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Abstract: We compute the planar finite size corrections to the spectrum of the

dilatation operator acting on two-impurity states of a certain limit of conformal

N = 2 quiver gauge field theory which is a ZM -orbifold of N = 4 supersymmetric

Yang-Mills theory. We match the result to the string dual, IIB superstrings propa-

gating on a pp-wave background with a periodically identified null coordinate. Up to

two loops, we show that the computation of operator dimensions, using an effective

Hamiltonian technique derived from renormalized perturbation theory and a twisted

Bethe ansatz which is a simple generalization of the Beisert-Dippel-Staudacher [1]

long range spin chain, agree with each other and also agree with a computation of the

analogous quantity in the string theory. We compute the spectrum at three loop or-

der using the twisted Bethe ansatz and find a disagreement with the string spectrum

very similar to the known one in the near BMN limit of N = 4 super-Yang-Mills

theory. We show that, like in N = 4, this disagreement can be resolved by adding a

conjectured “dressing factor” to the twisted Bethe ansatz. Our results are consistent

with integrability of the N = 2 theory within the same framework as that of N = 4.
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1. Introduction

The idea that the planar limit of N = 4 supersymmetric Yang-Mills theory and its

string theory dual, the IIB superstrings propagating on the AdS5×S5 background,

could both be exactly integrable has attracted a good deal of attention [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Both ideas have seen significant development

and there is now some hope of an exact solution of one or both theories. This could

give a remarkably detailed check of the AdS/CFT correspondence [19, 20, 21] at the

level of matching planar Yang-Mills theory to non-interacting strings.

In particular, the gauge theory results have progressed to the point where inte-

grability has been checked explicitly up to three loop order [7] and there are now

proposals for integrable systems in various sectors of the theory which would be equiv-

alent to planar Yang-Mills theory to all orders in its loop expansion [7, 1, 22, 23].
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If string theory on AdS5 × S5 is integrable, the theory on simple orbifolds of

that space would also be expected to be integrable. In the Yang-Mills dual, orb-

ifolding reduces the amount of supersymmetry and this gives some hope of finding

integrability in theories with less supersymmetry[24, 25, 26, 27]. In this Paper, we

shall consider the issue of integrability of an N = 2 supersymmetric SU(N)M quiver

gauge theory [28] which can be obtained as a particular ZM -orbifold of N = 4 [29].

This system is also conjectured to be integrable using a twisted version of the Bethe

ansatz [30]. Its string theory dual is IIB superstrings on the space AdS5×S5/ZM .

Thus far, explicit solutions of string theory on these backgrounds are not known.

Quantitative results are limited to the supergravity limit, or to some large quantum

number limits [31, 32, 33, 27]. For example, a Penrose limit of AdS5×S5/ZM , together

with a large order limit of the orbifold group, M → ∞ can be taken in such a way

that it obtains a plane-wave [34] with a periodically identified null coordinate. The

IIB superstring can be solved explicitly in this background. Mukhi, Rangamani and

Verlinde (MRV) [29] observed that it is possible to find the Yang-Mills dual of this

theory by taking an analog of the BMN limit [35, 36, 37] of the N = 2 quiver gauge

theory. It is a double-scaling limit where M → ∞ and N → ∞ with the “effective

string coupling”, g2 =
M
N
, and light-cone radius1

R− =
1

2
α′

√

g2YM

N

M
≡ 1

2
α′
√
λ′ (1.1)

held finite.

In that limit, they found a beautiful matching of the discrete light-cone quantized

(DLCQ) free string spectrum and planar conformal dimensions of the appropriate

Yang-Mills operators. Subsequently, some of the simplifying aspects of DLCQ have

been exploited to examine string loop corrections in this model [27].

Our aim in this Paper is to present a computation of the leading finite size cor-

rection to the MRV limit. We will concentrate on planar Yang-Mills theory and

non-interacting strings. In the course of our work, we will give an explicit demon-

stration that the twisted integrability ansatz for the N = 2 gauge theory indeed

matches the diagrammatic computation of operator dimensions to two loop order.

We will compute the 1/M corrections to the spectrum of two-impurity operators

to three loop order, λ′3, in both the gauge theory and the DLCQ string theory. We

shall find perfect agreement to two loop order and a disagreement at three-loop order.

A three-loop order disagreement is already well-known to occur in the N = 4

theory [5, 7, 1]. We can check that, in the appropriate limit, our result matches the

one for N = 4.
1This is similar to the usual definition of λ′ in the BMN limit of N = 4 super-Yang-Mills theory,

1

(α′p+)2
=

g2
YM

NM

(kM)2
≡ λ′

k2
or 2p+ =

k

R−

.
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We have tested the statement in Ref. [30] that the orbifolding of N = 4 gauge

theory results in the modification of the Bethe ansatz by a simple twist. Our con-

clusion is that it works at least to two-loop order, and we have strong evidence that

it also works at three-loop order. 2

In addition, we construct the dressing factor [10] that must be taken into account

to find the factorized S-matrix [12] when the twisted Bethe ansatz is applied to the

string sigma model on the orbifolded background in the near-MRV limit.

1.1 Beisert-Dippel-Staudacher ansatz for N = 4

In its most advanced form, the result of integrability of N = 4 super-Yang-Mills

theory is a rather simple proposal for computing dimensions of operators. The typical

operators are composites of the scalar fields Φi(x), i = 1, ..., 6. For simplicity, we

shall concentrate on the su(2) bosonic sector. In that sector, one restricts attention

to four of the scalars in the complex combinations Z = Φ1 + iΦ2 and Φ = Φ3 + iΦ4

and the composite operators

Tr (ΦZZZΦΦZΦZZZ...)

At the tree level, since scalar fields have dimension one, the dimension of this op-

erator is given by the number of scalars that it contains (we will usually call this

L). This spectrum is degenerate, in that it is the same for whatever scalar fields are

used to make the composite operator. The problem at hand is to evaluate quantum

corrections to the classical dimensions. These corrections should resolve the degen-

eracy. They are obtained by finding linear combinations of the composite operators

which diagonalize the action of the dilatation operator. The analogy of this problem

with diagonalizing the Hamiltonian of a spin chain, and the fact that, in the leading

order of perturbation theory, it is identical to the integrable Heisenberg spin chain

was observed by Minahan and Zarembo [2].

There is a recent proposal which, upon assuming that planar Yang-Mills theory

is integrable, gives an elegant presentation of the problem of computing operator

dimensions to all orders in the coupling constant [1]. We emphasize at this point,

that we shall only use this proposal up to three loop order, where its equivalence to

renormalized Yang-Mills perturbation theory has been firmly established. In fact,

we shall mainly be interested in a twisted generalization of it, which is conjectured

to describe a ZM -orbifold of N = 4 super-Yang-Mills theory.

In the proposal, the problem for computing eigenvalues of the dilatation operator

is summarized in three equations. First, it makes use of the Bethe equation for M
2An explicit computation of string energies on orbifolds using twisted Bethe equation was first

considered by Ideguchi [38]. He computed the spectrum of infinite length operators of N = 0, 1, 2

planar orbifold field theories to one loop order and showed that they matched the semi-classical

spectra of circular string solutions of the strings in AdS5×S5/ZM .
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magnons on a chain of length L:

eipjL =

M
∏

l=1 ; l 6=j

ϕj − ϕl + i

ϕj − ϕl − i
=

M
∏

l=1 ; l 6=j

S(pj, pl) l = 1, . . . ,M (1.2)

where pi are the magnon momenta and ϕi are the corresponding rapidities. The

factorization to 2-body S-matrices S(pi, pj) is also shown. The momenta in (1.2) are

constrained by the “level-matching condition”

M
∑

i=1

pi = 0 mod 2π (1.3)

which results from the periodicity of the spin chain. Then, there is the BDS “all-

loop ansatz” [1], which are the remaining two equations. One relates momenta and

rapidities, which depends on the ’t hooft coupling λ,

ϕ(pj) =
1

2
cot

pj
2

√

1 +
λ

π2
sin2 pj

2
. (1.4)

The other gives the spectrum of dimensions as a function of the momenta,

∆ = L−M+
M
∑

j=1

√

1 +
λ

π2
sin2 pj

2
(1.5)

The program of computing operator dimensions is implemented as follows. Eqs. (1.2)

and (1.4) should first be solved to find pi. The solutions must depend on λ and can in

principle be found at least order-by-order in an expansion in λ. Then, the solutions

must be inserted into Eq. (1.5) to find the operator dimensions. The statement is

that this procedure should yield the dimensions of this class of operators in N = 4

super-Yang-Mills theory. Explicit computations and comparison with diagrammatic

perturbation theory have shown that this procedure agrees with renormalized Yang-

Mills perturbation theory to at least third order, and is conjectured to do so for

higher orders. There is a number of quite non-trivial checks of this fact which are

outlined in Ref. [1].

1.2 N = 2 quiver gauge theory as orbifolded N = 4

Before we go on to discuss integrability of the N = 2 theory, we pause to review some

facts about the structure of the theory and the procedure for computing operator

dimensions there.

The N = 2 quiver gauge theory with gauge group SU(N)M is obtained from

N = 4 with gauge group SU(MN) by a well-known projection. Details of this

construction can be found in the literature [28, 24, 39]. The conventions and notation

that we use are those of Refs. [29],[27] and details can be found there.
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The procedure for obtaining the quiver gauge theory from N = 4 begins by

embedding the orbifold group ZM , which is a subgroup of the R-symmetry group,

into the gauge group. We will assume that ZM is in the su(2) subgroup of the su(4)

R-symmetry so that orbifolding preserves N = 2 supersymmetry. If γ is an element

of ZM , R(γ) is the corresponding element of the R-symmetry group and U(γ) is a

U(MN) × U(MN) matrix containing N copies of the regular representation of ZM ,

we consider that subset of the N = 4 fields which obey the constraint

X = U(γ) [R(γ) ◦X ]U †(γ) (1.6)

This is accomplished by setting to zero all of those components which do not obey

this condition. In the present case, choosing U(γ) having the N ×N blocks

U(γ) =















1̄ 0 0 0 ...

0 ω 0 0 ...

0 0 ω2 0 ...

. . . . ...

0 0 0 ... ωM−1















where ω = e
2πi
M and the action

R(γ)Z = ωZ , R(γ)Φ = Φ

we see that the surviving components of the two scalar fields which are of interest

to us are N × N matrices which are embedded in MN × MN N = 4 variables as

follows

Z =



















0 0 0 ... AM

A1 0 0 0 ...

0 A2 0 0 ...

0 0 A3 0 ...

. . . . ...

0 0 0 0 ...



















, Z̄ =















0 Ā1 0 0 ...

0 0 Ā2 0 ...

0 0 0 Ā3 ...

. . . . ...

ĀM 0 0 0 ...















(1.7)

Φ =















Φ1 0 0 0 ...

0 Φ2 0 0 ...

0 0 Φ3 0 ...

. . . . ...

0 0 0 ... ΦM















, Φ̄ =















Φ̄1 0 0 0 ...

0 Φ̄2 0 0 ...

0 0 Φ̄3 0 ...

. . . . ...

0 0 0 ... Φ̄M















(1.8)

It is convenient to think of the blocks as being labelled periodically, AM+1 = A1, etc.

The gauge group is [SU(N)]M with elements labelled by UI , I = 1, ...,M and each

field transforms as

AI → UIAIU
†
I+1 , ĀI → UI+1AIU

†
I (1.9)

ΦI → UIΦIU
†
I , Φ̄I → UIΦ̄IU

†
I (1.10)
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States of the su(2) sector of N = 4 super-Yang-Mills were words made from Z and

Φ,

Tr(ZZΦZΦZZZZΦZZZ...)

Since the remaining gauge transformations (1.9) and (1.10) now commute with U(γ),

there are additional gauge invariant twisted operators

Tr
[

U(γ)ℓZZΦZΦZZZZΦZZZ...
]

, ℓ = 0, 1, ...,M − 1 (1.11)

These are translated into words with (AI ,ΦI) by substituting (1.7) and (1.8). For

example,

TrZJ → MTr
[

(A1A2...AM)k
]

(1.12)

Here, the trace would vanish unless the total number of fields is given by J = kM

with k an integer. In the string theory dual, which is DLCQ strings, the integer k

is the number of units of light-cone momentum and the operator (1.12) corresponds

to the vacuum state of the string sigma model in the sector with discrete light-cone

momentum 2p+ = k/R−.

States with impurities are made by inserting ΦI into the trace. Because of the

possible twists of the trace, there are more possible states with these insertions than

occurred in the parent N = 4 theory. For example, in N = 4, the cyclic property of

the trace implies that there is only one possible one-impurity state,

TrΦZJ

In the analogous operator of theN = 2 theory, there areM inequivalent one-impurity

states

Tr
[

A1...AI−1ΦIAI ...AM (A1...AM )k−1
]

, I = 1, ...,M (1.13)

In the string dual, the extra degrees of freedom that result from this richer structure

turns out to be related to the wrapping number of the string world sheet on the

compact null direction. A naive Fourier transform of the 1-impurity state, assuming

that the are kM positions that the impurity could take up is

kM
∑

I=1

ei
2π
kM

nITr
[

A1...AI−1ΦIAI ...AM(A1...AM)k−1
]

, n = 0, 1, ..., kM − 1

The degree of freedom in the dual string theory corresponding to the wave-number

n in this Fourier transform is the world-sheet momentum. However, cyclicity of the

trace implies that n = k · ℓ where ℓ is an integer. This is the level-matching condition

and the integer ℓ is dual to the wrapping number of the string around the periodic

null direction. Once we realize that n = k ·ℓ, we would recover the twisted expression

(1.13), and identify the string wrapping number ℓ with the twist in (1.13).

If the orbifold symmetry group is not spontaneously broken, ℓ is a good quantum

number of the states of the theory and operators with different values of ℓ do not mix
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with each other. In addition it is known that [39], in the planar limit, the correlation

functions of un-twisted operators of the N = 2 theory are identical to those of their

parent operators in N = 4 super-Yang-Mills theory once one makes the replacement

λ → λ/M . This means that, for the untwisted operators, with ℓ = 0 in Eq. (1.11),

the dimension should be identical to that in N = 4 super-Yang-Mills theory. This

will give a consistency check for some of our computations in the following.

For the most part, in this Paper we will be interested in two-impurity operators

of the form

OIJ = Tr
(

A1...AI−1ΦIAI ...AM(A1....AM)pA1...AJ−1ΦJAJ ...AM(A1....AM)k−p−2
)

(1.14)

where we take I and J as running from 1 to kM . Distinct operators are enumerated

by taking I ≤ J . The number of scalar fields in this operator is kM + 2. The cyclic

property of the trace implies the conditions

OI,kM+1 = O1I (1.15)

and

OI+M,J+M = OI,J (1.16)

which will be important to us.

1.2.1 The dilatation operator

Just as in N = 4 supersymmetric Yang-Mills theory [40, 3], the computation of

dimensions of the operators of interest to us can be elegantly summarized by the

action of an effective Hamiltonian. This technique was invented in Ref. [40]. The

N = 4 dilatation operator is known explicitly in terms of its action on fields up

to two loop order, and implicitly to three loop order [3, 41, 42]. That part which

is known explicitly can be projected, using the orbifold projection, to obtain a di-

latation operator for the N = 2 theory. Here, we shall be interested in computing

dimensions of operators in the scalar su(2) sector, so we only retain the parts of the

operator which will contribute there. They can be obtained by simply substituting

the matrices in Eqs. (1.7) and (1.8) into the analogous terms of the N = 4 operator.

The result is

D = Dtree +D1 loop +D2 loops (1.17)

where

Dtree =
M
∑

L=1

Tr
(

ALĀL + ΦLΦ̄L

)

(1.18)

D1 loop = −g2YMM

8π2

M
∑

L=1

Tr(ALΦL+1ĀLΦ̄L−ALΦL+1Φ̄L+1ĀL−ΦLALĀLΦ̄L+ΦLALΦ̄L+1ĀL)

(1.19)
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D2 loops =
g4YMNM2

64π4

M
∑

L=1

Tr(ALΦL+1ĀLΦ̄L −ALΦL+1Φ̄L+1ĀL − ΦLALĀLΦ̄L + ΦLALΦ̄L+1ĀL)

+
g4YMM2

128π4

M
∑

L=1

Tr(ΦLALĀLALΦ̄L+1ĀL − ALΦL+1ĀLALΦ̄L+1ĀL + ALΦL+1AL+1Φ̄L+2ĀL+1ĀL

−ΦLALAL+1Φ̄L+2ĀL+1ĀL + ALΦL+1ĀLΦ̄LĀL−1AL−1 − ΦLALĀLΦ̄LĀL−1AL−1

+ΦLALΦ̄L+1ĀLALĀL − ALΦL+1Φ̄L+1ĀLALĀL + ALΦL+1ĀLALĀLΦ̄L − ΦLALĀLΦ̄LALĀL

−ΦLALĀLALĀLΦ̄L + ΦLALAL+1ĀL+1Φ̄L+1ĀL −ALΦL+1AL+1ĀL+1Φ̄L+1ĀL

+ΦLALĀLĀL−1Φ̄L−1AL−1 −ALΦL+1ĀLĀL−1Φ̄L−1AL−1 + ALΦL+1ĀLΦ̄LALĀL)

+
g4YMM2

128π4

M
∑

L=1

Tr(ΦLALΦ̄L+1ΦL+1Φ̄L+1ĀL − ALΦL+1Φ̄L+1ΦL+1Φ̄L+1ĀL + ΦLALΦL+1ĀLΦ̄LΦ̄L

−ΦLALΦL+1Φ̄L+1ĀLΦ̄L + ALΦL+1Φ̄L+1Φ̄L+1ĀLΦL − ΦLALΦ̄L+1Φ̄L+1ĀLΦL

−ALΦL+1Φ̄L+1ĀLΦLΦ̄L + ALΦL+1Φ̄L+1ΦL+1ĀLΦ̄L + ΦLALΦ̄L+1ĀLΦLΦ̄L

−ΦLALΦ̄L+1ΦL+1ĀLΦ̄L + ALΦL+1ΦL+1Φ̄L+1ĀLΦ̄L − ALΦL+1ΦL+1ĀLΦ̄LΦ̄L

+ΦLALΦ̄L+1ĀLΦ̄LΦL − ALΦL+1Φ̄L+1ĀLΦ̄LΦL + ALΦL+1ĀLΦ̄LΦLΦ̄L − ΦLALĀLΦ̄LΦLΦ̄L)

(1.20)

The number of loops which contribute to each order is exhibited in the power of

the Yang-Mills coupling constant g2YM which precedes each term. Later we will use

either the parent N = 4 ’t hooft coupling,

λ ≡ g2YMNM

which is important for the planar limit, or the modified ’t hooft coupling

λ′ ≡ g2YMN

M
=

λ

M2

which is held constant in the MRV limit. In the latter limit, N and M are both put

to infinity so that λ′ and the effective string coupling,

g2 ≡
M

N

are held constant. The effective string coupling controls the appearance of non-planar

diagrams and, to get the planar limit, which we will for the most part be interested

in, it must also be put to zero. Inspection of the 1-loop and 2-loop dilatation oper-

ators shows that, in order for this MRV limit to make sense, their action should be

suppressed by some powers of 1
M

further to those exhibited in Eqs. (1.19) and (1.20).

We shall see that this is indeed the case.

The action of the operators in Eqs. (1.18), (1.19) and (1.20) on a composite of

the form (1.14) is implemented with the following procedure.

We note that each term in the dilatation operators contains a few ĀI ’s and Φ̄I ’s.

We take a term in D, and we Wick-contract the ĀI ’s and Φ̄I ’s which appear in that

term with each occurrence of AI and ΦI in the trace (1.14) according to the rules
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〈[

ĀI

]

ab
[AJ ]cd

〉

0
= δIJδadδbc ,

〈[

Φ̄I

]

ab
[ΦJ ]cd

〉

0
= δIJδadδbc

Here we are treating the fields as if they are simply matrices in a Gaussian ma-

trix model, ignoring their space-time dependence and simply substituting them with

other fields according to the rules of performing the contractions. The space-time de-

pendence, that of course must be taken into account in order to compute dimensions

in renormalized perturbation theory, has already been taken care of in formulating

the effective Hamiltonian.

In doing these contractions with the first term in (1.17), the tree-level operator,

we find the tree level contribution to the conformal dimension. The procedure merely

counts the number of scalar fields, giving kM + 2 in the case of (1.14).

When we Wick-contract with the 1-loop and 2-loop terms, (1.19) and (1.20),

once all possible contractions are done, we find a superposition of operators where

the total number of fields in each operator is the same and the number of impurities

in each operator is still two, but the positions of the impurities have been shifted.

All of the operators in the superposition have the same tree-level dimensions. It

means that, at the outset, we could have began with linear combinations of them.

We could then have chosen the coefficients in the linear combinations in such a way

as to diagonalize the action of the dilatation operator. Upon doing this, we would

find the eigenvalues, i.e. the dimensions, and the linear combinations that we find

would be the scaling operators themselves.

Once the Wick contractions are explicitly performed, the action of the one loop

dilatation operator on the operators (1.14) is given by two equations, depending on

whether the impurities lie next to each other or not

D1 loop ◦OIJ =
λ′M2

8π2

(

−OI+1,J −OI−1,J +4OIJ −OI,J+1−OI,J−1

)

, I < J (1.21)

D1 loop ◦OII =
λ′M2

8π2

(

− OI−1,I − OI,I+1 + 2OII

)

(1.22)

At two loops, the action of the dilation operator results in three equations,

D2 loops ◦OIJ =
λ′2M4

128π4

(

−OI−2,J − OI+2,J + 4OI−1,J + 4OI+1,J

− OI,J−2 − OI,J+2 + 4OI,J−1 + 4OI,J+1 − 12OIJ

)

(1.23)

for J − I ≥ 2 and

D2 loops ◦OII =
λ′2M4

128π4

(

− OI−2,I + 4OI−1,I − OI−1,I−1

− 4OI,I + 4OI,I+1 −OI+1,I+1 −OI,I+2

)

(1.24)

D2 loops ◦OI,I+1 =
λ′2M4

128π4

(

− OI,I+3 + 4OI+1,I+1 + 4OI,I+2 − 14OI,I+1
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+ 4OI,I + 4OI−1,I+1 −OI−2,I+1

)

(1.25)

where the second and the third formulae represent, respectively, the nearest (I =

J) and the next-to-nearest (J = I + 1) neighbor cases. We see explicitly that

the dilatation operator is acting like a lattice differential operator on the matrix

chains. The result is an effective spin-chain Hamiltonian. The problem of finding the

eigenvalues of this Hamiltonian is integrable and can be attacked using the twisted

Bethe ansatz, which we summarize in the next subsection.

1.3 Twisted Bethe ansatz for the orbifold

The conjecture [30] is that the spectrum of operator dimensions in the su(2) sector

of the N = 2 quiver theory which is a ZM orbifold of N = 4 is found by including

a simple twist in the Bethe equation (1.2). The other equations, (1.4) and (1.5) are

applied unchanged.

For example, for two magnons, the twisted Bethe equations are

eip1(kM+2) = ωℓ ϕ1 − ϕ2 + i

ϕ1 − ϕ2 − i
, eip2(kM+2) = ωℓ ϕ2 − ϕ1 + i

ϕ2 − ϕ1 − i
(1.26)

Here, as in (1.2), L = kM + 2 is the length of the chain. The twist is the M ’th root

of unity factor ωℓ in front the right-hand-sides of (1.26). ω = e
2π
M

i and the integer

ℓ is the charge of the state under the U(1) symmetry which is used in the orbifold

projection. In the dual string theory, it coincides with the wrapping number of the

string world-sheet on the compact null direction. Because of (1.30), it is related

to the total world-sheet momentum ei(p1+p2) = ωℓ. As in the N = 4 theory, the

momenta and rapidities are still related by

ϕ1 =
1

2
cot

p1
2

√

1 +
λ

π2
sin2 p1

2
, ϕ2 =

1

2
cot

p2
2

√

1 +
λ

π2
sin2 p2

2
. (1.27)

and the spectrum is

∆ = kM +

√

1 +
λ

π2
sin2 p1

2
+

√

1 +
λ

π2
sin2 p2

2
(1.28)

Multiplying the two equations in (1.26) gives the condition on the total momen-

tum

ei(p1+p2)kM = 1 → p1 + p2 =
2π

kM
s , s = integer (1.29)

The “level-matching condition” (1.3) is replaced by

M
∑

i=1

pi =
2π

M
· ℓ , ℓ = integer (1.30)

and it implies

s = k · integer (1.31)
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It is clear from the form of the equations (1.26) and (1.27) that the momenta,

which are their solutions, generally depend on λ and the parameter kM . It is also

clear that the momenta which solve them must be small when M is large, pi ∝ 1
kM

.

This is also needed for consistency of the MRV limit where M → ∞ and λ → ∞
in such a way that λ′ = λ

M2 remains finite. Equation (1.27) also implies that ϕ1

and ϕ2 are both of order M in that limit. Later in this Paper, we shall consider the

leading corrections to this limit in an expansion in 1/M . In the remainder of this

subsection, for a warmup exercise, we will seek the solutions for pi in the MRV limit,

where M → ∞. In this limit, we hold λ′ = λ
M2 finite.

Even in this limit, we shall not be able to solve equations (1.26) and (1.27)

for arbitrary values of λ′. We will be limited to considering a Taylor expansion of

Eq. (1.27) in λ′ and then seeking momenta which are also expressed as expansions

in λ′. We begin with the leading order where we simply set λ′ to zero in Eq. (1.27).
3 Then, it is easy to see that the momenta must be given by

p1 =
2π

kM
n1 +O

(

1

M2

)

, p2 =
2π

kM
n2 +O

(

1

M2

)

(1.32)

where n1 and n2 are integers. Level matching gives the further condition

n1 + n2 = k · ℓ

where ℓ is an integer. Then Eq. (1.28) implies

∆ = kM +

√

1 + λ′
n2
1

k2
+

√

1 + λ′
n2
2

k2
(1.33)

which agrees beautifully with the spectrum of DLCQ free strings on the plane-wave

background.

1.4 Coordinate Bethe ansatz

There is another, equivalent procedure which is sometimes convenient, called the

coordinate Bethe ansatz. Since we will make use of it later, we shall review it here

for the special case of a two-impurity operator.

Consider the dilatation operator in the form of the difference operators (1.21)-

(1.25) which we derived using the effective Hamiltonian. Finding the spectrum of

the dilatation operator entails finding the eigenstates and eigenvalues of the combi-

nation of difference operators (1.21)-(1.25), operating on the space of two-impurity

operators. Here, for illustration, we will review the argument that, to order λ′, this

is equivalent to the task of solving the twisted Bethe ansatz which was set out in

3We do this by setting λ to zero, but we must be careful to see, a posteriori, that indeed

pi ∼ O
(

1

M

)

, so that setting λ = 0 is equivelent to setting λ′ = 0. We shall see this shortly, in

Eq. (1.32).
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the previous sub-section. Later on in this Paper, we will show that this also holds

to order λ′2 (and then we will assume that it holds to order λ′3).

To begin, we take the linear super-position of two-impurity operators

O ≡
∑

1≤I≤J≤kM

ΨIJOIJ (1.34)

Our task is to find the coefficients ΨIJ in this series so that this operator is an

eigenstate of the dilation operator. If we impose the same periodicity conditions on

ΨIJ as the operators OIJ obey in (1.15), the action of the dilatation operator as

difference operators in (1.21)-(1.25) is self-adjoint4 and we can recast the problem of

diagonalizing dilatations as the problem of finding eigenvalues for the action of the

difference operators acting on the wave-functions ΨIJ .

The coordinate Bethe ansatz was used in refs. [38] and [27] to find the spectrum

of the one-loop operator in the large M limit. To introduce the technique, we shall

review the essential parts of the argument here. At one-loop order, the eigenvalue

equation is

E(1)ΨIJ = g2 (−ΨI+1,J −ΨI−1,J + 4ΨIJ −ΨI,J+1 −ΨI,J−1) I < J (1.35)

E(1)ΨIJ = g2 (−ΨI−1,I −ΨI,I+1 + 2ΨII) I = J (1.36)

where g2 = g2YMNM/(8π2). To look for a solution, we make the plane-wave ansatz

ΨIJ = µI
1µ

J
2 + S0(µ2, µ1)µ

I
2µ

J
1 (1.37)

where µ1 = eip1 and µ2 = eip2. Then, Eq. (1.35) yields the eigenvalue,

E(1) =
λ′M2

2π2

(

sin2 p1
2

+ sin2 p2
2

)

(1.38)

which is the expansion to first order in λ′ of the square roots in (1.28). The problem

of finding the allowed values of (p1, p2) remains.

Then, (1.36) yields the equation

S0(µ2, µ1) = −µ1

µ2

µ1µ2 − 2µ2 + 1

µ1µ2 − 2µ1 + 1
(1.39)

where it should be noticed that S0(µ1, µ2)
−1 = S0(µ2, µ1).

The boundary condition ΨI,kM+1 = Ψ1,I gives

µkM
2 = S0(µ2, µ1) , µkM

1 = S0(µ2, µ1)
−1 (1.40)

Eqs. (1.40) together with (1.39) are identical to the twisted Bethe equations

(1.26), together with (1.27) with λ′ set to zero. The level-matching condition is

obtained by noticing that

ΨI+M,J+M = ΨIJ (1.41)
4We note that the detailed form of the contact terms in the difference operators are essential in

demonstrating the self-adjoint property.
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implies

(µ1µ2)
M = 1 (1.42)

1.5 Outline

In the remainder of this Paper, we shall compute the finite size corrections to the

spectrum of dimensions of the two-impurity operators in the su(2) bosonic sector that

we have been discussing so far. We will use the twisted Bethe ansatz, summarized in

Eqs. (1.26)-(1.28) and will compute to three-loop order. We also will check explicitly

that the coordinate Bethe ansatz technique which used the difference operator form

of the dilatation operator exhibited in Eqs. (1.21)-(1.25) indeed produces the same

result to two loop order.

Then, we will adopt the string theory computation which was originally used in

Ref. [5] for the near pp-wave limit of AdS5×S5 to the present case of the near DLCQ

pp-wave limit of AdS5 × S5/ZM . This is the string theory dual of the “near”-MRV

limit of the N = 2 theory. We compute the spectrum of the string in this case,

expanded to order 1/M . On the string side, the expression that is obtained is exact

to all orders in λ′. When expanded to third order, we find beautiful agreement with

the N = 2 gauge theory prediction up to second order in λ′, i.e. two loops, and

disagreement at third, or three loop order.

This disagreement is similar to the one which is found in the N = 4 theory in

Ref. [7, 1]. In fact, in the de-compactified limit, k → ∞, R− → ∞ with p+ = k/R−

fixed, it approaches that result.

In addition, we show that, like in the case of N = 4 super-Yang-Mills theory,

the discrepancy can be taken into account by a dressing factor [12].

2. Finite size corrections at one loop

In order to calculate the first finite size corrections to Eq.(1.32) we make the following

general ansatz for the magnon momenta

p1 =
2n1π

kM
+

Aπ

M2

p2 =
2n2π

kM
− Aπ

M2
(2.1)

Recall that we solve at one loop order by simply setting λ′ → 0 in the equation for

the rapidity (1.27), so that it is given by

ϕj =
1

2
cot

pj
2
. (2.2)

By requiring that the Bethe equations (1.26) are satisfied by (2.1) at both leading

and next to leading order in 1
M

one gets the following value for A

A =
2 (n2

1 + n2
2)

k2(n2 − n1)
(2.3)
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We can then insert this solution in the expression (1.38) for the anomalous dimension

in terms of pi and expand in a 1
M

series. The first finite size correction to the planar

anomalous dimension reads

∆1 loop =
λ′

2

[

n2
1 + n2

2

k2
−
(

2

kM

)

(n2
1 + n2

2)

k2
+O

(

1

M2

)]

(2.4)

As a first consistency check, it is easy to verify that when the N = 4 level-matching

condition n2 = −n1 is imposed – this gives the result for the unwrapped, ℓ = 0

state – recalling that J = kM and the appropriate re-definition of λ′, the N = 4

result [7, 1] is recovered.

The zeroth order term in (2.4) equals the one-loop free string spectrum in the

plane-wave limit and the first finite size correction, 1
M

order, will be compared with

the corresponding 1/R2 correction on the string side of the duality.

3. Two loops

To find the correction to the dimension at two loops, we must expand (1.27) to linear

order in λ′ and then use it in (1.26) to find the momenta, also to linear order in λ′.

The resulting twisted Bethe equation reads

eip2(kM+2) = ei(p1+p2)
1
2
cot p2

2
+ λ

8π2 sin p2 − 1
2
cot p1

2
+ λ

8π2 sin p1 + i
1
2
cot p2

2
+ λ

8π2 sin p2 − 1
2
cot p1

2
+ λ

8π2 sin p1 − i
(3.1)

The simultaneous expansion of the momenta in λ′ and 1
M

will have the form

p1 =
2n1π

kM
+

Aπ

M2
+ λ′Bπ

M2
+ ... , p2 =

2n2π

kM
− Aπ

M2
− λ′Bπ

M2
+ ... (3.2)

where A, given in Eq. (2.3), was calculated in the previous section. We could also

have included a contribute of order λ′/M to the momenta, but Eq.(3.1), expanded

as a power series in λ′ and 1/M , would force it to be zero.

The corrections, indicated by three dots are at least of order 1
M3 or λ′2

M2 . (In the

next Section, we will compute the λ′2

M2 correction.)

B can be fixed by requiring that the Bethe equation (3.1) is satisfied at the first

order in the λ′ expansion

B =
2 n2

1n
2
2

k4(n2 − n1)
(3.3)

To calculate the O(λ′2) contribution to the planar anomalous dimension, one

plugs the solution of the Bethe equation into the eigenvalue formula (1.28). Per-

forming a double series expansion, in λ′ and 1
M
, we obtain the following expression

for the two loops planar anomalous dimension, up to the first finite size correction

∆2 loops =
λ′2

8

[

−n4
1 + n4

2

k4
+

(

4

kM

)

n4
1 + n3

1n2 + n1n
3
2 + n4

2

k4
+O

(

1

M2

)]

. (3.4)

As a consistency check, we take the case where ℓ = (n1 + n2)/k = 0 We see that

(3.4) agrees with the N = 4 solution [7, 1] in that case.
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4. Two loops revisited: the perturbative asymptotic Bethe

ansatz

In order to diagonalize the two-loop corrected dilatation operator (1.17) the ansatz

for the wave-function (1.37) has to be adjusted in a perturbative sense in order to

take into account long range interactions. When interactions are included at the

next order, the wave-functions are no longer plane waves. The technique which is

used, termed as perturbative asymptotic Bethe ansatz (PABA) [43, 12], begins with

ΨIJ = µI
1µ

J
2 f(J − I + 1, µ1, µ2) + µI

2µ
J
1 f(kM − J + I + 1, µ1, µ2) S(µ2, µ1) (4.1)

where the S-matrix and the function f have the perturbative expansions

S(µ2, µ1) = S0(µ2, µ1) +
∞
∑

n=1

(g2)n Sn(µ2, µ1)

f(J − I + 1, µ1, µ2) = 1 +
∞
∑

n=0

(g2)n+|J−I+1|fn(µ1, µ2) (4.2)

where g2 = g2YMMN/(8π2) = λ′M2/(8π2). The number of powers of the coupling in

the second of Eqs.(4.2) clearly indicates the interaction range on the lattice.

Note that, once it is determined at the leading order, the wave-function at the

next order should be uniquely determined by quantum mechanical perturbation the-

ory. Here, we are postulating that the result of determining it can be put in the form

of Eq. (4.1). We will justify this postulate by showing that (3.4) does satisfy the

equation to the required order and that the process of finding the solution is encoded

in the twisted Bethe ansatz.

To derive the two loop Bethe equations it is sufficient to keep only the following

terms in the ansatz (4.1)

ΨIJ = µI
1µ

J
2

[

1 + g2|J−I+1|f0(µ1, µ2)
]

+ µI
2µ

J
1

[

S0(µ2, µ1) + g2S1(µ2, µ1)
] [

1 + g2|kM+1−J+I|f0(µ1, µ2)
]

(4.3)

The boundary conditions ΨI,kM+1 = Ψ1,I on (4.3) imply the Bethe equations

µkM
2 = S0(µ2, µ1) + g2S1(µ2, µ1)

µkM
1 = [S0(µ2, µ1) + g2S1(µ2, µ1)]

−1 (4.4)

The Schrödinger equation is obtained, as in Section 1.4, by acting on the wave-

function ΨIJ with the dilatation operator as difference operators according to (1.21)-

(1.25). In doing so, the two-loop contributions coming from the action of the 1-loop

dilatation operator on the order λ′ part of the wave-function have to be kept into

account. Note that, since µi = eipi and in general the pi’s depend on λ′, the wave

function has an implicit dependence on λ′ through its dependence on µi.
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The difference equation for J − I ≥ 2 reads

(D1 loop +D2 loop) ◦ΨIJ =

g2 (−ΨI+1,J −ΨI−1,J + 4ΨIJ −ΨI,J+1 −ΨI,J−1)
g4

2
(−ΨI−2,J −ΨI+2,J + 4ΨI−1,J + 4ΨI+1,J

−ΨI,J−2 −ΨI,J+2 + 4ΨI,J−1 + 4ΨI,J+1 − 12ΨIJ) J − I ≥ 2 (4.5)

Using the ansatz (4.3) and keeping only terms up to order g4 we see that, when

J − I ≥ 2 the dilatation operator acting on the wave-function returns its form times

an eigenvalue,

(D1 loop +D2 loop) ◦ΨIJ =

[

4g2
(

sin2 p1
2

+ sin2 p2
2

)

− g4

8

(

sin4 p1
2

+ sin4 p2
2

)

]

ΨIJ

(4.6)

In order for (4.3) to be a eigenstate of the dilatation operator up to two loops,

this must also be so for the contact terms in the dilatation operator. For this, the

following equations must hold:

(D1 loop +D2 loop) ◦ΨII =

g2 (−ΨI−1,I −ΨI,I+1 + 2ΨI,I)

+
g4

2
(−ΨI−2,I + 4ΨI−1,I −ΨI−1,I−1 − 4ΨI,I + 4ΨI,I+1 −ΨI+1,I+1 −ΨI,I+2)

≡
[

4g2
(

sin2 p1
2

+ sin2 p2
2

)

− g4

8

(

sin4 p1
2

+ sin4 p2
2

)

]

ΨII (4.7)

(D1 loop +D2 loop) ◦ΨI,I+1 =

g2 (−ΨI+1,I+1 −ΨI−1,I+1 + 4ΨI,I+1 −ΨI,I+2 −ΨI,I)

+
g4

2
(−ΨI,I+3 + 4ΨI+1,I+1 + 4ΨI,I+2 − 14ΨI,I+1 + 4ΨI,I + 4ΨI−1,I+1 −ΨI−2,I+1)

≡
[

4g2
(

sin2 p1
2

+ sin2 p2
2

)

− g4

8

(

sin4 p1
2

+ sin4 p2
2

)

]

ΨI,I+1 (4.8)

We regard these equations as determining pi.

Using (4.3) and (1.39) in (4.8) the function f0(µ1, µ2) is uniquely derived as

f0(µ1, µ2) = −(µ1 − 1)(µ2 − 1)(µ1 − µ2)

µ2(1 + µ1(µ2 − 2))
(4.9)

Plugging (4.9) in (4.7) one can fix also the function S1(µ1, µ2) as

S1(µ2, µ1) = −(µ1 − 1)2(µ2 − 1)2(µ1 − µ2)(1 + µ1µ2)

µ2
2(1 + µ1(µ2 − 2))2

(4.10)
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Using (1.39) and (4.10) the Bethe equation (4.4) becomes

eip2(kM+2) = ei(p1+p2)

[

1
2
cot p2

2
− 1

2
cot p1

2
+ i

1
2
cot p2

2
− 1

2
cot p1

2
− i

− λ

4π2

sin p1 − sin p2
(

1
2
cot p2

2
− 1

2
cot p1

2
− i

)2

]

(4.11)

This is equivalent to Eq. (3.1) expanded to the first order in λ. We have thus

demonstrated that the PABA in Eq. (4.1) solves the eigenvalue equations for the

dilatation operator in the form (1.21)-(1.25) and that the process of finding these

solutions is equivalent to solving the twisted Bethe equations for the N = 2 theory

up to two loops.

5. Three loops

The three loop operator dimensions cannot be gotten by direct computation in Yang-

Mills perturbation theory, or equivalently, by the perturbative asymptotic Bethe

ansatz approach that we used for two loops in the previous Section. The reason

is that, so far, no explicit expression for the dilatation operator in terms of fields

and their derivatives is available at three loop order. Our approach to computing at

three loops will therefore be to assume that the twisted Bethe ansatz, summarized

in Eqs. (1.26)-(1.28), correctly describes the spectrum and to derive the three-loop

correction to operator dimensions from it.

For this purpose we have to keep O(λ2) terms in Eq.(1.26) so that the twisted

Bethe equation now reads

eip2(kM+2) = ei(p1+p2)

1
2
cot p2

2
+ λ

8π2 sin p2 +
λ2

64π4 sin p2(cos p2 − 1)− 1
2
cot p1

2
− λ

8π2 sin p1 − λ2

64π4 sin p1(cos p1 − 1) + i
1
2
cot p2

2
+ λ

8π2 sin p2 +
λ2

64π4 sin p2(cos p2 − 1)− 1
2
cot p1

2
− λ

8π2 sin p1 − λ2

64π4 sin p1(cos p1 − 1)− i
(5.1)

We look for a solution of this equation by means of momenta of the following form

p1 =
2n1π

kM
+

Aπ

M2
+ λ′Bπ

M2
+ λ′2Cπ

M2

p2 =
2n2π

kM
− Aπ

M2
− λ′Bπ

M2
− λ′2Cπ

M2
, (5.2)

where A and B have been computed at lower loops, Eqs. (2.3) and (3.3). Recall that

λ′ = λ
M2 . Requiring that the Bethe equations are satisfied at order λ′2 we fix C as

C =
n2
1n

2
2 (n

2
1 − n1n2 + n2

2)

2k6(n2 − n1)
(5.3)

The eigenvalue formula eq.(1.28) expanded up to three loops gives

∆ = kM + 2 +
λ′M2

2π2

(

sin2 p1
2

+ sin2 p2
2

)

− λ′2M4

8π4

(

sin4 p1
2

+ sin4 p1
2

)

– 17 –



+
λ′3M6

16π6

(

sin6 p1
2

+ sin6 p2
2

)

+O(λ′4) (5.4)

Taking into account the λ′ dependence of the momenta given in (5.2) and expanding

in λ′ and 1
M
, we obtain the planar three loop result up to the first finite size correction

∆3 loops =
λ′3

16

[

n6
1 + n6

2

k6
−

(

2

kM

)

3n6
1 + 3n5

1n2 + 4n3
1n

3
2 + 3n1n

5
2 + 3n6

2

k6
+O

(

1

M2

)]

.

(5.5)

This result has to be compared with the 1/R2 corrections to the pp-wave energy

spectrum of the corresponding string states.

As a consistency check, we see that when we set the wrapping number to zero

to get the N = 4 state, i.e. put n2 = −n1, it provides the N = 4 result, in beautiful

agreement with the one quoted in Refs. [7], [1].

6. On the string side of the duality

In the previous Sections, we discussed the expansion to leading order in 1
M

about the

MRV limit of the N = 2 quiver gauge theory. The string dual to the quiver gauge

theory is the IIB superstring on the AdS5 × S5/ZM background. The MRV limit of

the N = 2 theory corresponds to the simultaneous Penrose limit and large M limit

of the AdS5 × S5/ZM orbifold where the ratio R− = R2

2M
is held constant. Here, R

is the radius of curvature of AdS5 × S5/ZM . The result is the pp-wave background

where the null coordinate has been periodically identified with radius R−. String

theory in that background is described by a DLCQ version of the string theory on

the maximally symmetric pp-wave. The 1
M

expansion of Yang-Mills theory about

the MRV limit corresponds to an expansion in the ratio 1
M

= 2R−

R2 about the pp-wave

space-time.

Corrections of this kind have already been analyzed in some detail for the case

of N = 4 super Yang-Mills theory – string on AdS5 × S5 duality in Ref. [5]. They

considered the leading correction to the BMN limit, which was an expansion in the

inverse R-charge 1
J
of Yang-Mills theory or α′

R2 in string theory. In this section, we

will generalize their computation to the case of the DLCQ string on the pp-wave

background. We will compare the result with our computations of 1/M-corrections

in the quiver gauge theory.

The exact spectrum of states of the string theory on the pp-wave background,

as well as the DLCQ of the pp-wave background are well-known. Our goal is to

find corrections to the energies of these states to order 2R−

R2 . The technique to be

used is to first find the correction to the string sigma model which arises from an

expansion of the space-time metric and other background fields about the pp-wave.

This yields an interaction Hamiltonian. The strategy is then to compute corrections

to the energy spectrum by evaluating matrix elements of this interaction Hamiltonian
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in the pp-wave string theory states. The coefficient of the interaction Hamiltonian

contains the factor 2R−

R2 .

In the case of AdS5 × S5 background, the terms in the interaction Hamilto-

nian which contain two bosonic creation and two bosonic annihilation operators are

expressed in terms of the string oscillators as [5]

HBB = − 1

32p+R2

∑ δ(n +m+ l + p)

ξ
×

{

2

[

ξ2 − (1− klkpknkm) + ωnωmklkp + ωlωpknkm + 2ωnωlkmkp

+2ωmωpknkl

]

a†A−na
†A
−ma

B
l a

B
p + 4

[

ξ2 − (1− klkpknkm)− 2ωnωmklkp + ωlωmknkp

−ωnωlkmkp − ωmωpknkl + ωnωpkmkl

]

a†A−na
†B
−l a

A
ma

B
p + 4

[

8klkpa
†i
−na

†j
−la

i
ma

j
p

+2(klkp + knkm)a
†i
−na

†i
−ma

j
l a

j
p + (ωlωp + klkp − ωnωm − knkm)a

†i
−na

†i
−ma

j′

l a
j′

p

−4(ωlωp − klkp)a
†i
−na

†j′

−la
i
ma

j′

p − (i, j ⇋ i′, j′)

]}

, (6.1)

where p+ is the space-time momentum conjugate to the light-cone coordinate x−,

ξ ≡ √
ωnωmωlωp , ωn =

√

1 + k2
n and k2

n = n2

α′2p+2 = λ′n2, with λ′ = g2YMN/J2.

The indices l, m, n, p run from −∞ to +∞. The presence of the R-R flux breaks

the transverse SO(8) symmetry of the metric to SO(4)× SO(4). Consequently the

notation distinguishes sums over indices of the transverse coordinates in the first

SO(4) (i, j, ..), the second SO(4) (i′, j′, ..) and over the full SO(8) (A,B, ..). The

operators in (6.1) are in a normal-ordered form. Since HBB was derived as a classical

object, the correct ordering on the operators is not defined and the ambiguity thus

arising can be kept into account by introducing a normal ordering function NBB(k
2
n).

Such normal-ordering function can however be set to zero following the prescription

of Ref.[5].

The DLCQ version of (6.1) can be obtained by taking into account that the light-

cone momentum p+ along the compactified light-cone direction (x− ∼ x− + 2πR−)

is quantized as p+ = k/(2R−). R− is related to R through R− = R2/(2M) so that

p+ = kM/R2 and R2 =
√

4πgsα′2NM . The Yang-Mills theory coupling constant is

then identified with the superstring coupling constant gs in the usual way 4πgs = g2YM

and the double scaling limit is realized by sending both N and M to infinity and

keeping the ratio N/M fixed, so that R− = α′

2

√

g2YM
N
M

= α′

2

√
λ′ is also held fixed.

As noticed in the introduction, the definition of λ′ is in this case related to the YM

coupling constant through an analogue of the usual definition 1
(α′p+)2

=
g2
Y M

NM

(kM)2
≡ λ′

k2
.

This gives for the frequencies ωn in (6.1) the formula ωn =
√

1 + λ′ n2

k2
.

In the case of the N = 2 operator (1.14), the dual string state is the symmetric

traceless two-impurity state created by the action of the following combination of
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bosonic creation operators on the string vacuum5

|[1, 1; 3, 3] >=

[

a†an1
a†bn2

+ a†bn1
a†an2

− 1

2
δaba†gn1

a†gn2

]

|0〉 (6.2)

where n1 + n2 = k ℓ.

The general matrix elements of the DLCQ version HZM

BB of (6.1) between space-

time bosons built out of bosonic string oscillators have the following explicit form

〈0| aA−n2
aB−n1

HZM

BB a†Cn1
a†Dn2

|0〉 = − 1

2R2p+
1

√

1 + λ′ n
2
1

k2

√

1 + λ′ n
2
2

k2
{

δABδCDλ′

[

n2
1

k2
+

n2
2

k2
+ 2λ′n

2
1n

2
2

k4
+ 2

n1n2

k2

√

1 + λ′
n2
1

k2

√

1 + λ′
n2
2

k2

]

+δACδBDλ′

[

n2
1

k2
+

n2
2

k2
+ 2λ′n

2
1n

2
2

k4
− 2

n1n2

k2

√

1 + λ′
n2
1

k2

√

1 + λ′
n2
2

k2

]

+λ′

[

2
n1n2

k2

(

δabδcd + δacδbd
)

+
(n2

1 + n2
2)

k2
δadδbc

]

−λ′

[

2
n1n2

k2

(

δa
′b′δc

′d′ + δa
′c′δb

′d′
)

+
(n2

1 + n2
2)

k2
δa

′d′δb
′c′
]}

(6.3)

where lower-case SO(4) indices a, b, c, d ∈ 1, . . . , 4 mean that the corresponding

SO(8) labels A,B,C,D all lie in the first SO(4), while the indices a′, b′, c′, d′ ∈
5, . . . , 8 mean that the SO(8) labels lie in the second SO(4) (A,B,C,D ∈ 5, . . . , 8).

Eq. (6.3) can be used to evaluate the first order correction to the energy of the

state (6.2), namely the matrix element < [1, 1; 3, 3]|HZM

BB |[1, 1; 3, 3] >. Summing all

the contributes and dividing the result by the norm of the state

< [1, 1; 3, 3]|[1, 1; 3, 3] >= 2(1 +
1

2
δab)

one gets the desired first curvature correction to the spectrum of the states (6.2).

The final result for the energy levels for a two impurity state with discrete light-cone

momentum k, exact to all orders in λ′, is

E(n1, n2) =

√

1 + λ′
(n1

k

)2

+

√

1 + λ′
(n2

k

)2

− λ′

kM





n2
1

k2
+

n2
2

k2
+ λ′ n

2
1n

2
2

k4
+ n1n2

k2
− n1n2

k2

√

1 + λ′
(

n1

k

)2
√

1 + λ′
(

n2

k

)2

√

1 + λ′
(

n1

k

)2
√

1 + λ′
(

n2

k

)2



+O

(

1

M2

)

(6.4)

where the small parameter governing the strength of the perturbation has been con-

verted from 1/(R2p+) to 1/(kM) in order to make the comparison with the finite
5We use the notation of Ref. [5], where the representations of SO(4)×SO(4) are classified using

an SU(2) notation as SO(4) ≈ SU(2)× SU(2).
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size corrections of the gauge theory results more clear. Notice that for n1 = −n2

(6.4) gives back the N = 4 result of Ref.[5], as it should.

A λ′ expansion of (6.4) up to O(λ′2) shows perfect agreement with the gauge

theory calculations at one and two loops, Eqs.(2.4) and (3.4). As for the parent

N = 4 theory [7, 1], the disagreement between the two sides of the duality is manifest

at three loops, where the finite size correction to the string energy

E3 loops =
λ′3

16

[

n6
1 + n6

2

k6
−

(

2

kM

)

3n6
1 + 3n5

1n2 + n4
1n

2
2 + 2n3

1n
3
2 + n2

1n
4
2 + 3n1n

5
2 + 3n6

2

k6

+ O

(

1

M2

)]

(6.5)

does not match its gauge dual result (5.5).

7. The S-matrix dressing factor

Integrable structures have been found also in the AdS5×S5 string sigma model: from

a classical point of view integral Bethe equations were derived in the thermodynamic

limit [8], while quantum corrections are believed to yield discrete equations describing

a finite number of excitations.

The agreement between the anomalous dimensions of the N = 4 gauge theory

operators in the near-BMN limit and the string energies in the near-plane wave

limit up to two gauge theory loops suggests that, if we wish to describe the string

excitations by the language of a spin chain, the string dynamics should be given by

the BDS chain.

The three loop disagreement can actually be encoded by “dressing” the gauge

theory S-matrix (i.e. the r.h.s. of the Bethe equations for the BDS chain) by a

multiplicative factor. From these equations one derives a solution for the momenta of

the string excitations which plugged in the BDS dispersion relation (1.28) reproduce

the near-plane wave string energies, both in the thermodynamic limit and in the few

impurity case [44, 10].

The near-plane wave string energies can therefore be computed in the AdS5×S5

IIB superstring theory by the following Bethe equations:

eipjL =
M
∏

l=1 ; l 6=j

Sstring(pj, pl), (7.1)

with L = J +M and

Sstring(pj , pl) =
ϕj − ϕl + i

ϕj − ϕl − i
exp

{

2i

∞
∑

r=0

( λ

16π2

)r+2

[qr+2(pj)qr+3(pl)− qr+2(pl)qr+3(pj)]

}

(7.2)
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where the BDS rapidities are defined in (1.4) and the exponential term is the so

called dressing factor, expressed as a function of the BDS conserved charges

qr(pj) =
2 sin ( r−1

2
pj)

r − 1





√

1 + λ
π2 sin

2 pj
2
− 1

λ
4π2 sin

pj
2





r−1

(7.3)

In particular, the second charge q2(pj) is the energy of a single excitation and

the energy of a string state with M excitations is given by

E =
λ

8π2

M
∑

j=1

q2(pj) (7.4)

We will now discuss the two magnon case in the orbifolded theory and show that

the same dressing factor allows one to compute the DLCQ string energies by means

of a Bethe ansatz. The two magnon scattering however is not as trivial as in the

parent theory, since the excitations are not forced by the level matching condition

to carry opposite momenta.

It is not difficult to check that the string spectrum (6.4) coincides with (7.4) up

to O(λ′3) with M = 2 if the magnon momenta have the form

p1 =
2n1π

kM
+

Aπ

M2
+ λ′Bπ

M2
+ λ′2C

′π

M2

p2 =
2n2π

kM
− Aπ

M2
− λ′Bπ

M2
− λ′2C

′π

M2
, (7.5)

with the same A and B found in the gauge theory, Eqs. (2.3) (3.3), and C ′ given by

C ′ =
n2
1n

2
2 (n

2
1 + n2

2)

4k6(n1 − n2)
(7.6)

We conjecture that the string S-matrix for the AdS5×S5/ZM IIB superstring is

given by (7.2) with the addition of a twist factor which coincides with the one used

in the gauge theory

Sorb.
string(pj, pl) = ωlϕj − ϕl + i

ϕj − ϕl − i

exp

(

2i

∞
∑

r=0

( λ

16π2

)r+2

[qr+2(pj)qr+3(pl)− qr+2(pl)qr+3(pj)]

)

(7.7)

with ωl = ei(p1+p2) for the two magnon case. It is easy to see that the Bethe equations

eip2(kM+2) = Sorb.
string(p2, p1), (7.8)

are in fact satisfied if p1 and p2 are exactly (7.5), with the constants A, B and C

given in (2.3), (3.3) and (7.6).

Thus we have proved that the dressing factor for the orbifolded theory equals

that of the parent theory and therefore, as for the gauge theory, the spectrum can be

obtained by just twisting the parent Bethe equations: the three loop disagreement

is inherited and does not depend on the orbifold projection.
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8. Summary

In this Paper, we have computed the first finite size correction to the anomalous

dimension of two-impurity states about the double scaling limit of the N = 2 quiver

gauge theory and the analogous quantity in the IIB superstring propagating on the

plane-wave background with a periodically identified null coordinate.

In the gauge theory the anomalous dimensions are computed by two independent

techniques that agree with each other. We have solved, up to three loops and the

first finite size correction, the twisted Bethe equations conjectured in Ref. [30] for

the orbifolded theory. Then we have provided an ansatz for the eigenstate of the

dilatation operator that up to two loops gives the same spectrum derived with the

other procedure. The eigenvalue equation for this wave function reduces to the

twisted Bethe equation.

On the string theory side the computation is done by evaluating the first curva-

ture correction to the pp-wave DLCQ spectrum of a bosonic two excitation state.

We have found that the gauge theory and the string theory results agree up to

two loop order, but there is a disagreement at three loops. This disagreement is

similar to, and a slight generalization of the one which is known to exist at three

loop order in the analogous computation in N = 4 super Yang-Mills theory expanded

about the BMN limit [7, 1].

In Summary, the results of this Paper are

∆YM = kM + 2 +
λ′

2

[

n2
1 + n2

2

k2

]

− λ′2

8

[

n4
1 + n4

2

k4

]

+
λ′3

16

[

n6
1 + n6

2

k6

]

+ ...

+
λ′

kM

[

−(n2
1 + n2

2)

k2
+

λ′

2

n4
1 + n3

1n2 + n1n
3
2 + n4

2

k4

− λ′2

8

3n6
1 + 3n5

1n2 + 4n3
1n

3
2 + 3n1n

5
2 + 3n6

2

k6
+ ...

]

(8.1)

∆string = kM + 2 +
λ′

2

[

n2
1 + n2

2

k2

]

− λ′2

8

[

n4
1 + n4

2

k4

]

+
λ′3

16

[

n6
1 + n6

2

k6

]

+ ...

+
λ′

kM

[

−(n2
1 + n2

2)

k2
+

λ′

2

n4
1 + n3

1n2 + n1n
3
2 + n4

2

k4

− λ′2

8

3n6
1 + 3n5

1n2 + n4
1n

2
2 + 2n3

1n
3
2 + n2

1n
4
2 + 3n1n

5
2 + 3n6

2

k6
+ ...

]

(8.2)

The first two lines of each of the above expressions are identical and they differ

in the third line.

We have finally shown that the DLCQ string spectrum is obtained by twisting

the string Bethe ansatz proposed in Ref. [10]. The three loop disagreement is encoded
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in a “dressing factor” added to the gauge theory S-matrix, which coincides with the

one of the N = 4 theory.

Our computations are consistent with integrability of N = 2 quiver gauge theory

in the MRV limit and its string theory dual, DLCQ type IIB superstring theory on

a plane wave background with a compactified null direction.
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