (see Figure 6.14). The

projections of the penetration test results on the first PC (the vertical axis)

0 2 4 6 8 10 12 14 16
-1000

0

1000

2000

3000

4000

5000

6000

Principal Components

E
ig

e
n
v
a
lu

e
s

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Test1

Test2

Test3

Test4

Test5

Test6Test7

Test8

Test9Test10
Test11

Test12

Test13

Test14

Test15

Test16

Component 1

C
o
m

p
o
n
e
n
t

2

114 | P a g e

and the second PC (the horizontal axis) clearly highlight the separation be-

tween two clusters in the data, in each case (three clusters in total). It shows

that PCA has successfully identified the patterns among this 16x6 dimension

dataset. Hence, based on this information, the first three PCs (containing the

majority of variations in penetration test results as explained previously) can

be divided into three groups using CA (see next section).

6.1.7 Cluster Analysis based on Principal Component Analy-

sis Results

As discussed previously, CA enables splitting up the data into a cer-

tain number of clusters, based on their similarities or dissimilarities [86].

Clustering approaches can be divided into two main groups of hierarchical

and partitional [86]. The hierarchical approach groups data objects after a

sequence of partitions, either from singleton clusters to a cluster containing

all data objects or vice versa, while partitional clustering directly divides data

objects into some pre-specified number of clusters without any hierarchical

structure [86]. The hierarchical approaches are not suitable for large-scale

datasets due to their quadratic computational complexities in both execution

time and storage space [86]. However, K-means algorithm is linear in the

number of data objects and for the same amount of data it will take much

less amount of computational time [86]. Hence, in this framework, K-means

is adopted as CA algorithm.

One of the issues in CA is to determine the number of clusters, which

is called “the fundamental problem of cluster validity” by Dubes [126]. How-

ever, in this framework, the number of clusters are selected through PCA on

the penetration test results of the OTSWSs (as presented in the previous

section) and such that 2f+1 (2f+1 replicas can tolerate f simultaneous faults)

fault-tolerance condition is satisfied (enabling majority voting).

In this case study, the selected PCs are split up into three clusters

(see the previous section for further information) using following MATLAB’s

commands:

115 | P a g e

first_three_pcs = [-6.7709 89.7131 8.1297

 90.4291 -15.1858 -1.1527

 90.4547 -15.5472 -2.1560

 -59.4717 -2.8288 -36.2632

 -57.4461 -28.5946 15.8972

 -57.1951 -27.5567 15.5451];

[idx,C,sumd,D] = kmeans(first_three_pcs,3);

In the above MATLAB command idx vector, C matrix, sumd vector

and D matrix contain cluster indices for each WS, centroid location of each

cluster, within-cluster sums of point-to-centroid distances and distances of

each WS to every cluster’s centroid, respectively.

The result of WSs clustering based on their security vulnerabilities di-

versity and the distances of each WS to the centre of each cluster are shown

in Tables 6.10 and 6.11, respectively.

Table 6.10: Results of CA on selected PCs

WS Cluster

S1 3

S2 1

S3 1

S4 2

S5 2

S6 2

Table 6.11: Distance between Each WS and the Cluster Centres (in 1.0e+04 scales)

WS Cluster 1 Cluster 2 Cluster 3

S1 2.0588 1.4686 0.0000

S2 0.0000 2.2063 2.0538

S3 0.0000 2.2067 2.0638

S4 2.3829 0.1486 1.3312

S5 2.2354 0.0387 1.6625

S6 2.2241 0.0357 1.6350

Recall that the objective of the service selection framework in this dis-

sertation is to select group of OTSWSs with security vulnerabilities diversity

(identified through penetration testing) for implementation of ITWS. And to

facilitate this service selection approach, OTSWSs should be clustered ac-

cording to their security vulnerabilities similarity, so that groups of services

with security vulnerabilities diversity can be formed based on services se-

lected from these clusters (one service from each of the resultant clusters).

116 | P a g e

Hence, using the CA results presented in Table 6.10, the WSs’ are grouped

such that each group consists of one service from each of the clusters:

 Group1: S1, S2 and S4

 Group2: S1, S2 and S5

 Group3: S1, S2 and S6

 Group4: S1, S3 and S4

 Group5: S1, S3 and S5

 Group6: S1, S3 and S6

The next section explains the process of ordering these groups ac-

cording to their overall security vulnerabilities.

6.1.8 WS-Groups Ordering using Penetration Testing

The final step in this service selection framework is about performing

penetration testing on each group of services to identify their overall security

vulnerabilities and using this information to order the groups so that the

ITWS could be started with the most secure group and switch to the next

group if the first group fails and so on.

Figure 6.17: Component Diagram for Penetration Testing Each Group of WSs

< component >

Composite WS

< component >

OTSWS n

< component >

OTSWS 2

< component >

OTSWS 1

< component >

Plug-in n

< component >

Plug-in 2

< component >

Plug-in 1

< component >

WS-Attacker

Plug-in 1 API Plug-in n API Plug-in 2 API

Composite WSWSDL

OTSWS n -WSDL OTSWS 1 -WSDL OTSWS 2 -WSDL

117 | P a g e

Figure 6.17 shows the component diagram for this step indicating that

the ITWS (called CompositeWS in this figure) and WS-Attacker consist of

OTSWSs and attack plugins, respectively and that the ITWS can be tested

through WS-Attacker’s interface.

Each WS-group is developed through the composition of their associ-

ated WSs, using BPEL 2.0 plugin for Eclipse Neon.2 4.6.2. And is deployed

on Apache 1.3.4 runtime (on top of Tomcat 5.5.26 server) running on the

same machine that is hosting the WSs (Intel® Core™ i5-3320M CPU @

2.60GHz system with 7.88GB usable RAM and 64-bit Operating System).

The operation of these WS-groups was as follows:

1. Receives client’s request.

2. Passes the client’s request to each of the parallel invocation process-

es (each process invocates one of the three WSs associated with the

group).

3. Each concurrent invocation process invokes its associated WS.

4. The business process replies to the client once a response is re-

turned from each of the invoked WSs.

For ordering the WS-groups, Coercive Parsing, DJBX31A Hash Colli-

sion, and XML Attribute Count attacks are performed on each group. Table

6.12 presents the WS-Attacker’s settings for each of these tests. In these

tests, the attack element was either plotted in the header or the body of the

test SOAP message as presented in Message 5.1 and Message 5.2, respec-

tively.

Table 6.12: WS-Attacker’s Settings

Test ID

Test Message Settings

WS-Attacker’s other Settings

Test 1

Coercive Parsing attack with 20,000 open tags
plotted in the header of the SOAP message

2 parallel attack threads,
4 requests per thread,
9999 milliseconds between every
testprobe request,
750 milliseconds between every attack
request,
4 seconds server recovery time,
5 seconds stop after the last tampered
request

Test 2

DJBX31A Hash Collision attack with 4,000 paired
keys/values plotted in the body of the SOAP
message

Test 3

XML Attribute Count attacks with 60,000 paired
keys/values plotted in the body of the SOAP
message

Figures 6.18-6.23 show the penetration test results for test attacks

performed on these groups.

mailto:CPU@2.60GHz
mailto:CPU@2.60GHz

118 | P a g e

Figure 6.18: Penetration Test Results for WS-Group1 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

Figure 6.19: Penetration Test Results for WS-Group2 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

5
5
%

6
0
%

5
8
%

6
6

%

6
4
%

5
9
%

6
7
%

6
4
%

6
0
%

5
5
%

60.8%

0%

20%

40%

60%

80%

100%

Figure 6.18a: Results from Test 1

Test1 Results Average of tests results

9
3
%

1
0
0
%

9
6
%

9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
3
%

9
4
%

96.7%

0%

20%

40%

60%

80%

100%

Figure 6.18b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.18c: Results from Test 3

Test3 Results Average of tests results

5
1
%

5
0
%

4
8
%

5
9
% 4

9
%

5
5
%

5
8
% 5
2
%

5
5
%

5
0
%

52.7%

0%

20%

40%

60%

80%

100%

Figure 6.19a: Results from Test 1

Test1 Results Average of tests results

9
8
% 8

4
%

1
0
0
%

1
0
0
%

9
5

%

9
4
%

9
9
%

1
0
0
% 8

4
%

9
6

%

95%

0%

20%

40%

60%

80%

100%

Figure 6.19b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.19c: Results from Test 3

Test3 Results Average of tests results

119 | P a g e

Figure 6.20: Penetration Test Results for WS-Group3 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

Figure 6.21: Penetration Test Results for WS-Group4 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.20c: Results from Test 3

Test 3 Results Average of tests results

1
0
0
%

1
0
0
% 8
9
%

9
4
%

9
6
%

1
0
0
%

1
0
0
% 8

8
%

9
7
%

9
1
%

95.5%

0%

20%

40%

60%

80%

100%

Figure 6.20b: Results from Test 2

Test 2 Results Average of tests results

4
9
%

5
3
%

5
5
%

5
8
%

5
5
%

5
0
%

6
4
% 5

2
%

5
8
%

5
3
%

54.7%

0%

20%

40%

60%

80%

100%

Figure 6.20a: Results from Test 1

Test 1 Results Average of tests results

6
5
% 5

3
%

7
2
%

5
5
%

6
7
% 5
8
%

6
4
%

6
6
%

5
0
%

6
2
%

61.2%

0%

20%

40%

60%

80%

100%

Figure 6.21a: Results from Test 1

Test1 Results Average of tests results

1
0
0
%

1
0
0
% 9
3
%

1
0
0
%

9
5
%

9
9
%

9
5
%

9
8
%

1
0
0
%

9
4
%

97.4%

0%

20%

40%

60%

80%

100%

Figure 6.21b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.21c: Results from Test 3

Test3 Results Average of tests results

120 | P a g e

Figure 6.22: Penetration Test Results for WS-Group5 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

Figure 6.23: Penetration Test Results for WS-Group6 (for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

5
3
%

5
7
%

5
8
% 5
2
%

5
0
%

5
8
%

6
1

%

5
8
%

5
5
%

5
9
%

56.1%

0%

20%

40%

60%

80%

100%

Figure 6.22a: Results from Test 1

Test1 Results Average of tests results

8
9
%

1
0
0
%

9
4
%

9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
3
%

9
0
%

95.7%

0%

20%

40%

60%

80%

100%

Figure 6.22b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.22c: Results from Test 3

Test3 Results Average of tests results

5
4
%

5
6
%

6
2
% 5
5
%

5
9
%

6
0
%

5
8
%

6
3
%

6
0
%

5
8
%

58.5%

0%

20%

40%

60%

80%

100%

Figure 6.23a: Results from Test 1

Test1 Results Average of tests results

8
9
%

1
0
0
%

9
4
%

9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
3
%

9
4
%

96.1%

0%

20%

40%

60%

80%

100%

Figure 6.23b: Results from Test 2

Test2 Results Average of tests results

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 6.23c: Results from Test 3

Test3 Results Average of tests results

121 | P a g e

The penetration test results show the vulnerability of these WS-

groups to the performed attacks in percentage so that 100% indicates that

the group is very vulnerable to the attack and 1% shows that it does not

have this security vulnerability.

Each test is repeated ten (to increase the confidence of the outcome

of these tests) times and the average of the results is considered. Because,

these test plugins decide on the security vulnerability of the WSs based on

their response times that slightly differs every time the same test is per-

formed. The vertical and horizontal lines in these graphs (Figures 6.18-6.23)

show the result of the penetration test every time the same test is performed

and the average of the penetration test results for each test, respectively.

Figure 6.24: WS-Groups Sorted in Ascending Order According to their Penetration Test Results
(for information about each test and WS-group see Table 6.12 and Section 6.1.7, respectively)

Finally, the WS-groups are ordered according to their penetration test

result for each test (see Figure 6.24). For example, Group2 has the lowest

penetration test result in each test, so it is the most secure group among

others. The results for XML Attribute Count test are omitted in these compar-

isons as all these WS-groups have similar level of vulnerability to this attack

(see Figures 6.18-6.23).

The penetration test results show the vulnerability of these WS-

groups to the performed attacks in percentage so that 100% indicates that

the group is very vulnerable to the attack and 1% shows that it does not

have this security vulnerability.

52.70 54.70 56.10 58.50 60.80 61.20

0

20

40

60

80

100

Group2 Group3 Group5 Group6 Group1 Group4

Figure 6.24a: Results from Test1

Test 1 Results

95 95.5 95.7 96.1 96.7 97.4

0

20

40

60

80

100

Group2 Group3 Group5 Group6 Group1 Group4

Figure 6.24b: Results from Test2

Test 2 Results

122 | P a g e

Considering the results presented in Figures 6.24a and 6.24b the WS-

groups can be classified according to their overall security vulnerabilities (in

descending order) as follows:

 Group2: S1, S2 and S5

 Group3: S1, S2 and S6

 Group5: S1, S3 and S5

 Group6: S1, S3 and S6

 Group1: S1, S2 and S4

 Group4: S1, S3 and S4

6.2 Summary

This chapter illustrated the integration of the penetration test results

of the WSs, PCA, and CA in the selection of security-aware WSs for imple-

mentation of ITWSs (the proposed service selection framework). It also ex-

plained why these approaches are adopted. The result of this case study is

utilized in Chapter 8 to evaluate this framework.

123 | P a g e

Chapter 7 Dynamic Reconfiguration of ITWS Using BPEL and JAVA as BPEL Extension

CHAPTER

 Dynamic Reconfiguration of ITWS Using

 BPEL and JAVA as BPEL Extension

Chapter 6 demonstrated the proposed service selection framework

through a case study. This chapter uses different sets of case studies to il-

lustrate the feasibility of implementing self-reconfigurable Intrusion-Tolerant

Web Service (ITWSs) utilizing a combination of Business Process Engineer-

ing Language (BPEL) constructs and Java as BPEL extension, as well as

using Java as BPEL extension only.

Section 7.1 presents the common setups for these case studies. Sec-

tions 7.2 and 7.3 demonstrate the implementation of self-reconfigurable IT-

WSs using a combination of BPEL constructs and Java as BPEL extension

approach and utilizing only Java as BPEL extension approach, respectively.

Finally, Section 7.4 summarizes the work presented in this chapter.

7.1 Setups for Case Studies

This section presents the common setups for the case studies

demonstrated in this chapter.

7.1.1 WS Preparation

Recall that in service selection case study OTSWSs were not em-

ployed because we did not have permission to perform penetration tests on

such services. However, the case studies presented in this chapter did not

require to perform any penetration test on the involved WSs, and moreover,

it was a good practice to adopt as many of OTSWSs as possible. For these

7

124 | P a g e

case studies the following simple calculator Web Services (WSs) are devel-

oped using the source code presented in Code 5.1 (see Chapter 5):

 WS developed using Apache Axis2 1.5.1 framework and was de-

ployed on Apache Tomcat 6.0.18 running on Intel® Core™ i5-3320M

CPU @ 2.60GHz system with 7.88GB usable RAM and 64-bit Operat-

ing System.

 WS developed using Apache Axis2 1.5.1 framework and was de-

ployed on Apache Tomcat 6.0.18 running on Intel® Xeon® CPU E3-

1240 V2 @ 3.40GHz system with 16.0GB RAM and 64-bit Operating

System.

 WS developed using .NET 4.0 framework and was deployed on Intel®

Core™ 2 Duo CPU P8400@ 2.26GHz system with 3.00GB RAM and

32-bit Operating System.

Also, two third-party ASP.NET WSs [127], [128], which provide similar

calculator services, are employed.

7.1.2 DB Preparation

For these case studies, Oracle Database 12.1.0.1 is utilized and Ta-

ble 7.1 is created to store the necessary information for invocation of the

ITWS’s constituent WSs. The SERVICEGROUP and PRIORITY are equiva-

lent to invocationId and orderNumber properties in the proposed architecture

(see Chapter 3 for further information), respectively.

Table 7.1: Service Table Storing Necessary Information for Invoking Candidate WSs

mailto:CPU@2.60GHz
mailto:CPU@2.60GHz
mailto:CPU@2.60GHz
mailto:CPU@2.60GHz

125 | P a g e

7.1.3 Communication with DB

In these studies, the dynamic communication between the BPEL pro-

cess and the Database (DB), for collection of the information required for

invocation of the WSs associated with each group, is done through Java as

BPEL extension and using Java SQL library (see Appendix G for complete

Java class). The overview of this communication is as follows:

1. Receives from the BPEL process the information (invocationId and

orderNumber) about the group of WSs that should be invoked.

2. Stablishes connection with the DB.

3. Runs:

("SELECT ENDPOINT, TARGETNAMESPACE, OPERATION, INPUT FROM

HR.WEBSERVICES "+ "WHERE SERVICEGROUP =" + invocationId + "AND PRIORITY = " +

orderNumber);

("SELECT PRIORITY FROM HR.WEBSERVICES");

4. From the results of the above queries, it prepares a string (the format

that could be used by the business process) containing the infor-

mation required for invoking the WSs associated with that group, the

number of WSs within that group, and the maximum number of

groups that are available to be used at that particular part of the busi-

ness process. From the last information the business process would

understand if there are any other groups available that could be used

if the current group fails.

5. It returns the prepared information to the business process.

7.2: Case Study: Dynamic Reconfiguration Using a
Combination of Java as BPEL Extension and BPEL
Constructs

This section uses a case study to demonstrate the feasibility of im-

plementing self-reconfigurable ITWSs utilizing a combination of Java as

BPEL extension and BPEL constructs. For this study, a self-reconfigurable

ITWS is developed using the WSs from the Section 7.1.1 and BPEL plugin

for Oracle SOA Suite 12c running on Intel® Core™ i5-3320M CPU @

mailto:CPU@2.60GHz

126 | P a g e

2.60GHz system with 7.88GB usable RAM and 64-bit Operating System.

Figure 7.1 presents the BPEL diagram for this ITWS.

Figure 7.1: BPEL Diagram of Dynamically Reconfigurable ITWS, Implemented Using a Combi-
nation of Java as BPEL Extension and BPEL Constructs

mailto:CPU@2.60GHz

127 | P a g e

The overview of the operation of the self-reconfigurable ITWS pre-

sented in Figure 7.1 is as follows:

1. Receives the client’s request (start of the business process).

2. Stores the start time of the business process, which will be used to

work out the response time of this self-reconfigurable ITWS.

3. Executes the Java class (from Section 7.1.3) responsible for retriev-

ing, from DB, the information required for invoking the WSs associat-

ed with the WS-group that should be used (see Code J.1, in Appendix

J).

4. Creates parallel process paths, using ForEachN5 activity and the

number of WSs associated with that group returned by the DB (see

Section 7.1.3), for invoking the WSs from the previous step.

5. Each WS invocation path (created in the last step) uses the Code J.2

(see Appendix J) to execute the Java class (see Appendix H), which

utilizes Java’s API for XML-based RPC (JAX-RPC) [129] for dynamic

invocation of its associated WS. The advantage of using a Dynamic

Invocation Interface is that WSs can be invoked without the need for

any pre-runtime information or any static operations (e.g., WSDL to

Java mapping).

6. Checks whether sufficient (for performing majority voting) responses

are returned by the WSs.

 If adequate responses are returned, it performs majority voting

on the BPEL’s local variables that hold these responses, using

the Code J.3 (see Appendix J) then executes step 7.

 Else, it throws an exception

 BPEL’s CatchAll construct catches the thrown excep-

tion.

 It uses Code J.4 (see Appendix J) to check whether an

alternative group of services is available by comparing

the orderNumber (see Chapter 3 for more information)

5 Oracle SOA Suite 12c offers ForEachN activity, which creates parallel process paths at runtime
[111]. This activity enables to dynamically implement N-version programming when the number of
constituent WSs is only known at runtime.

128 | P a g e

for the current group and the maximum number of avail-

able groups provided by the DB (see Section 7.1.3).

 If an alternative group is available, it updates the

BPEL’s local variable storing the orderNumber for the

group that should be used next and re-executes the

ITWS from step 3

 Else, it throws an exception and terminates the BPEL

process.

7. Assigns the result of successful execution of the ITWS to the output

variable.

8. Uses Code J.6 (see Appendix J) to execute the Java class (Code J.5

in Appendix J) that writes the start and end times of the process into a

file (to work out the response time of the process for evaluation pur-

pose).

9. Returns the result of the execution of the ITWS to the client.

This ITWS is run once with three and once with five WSs and the re-

sponse times of these executions are recorded (for evaluation purpose).

These executions are repeated forty nine times (to increase the confidence

on the evaluation results) and the average of the response times is consid-

ered as the response time of the process in each case. Because, the re-

sponse time slightly varies every time the ITWS is executed.

Figures 7.2 and 7.3 present the response times for the execution of

this ITWS running with three and five WSs, respectively. The vertical and

horizontal lines in these graphs show the response time (ms) every time the

ITWS is executed and the average of the response times (ms) respectively.

These results will be used in Chapter 8 to evaluate the work presented in

this dissertation.

129 | P a g e

Figure 7.2: Process Execution Time (ms) for Dynamic ITWS Implemented using Combination of Java as BPEL Extension and BPEL constructs (ran with three di-
verse WSs)

Figure 7.3: Process Execution Time (ms) for Dynamic ITWS Implemented using Combination of Java as BPEL Extension and BPEL constructs (ran with five diverse
WSs)

0
.6

3
4

0
.4

1
1

0
.4

8
1

0
.8

9
8

0
.4

9
4

0
.4

3
4

0
.6

6
7

0
.4

8
2

0
.4

8
5

0
.4

1
5

0
.6

9
7

0
.4

2
4

0
.5

2

0
.5

6
5

0
.5

1
7 0

.3
6
9

0
.3

9
5

0
.4

1
3

0
.8

2
5

0
.3

8
9

0
.3

7
1

0
.3

8

0
.5

3
1

0
.5

9
7

0
.3

7
8

0
.4

0
2

0
.6

2
6

0
.4

2
7

0
.3

9
9

0
.3

9
8

0
.4

3
7

0
.7

4
9

0
.4

3
4

0
.4

1
8

0
.6

1
7

0
.4

4
2

0
.3

7
3

0
.5

4
9

0
.4

9
5

0
.6

3
1

0
.3

7
9

0
.4

6
9

0
.6

0
7

0
.5

4
2 0
.4

0
9

0
.3

9
8

0
.5

3
4

0
.5

6

0
.6

2
8

0.504

0

0.5

1

Process Execution Time (ms) Average of Process Execution Times (ms)

0
.7

6
9

1
.2

1
4

0
.7

4
3

0
.7

5
2

0
.7

0
9

1
.1

3
9

0
.7

0
5

0
.7

0
2

0
.7

2
8

0
.7

3
4

0
.7

8
1

1
.2

0
4

0
.7

2
6

0
.7

3

0
.8

4
1

0
.7

4
4

1
.2

2
7

0
.7

4
7

0
.7

3
6

0
.7

2
3

0
.7

1
9

0
.7

4

0
.9

0
1

0
.7

3
8

0
.7

4
3

0
.7

2
7

0
.7

5
1

1
.1

9
5

0
.7

8
9

0
.7

3

0
.8

3
6

0
.7

9
1

0
.8

8
7

0
.9

3

1
.4

9
6

1
.0

8
9

1
.4

0
3

1
.7

7
6

1
.0

9
4

0
.7

1
7

0
.7

1
6

0
.8

1
5

0
.7

2
1

0
.7

2
1

0
.7

1
1

0
.9

1 0
.7

6

0
.7

2
5

0
.7

2
5

0.868

0

0.5

1

1.5

2

Process Execution Time (ms) Average of Process Execution Times (ms)

130 | P a g e

7.3: Case Study: Dynamic Reconfiguration Using On-
ly Java as BPEL Extension

Figure 7.4: BPEL Diagram of Dynamic Reconfigurable ITWS, Implemented Using a Combination
of Java as BPEL Extension and BPEL Constructs

131 | P a g e

This section uses a case study to demonstrate the feasibility of im-

plementing self-reconfigurable ITWSs utilizing Java as BPEL extension only.

For this study, a self-reconfigurable ITWS is developed using the WSs from

the Section 7.1.1 and BPEL plugin for Oracle SOA Suite 12c running on In-

tel® Core™ i5-3320M CPU @ 2.60GHz system with 7.88GB usable RAM

and 64-bit Operating System. Figure 7.4 presents the BPEL diagram for this

ITWS.

The overview of the operation of the self-reconfigurable ITWS pre-

sented in Figure 7.4 is as follows:

1. Receives the client’s request (start of the business process).

2. Stores the start time of the business process, which will be used to

work out the response time of this self-reconfigurable ITWS.

3. Executes the Java class (from Section 7.1.3) responsible for retriev-

ing, from DB, the information required for invoking the WSs associat-

ed with the WS-group that should be used (see Code J.7, in Appendix

J).

4. Uses Code J.8 (see Appendix J) to execute the Java class (see Ap-

pendix I) responsible for dynamic parallel invocation of the WSs from

last step. This dynamic invocation approach utilizes Java multi-

threading library.

5. Checks whether sufficient (for performing majority voting) responses

are returned by the WSs.

 If adequate responses are returned, it performs majority voting

on the BPEL’s local variables that hold these responses, using

the Code J.3 (see Appendix J) then executes step 6.

 Else, it throws an exception

 BPEL’s CatchAll construct catches the thrown excep-

tion.

 It uses Code J.4 (see Appendix J) to check whether an

alternative group of services is available by comparing

the orderNumber (see Chapter 3 for more information)

mailto:CPU@2.60GHz

132 | P a g e

for the current group and the maximum number of avail-

able groups provided by the DB (see Section 7.1.3).

 If an alternative group is available, it updates the

BPEL’s local variable storing the orderNumber for the

group that should be used next and re-executes the

ITWS from step 3

 Else, it throws an exception and terminates the BPEL

process.

6. Assigns the result of successful execution of the ITWS to the output

variable.

7. Uses Code J.6 (see Appendix J) to execute the Java class (Code J.5

in Appendix J) that writes the start and end times of the process into a

file (to work out the response time of the process for evaluation pur-

pose).

8. Returns the result of the execution of the ITWS to the client.

This ITWS is run once with three and once with five WSs and the re-

sponse times are recorded (for evaluation purpose). These executions are

repeated forty nine times (to increase the confidence of the outcome of

these tests) and the average of the response times is considered as the re-

sponse time of the process in each case. Because, the response time slight-

ly varies every time the ITWS is executed.

Figures 7.5 and 7.6 present the response times for the execution of

this ITWS running with three and five WSs, respectively. The vertical and

horizontal lines in these graphs show the response time (ms) every time the

ITWS is executed and the average of the response times (ms) respectively.

These results will be used in Chapter 8 to evaluate the work presented in

this dissertation.

133 | P a g e

Figure 7.5: Process Execution Time (ms) for Dynamic ITWS Implemented using Java as BPEL Extension only (ran with three diverse WSs)

Figure 7.6: Process Execution Time (ms) for Dynamic ITWS Implemented using Java as BPEL Extension only (ran with five diverse WSs)

0
.5

3
8

0
.6

0
7

0
.5

1
7

0
.5

1
6

0
.5

4
9

0
.6

1
2

0
.5

1
4

0
.5

7
7

0
.5

7
4

0
.4

8
5

0
.4

7
5

0
.5

0
2

0
.6

5
8

0
.4

8
6

0
.5

1
3

0
.4

9
4

0
.5

0
4

0
.4

9
7

0
.5

1
8

0
.4

9
9

0
.6

1
5

0
.5

1
7

0
.5

1
3

0
.5

0
.5

2

0
.5

6
6

0
.6

1

0
.4

9

0
.5

1
3

0
.4

9
7

0
.5

6
7

0
.4

8
3

0
.5

2
9

0
.4

9
7

0
.5

5
2

0
.5

0
7

0
.5

0
8

0
.5

3
9

0
.5

5

0
.5

7
4

1
.1

6
7

0
.6

1
6

0
.9

3
1

0
.9

4
4 0
.6

6
9 0

.5

0
.5

2

0
.5

7

0
.6

5
3

0.568

0

0.5

1

1.5

2

Process Execution Time (ms) Average of Process Execution Times (ms)

1
.1

4
8

1
.1

7

1
.2

1
.2

1
2

1
.3

6
8 1

.0
6
9

1
.1

9
8

1
.2

0
4

1
.2

1
6

1
.2

6
8

1
.2

0
9

1
.3

2
5

1
.4

1

1
.3

7
5

1
.1

6
7

1
.1

4
4

0
.8

4

1
.1

3
8

1
.2

1
5

1
.1

5
9

1
.1

4
1

1
.1

6
4

1
.2

1

1
.2

2
7

1
.1

9
5

1
.2

1
1

1
.2

2
4

1
.1

6
5

1
.2

1
2

1
.1

3
9

1
.1

3
3

1
.1

3
9

1
.1

8
4

1
.3

0
8

1
.2

3
2

1
.2

0
7

1
.1

5
5

1
.1

7
7

1
.2

4
7

1
.1

6

1
.1

9
9

1
.3

6
2

0
.8

8
2

1
.1

5
3

1
.5

5
5

1
.1

6
8

1
.2

5

1
.2

1
.1

8
2

1.2

0

0.5

1

1.5

2

Process Execution Time (ms) Average of Process Execution Times (ms)

134 | P a g e

7.4: Summary

This chapter illustrated the feasibility of implementing self-

reconfigurable ITWSs using a combination of BPEL constructs and Java as

BPEL extension, as well as utilizing Java as BPEL extension only, through

two case studies. The results of these case studies are utilized in Chapter 8

to evaluate this framework.

135 | P a g e

Chapter 8 Evaluation

CHAPTER

 Evaluation

Previous chapters have presented the background and motivations,

the proposed framework architecture, the service selection framework and

possible dynamic Business Process Engineering Language (BPEL) process

reconfiguration for the work presented in this dissertation. This chapter uses

the outcomes of the case studies presented in Chapters 4-7 to evaluate the

proposed solutions in terms of the central question underlying this work:

Can a self-reconfigurable Intrusion-Tolerant Web Service

(ITWS), implemented using N-version programming and diversity formed by

composing Off-The-Shelf Web Services (OTSWSs) that are selected

through penetration testing, Principal Component Analysis (PCA), and Clus-

ter Analysis (CA) processes mitigate XML-related security vulnerabilities?

Section 8.1 evaluates the advantages, and disadvantages of the

ITWS presented in this dissertation (as a countermeasure against XML-

related cyber-attacks) over other existing countermeasure approaches. Sec-

tion 8.2 evaluates the ITWS; formed based on penetration test results of

candidate OTSWSs, in terms of mitigating the XML-related security vulnera-

bilities. Section 8.3 evaluates the effectiveness of PCA and CA utilization in

security-aware service selection based on penetration tests results of the

candidate OTSWSs. Section 8.4 evaluates the utilization of Java as BPEL

extension in the implementation of self-reconfigurable ITWS.

8

136 | P a g e

8.1 Advantages and Limitations of the Presented
ITWS

This section evaluates the ITWS framework presented in this disserta-

tion in terms of its advantages, limitations, and extensibility as a counter-

measure against XML-related cyber-attacks.

8.1.1 Advantages of the Presented ITWS

Compared to the disadvantages of existing countermeasures against

XML-related cyber-attacks (presented in Chapter 2), this ITWS has the fol-

lowing advantages:

 It is independent of any WS-* security standard, hence:

o It does not require any changes to the structure of the mes-

sages.

o Revocation, limitations or improper utilization of such standards

does not affect this framework.

 It does not require schema validation, hence:

o It does not cause high CPU load and large memory consump-

tion.

o It does not require any arbitrary restriction on the number and

length of the namespaces, which eliminates the unpredictable

rejection of messages.

o It does not require manual schema creation and/or update that

may make Web Services (WSs) prone to cyber-attacks.

o It does not introduce security vulnerabilities as a result of a

loosely defined schema.

o It is not prone to the cyber-attacks targeting a schema valida-

tor.

8.1.2 Extensibility of the Presented ITWS

The presented ITWS is extensible so that diversity can also be ap-

plied to penetration testing tools and tests. Furthermore, automation can be

137 | P a g e

applied to its service discovery stage, which is currently the responsibility of

the system’s administrator.

8.1.3 Limitations of the Presented ITWS

However, this ITWS has the following limitations:

 There may not be enough number of OTSWSs to implement the

ITWS.

 Penetration test results may differ if they were performed in the actual

operational environment.

 The ITWS is wrapped in a BPEL process, which itself may be a single

point of failure.

 Recall that SM tests all OTSWSs every t+i time unit (see Chapter 3),

the security vulnerabilities of these services may change during these

time units, which invalidates the existing service groups. However,

this limitation is inevitable due to the dynamic nature of WS’s operat-

ing environment. But this effect may be diminished by selecting i as

smallest time unit that the ITWS system can support.

8.2 Feasibility of Implementing ITWS Based on Pene-
tration Testing Results of Candidate WSs

 Research Question One: Does an ITWS, formed based on penetra-

tion test results of candidate WSs, mitigate XML-related security vul-

nerabilities?

Chapter 4 used a case study to demonstrate the feasibility of an

ITWS implemented based on the penetration test results of its constituent

WSs. In this case study, the ITWS was implemented using four WSs one of

them having security vulnerability to Coercive Parsing DoS attack while oth-

er three WSs did not have this security vulnerability. The outcome of this

study showed that the resultant ITWS also did not have this security vulner-

ability (see Chapter 4 for further details). Hence:

138 | P a g e

The answer to the research question one is yes, an ITWS, formed

based on penetration testing results of candidate WSs, mitigates XML-

related security vulnerabilities.

8.3 Feasibility of PCA and CA Utilization in Security-
Aware Service Selection

 Research Question Two: Is PCA an effective pre-processing step to

CA in this service selection framework?

 Research Question Three: Do PCA and CA improve the process of

security-aware service selection based on penetration testing results

of candidate WSs?

 Research Question Four: Does an ITWS in which N-version pro-

gramming and diversity (formed by composing OTSWSs selected

through PCA and CA analysis on their penetration testing results) are

used, mitigate XML-related security vulnerabilities?

As demonstrated in Section 6.1.6 (Chapter 6), PCA has successfully

reduced the dimensionality of the penetration test results of the WSs (from

Section 6.1.2) and the computation complexity of CA. It also has identified

the patterns among the penetration test results of these WSs and has ena-

bled to determine the number of clusters, which is one of the issues with CA.

Hence, it has proved to be a practical pre-CA approach in this service selec-

tion framework. Therefore,

The answer to the research question two is yes, PCA is an effective

pre-processing step to CA in this service selection framework.

Recall that CA assigned S4, S5, and S6 to the same cluster (see Sec-

tion 6.1.7), which means that these WSs have the minimum security vulner-

abilities diversity among the services from Section 6.1.2. Hence, to evaluate

this work in terms of research questions three and four (see above), the WS-

groups formed in Section 6.1.7 are compared with a group containing S4, S5

and S6 (hereafter referred to as WS-group7).

139 | P a g e

Figure 8.1: Penetration Test Results for WS-Group7 (for information about each test see Table 6.12)

Figure 8.2: Average of Penetration Test Results for WS-Groups1-6 against Average of Penetration Test Results for WS-Group7
(for information about each test see Table 6.12)

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1
%

1%

0%

1%

2%

Figure 8.1c: Results from Test 3

Test3 Results Average of tests results

9
5
%

1
0
0
%

9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

1
0
0
%

9
4
%

98%

0%

20%

40%

60%

80%

100%

Figure 8.1b: Results from Test 2

Test2 Results Average of tests results

6
9
%

7
4
%

7
3
%

7
5
%

7
2
%

8
1
% 7
5
%

7
3
%

7
8
%

7
6
%

74.6%

0%

20%

40%

60%

80%

100%

Figure 8.1a: Results from Test 1

Test1 Results Average of tests results

6
0
.8

%

5
2
.7

%

5
4
.7

%

6
1
.2

%

5
6
.1

%

5
8
.5

%

74.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Figure 8.2a: Results from Test 1

Average of Test1 Results for WS-groups 1-6
Average of Test1 Results for WS-group7

96.7% 95.0% 95.5% 97.4% 95.7% 96.1%
98.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Figure 8.2b: Results from Test 2

Average of Test2 Results for WS-groups 1-6
Average of Test2 Results for WS-group7

140 | P a g e

WS-group7 is also developed as it is explained in Section 6.1.8 and is

tested using Coercive Parsing, DJBX31A Hash Collision, and XML Attribute

Count attacks with WS-Attacker’s settings presented in Table 6.12. In these

tests, the attack element was either plotted in the header or the body of the

test SOAP message as presented in Message 5.1 and Message 5.2, respec-

tively.

Figure 8.1 shows the results of the test attacks performed on WS-

group7. These results show the vulnerability of this WS-group to the per-

formed attacks in percentage so that 100% indicates that the group is very

vulnerable to the attack and 1% shows that it does not have this security

vulnerability.

Each test is repeated ten times (to increase the confidence of the out-

come of these tests), and the average of the test results is considered as the

final test result since these test plugins decide on the security vulnerability of

the WSs based on their response times that slightly differs every time the

same test is performed. The vertical and horizontal lines in these graphs

(Figures 8.1a-8.1c) show the result of the penetration test every time the

same test is performed and the average of the penetration test results for

each test, respectively.

Figure 8.2 presents the average penetration test results of WS-

groups1-6 against the average penetration test results of WS-group7 for Co-

ercive Parsing and Hash Collision attacks. The results of XML Attribute

Count attack test are excluded in this comparison as its result is similar for

all these WS-groups. Comparing the penetration test results of WS-group7

(non-optimal group) with the optimal WS-groups (identified through PCA and

CA) show 17.96%-29.36% and 0.61%-3.06% better overall security vulnera-

bility to Coercive Parsing and Hash Collision attacks, respectively.

141 | P a g e

Table 8.1: 2-Samples Tests Results for Coercive Parsing Attack

Null hypothesis

Alternative hypothesis

Confidence interval

p-value

Null hypothesis rejected?

Group7 and Group1 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group1

95%

0.000

Yes

Group7 and Group2 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group2

95%

0.000

Yes

Group7 and Group3 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group3

95%

0.000

Yes

Group7 and Group4 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group4

95%

0.000

Yes

Group7 and Group5 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group5

95%

0.000

Yes

Group7 and Group6 are equally vulnerable
to Coercive Parsing attack

Group7 is more vulnerable to Coercive Parsing

attack than Group6

95%

0.000

Yes

Table 8.2: 2-Samples Tests Results for Hash Collision Attack

Null hypothesis

Alternative hypothesis

Confidence interval

p-value

Null hypothesis rejected?

Group7 and Group1 are equally vulnerable
to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group1

95%

0.159

No

Group7 and Group2 are equally vulnerable
to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group2

95%

0.092

No

Group7 and Group3 are equally vulnerable
to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group3

95%

0.085

No

Group7 and Group4 are equally vulnerable
to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group4

95%

0.315

No

Group7 and Group5 are equally vulnerable
to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group5

95%

0.083

No

Group7 and Group6 are equally vulnerable

to Hash Collision attack

Group7 is more vulnerable to Hash Collision

attack than Group6

95%

0.107

No

142 | P a g e

In Statistics, 2-samples t-test is a type of hypothesis test that allows

comparing the means of two independent groups of observations. To further

assess the proposed service selection framework; 2-samples t-tests are car-

ried out on the penetration test results of WS-group7 and each of the other

WS-groups (see Tables 8.1 and 8.2). These tables show the null and alter-

native hypothesis as well as the confidence level for these 2-samples tests.

They also illustrate the p-values and indicate whether the null hypothesis is

rejected (decided based on the p-value) in each case.

For 95% confidence level, the p-value should be 0.05 or less for null

hypothesis to be accepted. Therefore, as shown in Tables 8.1 and 8.2, WS-

group7 is more vulnerable to Coercive Parsing attack compared with WS-

groups1-6. However, all these WS-groups are similarly vulnerable to Hash

Collision attack. Hence,

The answer to the research question four is yes, an ITWS in which N-

version programming and diversity (formed by composing OTSWSs selected

through PCA and CA analysis on their penetration test results) are used, mit-

igates XML-related security vulnerabilities.

However, the above conclusion also requires comparison of the pene-

tration test results of WS-groups1-6 with the WS-groups formed using re-

maining combinations of these WSs (identified by PCA and CA as non-

optimal WS-groups according to their overall XML-related security vulnera-

bilities).

Finally, without utilization of PCA and CA, every combination of these

WSs (
𝑚!

𝑛!(𝑚−𝑛)!
) had to be tested in order to select the most secure group.

However, these approaches have reduced the number of required penetra-

tion tests significantly. For example, in this case study six WSs are available,

and three should be selected so in the normal case, twenty different WS-

groups had to be tested, whereas through utilization of PCA and CA this

number is reduced to six WS-groups (70% less penetration testing). There-

fore,

143 | P a g e

The answer to the research question three is yes, PCA and CA im-

prove the process of security-aware service selection based on penetration

test results of candidate WSs.

8.4 Feasibility of Implementing Self-Reconfigurable
ITWS Using BPEL and JAVA as BPEL Extension

Figure 8.3: BPEL Diagram of Static ITWS Implemented for Evaluation Purpose

144 | P a g e

 Research Question Five: Does the use of Java as BPEL extension

enables dynamic reconfiguration of ITWS?

Chapter 7 demonstrated the implementation of dynamically reconfigu-

rable ITWS using a combination of Java as BPEL extension and BPEL con-

structs, as well as using only Java as BPEL extension. Hence, to evaluate

this work in terms of research question five (see above), a static ITWS is im-

plemented and is compared with the dynamic ITWSs from Section 7.

This static ITWS is developed using the WSs from the Section 7.1.1

and BPEL plugin for Oracle SOA Suite 12c running on Intel® Core™ i5-

3320M CPU @ 2.60GHz system with 7.88GB usable RAM and 64-bit Oper-

ating System. Figure 8.3 presents the BPEL diagram for this ITWS. The

overview of the operation of this ITWS is as follows:

1. Receives the client’s request (start of the business process).

2. Stores the start time of the business process, which will be used to

work out the response time of this self-reconfigurable ITWS.

3. Invokes the WSs (from Section 7.1.1) concurrently. Each of the pro-

cess paths of the flow activity invokes one of these WSs that is as-

signed to it at design time.

4. Checks whether sufficient (for performing majority voting) responses

are returned by the WSs.

 If adequate responses are returned, it performs majority voting

on the BPEL’s local variables that hold these responses, using

the Code J.3 (see Appendix J) then executes step 5.

 Else, it throws an exception

 BPEL’s CatchAll construct catches the thrown excep-

tion.

 Checks if the pre-defined (by the developer of this

ITWS) number of re-execution of the invocation process

it met.

 Re-executes the ITWS from step 3, if the pre-defined

number of re-execution of the invocation process is not

met.

mailto:CPU@2.60GHz

145 | P a g e

 Else, it throws an exception and terminates the BPEL

process.

5. Assigns the result of successful execution of the ITWS to the output

variable.

6. Uses Code J.6 (see Appendix J) to execute the Java class (Code J.5

in Appendix J) that writes the start and end times of the process into a

file (to work out the response time of the process for evaluation pur-

pose).

7. Returns the result of the execution of the ITWS to the client.

This ITWS is executed once with three and once with five WSs and

its response times are recorded. These executions are repeated forty nine

times (to increase the confidence of the outcome of these tests) and the av-

erage of their response times is considered as the response time of the

ITWS in each case. Because, the response time slightly varies every time

the ITWS is executed.

Figures 8.4 and 8.5 present the response times for the executions of

this ITWS running with three and five WSs, respectively. The vertical and

horizontal lines in these graphs show the response time (ms) every time the

ITWS is executed and the average of these executions’ response times

(ms), respectively.

146 | P a g e

Figure 8.4: Process Execution Time (ms) for Static ITWS Implemented using BPEL Constructs only (ran with three diverse WSs from Section 7.1.1)

Figure 8.5: Process Execution Time (ms) for Static ITWS Implemented using BPEL Constructs only (ran with five diverse WSs from Section 7.1.1)

0
.3

2
3

0
.3

3
6

0
.3

1
9

0
.3

4

0
.3

4
7

0
.3

3
4

0
.3

1
9

0
.3

2
6

0
.3

2
5

0
.3

1
7

0
.3

2
4

0
.3

2
7

0
.3

2
9

0
.3

3
8

0
.3

2
3

0
.3

2
2

0
.3

1
6

0
.3

3
2

0
.3

2
5

0
.3

1
5

0
.3

8
8

0
.3

1
3

0
.3

2
3

0
.3

2
4

0
.3

4
0

0
.3

3
0

0
.3

1
5

0
.5

0
8 0

.3
3
0

0
.3

2
9

0
.5

7
7

0
.3

3
1

0
.5

3
1

0
.3

3
1

0
.3

5
4

0
.3

1
4

0
.5

3
4 0

.3
6
1

0
.3

1
4

0
.5

4
7

0
.3

2
2

0
.3

7
5

0
.3

0
8

0
.3

2
1

0
.3

1
2

0
.3

3
9

0
.3

1
8

0
.3

1
1

0
.3

3
6

0.350

0

0.5

1

Process Execution Time (ms) Average of Process Execution Times (ms)

0
.6

8
3

0
.6

9
9

0
.8

1
3

0
.9

4
8 0
.6

9
8

0
.7

0
4

0
.9

9
8 0

.7
0
2

0
.6

6
5

0
.9

5
6

1
.5

0
.7

1
1

0
.6

9
5

0
.6

2

1
.1

7
2

0
.7

3
4

0
.6

8
6

0
.7

2
6

0
.8

0
8

0
.6

7
7

0
.7

0
8

0
.6

8
4

0
.6

7
3

0
.6

7
7

0
.6

6
4

0
.6

9
1

0
.6

8
1

0
.7

5
2

0
.6

8
8

0
.6

8
5

0
.6

7
5

0
.7

3
8

0
.7

3

0
.6

8

0
.7

1
9

0
.6

6
1

0
.6

9
8

0
.7

7
2

0
.7

8
9

0
.6

7
4

0
.6

9
2

0
.7

4

0
.9

7
4

1
.1

9
5

1
.2

0
4

1
.0

1
9 0

.6
9
2

0
.7

0
1

0
.7

0
4

0.782

0

0.5

1

1.5

2

Process Execution Time (ms) Average of Process Execution Times (ms)

147 | P a g e

Figure 8.6: Average of Process Execution Times (ms) for Static ITWS against the Average of
Process Execution Times (ms) for Dynamic ITWSs

Figures 8.6a and 8.6b illustrate the average response times for the

executions of the static ITWS against the average response times for the

executions of the dynamic ITWSs ran with three and five WSs. Comparing

these results indicates that the introduction of dynamic reconfiguration has

introduced execution time overheads (see Table 8.3).

Table 8.3: Execution Time Overheads

Business Processes

Execution time overhead for
ITWS ran with three WSs

Execution time overhead for
ITWS ran with five WSs

BPEL + Java vs BPEL
constructs only

44%

11%

Java only vs BPEL
constructs only

62.29%

53.45%

BPEL + Java vs Java only

12.70%

38.25%

To further examine these ITWSs, 2-samples t-tests are carried out on

their process execution times (see Tables 8.3 and 8.4). These tables show

the null and alternative hypothesis as well as the confidence level for these

2-samples tests. They also illustrate the p-values and indicate whether the

null hypothesis is rejected (decided based on the p-value) in each case.

For 95% confidence level, the p-value should be 0.05 or less to ac-

cept the null hypothesis. Therefore, as shown in Tables 8.3 and 8.4, the utili-

zation of Java as BPEL extension to implement self-reconfigurable ITWS

introduces execution time overheads.

0.782 0.868

1.2

0

0.5

1

1.5

2

Static ITWS Dynamic ITWS,
Java + BPEL
Constructs

Dynamic ITWS,
Java only

Figure 8.6b: Process Execution
TImes (ms) for ITWSs ran with

Five WSs

Average of Process Execution Times (ms)

0.35
0.504 0.568

0

0.5

1

1.5

2

Static ITWS Dynamic ITWS,
Java + BPEL
Constructs

Dynamic ITWS,
Java only

Figure 8.6a: Process Execution
TImes (ms) for ITWSs ran with

Three WSs

Average of Process Execution Times (ms)

148 | P a g e

Table 8.4: 2-Sample Tests Results for ITWS ran with three WSs

Null hypothesis

Alternative hypothesis

Confidence interval

p-value

Null hypothesis rejected?

Execution of the ITWS implemented using a
combination of BPEL constructs and Java as
BPEL extension takes the same time as
execution of the ITWS implemented using
BPEL constructs only

Execution of the ITWS implemented using a
combination of BPEL constructs and Java as
BPEL extension takes longer than execution of
the ITWS implemented using BPEL constructs
only

95%

0.000

Yes

Execution of the ITWS implemented using
Java as BPEL extension only takes the same
time as execution of the ITWS implemented

using BPEL constructs only

Execution of the ITWS implemented using Java
as BPEL extension only takes longer than exe-
cution of the ITWS implemented using BPEL

constructs only

95%

0.000

Yes

Execution of the ITWS implemented using
Java as BPEL extension only takes the same
time as execution of the ITWS implemented
using a combination of BPEL constructs and
Java as BPEL extension

Execution of the ITWS implemented using Java
as BPEL extension only takes longer than exe-
cution of the ITWS implemented using a combi-
nation of BPEL constructs and Java as BPEL
extension

95%

0.006

No

Table 8.5: 2-Sample Tests Results for ITWS ran with five WSs

Null hypothesis

Alternative hypothesis

Confidence interval

p-value

Null hypothesis rejected?

Execution of the ITWS implemented using a
combination of BPEL constructs and Java as
BPEL extension takes the same time as
execution of the ITWS implemented using
BPEL constructs only

Execution of the ITWS implemented using a
combination of BPEL constructs and Java as
BPEL extension takes longer than execution of
the ITWS implemented using BPEL constructs

only

95%

2.09

No

Execution of the ITWS implemented using
Java as BPEL extension only takes the same
time as execution of the ITWS implemented
using BPEL constructs only

Execution of the ITWS implemented using Java
as BPEL extension only takes longer than exe-
cution of the ITWS implemented using BPEL
constructs only

95%

0.000

Yes

Execution of the ITWS implemented using
Java as BPEL extension only takes the same
time as execution of the ITWS implemented

using a combination of BPEL constructs and
Java as BPEL extension

Execution of the ITWS implemented using Java
as BPEL extension only takes longer than exe-
cution of the ITWS implemented using a combi-
nation of BPEL constructs and Java as BPEL
extension

95%

0.000

Yes

149 | P a g e

Figure 8.7: Dynamic Reconfiguration Time (ms) for ITWS Implemented using Combination of Java and BPEL Constructs

Figure 8.8: Dynamic Reconfiguration Time (ms) for ITWS Implemented using Java only

0
.4

8

0
.4

8
1

0
.6

3

0
.6

6
4

0
.4

5
8

0
.5

2
1

0
.4

9
1

0
.5

3

0
.5

1

0
.4

0
2

0
.3

1
5

0
.6

4
2

0
.5

4
7

0
.4

6
3

0
.4

0
4

0
.5

6
6

0
.4

6
7

0
.4

3
4

0
.5

2
9 0
.3

8
6

0
.4

9
2

0
.4

4
6

0
.4

0
4

0
.3

6

0
.3

1
5

0
.5

2
5

0
.3

8

0
.5

2
2

0
.4

2
6

0
.4

4
6

0
.5

0
7 0

.3
4
2

0
.4

6
8

0
.3

8
7

0
.4

6
1

0
.3

8
8

0
.5

7
5 0
.4

4
7 0
.3

2
3

0
.3

8

0
.4

0
7

0
.5

2
5

0
.4

5
9

0
.4

5
6

0
.4

3
1

0
.4

1
8

0
.4

7
4

0
.4

2

0
.4

4
8

0.46

0

0.5

1

Reconfiguration Time (ms) Average Reconfiguration Time (ms)

0
.5

7
6

0
.6

9
5

0
.9

8
6

0
.5

6
7

0
.7

3

0
.7

4
7

0
.9

7
9

0
.7

2
6

0
.6

4
2

0
.5

8
7

0
.7

0
3

0
.5

8
2

0
.6

7

0
.7

0
2 0
.6

1

0
.5

9
6

0
.6

6

0
.7

5
8 0

.5
5
4

0
.5

8
4

0
.6

7
8 0
.5

4
2

0
.5

5
5

0
.5

4
5

0
.5

5
5

0
.4

9
4

0
.5

3
9

0
.6

8
3

0
.6

3
9

0
.5

7
2 0
.5

0
.5

1
1

0
.4

4
5

0
.5

6
5

0
.8

4
7

0
.6

1
1

0
.5

1
8

0
.5

8
7

0
.5

0
7

0
.5

2
7

0
.5

3
3

0
.5

4
5

0
.4

5
4

0
.5

0
4

0
.4

8
5

0
.5

2

0
.5

0
1

0
.5

8
4

0.618

0

0.5

1

Reconfiguration Time (ms) Average Reconfiguration Time (ms)

150 | P a g e

In addition to the previous evaluations, the reconfiguration times of

ITWS implemented using Java as BPEL extension only and ITWS imple-

mented using a combination of BPEL constructs and Java as BPEL exten-

sion are also compared (see Figures 8.7 and 8.8). For this examination, de-

liberate faults (two of the WSs developed in Section 7.1.1 are altered to re-

turn their response in unexpected format) are injected into these ITWSs forc-

ing them to perform reconfiguration. The result shows 34.35% increase in

the reconfiguration time in the case of ITWS implemented using only Java as

BPEL extension approach.

As presented in this section, the answer to the research question five

is yes, the use of Java as BPEL extension enables dynamic reconfiguration

of ITWS.

And the answer to the central question underlying this work (Can a

self-reconfigurable ITWS, implemented using N-version programming and

diversity formed by composing OTSWSs that are selected through penetra-

tion testing, PCA, and CA processes mitigate XML-related securi-

ty vulnerabilities?) is:

Yes, a composite WS implemented in BPEL can be converted to a

self-reconfigurable ITWS using the proposed approaches, presented in this

dissertation, to mitigate XML-related security vulnerabilities.

151 | P a g e

Chapter 9 Literature Review

CHAPTER

 Literature Review

This chapter presents work related to this dissertation. Section 9.1

discusses related security standards, Intrusion Detection (ID) and Intrusion

Prevention (IP) approaches. It also reviews a number of other Intrusion-

Tolerant systems solutions. Section 9.2 presents other service selection so-

lutions, including those based on PCA and CA approaches and compares

them to the service selection framework of this dissertation. Finally, Section

9.3 discusses other works related to the dynamic reconfiguration and adap-

tation of composite WSs.

9.1 Intrusion Detection, Prevention and Tolerant Sys-
tems

This section reviews related security standards and a number of re-

lated ID/IP approaches specific to WSs as well as a number of related IT-

WSs.

9.1.1 Related Security Standards

Various standards (including WS-Security, WS-Policy, WS-Trust, WS-

Privacy, WS-Federation, WS-SecureConversation, WS-Authorization and

etc.) have been created to be used as building blocks of the WSs to protect

them against XML-related cyber-attacks [130]. However, they have limita-

tions; such as their implementation might introduce some complexity and

9

152 | P a g e

that they may cause security vulnerabilities if not implemented properly (see

Chapter 2 for more details).

9.1.2 Related ID/IP Approaches

Lindstrom [51] proposed to first validate XML documents, using for-

mat and syntax inspection and validation approaches, to conform to the XML

and SOAP specifications then perform a deeper inspection of the content,

looking for any policy violations (e.g., oversized documents). Loh et al. [131]

proposed an ID/IP framework for WSs, which is a combination of syntax

parsing on SOAP messages (to check the structure of XML for syntax er-

rors), filtering policy to check and restrict the size of the SOAP message (to

prevent Oversized Payload attacks) and XML schema validation (to counter

SOAP flooding attacks). Similarly, Yee et al. [132] proposed an adaptive

ID/IP framework for WSs, which consists of agents that act as sensors, data

mining techniques such as clustering, association and sequential rule cou-

pled with fuzzy logic to detect violations to the normal profile. The anomalies

are then further analysed using fuzzy logic to determine genuine attacks to

reduce false alarms. In the event of an attack, the action provider either

blocks, rejects or terminates the activity. In [133] an ID framework is pro-

posed that detects cyber-attacks on WSs using XML similarity classifiers.

This framework consists of: (1) monitoring every request/response for identi-

fication of any special characters that may cause SQL/XML Injection attacks;

(2) a validation scheme using WSDL definition of the WS with the aim of

preventing XML DoS attacks; and (3) a normal dataset of requests (based

on the normal behaviours of the previous traces) as a reference for compar-

ing both the structure and the semantics of every input request. Gorbenko

et al. [134] proposed a diversity-aware IP framework based on multi-level

software diversity and dynamic software reconfiguration for deploying WSs

in a cloud. In this framework, the vulnerability information from sources such

as NVD and CVE are utilized at real-time to compute the vulnerability scores

for the available diverse software infrastructures. The infrastructure with the

less vulnerability score is then chosen and redeployed if a different infra-

153 | P a g e

structure is currently deployed. They do not consider replicated systems but

choose the best single configuration from a pool of diverse options.

Generally, the ID/IP systems may effectively detect pre-defined at-

tacks but have limitations in responding to continuously created novel at-

tacks.

9.1.3 Related Intrusion-Tolerant Systems

A considerable volume of work in this area has focused on imple-

menting Intrusion-Tolerant systems based on diverse redundant compo-

nents [135]–[138]. The basic intuition is that design diversity reduces the

possibility of common security vulnerabilities that are exploited by an attack.

These systems are based on active replication techniques. There are proxy

servers which interface with the external world mediating access to the actu-

al servers. The inputs to the servers and the responses from the servers are

passed through validity checks. Voting is performed on the responses from

the servers and any disagreement acts as a trigger for the reconfiguration

(e.g., bringing in a different server).

Kalkhoran et al. [139] proposed an ITWS that uses simple primary

and backup scheme (both services have the same implementation, hence,

the same security vulnerabilities). In this framework, the available operations

are extracted from the WSDL of the WS, and then an XML schema is gener-

ated and hardened and used to validate the incoming messages. The objec-

tive of this ITWS is to prevent previously detected attacks from occurring

continually on the system. For this purpose, the system’s activity patterns

are utilized to detect misuses or abnormal behaviours. Following detection of

the malicious requests, the containment module tries to extend these re-

quests to attack patterns and add them to the attack patterns database. In

the event of a successful intrusion, the compromised services are disabled

and the reconfiguration manager checks whether the service level is satis-

factory. Otherwise, the online server is restored to a clean state and the hot

standby copy is promoted to the online server.

154 | P a g e

9.2 Service Selection

Existing approaches to service discovery and selection are mainly

based on non-functional properties such as QoS, policies, trust, and reputa-

tion from client perspective [140].In these approaches, the security property

is defined as a set of high-level QoS attributes (e.g., confidentiality and in-

tegrity) usually claimed by the service providers with no supporting evidence.

The service selection approach presented in [141] is based on both func-

tional and non-functional requirements and contains a QoS certifier that

checks the QoS claims made by the service providers. Maximilien and Singh

[142] proposed a runtime service selection framework that utilizes agents

(acting as proxies between the clients and the services) discovering services

based on semantics and QoS policies. Quing et al. [140] present a survey of

service selection approaches based on non-functional requirements. Yau

and Yin [143] proposed a service selection framework based on QoS metrics

integrated into a single satisfaction score. The service selection solutions

presented in [144] is based on the client’s preferences and WS’s properties.

It combines logic-based and optimization methods. Chaari et al. [145] pro-

posed a service selection approach based on ontology reasoning and an

extension to WS-Policy. The service selection framework presented in [146]

is based on the trust and the reputation of the WSs. This approach evaluates

the trustworthiness of the providers based on their reputation then provides

a reputation-based service discovery methodology driven by clients’ QoS

preferences. Anisetti et al. [147] proposed a service selection framework that

selects the WSs based on their security certificates that best satisfy the cli-

ent’s preference. Finally, Qi et al. [148] proposed service selection method

based on weighted PCA. They have argued that the weighted PCA may re-

duce the number of QoS criteria simplifying the service selection process

and eliminate the correlations between different QoS criteria increasing ser-

vice selection accuracy.

The service selection framework presented in this dissertation differs

from the above solutions as it is based on tested security vulnerabilities of

the WSs (not just the service provider’s claim)

155 | P a g e

9.3 Reconfiguration/Adaptation

In standard BPEL processes, the interactions with other WSs are en-

abled through PortTypes, which are defined statically during the implementa-

tion of the business process. A much more controllable and hence flexible

approach is to enable dynamic runtime lookup, selection, and binding to

such business processes.

Ezenwoye et al. [149] presented RobustBPEL framework, which can

generate an adaptable version of an existing BPEL process. The BP gener-

ated through this framework monitors the invocation of partner WSs and in-

vokes a static proxy service in the event of a failure. This proxy looks for an

equivalent service to replace the failed one. In this approach, the information

about the equivalent services is hardcoded at proxy generation time. Later

they proposed RobustBPEL2 [150], which is uses dynamic proxies that ena-

bles the runtime discovery of equivalent services. Furthermore, Robust-

BPEL2 adds self-optimizing capabilities to existing BPEL processes. While

their work is similar to the reconfiguration approaches presented in this dis-

sertation in respect to their aim to improve reliability in the context of BPEL

and WSs, they are using a proxy based approach, which requires the inter-

face of the equivalent services to match the proxy service, to monitor pro-

cess execution and improve process performance, whereas the approaches

presented in this dissertation leverages Java as BPEL extension, which en-

ables invocation of any equivalent service, to improve dependability of the

BP. Hence, the approaches presented in this dissertation enable better self-

reconfiguration. RobustBPEL2 uses UDDI to discover alternative services in

the event of a failure. However, it does not incorporate selection criteria

when multiple services are found, while this work chooses the most secure

available group of WSs from the database.

In [151], Baresi et al. proposed a framework enabling self-healing ca-

pabilities for BPEL processes. Their framework is based on implementation

of the Dynamo [152] framework (a supervision framework), which consists of

an AOP-extended version of the ActiveBPEL and is built using the JBoss

Rule Engine. Similarly, they employ BPEL extensions however, of AOP type

156 | P a g e

not Java. Their solution does not explicitly address the problem of selecting

alternative services whereas; the solution presented in this work provides a

viable way to select alternative services.

AO4BPEL [153] is an extension to BPEL4WS. It is an aspect-oriented

approach to WSs composition, which provides aspect-oriented modularity

mechanism. Aspects are defined in XML documents and in the case of

AO4BPEL they are BPEL activities that implement cross-cutting concerns

(e.g., security) or workflow changes. To employ the aspect, it must be regis-

tered with the BPEL’s execution engine. This registration can be done during

the runtime of the BP. However, it requires information such as the WSDL

and port address of the service, as well as the partnerLinkTypes (necessary

information for establishing communication with the external WSs) that are

to be used by the aspect. Then, AO4BPEL can supports dynamically chang-

ing the deployed process through activating/deactivating aspects. Whereas,

one of the advantages of the self-reconfiguration approaches demonstrated

in this work is that the BP collects the necessary information for establishing

communication with the external WSs during its execution time. This feature

gives the backend of the BP the freedom of updating the services’ records in

the DB (including adding and deleting services), which enables the ITWS to

stay up to date.

In [154], Kongdenfha et al. proposed an aspect-oriented framework

enabling service adaptation. Their approach uses aspect-based templates to

automate the task of handling interface mismatches (including protocol mis-

matches). Whereas, the approaches presented in this work utilize self-

reconfiguration to support Intrusion-Tolerance.

157 | P a g e

Chapter 10 Conclusions and Future Work

CHAPTER

 Conclusions and Future Work

 This dissertation is concerned with improving the dependability of

Web Services (WSs) especially when Off-The-Shelf Web Services

(OTSWSs) are employed. It introduced a novel framework to increase de-

pendability by constructing Intrusion-Tolerant Web Services (ITWSs) in

which N-version programming and diversity, formed by composing OTSWSs,

are used. It also demonstrated implementation of self-reconfiguration ITWS

using a combination of Business Process Engineering Language (BPEL)

constructs and Java as BPEL extension approach and using only Java as

BPEL extension approach.

10.1 Summary

Chapter 1 introduced this work and its context (using an exemplary

WS). It also briefly discussed the motivation for this work and presented the

central research question it was going to answer as well as its contributions

and distinctions. Finally, it briefly outlined the other chapters.

Chapter 2 presented the overview of WSs’ architecture and intro-

duced its main technologies (SOAP, WSDL, and UDDI). It then explained

that WSs are at risk of security vulnerabilities related to their specific imple-

mentation technologies (e.g., XML) as well as those, of their underlying plat-

forms (e.g., operating systems) and web Applications (e.g., vulnerability to

SQL Injection attacks). Afterward, it introduced a number of existing coun-

10

158 | P a g e

termeasures against attacks targeting WSs’ XML-related vulnerabilities fol-

lowed by a list of their limitations and argued that the issue gets more chal-

lenging when OTSWSs are employed as they are ready-made black boxes

of unknown quality and their security is out of the control of their client thus,

tolerating their security vulnerabilities through a reconfigurable ITWS is a

more appropriate approach. It then briefly introduced dependability ap-

proaches and explained that ITWS could be achieved using dependability

techniques which, is the approach adopted in this work and is achieved

through the integration of WSs’ composability, Principal Component Analysis

(PCA), Cluster Analysis (CA) and penetration testing. After that, it briefly in-

troduced each of these concepts and explained the motivation for their adop-

tion in this work.

Chapter 3 presented the architecture for this framework along with its

objectives and the assumptions made. It then explained the role of each of

its components and the interactions among them.

Chapter 4 introduced the penetration testing tool, utilized in the case

studies presenting the proposed service selection framework. It then

demonstrated the feasibility of ITWS implementation based on penetration

test results of the candidate WSs.

Chapter 5 showed that BPEL could affect the XML-related security

vulnerabilities of the candidate (for ITWS implementation) WSs and argued

that these effects should be considered in service selection process.

Chapter 6 demonstrated, how penetration test results of the candidate

WSs, PCA, and CA could be used to group WSs based on their XML-related

security vulnerabilities and how these groups could be sorted using further

penetration testing.

Chapter 7 demonstrated the implementation of self-reconfigurable

WS using a combination of BPEL constructs and Java as BPEL 2.0 exten-

sion approach and utilizing only Java as BPEL extension approach through

two case studies.

159 | P a g e

Chapter 8 evaluated this work using the experimental results collect-

ed from the case studies that demonstrated different dimensions of the work

presented in this dissertation. It discussed the advantages, extensibility, and

limitations of the proposed framework. Finally, it answered the underlying

central research question.

 Chapter 9 discussed other related approaches.

10.2 Future Work

During this work, the author identified extensions of the current dis-

sertation and future directions of this research as outlined below.

 Diversity could also be applied to penetration testing tools and tests.

 XML hardening could be applied to some of the utilized WSs to make

them more secure aiming to increase diversity among the WSs.

 Diversity could also be applied at the composition level since the

BPEL itself could be a single point of failure.

 Automation could be applied to service discovery stage, which is cur-

rently the responsibility of the system’s administrator.

 Recall that WS-Attacker’s plugins also simulate concurrent legitimate

users. These experiments could be repeated while this feature is

completely switched off (to diminish the fluctuations in the penetration

testing results).

 The proposed service selection framework could be further evaluated

using WS-groups formed based on remaining combinations of the

WSs (identified by PCA and CA as non-optimal WS-groups according

to their overall XML-related security vulnerabilities).

10.3 Conclusions

This dissertation makes the following main conclusions:

An ITWS formed based on penetration test results of candidate WSs,

is a feasible approach to mitigate XML-related security vulnerabilities.

160 | P a g e

PCA and CA improve the process of security-aware service selection

based on penetration testing results of candidate WSs.

PCA is an effective pre-processing step to CA in the proposed service

selection framework.

An ITWS in which N-version programming and diversity, formed by

composing SOAP-OTSWSs (elected through PCA and CA analysis on their

penetration testing results) is used, is a feasible approach to mitigate XML-

related security vulnerabilities.

Java as BPEL extension enables to implement self-reconfigurable

ITWS in return for the cost of longer execution time.

And the answer to the central question underlying this work (Can a

self-reconfigurable ITWS, implemented using N-version programming and

diversity formed by composing OTSWSs that are selected through penetra-

tion testing, PCA, and CA processes mitigate XML-related securi-

ty vulnerabilities?) is:

Yes, a composite WS implemented in BPEL can be converted to a

self-reconfigurable ITWS using the proposed approaches, presented in this

dissertation, to mitigate XML-related security vulnerabilities.

161 | P a g e

References

[1] D. A. Chappell and T. Jewell, Java Web Services. O’Reilly Media, Inc., 2002.
[2] D. F. Ferguson, B. Lovering, T. Storey, and J. Shewchuk, “Secure, reliable, transacted

web services: Architecture and composition,” Technical report, MSDN Library, 2003.
[3] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy, “Dependability in the Web

Services Architecture,” in Architecting Dependable Systems, R. de Lemos, C. Gacek,
and A. Romanovsky, Eds. Springer Berlin Heidelberg, 2003, pp. 90–109.

[4] M. Naedele, “Standards for XML and Web services security,” Computer, vol. 36, no. 4,
pp. 96–98, Apr. 2003.

[5] L. Kagal, T. Finin, M. Paolucci, N. Srinivasan, K. Sycara, and G. Denker, “Authorization
and privacy for semantic Web services,” IEEE Intell. Syst., vol. 19, no. 4, pp. 50–56,
Jul. 2004.

[6] R. Wonohoesodo and Z. Tari, “A role based access control for Web services,” in IEEE
International Conference onServices Computing, 2004. (SCC 2004). Proceedings. 2004,
2004, pp. 49–56.

[7] E. Yuan and J. Tong, “Attributed based access control (ABAC) for Web services,” in
IEEE International Conference on Web Services (ICWS’05), 2005, p. 569.

[8] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing
solutions and latest technological trends,” Comput. Netw., vol. 51, no. 12, pp. 3448–
3470, Aug. 2007.

[9] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks on web services,”
Comput. Sci. - Res. Dev., vol. 24, no. 4, pp. 185–197, May 2009.

[10] N. Gruschka, N. Luttenberger, and R. Herkenhöner, “Event-Based SOAP Message Val-
idation for WS-SecurityPolicy-Enriched Web Services.,” in SWWS, 2006, pp. 80–86.

[11] N. Gruschka and N. Luttenberger, “Protecting Web Services from DoS Attacks by
SOAP Message Validation,” in Security and Privacy in Dynamic Environments, 2006,
pp. 171–182.

[12] M. Mcintosh, P. Austel, M. Mcintosh, and P. Austel, “XML signature element wrap-
ping attacks and countermeasures,” in in SWS ’05: Proceedings of the 2005 workshop
on Secure web services, 2005, pp. 20–27.

[13] M. Jensen, C. Meyer, J. Somorovsky, and J. Schwenk, “On the effectiveness of XML
Schema validation for countering XML Signature Wrapping attacks,” in 2011 1st In-
ternational Workshop on Securing Services on the Cloud (IWSSC), 2011, pp. 7–13.

[14] S. Dustdar and M. P. Papazoglou, “Services and Service Composition – An Introduc-
tion (Services und Service Komposition – Eine Einführung),” It - Inf. Technol., vol. 50,
no. 2, pp. 86–92, 2009.

[15] S. Simanta, E. Morris, S. Balasubramaniam, J. Davenport, and D. B. Smith, “Infor-
mation assurance challenges and strategies for securing SOA environments and web
services,” in 2009 3rd Annual IEEE Systems Conference, 2009, pp. 173–178.

[16] “Ibm. Web Services Conceptual Architecture (WSCA 1.0) May By Heather Kreger IBM
Software Group.” [Online]. Available: http://docplayer.net/2579910-Ibm-web-
services-conceptual-architecture-wsca-1-0-may-2001-by-heather-kreger-ibm-
software-group.html. [Accessed: 14-Jan-2017].

[17] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The Next Step in Web
Services,” Commun ACM, vol. 46, no. 10, pp. 29–34, Oct. 2003.

[18] C. Mainka, J. Somorovsky, and J. Schwenk, “Penetration Testing Tool for Web Ser-
vices Security,” in 2012 IEEE Eighth World Congress on Services (SERVICES), 2012, pp.
163–170.

[19] M. Gudgin et al., “SOAP Version 1.2,” W3C Recomm., vol. 24, 2003.

162 | P a g e

[20] R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and S. Weerawarana, “Web ser-
vices description language (WSDL) version 2.0 part 1: Core language,” W3C Work.
Draft, vol. 26, 2004.

[21] R. Richards, “Universal Description, Discovery, and Integration (UDDI),” in Pro PHP
XML and Web Services, Apress, 2006, pp. 751–780.

[22] J. Roy and A. Ramanujan, “Understanding Web services,” IT Prof., vol. 3, no. 6, pp.
69–73, Nov. 2001.

[23] S. Indrakanti, “Service Oriented Architecture Security Risks and their Mitigation,”
DTIC Document, 2012.

[24] N. Joshi, P. Patel, and B. B. Meshram, Survey of Security in Service Oriented Architec-
ture, 1st ed. IJERA: International Journal of Engineering Research and Applications,
2013.

[25] “National Vulnerability Database.” [Online]. Available: www.nvd.nist.gov. [Accessed:
24-May-2015].

[26] “Open Sourced Vulnerability Database.” [Online]. Available: www.osvdb.org/. [Ac-
cessed: 24-May-2015].

[27] “Vulnerability Notes Database.” [Online]. Available: www.kb.cert.org/vuls/. [Ac-
cessed: 24-May-2015].

[28] “Common Vulnerabilities and Exposures.” [Online]. Available: www.cve.mitre.org.
[Accessed: 24-May-2015].

[29] “SecurityFocus.” [Online]. Available: www.securityfocus.com/. [Accessed: 24-May-
2015].

[30] “The Web Application Security Consortium / Threat Classification.” [Online]. Availa-
ble: www.projects.webappsec.org/w/page/13246978/Threat%20Classification. [Ac-
cessed: 24-May-2015].

[31] “Open Web Application Security Project.” [Online]. Available: www.owasp.org. [Ac-
cessed: 24-May-2015].

[32] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, “SOA and Web Ser-
vices: New Technologies, New Standards - New Attacks,” in Fifth European Confer-
ence on Web Services, 2007. ECOWS ’07, 2007, pp. 35–44.

[33] S. Suriadi, A. Clark, and D. Schmidt, “Validating Denial of Service Vulnerabilities in
Web Services,” in 2010 4th International Conference on Network and System Security
(NSS), 2010, pp. 175–182.

[34] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker, “Web services
security: SOAP message security 1.1 (WS-security 2004),” OASIS OASIS Stand. Feb,
2006.

[35] F. Curbera, Y. Goland, J. Klein, F. Leymann, S. Weerawarana, and others, “Business
process execution language for web services, version 1.1,” 2003.

[36] R. Richards, “Simple API for XML (SAX),” in Pro PHP XML and Web Services, Apress,
2006, pp. 269–310.

[37] R. Richards, “Document Object Model (DOM),” in Pro PHP XML and Web Services,
Apress, 2006, pp. 181–238.

[38] N. Bhalla and S. Kazerooni, “Web services vulnerabilities,” BlackHat Eur. Amst., 2007.
[39] “Web Service Security Overview, analysis and challenges.” [Online]. Available:

http://search.proquest.com/openview/971cc544f19f987fc4a5471c0fc1762f/1?pq-
origsite=gscholar. [Accessed: 24-May-2015].

[40] A. Falkenberg, C. Mainka, J. Somorovsky, and J. Schwenk, “A New Approach towards
DoS Penetration Testing on Web Services,” in 2013 IEEE 20th International Confer-
ence on Web Services (ICWS), 2013, pp. 491–498.

[41] S. Kabeer, A. P. S, and V. D, “Infiltrate Testing Tool for Web Services Security,” IJRCCT,
vol. 2, no. 7, pp. 455–460, Jul. 2013.

163 | P a g e

[42] E. Tews, “Effective DoS attacks against Web Application Plattforms – #hashDoS
[UPDATE3],” Cryptanalysis - breaking news. [Online]. Available:
https://cryptanalysis.eu/blog/2011/12/28/effective-dos-attacks-against-web-
application-plattforms-hashdos/. [Accessed: 25-May-2015].

[43] “Many more web platforms vulnerable to the hash collision attack (not only ASP.NET)
#28C3 @hashDoS #hashDoS @ccc,” The Wiert Corner - irregular stream of stuff.
[Online]. Available: http://wiert.me/2011/12/29/many-more-web-platforms-
vulnerable-to-the-hash-collision-attack-not-only-asp-net-28c3-hashdos-hashdos-ccc/.
[Accessed: 25-May-2015].

[44] C. A. P. Enumeration, “Classification (CAPEC),” URL Httpscapec Mitre Org, 2013.
[45] “Oversized XML attack - WS-Attacks.” [Online]. Available: http://www.ws-

attacks.org/Oversized_XML_attack. [Accessed: 28-May-2017].
[46] A. Singhal, T. Winograd, and K. Scarfone, “Guide to secure web services,” NIST Spec.

Publ., vol. 800, no. 95, p. 4, 2007.
[47] C. Kaler, A. Nadalin, and others, “Web services security policy language (wssecuri-

typolicy) version 1.1,” Stand. Propos. IBM Corp. Microsoft Corp. RSA Secur. VeriSign,
2005.

[48] S. Cantor, I. J. Kemp, N. R. Philpott, and E. Maler, “Assertions and protocols for the
oasis security assertion markup language,” OASIS Stand. March 2005, 2005.

[49] T. Moses and others, “Extensible access control markup language (xacml) version
2.0,” Oasis Stand., vol. 200502, 2005.

[50] D. Eastlake and J. Reagle, “XML encryption syntax and processing. W3C Recommen-
dation,” World Wide Web Consort. W3C Dec, 2002.

[51] N. Gruschka and N. Luttenberger, “Protecting Web Services from DoS Attacks by
SOAP Message Validation,” in Security and Privacy in Dynamic Environments, S.
Fischer-Hübner, K. Rannenberg, L. Yngström, and S. Lindskog, Eds. Springer US, 2006,
pp. 171–182.

[52] T. Jager and J. Somorovsky, “How to break XML encryption,” in Proceedings of the
18th ACM conference on Computer and communications security, 2011, pp. 413–422.

[53] “Oversized XML attack.” [Online]. Available: www.ws-
attacks.org/index.php/Coercive_Parsing. [Accessed: 24-May-2015].

[54] N. Gruschka, M. Jensen, and N. Luttenberger, “A Stateful Web Service Firewall for
BPEL,” in IEEE International Conference on Web Services, 2007. ICWS 2007, 2007, pp.
142–149.

[55] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea, “An advisor for web services
security policies,” in Proceedings of the 2005 workshop on Secure web services, 2005,
pp. 1–9.

[56] A. Avizienis, J. C. Laprie, and B. Randell, Fundamental concepts of dependability. Uni-
versity of Newcastle upon Tyne, Computing Science, 2001.

[57] A. Avižienis, “Design of Fault-tolerant Computers,” in Proceedings of the November
14-16, 1967, Fall Joint Computer Conference, New York, NY, USA, 1967, pp. 733–743.

[58] B. Randell, “System Structure for Software Fault Tolerance,” in Proceedings of the
International Conference on Reliable Software, New York, NY, USA, 1975, pp. 437–
449.

[59] “On the implementation of N-Version Programming for software fault tolerance dur-
ing program execution.” [Online]. Available:
https://www.researchgate.net/publication/238286189_On_the_implementation_of_
N-Version_Programming_for_software_fault_tolerance_during_program_execution.
[Accessed: 05-Nov-2016].

[60] H. H. Ammar, B. Cukic, A. Mili, and C. Fuhrman, “A comparative analysis of hardware
and software fault tolerance: Impact on software reliability engineering,” Ann. Softw.
Eng., vol. 10, no. 1–4, pp. 103–150, Nov. 2000.

164 | P a g e

[61] V. De Florio and C. Blondia, “A Survey of Linguistic Structures for Application-level
Fault-Tolerance,” ArXiv150403256 Cs, Apr. 2015.

[62] E. N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A Survey of Roll-
back-recovery Protocols in Message-passing Systems,” ACM Comput Surv, vol. 34, no.
3, pp. 375–408, Sep. 2002.

[63] A. Carzaniga, A. Gorla, and M. Pezzè, “Handling Software Faults with Redundancy,” in
Architecting Dependable Systems VI, R. de Lemos, J.-C. Fabre, C. Gacek, F. Gadducci,
and M. ter Beek, Eds. Springer Berlin Heidelberg, 2009, pp. 148–171.

[64] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability,” IBM J. Res. Dev., vol. 6, no. 2, pp. 200–209, Apr. 1962.

[65] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant Arrays of Inexpen-
sive Disks (RAID),” in Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, New York, NY, USA, 1988, pp. 109–116.

[66] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clus-
ters,” Commun ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[67] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating Bugs As Allergies—a Safe
Method to Survive Software Failures,” in Proceedings of the Twentieth ACM Symposi-
um on Operating Systems Principles, New York, NY, USA, 2005, pp. 235–248.

[68] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,” IEEE Trans Softw
Eng, vol. 11, no. 12, pp. 1491–1501, Dec. 1985.

[69] B. Littlewood, P. Popov, and L. Strigini, “Modeling Software Design Diversity: A Re-
view,” ACM Comput Surv, vol. 33, no. 2, pp. 177–208, Jun. 2001.

[70] M. K. Joseph and A. Avižienis, “A Fault Tolerance Approach to Computer Viruses,” in
Proceedings of the 1988 IEEE Conference on Security and Privacy, Washington, DC,
USA, 1988, pp. 52–58.

[71] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer Systems,” in Pro-
ceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), Wash-
ington, DC, USA, 1997, p. 67–.

[72] S. A. Hofmeyr and S. A. Forrest, “Architecture for an Artificial Immune System,” Evol
Comput, vol. 8, no. 4, pp. 443–473, Dec. 2000.

[73] B. Littlewood and L. Strigini, “Redundancy and Diversity in Security,” in Computer
Security – ESORICS 2004, P. Samarati, P. Ryan, D. Gollmann, and R. Molva, Eds.
Springer Berlin Heidelberg, 2004, pp. 423–438.

[74] Y. Deswarte, K. Kanoun, and J.-C. Laprie, “Diversity Against Accidental and Deliberate
Faults,” in Proceedings of the Conference on Computer Security, Dependability, and
Assurance: From Needs to Solutions, Washington, DC, USA, 1998, p. 171–.

[75] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia, “How practical are intru-
sion-tolerant distributed systems?,” 2006.

[76] J. E. Dobson and B. Randell, “Building reliable secure computing systems out of unre-
liable insecure components,” in Seventeenth Annual Computer Security Applications
Conference, 2001, pp. 164–173.

[77] J. M. Fray, Y. Deswarte, and D. Powell, “Intrusion-Tolerance Using Fine-Grain Frag-
mentation-Scattering,” in 1986 IEEE Symposium on Security and Privacy, 1986, pp.
194–194.

[78] T. P. Chiem, “A study of penetration testing tools and approaches,” Auckland Univer-
sity of Technology, 2014.

[79] Q. Thi and T. Dang, “Towards side-effects-free database penetration testing,” J. Wirel.
Mob. Netw. Ubiquitous Comput. Dependable Appl. JoWUA, vol. 1, no. 1, pp. 72–85,
2010.

[80] F. Cohen, “Managing network security — Part 9: Penetration testing?,” Netw. Secur.,
vol. 1997, no. 8, pp. 12–15, Aug. 1997.

165 | P a g e

[81] N. Antunes and M. Vieira, “Comparing the Effectiveness of Penetration Testing and
Static Code Analysis on the Detection of SQL Injection Vulnerabilities in Web Ser-
vices,” in 15th IEEE Pacific Rim International Symposium on Dependable Computing,
2009. PRDC ’09, 2009, pp. 301–306.

[82] “Penetration Testing for Web Applications (Part Three).” [Online]. Available:
www.symantec.com/connect/articles/penetration-testing-web-applications-part-
three. [Accessed: 24-May-2015].

[83] “Web Application Attack and Audit Framework (w3af).” [Online]. Available:
w3af.org/. [Accessed: 24-May-2015].

[84] “Soapui.” [Online]. Available: www.Soapui.org. [Accessed: 24-May-2015].
[85] E. Backer and A. K. Jain, “A Clustering Performance Measure Based on Fuzzy Set De-

composition,” IEEE Trans Pattern Anal Mach Intell, vol. 3, no. 1, pp. 66–75, Jan. 1981.
[86] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans. Neural Netw., vol.

16, no. 3, pp. 645–678, May 2005.
[87] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis. Taylor & Francis, 2001.
[88] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1988.
[89] P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,” Math.

Program., vol. 79, no. 1–3, pp. 191–215, Oct. 1997.
[90] “Finding Groups in Data: An Introduction to Cluster Analysis,” Wiley.com. [Online].

Available: https://www.wiley.com/en-
us/Finding+Groups+in+Data%3A+An+Introduction+to+Cluster+Analysis-p-
9780471735786. [Accessed: 01-Jan-2018].

[91] J. MacQueen, “Some methods for classification and analysis of multivariate observa-
tions,” presented at the Proceedings of the Fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, Volume 1: Statistics, 1967.

[92] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaussian mixture density model-
ing, decomposition, and applications,” IEEE Trans. Image Process., vol. 5, no. 9, pp.
1293–1302, Sep. 1996.

[93] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: hierarchical clustering using dy-
namic modeling,” Computer, vol. 32, no. 8, pp. 68–75, Aug. 1999.

[94] F. Höppner, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Im-
age Recognition. John Wiley & Sons, 1999.

[95] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp. 1–6,
Nov. 1998.

[96] “Principal Components Analysis - George H. Dunteman - Google Books.” [Online].
Available: https://books.google.co.uk/books?hl=en&lr=&id=Pzwt-
CMMt4UC&oi=fnd&pg=PA5&dq=Principal+Components+Analysis&ots=ifgtwDkVo-
&sig=8DTukLBlSUI8Kjgi5ZavJfTtL8w#v=onepage&q=Principal%20Components%20Ana
lysis&f=false. [Accessed: 03-Jun-2017].

[97] I. Jolliffe, “Principal Component Analysis,” in Wiley StatsRef: Statistics Reference
Online, John Wiley & Sons, Ltd, 2014.

[98] A. J. Calder, A. M. Burton, P. Miller, A. W. Young, and S. Akamatsu, “A principal com-
ponent analysis of facial expressions,” Vision Res., vol. 41, no. 9, pp. 1179–1208, Apr.
2001.

[99] H. Abdi, L. J. Williams, and D. Valentin, “Multiple factor analysis: principal component
analysis for multitable and multiblock data sets,” Wiley Interdiscip. Rev. Comput.
Stat., vol. 5, no. 2, pp. 149–179, Mar. 2013.

[100] I. K. Pakatci, W. Wang, and L. McMillan, “Gene Set Analysis Using Principal Compo-
nents,” in Proceedings of the First ACM International Conference on Bioinformatics
and Computational Biology, New York, NY, USA, 2010, pp. 330–333.

166 | P a g e

[101] K. Y. Yeung and W. L. Ruzzo, “Principal component analysis for clustering gene ex-
pression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, Sep. 2001.

[102] K. Y. Yeung, K. Y. Yeung, W. L. Ruzzo, and W. L. Ruzzo, “An empirical study on Princi-
pal Component Analysis for clustering gene expression data,” Bioinformatics, vol. 17,
pp. 763–774, 2001.

[103] W.-C. Chang, “On Using Principal Components Before Separating a Mixture of Two
Multivariate Normal Distributions,” J. R. Stat. Soc. Ser. C Appl. Stat., vol. 32, no. 3, pp.
267–275, 1983.

[104] A. Immonen and D. Pakkala, “A survey of methods and approaches for reliable dy-
namic service compositions,” Serv. Oriented Comput. Appl., vol. 8, no. 2, pp. 129–158,
Jan. 2014.

[105] A. Arkin et al., “Web service choreography interface (WSCI) 1.0,” Stand. Propos. BEA
Syst. Intalio SAP Sun Microsyst., 2002.

[106] “Business Process Modeling Language.” [Online]. Available: www.BPMI.org. [Ac-
cessed: 24-May-2015].

[107] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36, no. 10,
pp. 46–52, Oct. 2003.

[108] “XLANG/s Language.” [Online]. Available: www.msdn.microsoft.com/en-
us/library/aa577463.aspx. [Accessed: 24-May-2015].

[109] F. Leymann and others, Web services flow language (WSFL 1.0). 2001.
[110] G. Dobson, “Using WS-BPEL to Implement Software Fault Tolerance for Web Ser-

vices,” in 32nd EUROMICRO Conference on Software Engineering and Advanced Ap-
plications, 2006. SEAA ’06, 2006, pp. 126–133.

[111] M. B. Juric and M. Krizevnik, WS-BPEL 2.0 for SOA Composite Applications with Oracle
SOA Suite 11G. Packt Publishing, 2010.

[112] “Incorporating Java and Java EE Code in a BPEL Process.” [Online]. Available:
http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_java.htm. [Ac-
cessed: 02-May-2016].

[113] “ActiveBPEL Server Engine Administrative Interface.” [Online]. Available:
http://www.activevos.com/content/developers/education/sample_active_bpel_adm
in_api/doc/index.html. [Accessed: 04-Sep-2016].

[114] “Apache ODE – Apache ODETM.” [Online]. Available: http://ode.apache.org/. [Ac-
cessed: 05-Nov-2016].

[115] “OpenESB Documentation.” [Online]. Available: http://www.open-
esb.net/index.php?option=com_content&view=article&id=86:openesb-
documentation&catid=80:openesb-documentation&Itemid=488. [Accessed: 05-Nov-
2016].

[116] “jBPM - Open Source Business Process Management - Process engine.” [Online].
Available: http://www.jbpm.org/. [Accessed: 05-Nov-2016].

[117] “Oracle BPEL Process Manager.” [Online]. Available:
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html. [Ac-
cessed: 05-Nov-2016].

[118] “What is SAP Exchange Infrastructure (SAP XI)? - Definition from WhatIs.com,”
SearchSAP. [Online]. Available: http://searchsap.techtarget.com/definition/SAP-
Exchange-Infrastructure. [Accessed: 05-Nov-2016].

[119] “IBM WebSphere software - United Kingdom.” [Online]. Available: https://www-
01.ibm.com/software/uk/websphere/. [Accessed: 05-Nov-2016].

[120] F. B. Schneider, “Implementing Fault-tolerant Services Using the State Machine Ap-
proach: A Tutorial,” ACM Comput Surv, vol. 22, no. 4, pp. 299–319, Dec. 1990.

[121] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan,
“Thema: Byzantine-fault-tolerant middleware for Web-service applications,” in 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05), 2005, pp. 131–140.

167 | P a g e

[122] “OWASP WSFuzzer Project.” [Online]. Available:
www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project. [Accessed: 24-May-
2015].

[123] R. A. Oliveira, N. Laranjeiro, and M. Vieira, “WSFAggressor: An Extensible Web Service
Framework Attacking Tool,” in Proceedings of the Industrial Track of the 13th
ACM/IFIP/USENIX International Middleware Conference, New York, NY, USA, 2012, p.
2:1–2:6.

[124] S. Khani, C. Gacek, and P. Popov, “Security-aware selection of Web Services for Relia-
ble Composition,” ArXiv151002391 Cs Math, Oct. 2015.

[125] [Online]. Available: http://www.webservicex.com/stockquote.asmx?WSDL. [Ac-
cessed: 30-Jan-2018].

[126] R. C. Dubes, “Handbook of Pattern Recognition & Computer Vision,” C. H. Chen, L. F.
Pau, and P. S. P. Wang, Eds. River Edge, NJ, USA: World Scientific Publishing Co., Inc.,
1993, pp. 3–32.

[127] [Online]. Available: https://svn.apache.org/repos/asf/airavata/sandbox/xbaya-
web/test/Calculator.wsdl. [Accessed: 30-Jan-2018].

[128] [Online]. Available: http://www.dneonline.com/calculator.asmx?WSDL. [Accessed:
30-Jan-2018].

[129] “Invoking web services with Java clients,” 04-Nov-2003. [Online]. Available:
http://www.ibm.com/developerworks/library/ws-javaclient/. [Accessed: 29-Apr-
2016].

[130] Security in a Web Services World: A Proposed Architecture and Roadmap A joint
whitepaper from IBM Corporation and Microsoft. 2002.

[131] Y. s Loh, W. c Yau, C. t Wong, and W. c Ho, “Design and Implementation of an XML
Firewall,” in 2006 International Conference on Computational Intelligence and Securi-
ty, 2006, vol. 2, pp. 1147–1150.

[132] C. G. Yee, W. H. Shin, and G. S. V. R. K. Rao, “An Adaptive Intrusion Detection and
Prevention (ID/IP) Framework for Web Services,” in 2007 International Conference on
Convergence Information Technology (ICCIT 2007), 2007, pp. 528–534.

[133] M. Bazarganigilani, B. Fridey, and A. Syed, “Web Service Intrusion Detection Using
XML Similarity Classification and WSDL Description,” Int. J. U- E- Serv. Sci. Technol.,
vol. 4, no. 3, pp. 61–72.

[134] A. Gorbenko, V. Kharchenko, O. Tarasyuk, and A. Romanovsky, “Using Diversity in
Cloud-Based Deployment Environment to Avoid Intrusions,” in Software Engineering
for Resilient Systems, E. A. Troubitsyna, Ed. Springer Berlin Heidelberg, 2011, pp.
145–155.

[135] F. Wang, F. Jou, F. Gong, C. Sargor, K. Goseva-Popstojanova, and K. Trivedi, “SITAR: a
scalable intrusion-tolerant architecture for distributed services,” in Foundations of In-
trusion Tolerant Systems, 2003 [Organically Assured and Survivable Information Sys-
tems], 2003, pp. 359–367.

[136] A. Saidane, V. Nicomette, and Y. Deswarte, “The Design of a Generic Intrusion-
Tolerant Architecture for Web Servers,” IEEE Trans. Dependable Secure Comput., vol.
6, no. 1, pp. 45–58, Jan. 2009.

[137] A. Valdes et al., “An Architecture for an Adaptive Intrusion-Tolerant Server,” in Secu-
rity Protocols, 2002, pp. 158–178.

[138] “Intrusion-tolerant server architecture for survivable services | SpringerLink.”
[Online]. Available: https://link.springer.com/article/10.1007/BF02764143. [Ac-
cessed: 23-Jul-2017].

[139] “A Multi Layer Architecture For Intrusion Tolerant Web Services.” [Online]. Available:
/landing/3. [Accessed: 09-Jul-2017].

[140] H. Q. Yu and S. Reiff-Marganiec, “Non-functional Property based service selection: A
survey and classification of approaches,” presented at the Non Functional Properties

168 | P a g e

and Service Level Agreements in Service Oriented Computing Workshop co-located
with The 6th IEEE European Conference on Web Services, Ireland, Dublin, 2008.

[141] S. Ran, “A Model for Web Services Discovery with QoS,” SIGecom Exch, vol. 4, no. 1,
pp. 1–10, Mar. 2003.

[142] E. M. Maximilien and M. P. Singh, “Toward Autonomic Web Services Trust and Selec-
tion,” in Proceedings of the 2Nd International Conference on Service Oriented Compu-
ting, New York, NY, USA, 2004, pp. 212–221.

[143] “QoS-Based Service Ranking and Selection for Service-Based Systems - IEEE Xplore
Document.” [Online]. Available: http://ieeexplore.ieee.org/document/6009244/. [Ac-
cessed: 23-Jul-2017].

[144] “Preference-based selection of highly configurable web services.” [Online]. Available:
http://dl.acm.org/citation.cfm?id=1242709. [Accessed: 23-Jul-2017].

[145] S. Chaari, Y. Badr, and F. Biennier, “Enhancing Web Service Selection by QoS-based
Ontology and WS-policy,” in Proceedings of the 2008 ACM Symposium on Applied
Computing, New York, NY, USA, 2008, pp. 2426–2431.

[146] Z. Noorian, M. Fleming, and S. Marsh, “Preference-oriented QoS-based Service Dis-
covery with Dynamic Trust and Reputation Management,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, New York, NY, USA, 2012, pp. 2014–
2021.

[147] M. Anisetti, C. A. Ardagna, E. Damiani, and J. Maggesi, “Security certification-aware
service discovery and selection,” in 2012 Fifth IEEE International Conference on Ser-
vice-Oriented Computing and Applications (SOCA), 2012, pp. 1–8.

[148] L. Qi, W. Dou, and J. Chen, “Weighted principal component analysis-based service
selection method for multimedia services in cloud,” Computing, vol. 98, no. 1–2, pp.
195–214, Jan. 2016.

[149] O. Ezenwoye and S. M. Sadjadi, “Enabling robustness in existing bpel processes,” pre-
sented at the In Proceedings of the 8th International Conference on Enterprise In-
formation Systems (ICEIS-06, 2006.

[150] O. Ezenwoye and S. M. Sadjadi, “RobustBPEL2: Transparent Autonomization in Busi-
ness Processes through Dynamic Proxies,” in Eighth International Symposium on Au-
tonomous Decentralized Systems (ISADS’07), 2007, pp. 17–24.

[151] “Self-healing BPEL processes with Dynamo and the JBoss rule engine.” [Online].
Available: http://dl.acm.org/citation.cfm?id=1294906. [Accessed: 24-Jul-2017].

[152] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL Processes,” in
Service-Oriented Computing - ICSOC 2005, 2005, pp. 269–282.

[153] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-oriented Extension to BPEL,” World
Wide Web, vol. 10, no. 3, pp. 309–344, Sep. 2007.

[154] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati, “An Aspect-Oriented
Framework for Service Adaptation,” in Service-Oriented Computing – ICSOC 2006, A.
Dan and W. Lamersdorf, Eds. Springer Berlin Heidelberg, 2006, pp. 15–26.

169 | P a g e

Appendix A: WSDL of Axis1-4 WS running on
apache-tomcat-6.0.18 server

<?xml version="1.0" encoding="UTF-8"?>

 <wsdl:definitions targetNamespace="http://Axis_Tom_6"

 xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://Axis_Tom_6"

 xmlns:intf="http://Axis_Tom_6" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!--WSDL created by Apache Axis version: 1.4

 Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified" targeNamespace=http://Axis_Tom_6

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="factorial">

 <complexType>

 <sequence>

 <element name="n" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="factorialResponse">

 <complexType>

 <sequence>

 <element name="factorialReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="addIntegers">

 <complexType>

 <sequence>

 <element name="firstNum" type="xsd:int"/>

 <element name="secondNum" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="addIntegersResponse">

 <complexType>

 <sequence>

 <element name=

170 | P a g e

"addIntegersReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

<wsdl:message name="factorialResponse">

 <wsdl:part element="impl:factorialResponse" name="parameters">

</wsdl:part>

 </wsdl:message>

 <wsdl:message name="factorialRequest">

 <wsdl:part element="impl:factorial" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegersRequest">

 <wsdl:part element="impl:addIntegers" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part element="impl:addIntegersResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="Axis_Tom_6_sum">

 <wsdl:operation name="factorial">

 <wsdl:input message="impl:factorialRequest" name="factorialRequest">

 </wsdl:input>

 <wsdl:output message="impl:factorialResponse" name="factorialResponse">

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <wsdl:input message="impl:addIntegersRequest" name="addIntegersRequest">

 </wsdl:input>

 <wsdl:output message="impl:addIntegersResponse" name="addIntegersResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="Axis_Tom_6_sumSoapBinding" type="impl:Axis_Tom_6_sum">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="factorial">

171 | P a g e

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="factorialRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="factorialResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="addIntegersRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addIntegersResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="Axis_Tom_6_sumService">

 <wsdl:port binding="impl:Axis_Tom_6_sumSoapBinding" name="Axis_Tom_6_sum">

 <wsdlsoap:address loca-

tion="http://localhost:8888/Axis_Tom_6/services/Axis_Tom_6_sum"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

172 | P a g e

Appendix B: WSDL of Axis2-1.5.1 WS running
on apache-tomcat-6.0.18 server

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:ns="http://Axis2_1_5_1_Tom_6"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:ns1="http://org.apache.axis2/xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" target-

Namespace="http://Axis2_1_5_1_Tom_6">

 <wsdl:documentation>

 Please Type your service description here

 </wsdl:documentation>

 <wsdl:types>

 <xs:schema attributeFormDefault="qualified" elementFormDefault="qualified" target-

Namespace="http://Axis2_1_5_1_Tom_6">

 <xs:element name="addIntegers">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="firstNum" type="xs:int"/>

 <xs:element minOccurs="0" name="secondNum" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="addIntegersResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="factorial">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="n" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

173 | P a g e

 </xs:element>

 <xs:element name="factorialResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="factorialRequest">

 <wsdl:part name="parameters" element="ns:factorial"/>

 </wsdl:message>

 <wsdl:message name="factorialResponse">

 <wsdl:part name="parameters" element="ns:factorialResponse"/>

 </wsdl:message>

 <wsdl:message name="addIntegersRequest">

 <wsdl:part name="parameters" element="ns:addIntegers"/>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part name="parameters" element="ns:addIntegersResponse"/>

 </wsdl:message>

 <wsdl:portType name="Axis2_1_5_1_Tom_6_sumPortType">

 <wsdl:operation name="factorial">

 <wsdl:input message="ns:factorialRequest" wsaw:Action="urn:factorial"/>

 <wsdl:output message="ns:factorialResponse"

wsaw:Action="urn:factorialResponse"/>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <wsdl:input message="ns:addIntegersRequest" wsaw:Action="urn:addIntegers"/>

 <wsdl:output message="ns:addIntegersResponse"

wsaw:Action="urn:addIntegersResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="Axis2_1_5_1_Tom_6_sumSoap11Binding"

type="ns:Axis2_1_5_1_Tom_6_sumPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="factorial">

 <soap:operation soapAction="urn:factorial" style="document"/>

 <wsdl:input>

174 | P a g e

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap:operation soapAction="urn:addIntegers" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="Axis2_1_5_1_Tom_6_sumSoap12Binding"

type="ns:Axis2_1_5_1_Tom_6_sumPortType">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="factorial">

 <soap12:operation soapAction="urn:factorial" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap12:operation soapAction="urn:addIntegers" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="Axis2_1_5_1_Tom_6_sumHttpBinding"

type="ns:Axis2_1_5_1_Tom_6_sumPortType">

175 | P a g e

 <http:binding verb="POST"/>

 <wsdl:operation name="factorial">

 <http:operation location="Axis2_1_5_1_Tom_6_sum/factorial"/>

 <wsdl:input>

 <mime:content type="text/xml" part="factorial"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content type="text/xml" part="factorial"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <http:operation location="Axis2_1_5_1_Tom_6_sum/addIntegers"/>

 <wsdl:input>

 <mime:content type="text/xml" part="addIntegers"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content type="text/xml" part="addIntegers"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="Axis2_1_5_1_Tom_6_sum">

 <wsdl:port name="Axis2_1_5_1_Tom_6_sumHttpSoap11Endpoint" bind-

ing="ns:Axis2_1_5_1_Tom_6_sumSoap11Binding">

 <soap:address loca-

tion="http://localhost:8888/Axis2_1_5_1_Tom_6/services/Axis2_1_5_1_Tom_6_sum.Axis2_

1_5_1_Tom_6_sumHttpSoap11Endpoint/"/>

 </wsdl:port>

 <wsdl:port name="Axis2_1_5_1_Tom_6_sumHttpSoap12Endpoint" bind-

ing="ns:Axis2_1_5_1_Tom_6_sumSoap12Binding">

 <soap12:address loca-

tion="http://localhost:8888/Axis2_1_5_1_Tom_6/services/Axis2_1_5_1_Tom_6_sum.Axis2_

1_5_1_Tom_6_sumHttpSoap12Endpoint/"/>

 </wsdl:port>

 <wsdl:port name="Axis2_1_5_1_Tom_6_sumHttpEndpoint" bind-

ing="ns:Axis2_1_5_1_Tom_6_sumHttpBinding">

 <http:address loca-

tion="http://localhost:8888/Axis2_1_5_1_Tom_6/services/Axis2_1_5_1_Tom_6_sum.Axis2_

1_5_1_Tom_6_sumHttpEndpoint/"/>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

176 | P a g e

Appendix C: WSDL of Axis2-1.6.1 WS running
on apache-tomcat-6.0.18 server

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:ns="http://Axis2_1_6_1_Tom_6"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:ns1="http://org.apache.axis2/xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" target-

Namespace="http://Axis2_1_6_1_Tom_6">

 <wsdl:documentation>

 Please Type your service description here

 </wsdl:documentation>

 <wsdl:types>

 <xs:schema attributeFormDefault="qualified" elementFormDefault="qualified" target-

Namespace="http://Axis2_1_6_1_Tom_6">

 <xs:element name="addIntegers">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="firstNum" type="xs:int"/>

 <xs:element minOccurs="0" name="secondNum" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="addIntegersResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="factorial">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="n" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

177 | P a g e

 </xs:element>

 <xs:element name="factorialResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="factorialRequest">

 <wsdl:part name="parameters" element="ns:factorial"/>

 </wsdl:message>

 <wsdl:message name="factorialResponse">

 <wsdl:part name="parameters" element="ns:factorialResponse"/>

 </wsdl:message>

 <wsdl:message name="addIntegersRequest">

 <wsdl:part name="parameters" element="ns:addIntegers"/>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part name="parameters" element="ns:addIntegersResponse"/>

 </wsdl:message>

 <wsdl:portType name="Axis2_1_6_1_Tom_6_sumPortType">

 <wsdl:operation name="factorial">

 <wsdl:input message="ns:factorialRequest" wsaw:Action="urn:factorial"/>

 <wsdl:output message="ns:factorialResponse"

wsaw:Action="urn:factorialResponse"/>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <wsdl:input message="ns:addIntegersRequest" wsaw:Action="urn:addIntegers"/>

 <wsdl:output message="ns:addIntegersResponse"

wsaw:Action="urn:addIntegersResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="Axis2_1_6_1_Tom_6_sumSoap11Binding"

type="ns:Axis2_1_6_1_Tom_6_sumPortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="factorial">

 <soap:operation soapAction="urn:factorial" style="document"/>

 <wsdl:input>

178 | P a g e

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap:operation soapAction="urn:addIntegers" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="Axis2_1_6_1_Tom_6_sumSoap12Binding"

type="ns:Axis2_1_6_1_Tom_6_sumPortType">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <wsdl:operation name="factorial">

 <soap12:operation soapAction="urn:factorial" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap12:operation soapAction="urn:addIntegers" style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="Axis2_1_6_1_Tom_6_sumHttpBinding"

type="ns:Axis2_1_6_1_Tom_6_sumPortType">

179 | P a g e

 <http:binding verb="POST"/>

 <wsdl:operation name="factorial">

 <http:operation location="factorial"/>

 <wsdl:input>

 <mime:content type="text/xml" part="parameters"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content type="text/xml" part="parameters"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <http:operation location="addIntegers"/>

 <wsdl:input>

 <mime:content type="text/xml" part="parameters"/>

 </wsdl:input>

 <wsdl:output>

 <mime:content type="text/xml" part="parameters"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="Axis2_1_6_1_Tom_6_sum">

 <wsdl:port name="Axis2_1_6_1_Tom_6_sumHttpSoap11Endpoint" bind-

ing="ns:Axis2_1_6_1_Tom_6_sumSoap11Binding">

 <soap:address loca-

tion="http://localhost:8888/Axis2_1_6_1_Tom_6/services/Axis2_1_6_1_Tom_6_sum.Axis2_

1_6_1_Tom_6_sumHttpSoap11Endpoint/"/>

 </wsdl:port>

 <wsdl:port name="Axis2_1_6_1_Tom_6_sumHttpSoap12Endpoint" bind-

ing="ns:Axis2_1_6_1_Tom_6_sumSoap12Binding">

 <soap12:address loca-

tion="http://localhost:8888/Axis2_1_6_1_Tom_6/services/Axis2_1_6_1_Tom_6_sum.Axis2_

1_6_1_Tom_6_sumHttpSoap12Endpoint/"/>

 </wsdl:port>

 <wsdl:port name="Axis2_1_6_1_Tom_6_sumHttpEndpoint" bind-

ing="ns:Axis2_1_6_1_Tom_6_sumHttpBinding">

 <http:address loca-

tion="http://localhost:8888/Axis2_1_6_1_Tom_6/services/Axis2_1_6_1_Tom_6_sum.Axis2_

1_6_1_Tom_6_sumHttpEndpoint/"/>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

180 | P a g e

Appendix D: WSDL of CXF-2.5.11 WS running
on apache-tomcat-7.0.72 server

<?xml version='1.0' encoding='UTF-8'?><wsdl:definitions

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://CXF_2__5_11_Tom_7/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

name="CXF_2__5_11_Tom_7_sumService" target-

Namespace="http://CXF_2__5_11_Tom_7/">

 <wsdl:types>

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://CXF_2__5_11_Tom_7/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://CXF_2__5_11_Tom_7/" schemaLoca-

tion="cxf_2__5_11_tom_7_sum_schema1.xsd"/>

</schema>

 </wsdl:types>

 <wsdl:message name="addIntegers">

 <wsdl:part element="tns:addIntegers" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="factorialResponse">

 <wsdl:part element="tns:factorialResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part element="tns:addIntegersResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="factorial">

 <wsdl:part element="tns:factorial" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="CXF_2__5_11_Tom_7_sum">

 <wsdl:operation name="addIntegers">

 <wsdl:input message="tns:addIntegers" name="addIntegers">

 </wsdl:input>

 <wsdl:output message="tns:addIntegersResponse" name="addIntegersResponse">

 </wsdl:output>

181 | P a g e

 </wsdl:operation>

 <wsdl:operation name="factorial">

 <wsdl:input message="tns:factorial" name="factorial">

 </wsdl:input>

 <wsdl:output message="tns:factorialResponse" name="factorialResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CXF_2__5_11_Tom_7_sumServiceSoapBinding"

type="tns:CXF_2__5_11_Tom_7_sum">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="addIntegers">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="addIntegers">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addIntegersResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="factorial">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="factorial">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="factorialResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CXF_2__5_11_Tom_7_sumService">

 <wsdl:port binding="tns:CXF_2__5_11_Tom_7_sumServiceSoapBinding"

name="CXF_2__5_11_Tom_7_sumPort">

 <soap:address loca-

tion="http://localhost:8889/CXF_2__5_11_Tom_7/services/CXF_2__5_11_Tom_7_sumPort

"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

182 | P a g e

Appendix E: WSDL of CXF-2.3.10 WS running
on apache-tomcat-6.0.18 server

<?xml version='1.0' encoding='UTF-8'?><wsdl:definitions

name="CXF_2_3_10_Tom_6_sumService" target-

Namespace="http://CXF_2_3_10_Tom_6/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://CXF_2_3_10_Tom_6/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://CXF_2_3_10_Tom_6/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import namespace="http://CXF_2_3_10_Tom_6/" schemaLoca-

tion="cxf_2_3_10_tom_6_sum_schema1.xsd"/>

</schema>

 </wsdl:types>

 <wsdl:message name="factorial">

 <wsdl:part element="tns:factorial" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part element="tns:addIntegersResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="factorialResponse">

 <wsdl:part element="tns:factorialResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegers">

 <wsdl:part element="tns:addIntegers" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="CXF_2_3_10_Tom_6_sum">

 <wsdl:operation name="factorial">

 <wsdl:input message="tns:factorial" name="factorial">

 </wsdl:input>

 <wsdl:output message="tns:factorialResponse" name="factorialResponse">

 </wsdl:output>

183 | P a g e

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <wsdl:input message="tns:addIntegers" name="addIntegers">

 </wsdl:input>

 <wsdl:output message="tns:addIntegersResponse" name="addIntegersResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CXF_2_3_10_Tom_6_sumServiceSoapBinding"

type="tns:CXF_2_3_10_Tom_6_sum">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="factorial">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="factorial">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="factorialResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="addIntegers">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addIntegersResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CXF_2_3_10_Tom_6_sumService">

 <wsdl:port binding="tns:CXF_2_3_10_Tom_6_sumServiceSoapBinding"

name="CXF_2_3_10_Tom_6_sumPort">

 <soap:address loca-

tion="http://localhost:8888/CXF_2_3_10_Tom_6/services/CXF_2_3_10_Tom_6_sumPort"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

184 | P a g e

Appendix F: WSDL of CXF-2.6.3 WS running on
apache-tomcat-7.0.72 server

<?xml version='1.0' encoding='UTF-8'?><wsdl:definitions

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://CXF_2_6_3_Tom_7/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

name="CXF_2_6_3_Tom_7_sumService" targetNamespace="http://CXF_2_6_3_Tom_7/">

 <wsdl:types>

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://CXF_2_6_3_Tom_7/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://CXF_2_6_3_Tom_7/" schemaLoca-

tion="cxf_2_6_3_tom_7_sum_schema1.xsd"/>

</schema>

 </wsdl:types>

 <wsdl:message name="factorial">

 <wsdl:part element="tns:factorial" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="factorialResponse">

 <wsdl:part element="tns:factorialResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegers">

 <wsdl:part element="tns:addIntegers" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="addIntegersResponse">

 <wsdl:part element="tns:addIntegersResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="CXF_2_6_3_Tom_7_sum">

 <wsdl:operation name="factorial">

 <wsdl:input message="tns:factorial" name="factorial">

 </wsdl:input>

 <wsdl:output message="tns:factorialResponse" name="factorialResponse">

 </wsdl:output>

 </wsdl:operation>

185 | P a g e

 <wsdl:operation name="addIntegers">

 <wsdl:input message="tns:addIntegers" name="addIntegers">

 </wsdl:input>

 <wsdl:output message="tns:addIntegersResponse" name="addIntegersResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CXF_2_6_3_Tom_7_sumServiceSoapBinding"

type="tns:CXF_2_6_3_Tom_7_sum">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="factorial">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="factorial">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="factorialResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addIntegers">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="addIntegers">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addIntegersResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CXF_2_6_3_Tom_7_sumService">

 <wsdl:port binding="tns:CXF_2_6_3_Tom_7_sumServiceSoapBinding"

name="CXF_2_6_3_Tom_7_sumPort">

 <soap:address loca-

tion="http://localhost:8889/CXF_2_6_3_Tom_7/services/CXF_2_6_3_Tom_7_sumPort"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

186 | P a g e

Appendix G: Java Class for Communication be-
tween ITWS and Database

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.util.ArrayList;

import java.util.Collections;

public class DBClass {

 public static String create(int group, int priority){

 String result = "";

 try{

 Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin:@//localhost:1521/xe", "sys as sysdba", "Passwor123");

 Statement stmt =

conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_READ

_ONLY);

 Statement stmt2 =

conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_READ

_ONLY);

 ResultSet rset = stmt.executeQuery("SELECT

ENDPOINT,TARGETNAMESPACE,OPERATION,INPUT FROM HR.WEBSERVICES " +

 "WHERE SERVICEGROUP =" + group + "AND PRIORITY = " + priority);

 int i = 0;

 ArrayList<String> ENDPOINTS = new ArrayList<String>();

 ArrayList<String> TARGETNAMESPACES = new ArrayList<String>();

 ArrayList<String> OPERATIONS = new ArrayList<String>();

 ArrayList<String> INPUTS = new ArrayList<String>();

 while (rset.next()) {

 ENDPOINTS.add(i, rset.getString("ENDPOINT"));

 TARGETNAMESPACES.add(i, rset.getString("TARGETNAMESPACE"));

 OPERATIONS.add(i, rset.getString("OPERATION"));

 INPUTS.add(i, rset.getString("INPUT"));

 i++;

 }

 for (int j = 0; j < ENDPOINTS.size(); j++) {

 result += ENDPOINTS.get(j) + "," + TARGETNAMESPACES.get(j) + "," +

OPERATIONS.get(j)

187 | P a g e

 + "," + INPUTS.get(j) + "]";

 }

 ResultSet rset2 = stmt2.executeQuery("SELECT PRIORITY FROM

HR.WEBSERVICES");

 int x = 0;

 ArrayList<Integer> PRIORITY = new ArrayList<Integer>();

 while (rset2.next()) {

 PRIORITY.add(x, Integer.parseInt(rset2.getString("PRIORITY")));

 i++;

 }

 result += String.valueOf(Collections.max(PRIORITY));

 conn.close();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return result;

 }

}

188 | P a g e

Appendix H: Java Class for Dynamic WS Invo-
cation Using RPC Library

import java.util.Iterator;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPBodyElement;

import javax.xml.soap.SOAPConnection;

import javax.xml.soap.SOAPConnectionFactory;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

public class Client {

 //Starting point for the SAAJ - SOAP Client Testing

 public static String create(String serviceInfo) {

 String result = "";

 String[] serviceInformation = serviceInfo.split("\\,");

 try {

 // Create SOAP Connection

 SOAPConnectionFactory soapConnectionFactory = SOAPConnectionFacto-

ry.newInstance();

 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

 // Send SOAP Message to SOAP Server

 String url = serviceInformation[0];

 SOAPMessage soapResponse = soapConnec-

tion.call(createSOAPRequest(serviceInformation[1], serviceInformation[2],

 serviceInformation[3], serviceInfor-

mation[4]), url);

 // Process the SOAP Response

 result = printSOAPResponse(soapResponse);

 soapConnection.close();

 } catch (Exception e) {

 System.err.println("Error occurred while sending SOAP Request to Server");

189 | P a g e

 e.printStackTrace();

 }

 return result;

 }

 /**

 * Method used to print the SOAP Response

 */

 private static String printSOAPResponse(SOAPMessage soapResponse) throws Excep-

tion {

 String result = "";

 SOAPBody responseBody = soapResponse.getSOAPBody();

 Iterator it1 = responseBody.getChildElements();

 while (it1.hasNext()) {

 SOAPBodyElement bodyEl = (SOAPBodyElement)it1.next();

 Iterator it2 = bodyEl.getChildElements();

 while (it2.hasNext()) {

 SOAPElement child2 = (SOAPElement)it2.next();

 result = child2.getValue();

 }

 }

 return result;

 }

private static SOAPMessage createSOAPRequest(String namespace, String operation,

String input1, String input2) throws Exception {

 MessageFactory messageFactory = MessageFactory.newInstance();

 SOAPMessage soapMessage = messageFactory.createMessage();

 SOAPPart soapPart = soapMessage.getSOAPPart();

 String serverURI = namespace;

 // SOAP Envelope

 SOAPEnvelope envelope = soapPart.getEnvelope();

 envelope.addNamespaceDeclaration("example", serverURI);

 // SOAP Body

 SOAPBody soapBody = envelope.getBody();

 SOAPElement soapBodyElem = soapBody.addChildElement(operation, "example");

 SOAPElement soapBodyElem1 = soapBodyElem.addChildElement(input1, "example");

 soapBodyElem1.addTextNode("10");

 SOAPElement soapBodyElem2 = soapBodyElem.addChildElement(input2, "example");

 soapBodyElem2.addTextNode("12");

 MimeHeaders headers = soapMessage.getMimeHeaders();

 headers.addHeader("SOAPAction", serverURI + operation);

190 | P a g e

 soapMessage.saveChanges();

 /* Print the request message */

 System.out.print("Request SOAP Message = ");

 soapMessage.writeTo(System.out);

 System.out.println();

 return soapMessage;

 }

}

191 | P a g e

Appendix I: Java Class for Dynamic WS Invoca-
tion through RPC and Java Multi-Threading Li-
braries

import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Future;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPBodyElement;

import javax.xml.soap.SOAPConnection;

import javax.xml.soap.SOAPConnectionFactory;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

public class Client2 {

 public static String create(String input) {

 String result = "";

 ExecutorService executorService = Executors.newSingleThreadExecutor();

 Set<Callable<String>> callables = new HashSet<Callable<String>>();

 String[] serviceInfo = input.split("\\]");

 for (int i = 0; i < (serviceInfo.length)-1; i++) {

 final int counter = i;

 callables.add(new Callable<String>() {

 public String call() throws Exception {

 return serviceClient(serviceInfo[counter]);

 }

 });

192 | P a g e

 }

 try {

 List<Future<String>> futures = executorService.invokeAll(callables);

 for(Future<String> future : futures){

 System.out.println("future.get = " + future.get());

 result += future.get() + ",";

 }

 executorService.shutdown();

 } catch (Exception e) {

 e.printStackTrace();

 }

 return result;

 }

public static String serviceClient(String input) {

 String result = "";

 String[] serviceInfo = input.split("\\,");

 try {

 // Create SOAP Connection

 SOAPConnectionFactory soapConnectionFactory = SOAPConnectionFacto-

ry.newInstance();

 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

 // Send SOAP Message to SOAP Server

 String url = serviceInfo[0];

 SOAPMessage soapResponse = soapConnec-

tion.call(createSOAPRequest(serviceInfo[1], serviceInfo[2],

 serviceInfo[3], serviceInfo[4]), url);

 result = printSOAPResponse(soapResponse);

 soapConnection.close();

 } catch (Exception e) {

 System.err.println("Error occurred while sending SOAP Request to Server");

 e.printStackTrace();

 }

 return result;

 }

 private static SOAPMessage createSOAPRequest(String namespace, String operation,

String input1, String input2) throws Exception {

 MessageFactory messageFactory = MessageFactory.newInstance();

 SOAPMessage soapMessage = messageFactory.createMessage();

193 | P a g e

 SOAPPart soapPart = soapMessage.getSOAPPart();

 String serverURI = namespace;

 SOAPEnvelope envelope = soapPart.getEnvelope();

 envelope.addNamespaceDeclaration("example", serverURI);

 SOAPBody soapBody = envelope.getBody();

 SOAPElement soapBodyElem = soapBody.addChildElement(operation, "example");

 SOAPElement soapBodyElem1 = soapBodyElem.addChildElement(input1, "example");

 soapBodyElem1.addTextNode("10");

 SOAPElement soapBodyElem2 = soapBodyElem.addChildElement(input2, "example");

 soapBodyElem2.addTextNode("12");

 MimeHeaders headers = soapMessage.getMimeHeaders();

 headers.addHeader("SOAPAction", serverURI + operation);

 soapMessage.saveChanges();

 System.out.print("Request SOAP Message = ");

 soapMessage.writeTo(System.out);

 System.out.println();

 return soapMessage;

 }

// Method used to print the SOAP Response

 private static String printSOAPResponse(SOAPMessage soapResponse) throws Excep-

tion {

 String result = "";

 SOAPBody responseBody = soapResponse.getSOAPBody();

 Iterator it1 = responseBody.getChildElements();

 while (it1.hasNext()) {

 SOAPBodyElement bodyEl = (SOAPBodyElement)it1.next();

 Iterator it2 = bodyEl.getChildElements();

 while (it2.hasNext()) {

 SOAPElement child2 = (SOAPElement)it2.next();

 result = child2.getValue();

 }

 }

 return result;

 }

 }

194 | P a g e

Appendix J: Remaining Java Codes for Chapter
7

Code J.1 Java as BPEL Extension for Executing Database Query Class

Code J.2 Java as BPEL Extension for Executing Dynamic Service Invocation Class

Code J.3 Java Code for Performing Majority Voting

String value = (String) getVariableData("Invocation-Result");

String[] values = value.split(",");

int maxValue = 0, maxCount = 0;

for (int i = 0; i < values.length; i++) {

 int count = 0;

 for (int j = 0; j < values.length; ++j) {

 if (values [j] == values [i]) {

 ++count;

 }

 if (count > maxCount) {

 maxCount = count;

 maxValue = values[i];

 }

}

setVariableData("output", maxValue);

String priority1 = (String) getVariableData("Priority");

String group1 = (String) getVariableData("Service-Group");

int priority = Integer.parseInt(priority1);

int group = Integer.parseInt(group1);

String result = DBClass.create(group, priority);

setVariableData("DB-Result", result);

 String[] counter = result.split("\\[");

setVariableData("Loop-Cycles", Integer.parseInt(counter[1]));

String[] result2 = counter[0].split("\\]");

setVariableData("Max-Priority-From-DB",result2[(result2.length)-1]);

String input = (String) getVariableData("DB-Result");

int counter = (int) getVariableData("ForEach1Counter");

String[] result = input.split("\\]");

setVariableData("Invocation-Result",getVariableData("Invocation-Result") + Cli-

ent.create(result[counter-1]) +",");

195 | P a g e

Code J.4 Java Code for Performing Fault-Tolerance

Code J.5 Java code for Writing BP’s Start and End Times into a File

Code J.6 Java Code for Writing the BP’s Start and End Times into a File

 String priority1 = (String) getVariableData("Priority");

int priority = Integer.parseInt(priority1);

String maximum1 = (String) getVariableData("Max-Priority-From-DB");

int maximum = Integer.parseInt(maximum1);

if(priority <= maximum) {

 setVariableData("Priority", String.valueOf(priority+1));

} else {

 setVariableData("Flag", String.valueOf(0));

}

StringTampering.test((String)getVariableData("Start"),(String)getVariableData("End"));

import java.io.BufferedWriter;

import java.io.FileWriter;

public class StringTampering {

 public static void test(String start, String end) {

 try {

 FileWriter fstream = new FileWriter("C:\\Users\\...", true);

 BufferedWriter out = new BufferedWriter(fstream);

 String start1 = start.replace(":", ".");

 String end1 = end.replace(":", ".");

 Float result = Float.valueOf(end1)-Float.valueOf(start1);

 out.write(String.format("%.3f", result));

 out.newLine();

 //close buffer writer

 out.close();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

196 | P a g e

Code J.7 Java Code for Executing Database Query Class

Code J.8 Java Code for Executing Dynamic Service Invocation Class

String priority1 = (String) getVariableData("Priority");

String group1 = (String) getVariableData("Service-Group");

int priority = Integer.parseInt(priority1);

int group = Integer.parseInt(group1);

String result = DBClass.create(group, priority);

setVariableData("DB-Result", result);

String[] result2 = result.split("\\]");

setVariableData("Max-Priority-From-DB",result2[result2.length-1]);

String input = (String) getVariableData("DB-Result");

setVariableData("Invocation-Result",Client2.create(input));

