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In this talk we present a family of Wilson loop operators which continuously interpolates between the 1/2
BPS line and the antiparallel lines, and can be thought of as calculating a generalization of the quark–
antiquark potential for the gauge theory onS3

× R. We evaluate the first two orders of these loops per-
turbatively both in the gauge and string theory. We obtain analytical expressions in a systematic expansion
around the 1/2 BPS configuration, and comment on possible all-loop patterns for these Wilson loops.
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1 Overview

One of the most fundamental observables in a quantum field theory is the potential between charged parti-
cles, which in a gauge theory is captured by a long rectangular Wilson loop, or a pair of antiparallel lines
representing the trajectories of infinitely heavy quarks. Such quark-antiquark potential can be also con-
sidered in the maximally supersymmetricN = 4 SYM theory, where “quarks” are modeled by infinitely
massive W-bosons arising from a Higgs mechanism [1].

The expectation value of this observable was calculated very early after the introduction of theAdS/CFT
correspondence by the effective action of a string ending along the curve on the four-dimensionalAdS
boundary, and is in fact a seminal example of the duality itself. In this context of a conformal field the-
ory the potential is fixed to be Coulomb-like and the whole dynamical content is in the corresponding
coefficient, for which the weak and strong coupling (’t Hooftcouplingλ) previously obtained results read

Vqq̄ (λ, L) = − 1

L
c(λ) , c(λ) =







λ
4 π

[

1− λ
2π2

(

ln 2π
λ

− γE + 1
)

+O(λ2)
]

, λ ≪ 1
√
λπ

4K( 1

2
)2

[

1 + a1√
λ
+O

(

1
(
√
λ)2

)]

, λ ≫ 1 .
(1)

Above,L is the distance between the lines,K is the complete elliptic integral of the first kind and the weak-
coupling expansion is the field-theoretical calculation of[2, 3, 4]. On the string theory (strong coupling)
side, the question of evaluating the first quantum string correctiona1 to the classical result of [1]1 is
a hard mathematical problem. The absence of parameters in the problem (the only one,L, being fixed
by conformal invariance) precludes considering special scaling limits in which nice results inσ-model
perturbation theory have been obtained for some relevant string solutions (see, for example, [6, 7] and
reference therein). The coefficienta1 was presented formally in [8, 9], evaluated numerically in [10] to be
a1 = 1.33459 and simplified further in [11] to an analytic one–dimensional integral representation.

∗ Corresponding author vforini@icc.ub.edu
∗∗ nadav.drukker@kcl.ac.uk
1 This is actually theAdS5×S5 counterpart of the so-called “Lüscher term”, which in flat space is a coulombic term proportional

to the number of transverse dimensions [5].
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2 V. Forini and N. Drukker: Generalized quark-antiquark potential in AdS/CFT

It is hard to guess how to connect the two regimes of (1). It is tempting to think about the chance of
exploiting the integrability of the underlying AdS/CFT system and describe correctly the interpolation of
c(λ) between the two regimes of (1), as in the by now most famous example of smooth interpolation for a
non-protected quantity - the cusp anomaly ofN = 4 SYM [12].

Our proposal [13] for addressing the problem relies on the introduction ofextra parametersin the
initial setup. They do not make the perturbative or supergravity calculation any harder and allow, in fact, to
interpolate between protected, much simpler, operators and the desired observable. The first deformation
parameter (indicated below withθ) allows for the two lines to couple to two different scalar fields, and was
already introduced in [1]. In the general expression of the Maldacena-Wilson loop

W =
1

N
TrP exp

[
∮

(iAµẋ
µ +ΦIΘ

I |ẋ|)ds
]

, (2)

we allow two different values of~Θ of relative angleθ on the two long edges of the rectangle. Forθ = 0
the two lines couple to the same scalar field, sayΦ1. Whenθ = π/2 the two lines couple toΦ1 ± Φ2,
which are orthogonal to each-other. Then forθ = π they couple to the fieldΦ2, but with opposite signs,
which means that the lines are effectively parallel, ratherthan antiparallel. In that case the two lines share
eight supercharges and the correlator is trivial. The otherdeformation parameter (indicated below withφ)
is geometric, and a way to illustrate it is to replace the theory onR

4 with the theory onS3 × R (related
by the exponential map). We consider a pair of antiparallel lines separated by an angleπ − φ onS

3. For
φ = 0 the two lines are antipodal and mutually BPS, while forφ → π the lines get very close together.
“Zooming in” to the vicinity of the lines by a conformal transformation we get a situation very similar to
the original antiparallel lines in flat space. An equivalentpicture is that of a cusp in the plane inR4. For
φ = 0 the cusp disappears and the system is that of a single infinitestraight line.

In theS3×R picture the expectation value of the Wilson loop calculatesthe effective potentialV (φ, θ, λ)
between a generalized quark-antiquark pair. In the case of acusp inR4 the loop suffers from logarithmic
divergences [14]. The expectation values of the loop in the two pictures are respectively

〈W 〉 ≈ exp
[

−T V (φ, θ, λ)
]

, 〈Wcusp〉 ≈ exp
[

− log(R/ǫ)V (φ, θ, λ)
]

. (3)

The logarithmic divergence is exactly the same as the lineartime divergence, and the cutoffs of the two
calculations are related bylog(R/ǫ) ∼ T .

The effective potentialV (φ, θ, λ) depends on the ’t Hooft couplingλ = g2N (we do not consider non-
planar corrections) and it can be expanded at weak coupling and at strong coupling in the two relevant
asymptotic expansions

V (φ, θ, λ) =







∑∞
n=1

(

λ
16π2

)n
V (n)(φ, θ), λ ≪ 1

√
λ

4π

∑∞
l=0

(

4π√
λ

)l

V
(l)
AdS(φ, θ), λ ≫ 1 .

(4)

Below, we will present the evaluation of the first two terms ofboth regimes, adopting the picture of a cusp
in R

4 at weak coupling and theS3 × R picture at strong coupling. In particular, at strong coupling the
coefficients in the perturbative expansions are complicated functions of the anglesφ andθ which are given
only implicitly (at the classical level) or in integral form(one–loop). We consider therefore the expansion
of these functions aroundφ = θ = 0. This is an expansion around the1/2 BPS line (related to the circle
via conformal transformation), one of the most simple observables in the theory. As a consequence, we
obtain hereanalytic resultsat both weak and strong coupling.

Focussing on the first coefficients of this expansion, we argue below how they should receive contribu-
tions only from a subset of graphs in perturbation theory – the most connected graphs. At variance with
the case of the circular Wilson loop, where in the Feynman gauge only ladder diagrams contribute and all
interacting graphs combine to vanish [3, 15, 16], we find herean observable which gets contributions only
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from the most interacting graphs. To our surprise, from the explicit calculation of the 2–loop graphs, we
find that the result of these internally–connected graphs issimpler than the internally–disconnected one
and does not involve polylogarithms. Since summing up ladder graphs is rather easy2, it would be very
interesting to explore the 3–loop graphs and see whether a similar pattern persists and perhaps learn how
to calculate the most connected graphs to all orders.

In the rest of the talk we present a summary of our results at weak and strong coupling (Section 2), the
explicit analytic expressions of the expansion around the BPS configuration and a short discussion on how
the relevant coefficients can be evaluated via insertions oflocal operators into the loop (Section 3). The
results obtained are suggestive of the framework in which anefficient description of the weak-to-strong
coupling interpolation for these Wilson loops might take place. Certainly, they represent a set of analytic
data to be of reference if an all-loop calculation will ever emerge.

2 Results at weak and at strong coupling

At weak coupling, we work with the cusp inR4 [18] and allow for an extra angleθ in N = 4 SYM. For
the potentialV (φ, θ) up to two-loops we found3

V (1)(φ, θ) = −2
cos θ − cosφ

sinφ
φ ;

V (2)(φ, θ) = V
(2)

lad (φ, θ) + V
(2)

int (φ, θ) ,

V
(2)

lad (φ, θ) = −4
(cos θ − cosφ)2

sin2 φ

[

Li3
(

e2iφ
)

− ζ(3)− iφ

(

Li2
(

e2iφ
)

+
π2

6

)

+
i

3
φ3

]

,

V
(2)

int (φ, θ) =
4

3

cos θ − cosφ

sinφ
(π − φ)(π + φ)φ ,

(5)

whereV (2) is written as a sum of the contribution of ladder4 and interacting graphs.
The analytic expressions (5) undergo various checks. In theBPS case [21], whereφ = ±θ, then

V (1) = V (2) = 0 as expected. At large imaginary angle, the prefactor of the linear term matches indeed a
quarter of the perturbative expansion of the cusp anomalousdimension [22]. Formulas (5) also reproduce
(and generalize) the antiparallel lines result of [2]. Taking theφ → π limit and specializing to the case
θ = 0, the resulting expression matches the one in [2] with the replacementL → π− φ. It is interesting to
notice that the complicated interacting graphs result in a contribution much simpler than the one due to the
2–loop ladder graph and without polylogarithmic functions5. Indeed it is proportional to the 1–loop result
with a ratio which is just is a polynomial inφ.

At strong coupling, Wilson loops are described by macroscopic strings [1, 23].The classical solutions
are found in global LorentzianAdS5

6 starting from a time-independent ansatz, the boundary conditions
being lines separated byπ − φ on the boundary of AdS andθ onS5. The relevant solutions (written down
in the case ofθ = 0 in [19] and forθ 6= 0 in Appendix C.2 of [24]) can be found for arbitrary values ofφ
andθ as the solutions of transcendental equations. The result for the generalized potential is then found in

2 In [17], an integral equation was written whose solution gives the contribution of ladder graphs to all orders in perturbation
theory.

3 The calculation ofV (1) at one–loop order was done in [19]. Theθ = 0 case is in [17] (see also [20]), where expressions were
written in integral form. Here we have extended the expressions toθ 6= 0 and computed the integrals in closed form.

4 After subtracting the exponentiation of theO(λ) term.
5 Note the uniform transcendentality three (whene2iφ is considered rational) of both interacting and ladder graphs at this order.
6 This is the appropriate strong coupling dual of the gauge theory onS3 × R.
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terms of elliptic integralsK andE 7

V
(0)
AdS(φ, θ) =

√
λ

2π

2
√

b4 + p2

b p

[

(b2 + 1)p2

b4 + p2
K(k2)− E(k2)

]

, (6)

where the elliptic modulusk and the parameterb are functions ofp, q, which are in turn related toφ, θ via
transcendental equations.

Quadratic fluctuations around the classical solution can beconsidered, based on the Nambu-Goto type
action in the static gauge. The mass matrix in the resulting quadratic fluctuation Lagrangian, depend-
ing in general on the two parameters of the problem, becomes diagonal in the two limiting casesθ = 0
(equivalentlyq = 0) andφ = 0 (the limit p ∝ q → ∞). In particular, for these values all the quadratic
fluctuation operators, which have a trivial time dependence, can be written in the form of one-dimensional
single-gapLamédifferential operators8. The latter point is crucial. It makes it possible to trade the explicit
evaluation of the eigenvalue spectrum for the relevant operators with the resolution of the associated dif-
ferential equation (an approach known as Gelfand-Yaglom method, see also the analysis in [13]). Relying
on the knowledge of the solutions to the Lamé spectral problem, all fluctuations determinants can be then
computed analytically. The resulting (regularized) effective actionΓreg, which is the ratio of determinants
including the contribution of the trivial time directionT=

∫

dτ , is then expressed as a single integral9 and
defines the one-loop correction to the generalized quark-antiquark potential as follows (e.g. in theθ = 0
case)

V
(1)
AdS(φ, θ) =

Γreg

T
= − T

2T
lim
ǫ→0

∫ +∞

−∞

dω

2π
ln

ǫ2ω2 det8 Oǫ
F

det5 Oǫ
0 det

2 Oǫ
1 detOǫ

2

. (7)

The explicit expressions for the 1d determinants can be found in [13], here we report as representative the
bosonic contribution

detOǫ
2
∼= − sinh(2K(k22)Z(α2))

ǫ2 ω
√

ω4 + (2 − 4k2)ω2 + 1
, sn(α2|k22) =

√
1+k2

2
+ω2

2

k2

, (8)

whereZ is the Jacobi Zeta function,sn is the Jacobi elliptic sine,k2 is a rational function ofk andω2

a rational function ofk andω. Above,ǫ is the standard infrared regulator curing the linear divergence
expected at the boundary, the determinant is taken at leading order in aǫ ≃ 0 expansion and an explicit
subtraction of the remaining divergences (a regularization artifact) is made.

It is possible to see that both the classical and the one-loopstrong coupling results, (6) and (7)-(8),
reproduce the known expressions for the antiparallel lines, in [1, 23] and [10, 11] respectively, in the
φ → π, θ = 0 limit 10. This happens, as in the weak coupling case, once the replacement of the pole
π − φ → L is performed.

It is straightforward to evaluate the integral (7) numerically for arbitrary values ofφ, as well as in the
analog case ofφ = 0 and arbitraryθ, while, in general, we do not know how to calculate it analytically 11.
To gain more analytic control over the form ofV (1)

AdS we will proceed in a systematic expansion around
θ = 0 andφ = 0, to which the next section is devoted.

3 Near straight-line expansion

In theφ → 0 limit the cusp disappears and we are left with an infinite straight line in R
4, or a pair of

antipodal lines onS3 × R. In this case the analysis indeed simplifies, and allows for explicit analytic
expressions at weak and at strong coupling.

7 The standard linear divergence for two lines along the boundary, canceled as usual by a boundary term, is here removed.
8 See also [25].
9 The integration variableω in (7) is the Fourier-transformedτ variable∂τ = −i ω.
10 This limit translate in the conditionsp → 0 , q2

p
= fixed, k2 = 1/2 on the parameters relevant at strong coupling.

11 See however the results of [11] in the limit of antiparallel lines.
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At weak coupling, the first few orders in the expansion of (5) aroundφ = θ = 0 read

V (1)(φ, θ) = θ2 − φ2 − 1

12
(θ2 − φ2)2 +O((φ, θ)6) ,

V (2)(φ, θ) = − 2π2

3
(θ2 − φ2) +

1

18
(π2(θ2 − φ2)2 + 6(θ2 − φ2)(3θ2 − φ2)) +O((φ, θ)6) .

(9)

All the terms are proportional toθ2 − φ2, and indeed we expectV (φ, θ, λ) to vanish forθ = ±φ, which
are BPS configurations [24].

At strong coupling, an expansion of the leading semiclassical result leads to

V
(0)
AdS(φ, θ) =

1

π
(θ2 − φ2)− 1

8π3
(θ2 − φ2)

(

θ2 − 5φ2
)

+O((φ, θ)6) . (10)

At one–loop order inσ-model perturbation theory, the expansion translates in a small k expansion of all
the elliptic functions in the integrand of (7), and results in a power series of regular hyperbolic functions.
An integration over the logarithm of this series can then always be performed, and gives

V
(1)
AdS(φ, 0) =

3

2

φ2

4π2
+

(

53

8
− 3 ζ(3)

)

φ4

16π4
+

(

223

8
− 15

2
ζ(3)− 15

2
ζ(5)

)

φ6

64π6
+O(φ8) .

V
(1)
AdS(0, θ) =−3

2

θ2

4π2
+

(

5

8
− 3 ζ(3)

)

θ4

16π4
+

(

1

8
+

3

2
ζ(3)− 15

2
ζ(5)

)

θ6

64π6
+O(θ8) .

(11)

Focus now on the expansion coefficients aroundφ = θ = 0, for example the first (quadratic) one

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1 ,

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1 .

(12)

The expansion around the 1/2 BPS straight line can be viewed as adeformationof the straight line itself,
and as such it can be written in terms of insertions of local operators into the Wilson loop. One can write
the latter as a straight (φ = 0) line in thex1 direction with arbitraryθ

W =
1

N
TrP

[

exp
(

∫ 0

−∞

(iA1 +Φ1)ds
)

exp
(

∫ ∞

0

(iA1 +Φ1 cos θ +Φ2 sin θ)ds
)

]

, (13)

such that it couples to the scalarΦ1 for all s < 0 and to the linear combinationΦ1 cos θ + Φ2 sin θ for
s > 0 12. Using that13

∂2

∂θ2
V (0, 0) = − 1

ln(R/ǫ)

∂2

∂θ2
log 〈W 〉 ≈ − 1

ln(R/ǫ)

∂2

∂θ2
〈W 〉, (14)

one finds for the coefficient in (12)14

1

2

∂2

∂θ2
V = − 1

ln(R/ǫ)

1

2N

∫ ∞

0

ds1

∫ ∞

0

ds2

〈

TrP
[

Φ2(s1)Φ2(s2) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

+
1

ln(R/ǫ)

1

2N

∫ ∞

0

ds1

〈

TrP
[

Φ1(s1) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

.

(15)

12 We fixed the parameterization such that|ẋ| = 1, so we can ignore the difference betweenxµ(si) andsi.
13 The first identity is the definition ofV . The second follows from∂

∂θ
〈W 〉 = 0 and from

〈

W |φ=θ=0

〉

= 1.
14 The variation with respect toθ is somewhat simpler than the the variation with respect toφ, since the latter modifies the path

of the loop and is captured by insertions of the field strengthFµν as well as its derivatives into the loop, while the former only
introduces local scalar field insertions.
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Examining the right-hand side is suggestive of a pattern expected to hold for all values of the coupling.
One notices that graphs which involve propagators between the Wilson loop and itself, and not the inser-
tions, will vanish due to the BPS nature of the straight line.At one and two-loop order, only graphs with
at most one internally connected component contribute, as the explicit expansion ofV (2)

int andV (2)
lad in (5)

easily confirms. The interesting observation is that this argument should apply also to higher order graphs.
Only graphs with one set of connected internal lines attached to the Wilson loop contribute to this term15.
Regarding further expansion coefficients, the one ofθ4 will involve for example graphs with at most two
disconnected internal components, and so on. Since by explicit calculation we found that the connected
(interacting) graphs at 2–loop order had a simpler (withoutpolylogarithms) functional form than the dis-
connected (ladder) ones, it would be certainly interestingto see if this structure persists at higher orders in
perturbation theory and whether it is possible to guess the answer for the most connected graphs at all loop
order, and reproduce the strong coupling results in (12).

Acknowledgements We thank the organizers of the XVII European Workshop on String Theory in Padua for creating
an enjoyable and stimulating meeting.
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