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In this Letter we evaluate Wilson coefficients for “deep inelastic scattering” (DIS) in N = 4 SYM theory
at NLO in perturbation theory, using as a probe an R-symmetry conserved current. They exhibit uniform
transcendentality and coincide with the piece of highest transcendentality in the corresponding QCD
Wilson coefficients. We extract from the QCD result a NNLO prediction for the N = 4 SYM Wilson
coefficient, and comment on the features of its Regge limit asymptotics.

© 2013 Elsevier B.V. All rights reserved.

1. Discussion

Among the many ways through which the outstanding simplicity of the N = 4 super Yang–Mills (SYM) theory reveals itself, the pattern
of transcendentality exhibited by many of the observables computable in a close analytical form has the merit of setting potentially a quite
direct link to QCD. In particular, the maximum transcendentality principle [1,2] (MTP) is the conjecture – inspired by special properties [3]
for the maximally supersymmetric generalization of BFKL and evolution equations – that in the anomalous dimensions of leading twist
operators only terms of highest transcendentality arise, which can be picked up by the ‘most complicated’ terms of the corresponding
QCD results [4,5] with the appropriate color factor prescription C A = C F = Nc and T f n f = 2Nc . Here a transcendentality weight n is
given to each Riemann ζ value ζn ≡ ζ(n), with a similar tallying for the harmonic sum S�n( j), and the principle states that the anomalous
dimension γ ( j) at n loops is a linear combination of harmonic sums of transcendentality 2n−1. Several signals of consistency [6–11] have
lead to assign a predictive power to the MTP, which (combined with other QCD-related properties [12]) has long been the computational
strategy for extracting multi-loop anomalous dimensions of twist operators from algebraic Bethe equations [13–16].

Remarkably, patterns of uniform leading transcendentality – in this case the degree of transcendentality is 2n for n-loop results – appear
also in N = 4 SYM scattering amplitudes [11,17]1 even at the subleading-color (non-planar) level [19], in light-like Wilson loops [20]2 as
well as in form factors [22–24] and correlation functions [25,26].3

Significantly, the as yet heuristic nature of the observations and the presence of some exception to the rule of “direct extraction” from
QCD results4 make the detection of such generalized MTP an always necessary, preliminary check to set its predictive power in the context
at hand.

We have here evaluated the simplest non-trivial (NLO) contribution to “deep inelastic scattering” Wilson coefficients for N = 4 SYM,
using as external hard probe the current conserved under the internal SU (4) R-symmetry of the theory. Although in a conformal theory
bound-state “hadrons” do not form, one can imagine to redefine the unphysical asymptotic states5 via quark/gluon distributions, governed
by the N = 4 SYM DGLAP equations [1], in which all emerging collinear divergencies are factorized out.6 Looking at the final result
(2.7)–(2.9), of immediate evidence are a) its extreme simplicity (all rational terms in z cancel and only logarithms of z and 1 − z survive),
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b) its uniform transcendentality-degree two, evident in its Mellin transform (2.11)–(2.13), and c) the fact that it coincides with the highest
transcendental part of the QCD result (2.4)–(2.5), provided the appropriate set of splitting functions reflecting the field content of the
theories is taken into account and with the color factor prescription mentioned above. These are not a priori obvious observations. At least
in the case of anomalous dimensions for leading(two)-twist operators – which govern the IR-divergent O (1/ε)7 part of the inclusive DIS
cross-section – the maximal transcendentality property seems to be deeply connected to the maximal supersymmetry of the gauge theory
(MTP is broken already in the N = 2 case8). While in this sense the 1/2 BPS [33] current (2.6) is the best candidate to gain properties
a) and b) for the O (1/ε) contribution9 it is non-trivial that they extend to the IR-finite part. It is also non-obvious that the maximal
transcendentality observed for N = 4 SYM form factors [23] would be maintained in the cross-sections here analyzed. Interestingly,
using the same basis (in Mellin space) which diagonalizes the twist-two anomalous dimensions of N = 4 SYM [1], the result simplifies
further and can be written – in total analogy with the anomalous dimension case – in terms of a universal function Cuni( j) expressed as
combination of harmonic sums and appearing with shifted arguments in the first two entries of the Wilson coefficient vector (3.4). Even
more interesting are the vanishing of the third vector component, and a shift in the first entry which cancels the singular behavior in
the Regge limit. Elaborating on these features and extrapolating them to the next order in perturbation theory we propose – extracting it
from the QCD result [34] – the DIS Wilson coefficient for N = 4 SYM at NNLO, verifying its self-consistency with the analysis of its Regge
( j → 1) and quasi-elastic ( j → ∞) asymptotics.

Since it usually requires two non-trivial orders to reliably identify the general structure of a perturbative computation, it would be
important to extend the calculations to NNLO and confirm the predictions (3.10) and (3.22), and with them the properties described above.
Furthermore, one could proceed generalizing this computation to crossing-related processes such as the supersymmetric generalization of
the e+e− annihilation and Drell–Yan lepton-pair production [35].

This Letter proceeds with the presentation of the main result in N = 4 SYM, its comparison to QCD (Section 2) and the extraction from
QCD of an NNLO prediction (Section 3). Appendices A, B and C recall, respectively, the LO expressions for splitting functions appearing in
our analysis, a convenient basis for expressing our result and our prediction and basic definitions of harmonic sums.

2. DIS Wilson coefficients in N = 4 SYM at NLO

In the QCD deep inelastic scattering analysis, the Wilson coefficients Cq, C g are the short-distance functions which appear in the IR-safe
part of the structure functions, where they multiply respectively the (renormalized) quark and gluon distributions. At order O(αs) and in
MS factorization scheme, the structure function F2 reads

F2
(
x, Q 2) = x

∑
q,q̄

e2
q

1∫
x

dz

z
q

(
x

z
,μ2

)
F̂q

(
Q 2

μ2
, z

)
+ x

∑
q,q̄

e2
q

1∫
x

dz

z
g

(
x

z
,μ2

)
F̂ g

(
Q 2

μ2
, z

)
(2.1)

where x is the Bjorken variable x = Q 2/(2p · q) and

F̂q

(
Q 2

μ2
, z

)
= δ(1 − z) + αs

4π

(
P (0)

qq (z) log
Q 2

μ2
+ C Q C D

q (z)

)
+O

(
α2

s

)
, (2.2)

F̂ g

(
Q 2

μ2
, z

)
= αs

4π

(
P (0)

qg (z) log
Q 2

μ2
+ CQCD

g (z)

)
+O

(
α2

s

)
. (2.3)

Here μ is the factorization scale [36], the LO non-singlet splitting functions P (0)
qq , P (0)

qg are reported in Appendix A and Cq, C g are given
by [37,38]

CQCD
q (z) = C F

[
−2pqq(z)

(
log

(
z

1 − z

)
+ 3

4

)
+ 9

2
+ 5

2
z − (9 + 4ζ2)δ(1 − z)

]
, (2.4)

CQCD
g (z) = T R

[
−2pqg(z)

(
log

(
z

1 − z

)
+ 4

)
+ 6

]
. (2.5)

Above, pqq, pqg are the polynomials (A.4)–(A.5) usually introduced in literature and representing the highest transcendental part of the
splitting functions. As a result of factorization, both splitting functions and Wilson coefficients Cq, C g can be evaluated perturbatively
squaring and integrating over the phase space the relevant form factors. At NLO, the processes contributing to Cq are of real gluon
emission γ ∗ + q → q + g and virtual gluon correction γ ∗ + q → q, while the initial gluon process g + γ ∗ → q + q̄ contributes to C g (see
for example [39]).

To mimic the electromagnetic interaction in the N = 4 SYM theory case [40,41] we will substitute the electromagnetic current with
the SU (4)R conserved current

jμ,I = ψ̄T Iγ μψ − 1

2
φT I(−i

←−
Dμ + i

−→
Dμ

)
φ, I = 1, . . . ,15, (2.6)

where a summation over the SU (Nc) and SU (4)R indices is understood. Notice that, although with the choice above we are intentionally
not selecting a U (1) subgroup of the internal SU (4)R symmetry so that all the fermions and scalars of the theory are “charged” on equal

7 We use the FDH dimensional reduction scheme of [31,32].
8 Private communication by L. Lipatov.
9 It is not difficult to check that using the R-symmetry singlet, non conserved, current ψ̄γ μψ would add to the formulas obtained, together with a UV divergent part due

to bubble diagrams, also terms of transcendentality one and zero.
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foot,10 the absence of truly non-abelian structures in the actual computation makes the effect of the sum over all the 15 generators T I in
the vertex with the “SU (4)R photons” practically equivalent to the consideration of 15 U (1) photons.

Together with the presence of many more processes due to scalar contributions both in virtual and real diagrams, the main difference
with respect to the QCD setting stays in the necessity of assigning appropriate R-symmetry (flavor) factors to the squared diagrams and
interference terms. This is due to the presence, in the Yukawa-type vertices of N = 4 SYM lagrangian, of sigma-matrices connecting the
vectorial and spinorial representations of SO(6)R ∼ SU (4)R , under which the N = 4 SYM scalar and fermionic fields, respectively, rotate.
In performing the calculation, we have used Feynman rules derived from the N = 4 SYM lagrangian in the notation of [42] and the FDH
regularization scheme of [31,32].

The “DIS” Wilson coefficients of N = 4 SYM are then given at NLO (order â = αNc
4π ) by the following formulas, extremely simple and

symmetric in scalar and fermionic contributions,

Cλ(z) = 2C A

[
P̂ (0)

λ (z) log

(
z

1 − z

)
+ 2ζ2C( f )δ(1 − z)

]
, (2.7)

C g(z) = 2C A

[
P̂ (0)

g (z) log

(
z

1 − z

)]
, (2.8)

Cφ(z) = 2C A

[
P̂ (0)

φ (z) log

(
z

1 − z

)
+ 2ζ2C(v)δ(1 − z)

]
, (2.9)

where P̂ is defined as the following linear combination of splitting functions

P̂ (0)
a (z) = P (0)

λa (z)C( f ) + P (0)
φa (z)C(v), a = g, φ,λ. (2.10)

Above, the LO splitting functions are those reported in Appendix A, formulas (A.9)–(A.11), C(v) and C( f ) are the quadratic Casimir
invariants respectively in the vectorial representation of SO(6) and fundamental of SU (4) (the latter is equivalent to the spinorial repre-
sentation of SO(6)), C A is the Casimir eigenvalue for the adjoint representation of the gauge group SU (Nc). Already in this form, it is not
difficult to see that the first two functions Cλ and C g above, with the appropriate truncation of the scalar sector, coincide with the highest
transcendental part of their QCD counterpart (2.4)–(2.5).11 In Mellin space, formulas (2.7)–(2.9) read

Cλ( j) = 2C( f )C A

[
2S2( j) + 4

S1( j)

j
− 2S11( j) − 4

j2

]
, (2.11)

C g( j) = 2C( f )C A

[
4

S1( j)

j
− 4

j2

]
, (2.12)

Cφ( j) = 2C(v)C A

[
2S2( j) + 3

S1( j)

j
− 2S11( j) − 3

j2

]
. (2.13)

Assigning to 1
jn transcendentality degree n, the expressions above exhibit uniform transcendentality of degree 2, which is the maximum

degree expected at this order in perturbation theory.12 In that formulas above are not only given in terms of harmonic sums of fixed
degree 2, their uniform, leading transcendentality feature is sometimes referred to as “weak”, as opposed to the one in “strong” sense
which is the argument of next section.

3. Change of basis and prediction at NNLO

Experience in the calculation of anomalous dimensions [1,2] of leading twist operators in N = 4 SYM suggests that the n-loop anoma-
lous dimension matrix γab( j) (a,b = g, λ,φ), after diagonalization, assumes an intriguing form in terms of a single universal function
γuni( j) expressed only through a combination of harmonic sums of constant degree 2n − 1. Explicit expressions for the matrices entering
the diagonalization can be found in Appendix B. It is quite natural to ask how Wilson coefficients would appear in this new basis.

Let us first notice that the particular combination of splitting functions (2.10) appearing in formulas (2.7)–(2.9) would also appear as

coefficient of log( Q 2

μ2 ) in the N = 4 analogous of (2.2)–(2.3). In Mellin space it is therefore natural to define the vector

γ̄ ( j) = (
γ̄g( j), γ̄λ( j), γ̄φ( j)

)
, (3.1)

with13 γ̄a( j) = γ
(0)
λa ( j) + 4

3 γ
(0)
φa ( j), a = g, λ,φ, and rotate it using the same matrix (B.3) used in [1,2]. Setting v g = 2 1− j

1−2 j and vλ = 1
1−2 j

in (B.1) and (B.3), the result is

γ̂ ( j) = V −1γ̄ ( j) = (
γ

(0)
uni ( j − 2), γ

(0)
uni ( j),0

)
, (3.2)

where γ
(0)

uni (x) = −4S1(x). Turning to the Wilson coefficients it is natural to define

10 In [40], the U(1) subgroup generated by the diagonal generator t3 ≡ diag(1,−1,0,0) was selected, under which only two of the Weyl fermions and two of the complex
scalars are charged.
11 For the definition of the degree of transcendentality for a general function, see for example [43,44] and references therein.
12 It is well-known [45] that the maximum order of soft and collinear divergences of the Sudakov form factor at one loop is 1

ε2 .
13 The coefficient 4

3 comes from the ratio C(v)

C obtained after collecting C( f ) in the Mellin transform of (2.10).

( f )
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C( j) = (
C g( j), Cλ( j), Cφ( j)

)
, (3.3)

where the three components are given in (2.11)–(2.13).14 Rotating again with V −1 given in (B.3) one gets

Ĉ( j) = V −1C( j) =
(

Cuni( j − 2) − 4

( j − 1)2
, Cuni( j),0

)
(3.4)

where we defined

Cuni( j) = 4
(

S1,1( j) − S2( j)
)
. (3.5)

Comparing this result with the QCD one-loop coefficient functions in Mellin space [34], one realizes that the maximally transcendental
part of that result is given precisely by the combination (3.5) of harmonic sums of degree 2. It is therefore for the Wilson coefficients
rotated vector that the proper maximum transcendentality principle works, in total analogy with [1]. For the case presented here, however,
a couple of new interesting features appear. The main difference with respect to the structure of the diagonal expression (B.2) is the
vanishing of the third component for the vectors (3.2) and (3.4). It is quite interesting that the same feature is present in both cases and
it would be interesting to check it at NNLO. The other novel feature is the shift of 4

( j−1)2 in the first component (3.4). It is worthwhile to

notice that this additional term is responsible for the cancellation of the singularity appearing in Cuni( j − 2) in the Regge limit j → 1.
To better understand the pole structure in the Regge limit, it is interesting to consider the QCD case [46,34,47], where the gluon Wilson

coefficient F̂ QCD
g (1, j) has the following form

F̂ QCD
g (1, j) = 1 +

∞∑
n=1

(
αs(Q 2)

4π

)n

C (n),QCD
g ( j), (3.6)

which, for j → 1, reads

C (1),QCD
g ( j) = 2

3
n f +O

(
( j − 1)1),

C (2),QCD
g ( j) = 8

3
n f C A

[
43

9
− 2ζ2

]
1

j − 1
+O

(
( j − 1)0),

C (3),QCD
g ( j) = 32

9
n f C2

A

[
1234

27
− 13ζ2 + 4ζ3

]
1

( j − 1)2
+O

(
( j − 1)−1), (3.7)

with n f the number of active quarks in QCD. Starting from NNLO (n = 2) above, the most singular terms in C (n),QCD
g ( j) contain ( j − 1)1−n

contributions and are proportional to the factor n f . Direct inspection of the QCD results shows that, both for anomalous dimensions and
coefficient functions, the contributions with a factor n f do not contain terms with maximal transcendentality, 2n, expected at a given
loop-order n. So, according to the MTP, the terms ∼ n f , including the singular ones in (3.7), should not contribute to the N = 4 SYM
case. Accepting, by analogy with the case of anomalous dimension matrix, that at all orders in perturbation theory there is one universal
Wilson coefficient function obeying the MTP, it is easy to see that the only possible poles in its ’+’ component15 – i.e. the first one of
the vector in (3.4) – are combinations of terms 1/( j − 1)2n and ζm/( j − 1)2n−m with 2 � m � 2n − 1. Since such terms are absent in the
QCD case, and C (n)

uni( j) should contain only the most complicated terms of C (n),QCD
g ( j), we conclude that no singular terms should appear

in C (n)
+ ( j) (see Eqs. (3.21) and (3.22) below). This would imply that all the singularities for j → 1 are contained in the first component of

the anomalous dimension matrix (or, equivalently, in the first component of vector (3.2)).
Another argument supporting the finiteness of the coefficient function in the Regge limit comes from the analysis of BFKL equation

for N = 4 SYM. The correspondence between the singularities for j → 1 obtained by the BFKL approach and those appearing in the
“+” component of the anomalous dimension (i.e. γuni( j − 2)) has been checked up to NLO and it is believed to hold at all orders in
perturbation theory [1]. In other words, the “+” component of the diagonalized anomalous dimensions matrix in QCD and in N = 4 SYM
can be reconstructed from the BFKL approach in the limit j → 1 (see [1,48,3]).16 Hence, assuming that the BFKL equation collects all
singular terms, for j → 1, of the N = 4 SYM structure function F̂uni(Q 2/μ2, j), all the singularities should appear only in the anomalous
dimension γuni( j − 2) and not in the Wilson coefficients.

All these arguments suggest that the “+” component of the Wilson coefficient rotated vector should be finite in the Regge limit. It
would be interesting to check this conjecture at NNLO by explicit computation.

Following these considerations we can guess the form of Cuni( j) at NNLO from the corresponding QCD result [34]. The structure of the
result in Mellin space, in analogy with (2.1), should be

F̂uni

(
Q 2

μ2
, j

)
= 1 + â

[
C (1)

uni( j) + γ
(0)

uni ( j) log

(
Q 2

μ2

)]

+ â2
[

C (2)
uni( j) + (

γ
(1)

uni ( j) + γ
(0)

uni ( j)C (1)
uni( j)

)
log

(
Q 2

μ2

)
+ 1

2

(
γ

(0)
uni ( j)

)2
log2

(
Q 2

μ2

)]
+O

(
â3), (3.8)

14 From now on an overall factor C( f )C A will be neglected.
15 In analogy with the anomalous dimension case, it is the first component of the rotated Wilson coefficient vector, in which Cuni( j −2) appears, which exhibits singularities

in the Regge limit.
16 Several authors speak about the reconstruction of gluon anomalous dimension, but this is not true beyond LO. What is reconstructed is the first component of the

diagonalized matrix (see the recent discussion in [49]).
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where17

1

2
C (1)

uni = S2
1 − S2, (3.9)

1

2
C (2)

uni = S4
1 − 8S2

1(S2 + S−2) + 4S1(S−3 + 2S−2,1) + S2
2 + 4S2 S−2 + 6S2−2 + 10S−4 + 2S4 + 8S3,1 − 8S−3,1 − 4S−2,2. (3.10)

The definition of the nested harmonic sums S±a,±b,±c,...( j) is given in Appendix C. The extraction of C (3)
uni from the QCD result [47] is

rather complicated, and here we will report only the expression for j → ∞. In this limit and up to three loops, one finds18

C (1)
uni( j) = 2 log2 j

j0
− 2ζ2 + O

(
j−1), (3.11)

C (2)
uni( j) = 2 log4 j

j0
− 8ζ2 log2 j

j0
− 16ζ3 log

j

j0
+ 55

2
ζ4 + O

(
j−1), (3.12)

C (3)
uni( j) = 4

3
log6 j

j0
− 12ζ2 log4 j

j0
− 32ζ3 log3 j

j0
+ 119ζ4 log2 j

j0
−

(
352ζ5 − 224

3
ζ2ζ3

)
log

j

j0

+ 112

3
ζ3

2 − 13485

72
ζ6 + O

(
j−1), (3.13)

with j0 = e−γE .
Let us comment on the agreement of expressions (3.11)–(3.13) with the expected results coming from exponentiation of the large j

logarithms.19 From general arguments [54–56] it is known that in DIS, for a general massless gauge theory, large logarithms for j → ∞
are controlled by the cusp anomalous dimension Γcusp(â) and an additional anomalous dimension ΓDIS(â). In the case of N = 4 SYM, with
vanishing β-function, including finite contributions for j → ∞ along the lines of [57] one gets

Cuni( j) ∼ g(â)e
G(â,

j
j0

)
, (3.14)

where g(â) collects all the finite contributions of Cuni( j) for j → ∞. For the simple case of N = 4 SYM the function G(â,
j

j0
) can be

written as

G

(
â,

j

j0

)
= 1

2
Γcusp(â) log2 j

j0
+ ΓD I S(â) log

j

j0
. (3.15)

The anomalous dimensions and the function g(â) clearly admit a perturbative expansion in powers of â. From our result (3.11)–(3.13)
we can read out the first terms of those expansions, getting

g(â) = 1 − 2âζ2 + 55

2
â2ζ4 + â3

(
112

3
ζ3

2 − 13485

72
ζ6

)
+ O

(
â4), (3.16)

Γcusp(â) = 4â − 8â2ζ2 + 88â3ζ4 + O
(
â4), (3.17)

ΓD I S(â) = −16â2ζ3 + 32â3
(

4

3
ζ2ζ3 + 11ζ5

)
+ O

(
â4). (3.18)

It is noteworthy that the function Γcusp(â) coincides up to three loops with the well-known expansion of the cusp anomalous dimension
of N = 4 SYM20 [9,11]. This provides a good compatibility check for our result.

Let us now consider the limit of C (2)
uni( j) for j → −1.21 To this purpose it is useful to recast the coefficient functions (3.9)–(3.10) in the

form22

C (1)
uni( j) = 4(S1,1 − S2), (3.19)

C (2)
uni( j) = 48S1,1,1,1 − 56(S2,1,1 + S1,2,1 + S1,1,2) + 56S3,1 + 48S2,2 + 24(S2,−2 + S−2,−2)

− 16(S1,−2,1 + 2S1,1,−2) + 8S−3,1 + 40(S1,3 + S1,−3) − 12S−4 − 28S4. (3.20)

The asymptotic behavior of the expressions above can be extracted from Appendix A of [2], putting r = −1. The assumption of finiteness
as j → 1 for the “+” component of the vector Ĉ leads to the following conjecture for its explicit form at NNLO

17 Note that, as in Refs. [48,50], our normalization of γ ( j) contains an extra factor −1/2 with respect to standard literature (see [51,52]) and differs by a sign in comparison
with [4].
18 We are grateful to G. Korchemsky for pointing out a misprint in the three-loop result in the first version of the Letter.
19 See also [53] for a prediction on the large j behavior of the universal structure constants of N = 4 SYM, which can be compared – invoking the OPE analysis of DIS –

with our predictions (3.11)–(3.13).
20 Our convention for the cusp anomalous dimension follows the one used in [9]. The function γk(a) defined in [11] is given by γk(a) = 2Γcusp(â) with a = 2â.
21 This is equivalent to study the limit j → 1 of C (2)

uni( j − 2), which is the function appearing as the first component of (3.4).
22 As j → −1, nested harmonic sums S±a,±b,...( j) have a less singular behavior than standard sums S±a( j) [2].
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C (1)
+ ( j) = C (1)

uni( j − 2) − 4

( j − 1)2
, (3.21)

C (2)
+ ( j) = C (2)

uni( j − 2) − 16

( j − 1)4
+ 48

( j − 1)2
ζ2 − 40

j − 1
ζ3. (3.22)

It would be interesting to verify this conjecture by explicit computation.

Acknowledgements

We thank L.J. Dixon, G. Korchemsky, L. Lipatov, L. Magnea, C. Meneghelli, J. Plefka and V. Schomerus for useful discussions, and G. Ko-
rchemsky for noticing a misprint in the first version of the Letter. V.F. is particularly grateful to L.J. Dixon for suggesting the study of
generalized cross-sections in N = 4 SYM and for earlier collaboration on related topics. The work of A.V.K. was supported in part by the
Russian Foundation for Basic Research (Grant No. 13-02-01005). The work of L.B. and V.F. is funded by the German Research Foundation
(DFG) via the Emmy Noether Program “Gauge Fields from Strings”.

Appendix A. Splitting functions in QCD and in N = 4 SYM

The leading order contributions to the DGLAP splitting functions in QCD read

P (0)
qq (x) = C F

{
2pqq(x) + 3δ(1 − x)

}
, (A.1)

P (0)
qg (x) = 2n f pqg(x), P (0)

gq (x) = 2C F pgq(x), (A.2)

P (0)
gg (x) = 4C A pgg(x) + 11Ca + 4n f T R

6
δ(1 − x) (A.3)

with T R = 1
2 and

pqq(x) = 2

1 − x
− 1 − x, pqg(x) = 1 − 2x + 2x2, (A.4)

pgq(x) = 2

x
− 2 + x, pgg(x) = 1

1 − x
+ 1

x
− 2 + x + x2. (A.5)

Their corresponding, Mellin-transformed, anomalous dimensions are

γ
(0)
gg ( j) = 2C A

[
−S1( j) + 1

j( j − 1)
+ 1

( j + 1)( j + 2)
+ 11

12

]
− 2

3
n f T R , (A.6)

γ
(0)
gq ( j) = C F

j2 + j + 2

j( j2 − 1)
, γ

(0)
qg ( j) = T R

j2 + j + 2

j( j + 1)( j + 2)
, (A.7)

γ
(0)

qq ( j) = C F

[
−2S1( j) + 1

j( j + 1)
+ 3

2

]
. (A.8)

The splitting functions for twist-two operators in N = 4 SYM are given by [1]

P (0)
λλ (z) = C A

(
1 + z2

(1 − z)+
+ 3(1 − z)

)
, P (0)

φλ (z) = C A3z, (A.9)

P (0)
λg (z) = C A4

(
1 − 2z + 2z2), P (0)

φg (z) = C A6
(
z − z2), (A.10)

P (0)
λφ (z) = C A4, P (0)

φφ (z) = C A
2z

(1 − z)+
. (A.11)

Their corresponding anomalous dimensions are

γ
(0)
gg ( j) = 2C A

[
−S1( j) + 1

j( j − 1)
+ 1

( j + 1)( j + 2)

]
, (A.12)

γ
(0)
gλ ( j) = C A

( j2 + j + 2)

j( j2 − 1)
, γ

(0)
φg ( j) = 6C A

[
1

j + 1
− 1

j + 2

]
, (A.13)

γ
(0)
λλ ( j) = 2C A

[
−S1( j) + 2

j( j + 1)

]
, γ

(0)
λφ ( j) = C A

4

j
, (A.14)

γ
(0)
λg ( j) = 4C A

j2 + j + 2

j( j + 1)( j + 2)
, γ

(0)
φλ ( j) = C A

3

j + 1
, (A.15)

γ
(0)
φφ ( j) = −2C A S1( j), γ

(0)
gφ ( j) = 2C A

[
1

j − 1
− 1

j

]
. (A.16)
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Appendix B. Diagonalization of anomalous dimensions in N = 4 SYM

In [1] it was seen that the matrix γab( j) (a,b = g, λ,φ) is diagonalized by

V =
⎛
⎝ v g −2( j − 1)vq

j( j−1)
( j+1)( j+2)

vφ

v g vq
j

j+1 vφ

v g
2
3 ( j + 1)vq vφ

⎞
⎠ . (B.1)

Namely

V −1γ V =
(

γuni( j − 2) 0 0
0 γuni( j) 0
0 0 γuni( j + 2)

)
, (B.2)

with23

V −1 = ( j + 1)( j + 2)

2(4 j2 − 1)(2 j + 3)

⎛
⎜⎝

(2 j + 3)v−1
g 4 j−1

j+2 (2 j + 3)v−1
g 3 j( j−1)

( j+1)( j+2)
(2 j + 3)v−1

g

−3 2 j+1
j+1 v−1

q 6 2 j+1
( j+1)( j+2)

v−1
q 3 j(2 j+1)

( j+1)( j+2)
v−1

q

(2 j − 1)v−1
φ −4(2 j − 1)v−1

φ 3(2 j − 1)v−1
φ

⎞
⎟⎠ . (B.3)

The explicit expression of γuni up to NNLO is given in [2].

Appendix C. Harmonic sums

The basic definition of standard and nested harmonic sums with general indices are

S±a( j) =
j∑

m=1

(±1)m

ma
, S±a,±b,±c,...( j) =

j∑
m=1

(±1)m

ma
S±b,±c,...(m), (C.1)

where we omit the sign “+”. The nested harmonic sums appearing in (3.20) are defined as

S−a,b,c,...( j) = (−1) j S−a,b,c,...( j) + S−a,b,c,...(∞)
(
1 − (−1) j), (C.2)

S−a,−b,c,...( j) = S−a,−b,c,...( j) + (
1 − (−1) j)S−b,c,...(∞)

[
S−a(∞) − S−a( j)

]
,

Sa,−b,c,...( j) = (−1) j Sa,−b,c,...( j) + (
1 − (−1) j)(Sa,−b,c,...(∞) − S−b,c,...(∞)

[
Sa(∞) − Sa( j)

])
,

Sa,b,−c,...( j) = (−1) j Sa,b,−c,...( j) + (
1 − (−1) j)(Sa,b,−c,...(∞) − S−c,...(∞)

[
Sa,b(∞) − Sa,b( j)

]
− (

Sb,−c,...(∞) − Sb(∞)S−c,...(∞)
)[

Sa(∞) − Sa( j)
])

. (C.3)

Expressions (C.2)–(C.3) are defined for integer values of the arguments (see [58,59]), but can be easily analytically continued to real and
complex j via the methods of Refs. [1,60,59,61].
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