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1. Introduction

Pt-based materials are effective catalysts for the oxygen reduc-
tion reaction (ORR).[1, 2] Early experimental reports demonstrat-

ed the highly active character of Pt3Ni(111)[3] and across a se-

quence of related Pt3M (M = Ni, Co, Fe, Ti, and V) surfaces.[4]

The ORR mechanism concerns the hydrogenation of O2 and

mainly occurs along either a four-electron reduction pathway
producing H2O or along a two-electron pathway producing

H2O2. The mechanisms of these pathways, however, are not un-
derstood and this lack of understanding is, in part, due to the

number of concurrent processes that occur during the reac-

tion. Recent studies of the hydrogenation of O and OH on
Pt(111)[5] have shown that Grotthus[6] diffusion of H+ through

aqueous adlayers on the Pt(111) are instrumental in the ORR,
but have failed to identify the rate limiting step(s) in the reac-

tion. STM studies[7] demonstrated the propagation of ‘reaction
fronts’ across the Pt(111) surface. However, empirical model-
ling[7] of these fronts show significant qualitative disagree-

ments with the experimental data and identify that numerous
length-scale phenomena need to be included in the model to
accurately describe the experimental observations. These phe-
nomena include, at larger length scales, OH and H2O island for-

mation and, at shorter length scales, the effects of attractive
adsorbate-adsorbate interactions caused by hydrogen bonds

between adsorbed molecules.

The mechanism is evidently complex even on a clean, un-
strained Pt(111) surface. The experimental observations of reac-

tivity on real (i.e. core–shell nanoparticle) are then further com-

plicated because of the phase segregation in the nanoparticle.
This means that the surface of the nanoparticle is typically a

pure metal, whereas the bulk of the nanoparticle is an alloy.
This causes a lattice mismatch between the surface and the

bulk, which will strain the surface. The paradigm of explaining
ORR on nanoparticle surface is, therefore, complex. However,

to reduce this problem, recent studies have investigated the

behaviour of strained bulk alloys, extended phase-segregated
surfaces and strained surface systems. The purpose of the

work is to identify the behaviour of O and OH on strained
Pt(111) to establish a framework around which the ORR mecha-

nism on strained nanoparticle surfaces can be discussed. The
current survey will overview some of the current work in these

topics before leading into a more detailed discussion of the O/

Pt(111) and OH/Pt(111), which are the subject of the computa-
tional sections of this work.

1.1. Characterisation of the Pt-Alloy Bulk and Surface

The studies outlined earlier in this Introduction have focussed

on experimental characterisation of the catalysts. A more sys-
tematic theoretical approach to understanding why these cata-
lysts work so well is daunting. The principle reasons for these

difficulties are the number of degrees of freedom that need to
be considered—such as bulk and surface stoichiometry, shape,

and topology, and the magnetic character of the system—
when investigating a particular group of catalysts.

Recent theoretical studies have started to address these diffi-

culties by surveying the bulk alloy. These investigations have
varied the lattice parameter both above and below its equilib-

rium value and have consequently put the crystal into a state
of either tensile or compressive strain, respectively. Changing

the lattice parameter in this way will change the interatomic
distances within the crystal and the amount of overlap be-

The effects of strain s on the binding position preference of
oxygen atoms and hydroxyl groups adsorbed on Pt(111) have

been investigated using density functional theory. A transition

between the bridge and FCC binding occurs under compres-
sive strain of the O/Pt(111) surface. A significant reconstruction

occurs under compressive strain of the OH/Pt(111) surface, and
the surface OH groups preferentially occupy on-top (bridge)

positions at highly compressive (less compressive/tensile)
strains. Changes to magnetisation of the O- and OH-populated

surfaces are discussed and for O/Pt(111) oxygenation reduces

the surface magnetism via a delocalised mechanism. The ori-
gins of the surface magnetisation for both O- and OH-bearing

systems are discussed in terms of the state-resolved electronic
populations and of the surface charge density.

[a] Dr. I. G. Shuttleworth
School of Science and Technology
Nottingham Trent University
Nottingham NG11 8NS (UK)
E-mail : ian.shuttleworth@ntu.ac.uk

The ORCID identification number for the author of this article can be
found under :
https://doi.org/10.1002/open.201800039.

T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are
made.

ChemistryOpen 2018, 7, 356 – 369 T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim356

DOI: 10.1002/open.201800039

http://orcid.org/0000-0001-8655-9718
http://orcid.org/0000-0001-8655-9718
http://orcid.org/0000-0001-8655-9718
https://doi.org/10.1002/open.201800039
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


tween the electronic orbitals of neighbouring atoms, which
consequently will affect the electronic character of the entire

system. Investigations into the ordered phases of NixPt1@x (x =

0.25, 0.5, and 0.75)[8] and both PtxFe1@x and PtxCo1@x
[9] have

been recently performed. The investigations focussed on the
magnetisation of the unit cell and on the occupancy of the

fully state-resolved atomic orbitals. For each case, the magneti-
sation was shown to be carried by the Pt and Ni, Fe or Co d

states, with all the other states remaining non-magnetic. The

magnetism increased as the strain became increasingly tensile
and was accompanied by charge transfer between the mag-

netic quantum number-resolved d orbitals. Investigations of
strain-induced changes in the magnetisation of alloys have

also been performed on rare-earth alloys. Studies of the CeNi5

system[10] have shown that the magnetism of the alloy is car-

ried by the Ce f and Ni d states. However, under strain, the

spin moment associated with the Ni d states changes far more
significantly than those associate with the Ce f states. These

observations underlie the importance of the d orbital. The di-
rectionality of either the d or f states is evidently insufficient to

ensure sensitivity of the spin moment of either to the strain
state of the crystal. The radial extent and symmetry of each

state must also be factors and may serve as a design criterion

for proposed the catalysts.
The technique of ‘strain-engineering’, or investigating the

changes of the character of the system when it is subjected to
compressive or tensile strains, mimics the surfaces of core–

shell nanoparticles. In the current context, the technique is a
simplification to render the systems more accessible to compu-

tational study. Including ordered selvedge and bulk alloy layers

increases the degrees of structural freedom significantly. Fur-
ther, PtxM1@x (M = metal) systems are often experimentally dis-

ordered and with a range of stoichiometries.[8, 9] The treatment
of alloys with combinations short- and long-range order (i.e.

disordered and ordered alloys, respectively) is a well-known
problem; theoretically, statistical treatments[11] have been ap-

plied successfully. Density functional theory (DFT) treatments,

however, require a greater level of structural definition and
consequently structural approximations are often used. Con-
temporary DFT studies of Pt3M(111) (M = Ag, Au, Co, Cr, Cu, Fe,
Ir, Mn, Mo, Ni,Pd, Re, Rh, Ru, Ti, V)[12] have addressed these
problems by simulating five-layer slabs with a single Pt surface
layer and an ordered PtM selvedge region, and the calculated

segregation energies were shown to be in agreement with ex-
perimental results. Subsequent studies[13] demonstrated that
the oxidisation of the surface disrupts the surface layer though

this disruption was characterised more in terms of the segrega-
tion energies and layer spacing. This disruption, however, is re-

flected in the current work particularly in the surface recon-
struction seen for OH/Pt(111).

The works discussed in the previous paragraph reduced the

nanoparticle surface to a particular facet—notably, the
(111)[12]—and then investigated the behaviour of this facet

with a pure metal surfaces patterning alloy selvedge and bulk
regions. A key design question in this approach is how thick

does the pure metal surface covering need to be? This param-
eter can be controlled both experimentally and in computa-

tional treatments. The pure metal surface covering will exhibit
strain effects because the selvedge and bulk lattice parameters

may be different to the bulk lattice parameter of pure metal,
and ligand (i.e. electronic structure) effects due to both the

straining of the pure metal and to ‘seeping’ of the alloy wave-
function from regions below the surface. Computational stud-
ies of A3B (where A = Pt and Pd, and B = Cu, Ag and Au)[14] and
of alloy–core@Pt nanoparticles[15] have shown that strain ef-
fects may persist for surface trilayers though ligand effects are

more quickly damped with overlayer thickness and become
markedly less significant after single or bilayer surface cover-
ings. Studies of Pt(111) surface layers on Pt25Ni75(111)[16] have
shown ligand effects are significant for a 2 monolayer (ML) sur-

face Pt thickness, but strain effects dominate for 3–4 ML thick-
nesses. These observations suggest the range of validity of the

approach used in the current work is for Pt overlayers which

have thicknesses +3 ML.
DFT studies have recently been used to investigate the be-

haviour of surface H atoms across a sequence of strained Pt[17]

and other pure transition-metal[18] slabs. These studies were

pertinent not only to the ORR reaction, which has been high-
lighted in the current work, but also for surface hydrocarbon

chemistry[19] and as a precursor to hydrogen storage.[20, 21] The

DFT studies showed that the preferred binding position of H
atoms in the H/Pt(111) system can be tuned to be either on-

top or FCC by applying either compressive or tensile strain to
the Pt(111) surface.[17] Similar changes in the preferred H bind-

ing site were observed on Pd and Ir for strains of up to 2 %
and on Fe, Rh, Ag and Os for strains of up to 5 %.[18] Conse-

quentially, the reactivity of the H atom may to change under

the application strain. This is because the valency between the
H atom and the surface will change with binding position,

which will redistribute both the charge surrounding the H
atom, which is associated with the H-surface bond, and that

which is not. The latter component of charge will be more di-
rectly involved in reactions between the H atom and either

other adsorbates via the Langmuir–Hinshelwood mechanism

or with gas-phase particles via the Eley–Rideal mechanism.
The sensitivity of H binding position to strain is also a funda-

mental interest for bulk systems. Studies of the behaviour of
the hydrides of alkali and alkaline earth metals under strain[22]

have highlighted the superconducting behaviour of certain
alloys under pressure. Evolutionary algorithms have been used

to identify a series of novel phases for MHn with n>1 and M =

Li, Na, K, Rb, Cs, and for MHn with n>2 and M = Mg, Ca, Sr, Ba.
In addition, a hexagonal high-pressure phase of rhodium hy-

dride has recently been predicted by using DFT.[23] Within the
alkaline earth metal hydrides, Mg-based materials have signifi-

cant applications in energy storage. The materials have been
characterised experimentally and have been seen to exist in

rutile,[24] a-PbO2,
[25] and cubic[26] phases as well as in two forms

of orthorhombic[27] and in non-stoichiometric forms.[28] There
clearly is considerable diversity in the structure of hydrides

both in bulk form and when patterned on surfaces and the ap-
plication of this diversity is potentially of great interest.

The phenomenon of H binding site/pressure dependence is,
therefore, of current and significant interest, in both applied
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and fundamental fields. The accompanying fields of the O/
Pt(111) and OH/Pt(111) systems under pressure will be ad-

dressed in this work. Consequently, Section 1.2. will review
these systems.

1.2. Oxygenated and Hydroxylated Pt(111)

The interaction of oxygen with Pt(111) has been extensively in-
vestigated and a cogent picture of the gas/surface interaction

has started to emerge. Early studies[29] presented the tempera-
ture-dependent behaviour of the interaction, whereby weakly
adsorbed molecular oxygen forms on Pt(111) at temperatures
below 120 K and the adsorption of molecular oxygen occurs at

temperatures in the range 150–500 K and a subsurface oxide
forms at temperatures between 1000 and 1200 K. The high-
temperature behaviour was later investigated using surfaces
that had been prepared through differing methods of oxida-
tion.[30] The onset decomposition of the oxygen-bearing surfa-

ces was observed at 400 K, though no surface oxygen was ob-
served at 1070 K.

The dissociated phase was shown by low-energy electron

diffraction (LEED) to form an ordered p(2 V 2)-O layer[29, 31] for
coverages up to 0.25 ML. XPS studies[32] have shown that

higher coverage states of oxygen have the same chemical
state as those in coverages up to 0.25 ML. It was postulated[33]

that the high coverage state forms through direct dissociation,
whereas the lower coverage state forms via a molecularly ad-

sorbed precursor. The similarities in the electronic state of the

high and low coverage oxygen states were further evidenced
by work function change (Df) studies,[34] which showed that

Df varies linearly with oxygen coverage between 0 and 1 ML,
which is consistent with the adsorption of a single surface

species.
Later studies[35] demonstrated that a novel high oxygen con-

centration state could be formed by exposing the Pt(111) sur-

face to thermally cracked oxygen at room temperatures. These
finding reflect earlier observations that the maximum oxygen

concentration could be increased by exposing the surface to
an electron beam[29, 31] or by increasing the surface tempera-

ture/oxygen dosing pressure.[32] The necessity of investigating
these dependencies is symptomatic of the need to couple fun-

damental surface science investigations with those that are
performed at more catalytically relevant temperatures and

pressure. This can be seen in recent ReactorSTM studies,[36]

which have identified the formation of two high-coverage sur-
face oxides at high oxygen pressures (up to 5 bar) and surface

temperatures of 300–538 K.
Consequently, the current study will focus on oxygen cover-

ages of 0.25 ML. In this phase, the oxygen binding position has
been determined experimentally[37] to be at the FCC site. This

binding position has also been predicted by using DFT.[38–40]

The current study will also focus on the bonding mechanism
and the mechanism of charge relocation that accompany the

formation of O<C-<Pt and OH@Pt bonds. This is in deference
to the more common theoretical studies that currently exist in

the literature, which have sought to elucidate the mechanisms
of phase formation.[38] The binding mechanism between

oxygen and transition-metal surfaces can proceed through
more than one mechanism in deference to the binding mecha-
nism of other molecules such as H,[41] which binds covalently.
This multiplicity has been demonstrated explicitly for O bind-

ing to Ni(111) and Ni(100) clusters.[42] Studies of O/Pt(111)[40]

system have suggested that oxygen binding is accompanied
by the exchange of charge between the O p and Pt d orbitals
and that there is some suggestion of multiplicity in the bond-
ing mechanism. The current study will investigate these sug-

gested binding mechanisms and also their behaviour as the
Pt(111) surface is strained.

Hydroxyl formation on Pt(111) can be achieved by first
dosing oxygen onto the clean Pt(111) surface and then react-
ing the resulting surface with water to form OH/Pt(111).[43–45]

Experimentally, however, a pure OH layer cannot be formed,[43]

as hydroxyl is a very good proton acceptor and forms strong

OH@H2O bonds by H donation from the adsorbed water to-
wards the adsorbed OH group. Theoretical investigations[46] of

low coverages (1/9 ML) of OH have shown that the bridge and
on-top binding sites of the Pt(111) surface are approximately

degenerate. The binding energy at these sites is approximately
2.25 eV. Higher coverage theoretical studies[46] (1/2 to 1 ML)

showed that H bonding between adjacent OH groups causes

an enhancement of the OH chemisorption energy and a pref-
erence for binding at the on-top site.

Experimental studies[47] using scanning tunnelling microsco-
py (STM) and high-resolution electron energy loss spectrosco-

py (HREELS) have shown that the on-top adsorption site is
most likely for coverages of 2/3 ML. Consequently, the current

work will focus on OH coverages of 0.25 ML, where the forma-

tion of a hydrogen-bond network between adjacent OH
groups is anticipated to be minimal. Analysis of the OH bend-

ing mode in the HREELS investigations[47] showed that the OH
molecule is tilted from the surface normal. Tilting has been dis-

cussed theoretically with early DFT studies,[48, 49] indicating that
OH tended to bind in an upright position in hollow sites
whereas tilting is seen to lower the binding energy when the

OH is bound to the on-top or bridge sites.[50] In the current
work the degree of tilt of the OH group and the orientation of
the OH bond with respect to the Pt(111) surface will be al-
lowed to fully relax.

In the remainder of this work, the computational details are
outlined and then investigations of the strained extended sur-

face O/Pt(111) and OH/Pt(111) systems are presented in turn
and discussed. The work will then conclude with a presenta-
tion of the key findings of these computational investigations.

Computational Details

The DFT simulations presented in this work were performed using
the plane-wave Quantum Espresso package.[51] The kinetic energy
cut-offs for wave-functions and for charge density and potential
were set to 75 and 300 Ry, respectively. Brillouin zone integration
was performed on a (6 V 6 V 1) grid using a first-order Methfessel–
Paxton[52] smearing of 0.02 Ry. The PBE exchange correlation func-
tional within the generalised gradient approximation (GGA) was
used throughout this work and the core electrons were described
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with norm-conserving pseudopotentials.[53] Using this approach,
the equilibrium bulk lattice constant of Pt was determined to be
L0 = 3.980 a, which is comparable to the experimental value of the
lattice constant of 3.92 a. All results presented in the current work
were obtained by using fully spin-polarised simulations. The van
der Waals correction has not been included in the current study as
the focus of the work is on the O@Pt bond at low O and OH cover-
ages. The van der Waals interaction might have a greater signifi-
cance for higher coverages, particularly in regimes where the H
atoms are more closely bound to other surface species. The as-
sumption of low surface coverage is to simplify the system and to
ensure that the focus of the current study is on the O@Pt bond
and its behaviour under strain. The current study consequently ex-
cludes the complicating effects of lateral (adsorbate-adsorbate) in-
teractions. Effects such as the presence of water molecules in the
vacuum region are similarly excluded for the same reason; inclu-
sion of greater particle densities would be more appropriate to
molecular dynamics for which the focus is not on the behaviour of
the adsorbate-substrate bond, or the binding position of the
adsorbate.

The surface was modelled using slabs containing seven layers of Pt
atoms. Subsequent slabs were separated by a vacuum with a
width of approximately ten lattice constants. During relaxation, the
central layer of Pt atoms were fully constrained. The remaining
atoms were allowed to relax freely. Compressive and tensile strains
were applied by changing the lattice constant L by using
Equation (1):

L ¼ 1þ sð ÞL0 ð1Þ

where s is the strain and s 2 @0:05;þ0:05½ A. By using this conven-
tion, the applied strain was termed tensile (compressive) for s>0
(s<0). Equation (1) consequently defines the distance between Pt
atoms in the central layer of each slab at the beginning of each
simulation and this distance was not subsequently changed during
the simulation.

Figure 1 shows the binding positions within the unit cell with the
O atoms or OH groups bound in equivalent positions on either
side of the slab. (2 V 2) Surface supercells were used for each simu-
lation, and each of these supercells contained only a single O atom
or OH group. This low concentration (0.25 ML) reduces the effect
of lateral interactions between the adsorbates, and at this concen-
tration no evidence was found of H transfer between adjacent OH
groups.

The O and OH binding energies EB were defined by Equation (2):

EB ¼
1
2

EAds=Pt @ 2EAds @ EPt

E C ð2Þ

where EAds=Pt is the total energy of the O or OH bearing (2 V 2)-
Pt(111) slab, EAds is the total energy of an isolated O atom or OH
group, and EPtis the total energy of a clean, fully relaxed (2 V 2)-
Pt(111) slab. The factors of 2 and 1=2 account for the binding of O
atoms/OH groups on either side of the slab.

To characterise electronic changes to the surfaces under strain, the
projected density of states (PDOS) curves for the p components of
the surface O atoms and the d components of their nearest Pt
atoms were analysed by calculating the magnetic quantum
number resolved occupancy Nl,m using Equation (3):

Nl;m ¼
ZEF

@1

g l;m;ms; s; Eð ÞdE ð3Þ

where g l;m;ms; s; Eð Þ is the spin-resolved PDOS, l,m and ms are
the angular, magnetic and spin quantum numbers, respectively,
and E is energy. To reduce the analysis the angular quantum
number resolved occupancy was calculated by using Equation (4):

Nl ¼
X

m

Nl;m l;m;ms; sð Þ ð4Þ

The analysis procedure outlined in Equations (3) and (4) will char-
acterise the electronic state of the system in energy space. To
obtain a real-space characterisation the difference electron density
1diff was calculated by using Equation (5):

1diff s; xsð Þ ¼ 1 s 6¼0; xsð Þ @ 1 s ¼ 0; xsð Þ ð5Þ

where 1 is the electron density of the strained (s¼6 0) or unstrained
(s= 0) system. xs is the normalised position coordinate, and is de-
fined by Equation (6):

xs ¼
x

1þ sð Þ ð6Þ

x is the absolute coordinate used during the calculation of 1.

The work function f of the oxygen- or hydroxyl-covered slab was
calculated by using Equation (7):

f ¼ V 1ð Þ @ EF ð7Þ

EF and V(1) are the Fermi energy and the potential at a height of
five lattice constants above the slab, respectively. The work func-

Figure 1. Oxygen and hydroxyl binding positions across the Pt(111) surface.
The small red circles denote the binding positions of the oxygen atoms and
hydroxyl groups and the labels ‘H’, ‘F’, ‘O’and ‘2’ denote the HCP, FCC, on-
top and two-fold bridge sites, respectively. The large dark grey, light grey
and white circles denote Pt atoms in the surface, second and third Pt layers,
respectively.
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tion of the clean Pt(111) slab was defined in a similar way but is de-
noted f111.

2. Results and Discussion

2.1. O/Pt(111)

Figure 2 shows the behaviour of the oxygen binding energy EB

as a function of strain s for oxygen atoms bound in the HCP,

FCC, bridge and on-top positions. The curves show that at
equilibrium (s= 0) the preferred binding position of the

oxygen atom is at the FCC position. This is in agreement with
previous experimental[38] and theoretical DFT[38–40] investiga-

tions. The curves also show that, as the strain becomes increas-
ingly compressive (s<0), the preferred binding position

changes from the FCC to the bridge position and that this
transition occurs at s=@0.03. The O@Pt bond length for FCC-

and bridge-bound O was 2.07 and 2.02 a, respectively, for the

unstrained (s= 0) surface, and varied by <0.01 a from these
values as s was varied across the interval [@0.05, + 0.05] .

The changes in the surface geometry discussed in the previ-
ous paragraph are accompanied by changes in the surface

electronic structure. Figure 3 shows the angular and magnetic
quantum number resolved oxygen and surface Pt state popu-

lations, Nl and Nl,m, respectively, as a function of strain s for the
(2 V 2)-O/Pt(111) system. The Nl shown in Figures 3 a–e show
that the strain-dependent magnetisation of the surface layers

develops in the O p and Pt d states. Consequently, discussion
of the Nl,m will focus on the states. The occupation of the spin

and down components are linked to the magnetic moment on
each atom from the relationship that the magnetic moment

equals difference between the total spin up and the total spin

down charge.
Bridge-bound oxygen is energetically preferred for s,

@0.03. The Nl in Figure 3 a show that in the s>@0.03 interval
the O p states become spin split and within the s,@0.03 in-

terval the O p states are non-magnetic. This behaviour is re-
flected in the behaviour of the Nl of the Pt d states shown in

Figure 3 b, which show a transition between zero and non-zero
spin splitting at s =@0.03.

FCC-bound oxygen is energetically preferred for s>0.03.
However, the Nl in Figure 3 c show that across the entire range

of s the O p states undergo considerably less spin splitting
than their bridge-bound counterparts. Equivalently, Figure 3 d

shows that the Nl of the Pt d states spin split above s=@0.03,
but less than their counterparts in the bridge bound case
shown in Figure 3 b.

These observations indicate that the local magnetic moment
of the surface oxygen atoms and their nearest-neighbour sur-

face Pt atoms are dependent on the amount of strain s ap-
plied to the surface. To elucidate the origin of this change in
the local magnetic moment, Figure 3 e shows the Nl of the
clean surface Pt atoms. In this case, there is very clear spin

splitting across the entire range of s. The amount of spin split-

ting is also very clearly greater than the amount of Pt d spin
splitting seen at equal s for each of the oxygenated surfaces.

The development of a local Pt d state spin moment under s is,
therefore, a consequence of the application of strain to either

the clean or the oxygenated surfaces. The Pt d magnetisation
is reduced by the presence of surface oxygen. The O p state

magnetisation has been shown to minimise under s as the en-

ergetically preferred binding positions tend to carry low
oxygen magnetic moments.

To quantify the amount of intra-orbital charge transfer that
accompany these changes in Nl, Figure 3 shows the magnetic

quantum number resolved O and their nearest-neighbour sur-
face Pt state populations Nl,m for O atoms bound in Figure 3 a

and 3 b bridge, and Figure 3 c and 3 d on-top sites. For compar-

ison, the Nl,m for surface Pt atoms on clean Pt(111) is shown in
Figure 3 e. Figure 3 a shows that the magnetic moment local-

ised on the O atoms when bound in the bridge site increases
as the population of each of the spin up component of the

O pz, px and py states increases and, most significantly, the spin
down component of the O px state decreases. For O bound in

the FCC site, the magnetic moment localised on the O atom is

relatively small when compared with the bridge-bound O mag-
netic moment shown in Figure 3 a and the Pt magnetic mo-
ments shown in Figure 3 b–3 e. However, a moment does de-
velop as the strain s becomes increasingly tensile above s=

@0.03 and is predominantly attributed to increases (decreases)
in the spin up components O pz (px and py) state(s), and in-

creases in the spin down component of the O pz, px and py

states.
Comparison of Nl in Figures 3 a–3 e shows that, for the

lowest energy structure at each s, the surface magnetisation is
predominantly attributed to the Pt atoms. Furthermore, com-

parison of the Pt Nl in Figures 3 b, 3 d and 3 e shows that O ad-
sorption tends to reduce the Pt moments. Figure 3 e shows

that for the clean Pt(111) surface, the Pt dxy and dx2@y2 states

and the Pt dzy and dzx states are degenerate. Figures 3 b and 3 d
show that this degeneracy is lifted by the presence of surface

oxygen. The degree of splitting (i.e. the energetic difference
between the Pt dxy and dx2@y2 states, or the energetic difference

between the Pt dxy and dx2@y2 states) is approximately mono-
tonic between the bridge-bound O (Figure 3 b) and FCC-bound

Figure 2. Oxygen binding energy EB as a function of strain s for the (2 V 2)-
O/Pt(111) system. The legend indicates the binding position of the oxygen
atom, and these binding positions are shown in Figure 1. The solid/dotted
lines are a guide for the eye.
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Figure 3. The angular and magnetic quantum number resolved O and their nearest-neighbour surface Pt state populations, Nl and Nl,m, respectively, shown as
a function of strain s for the (2 V 2)-O/Pt(111) system. The panels show these populations for the oxygen and their nearest neighbour surface Pt atoms for sys-
tems, where the oxygen atoms are bound in a, b) the two-fold bridge and c, d) the FCC sites. e) The state populations of the surface Pt atoms for the clean
Pt(111) system. The spin (down) components are shown as solid (dashed) lines.
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O (Figure 3 d). This is highly suggestive that the mechanism for
splitting is delocalised, as a localised or directional mechanism

would be expected to change as the binding position changed
from two- to three-fold. Figure 3 d also shows quantitatively

that, within the energetically preferred region where the mag-
netic moment is significant (i.e. when the O is FCC bound and

s+@0.03), the largest changes in spin up populations are to
the Pt dz2 state. Lesser, though comparable, changes affect the
spin up Pt dxy and dx2@y2 states, whereas the largest changes in

the spin down population are to the Pt dzy and dzx states. The
significance of these latter qualitative differences is not yet
fully realised, but it may be conjected that spin-polarised injec-
tions to the surfaces may be an effective mechanism of induc-
ing either mechanical or electronic strain.

The discussion so far has focused on the s-dependent

changes to the surface structure of the O/Pt(111) system and

the accompanying changes in the surface magnetisation. Fig-
ure 4 a–c shows the projected density of states (PDOS) g for

the O p states and the nearest-neighbour surface Pt d states
for the bridge- and FCC-bound O/Pt(111) and clean Pt(111) sur-

faces, respectively. ‘Nearest-neighbour’ denotes the Pt atom
that is nearest to the surface O atom. The O s states are signifi-

cantly populated, but are at energies E@EF & @20 eV, so do

not contribute significantly to the O@Pt d-state bond.
For the bridge-bound O/Pt(111) system, Figure 4 a shows the

bonding (antibonding) O p states in a band spanning E@EF &
@6 eV to @4.5 eV (E@EF & < M->1 eV to + 2 eV). The occupa-

tion of the spin up O antibonding state increases with s. This
can be inferred qualitatively from Figure 4 a, but is shown

quantitatively in the O spin up Nl,m panel of Figure 3 a. The oc-

cupation of the spin down O p antibonding state decreases
with s and this change can be seen qualitatively and quantita-

tively in the same way. There is a net increase in the antibond-
ing population, and this increase weakens the O@Pt bond and

contributes to the decreases in the magnitude of the oxygen
binding energy EB for the bridge-bound curve shown in

Figure 2. These decreases contribute to the shift in preferred

binding position from the bridge to the FCC site as s

increases.
The bonding and antibonding O p states occupy similar

energy bands for the FCC-bound O/Pt(111) system. This is

shown in Figure 4 b. Significantly, the antibonding state for the
FCC-bound O/Pt(111) system does not span the Fermi level

(E@EF = 0 eV) in the way seen for the bridge-bound O/Pt(111)
system. Consequently, its occupation is not sensitive to s-de-
pendent changes in the Fermi level in the way that the state

was sensitive for the bridge bound case. The population of
both the spin up and down O p bonding states increase as s

increases. This can be seen qualitatively by the height of these
states in Figure 4 b and quantitatively by the Nl,m in Figure 3 c.

This strengthens the O@Pt bond and causes the increases in

the magnitude of the oxygen binding energy EB for the FCC
curve shown in Figure 2.

In both the bridge- and FCC-bound cases, the nearest-neigh-
bour surface Pt atom develops d state density in the energy in-

tervals spanned by the bonding and antibonding O p states.
This can be seen by comparing either of the Pt panels of Fig-

Figure 4. Projected density of states (PDOS) g of the O p and the nearest-
neighbour surface Pt d states shown as a function of both energy (E@EF)
and strain s for the (2 V 2)-O/Pt(111) system. Each graph shows the spin-up
and spin-down components in the g>0 and g<0 portions of that graph, re-
spectively. Subsequent curves are offset vertically for clarity and were ob-
tained by using values of s= 0.95, 0.97, 0.99, 1.01, 1.03 and 1.05. The curves
corresponding to s= 0.95 (1.05) curves lie closest to (farthest from) the line
g = 0. The oxygen atoms were bound in a) the two-fold bridge and b) the
FCC positions defined in Figure 1. c) The PDOS of the surface and second-
layer Pt d states for clean Pt(111).
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ure 4 a and 4 b with the Pt panel of Figure 4 c, and is indicative
of a covalent interaction between the O and Pt states across

these energies. Figure 4 c shows that the clean surface Pt d
states become narrower as the strain s becomes increasing

tensile. This narrowing is not seen for the second layer Pt
atoms, which are also shown in Figure 4 c and shows that the

surface layer becomes less metallic as s increases. The forma-
tion of bonding O@Pt interactions across E@EF , @4.5 eV re-
verses this trend around the nearest-neighbour surface Pt site

for the range of tensile s investigated in the current work.
However, at higher values of tensile s, the formation of bond-
ing O@Pt interactions may become problematic because of
this tendency of the clean surface Pt d states to narrow. Bulk-
bound oxygen may be less affected.

Figure 5 shows the difference electron density 1diff for the

(2 V 2)-O/Pt(111) system with the O atoms bound in the two-

fold bridge and the FCC sites. For Figure 5 a, the O atoms are
bound in the two-fold bridge site and 1diff shows that charge

accumulates in lobes whose axes are perpendicular to the Pt
surface for tensile strains of s = + 0.01 and + 0.03, and are de-

pleted from the surface-parallel nodes. These changes are re-
flected in changes to the Nl,m for the bridge-bound O/Pt(111)

system shown in Figure 3 a, where an increase (decrease) in

the total population of the O pz (px) states is observed as s be-

comes increasingly tensile. A more nominal change is noticed
in the population of the O py state.

For Figure 5 b, the O atoms are bound in the FCC site and
1diff shows that charge transfer occurs predominantly between

lobes whose axes are parallel to the Pt surface for all strains.
Charge accumulation is observed for s=@0.03 in node closest

to the O-nearest-neighbour surface Pt bond. This node, howev-
er, becomes depleted as s increases and charge accumulation

occurs on the opposite surface parallel node. These charge

transfers are accompanied by increases in the Nl,m for the O pz

states shown in Figure 3 c. Consequently, it has been seen that
the effect of increasing s on 1diff is to increase the charge den-
sity in lobes centred on the O atom and whose axes are per-

pendicular (parallel) to the Pt(111) surface for the bridge- and
FCC-bound systems, respectively. Occupation of the O pz state

increases as the strain becomes increasingly tensile and charge

accumulation favours directions that are aligned with the O-
nearest-neighbour Pt direction for increasingly compressive

strains.
Figure 6 shows the work function f and the work-function

difference f-f111, where f111 is the work of the clean Pt(111)
surface, of the (2 V 2)-O/Pt(111) system under strain. Changes in

f owing to s will have two components. The first component

is attributed to Smoluchowski smoothing.[54] This smoothing
reduces the amplitude of the Pt surface wavefunction as the

surface lattice constant increases, that is, as s becomes more

Figure 5. The difference electron density 1diff for the (2 V 2)-O/Pt(111) system
for strain s=@0.03, @0.01, + 0.01 and + 0.03. The oxygen atoms are bound
in a) the two-fold bridge and b) the FCC sites. The crystalline direction
shown in the bottom left of each panel is the same for each plot within that
panel. The legend shows the difference electron density in units of elec-
trons/Ry3.

Figure 6. a) The work function f of the (2 V 2)-O/Pt(111) system and b) the
work function difference f@f111, where f111 is the work of the clean Pt(111)
surface, shown as a function of s. The legends in (a) and (b) show the bind-
ing position of the oxygen atom across the oxygenated surfaces at either
the ‘Bridge’ or ‘FCC’ sites (defined in Figure 1) or indicates, in (a), the curve
corresponding to the clean Pt(111) surface.
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tensile. This effect can be seen clearly in Figure 6 a, as the
clean Pt(111) curve shows a decrease in f as s increases. Mech-

anistically, this reduction occurs because, as the surface wave-
function becomes smoother, the accompanying surface dipole

and, equivalently, the potential barrier to removal of an elec-
tron from the bulk of the crystal to the vacuum, reduces. The

second contribution to the changes in the f is attributed to
the charge redistribution shown in terms of 1diff in Figure 5. To
evaluate the relative importance of these two contributions

the work-function difference f@f111 was calculated and is
shown in Figure 6 b. The changes caused by the difference
f@f111 are predominantly attributed to changes in 1diff and
change by & + 0.1 and + 0.2 eV for the bridge- and FCC-

bound systems, respectively, as s changes from @0.05 to
+ 0.05. Across the same strain interval, f changes by approxi-

mately @0.25 and @0.2 eV for the bridge- and FCC-bound sys-

tems, respectively, and clearly shows that the effects are
comparable.

2.2. OH/Pt(111)

Figure 7 shows the hydroxyl (OH) binding energy EB as a func-
tion of strain s for the (2 V 2)-OH/Pt(111) system. The curves in
Figure 7 for binding of OH in the unreconstructed HCP, FCC,
bridge and on-top positions were obtained by initially relaxing

the OH group above the binding position with constraints ap-
plied to the Pt and O atoms that prevented motion parallel to
the (111) plane. Once a local minimum had been approximate-

ly found by using these constrained minimisations, the local
minimum was more accurately determined by removing the

(111)-directed constraints to the Pt and O atoms and restarting
the minimisation process.

However, measurements during the determination of the

unreconstructed curves outlined in the previous paragraph
showed that a global minimum could be obtained by allowing

the Pt atoms to reconstruct parallel to the (111) plane. To in-

vestigate this reconstruction, the OH group and surface Pt
atoms were initially displaced along the orthogonal [@1 1 0]

and [1 1 @1] directions before relaxation, and then were not
constrained during the subsequent relaxation. These crystalline

directions and the displacement vectors d[@11 0] and d[11@1] are
shown in Figure 8. A full sampling of the possible reconstruc-

tions was determined by increasing the initial displacements
d[@11 0] and d[11@1] incrementally four times across the unit cell,
resulting in (4 + 1) V (4 + 1) = 25 relaxations for OH bound in

each of the high symmetry sites.

The resulting reconstruction is shown in Figure 8. The Pt
atoms reconstruct predominantly along the [@11 0] direction

for large compressive strains (s=@0.05) and along both the
[@11 0] and [@11 0] directions for smaller compressive strains.

The magnitude of the reconstruction along the [@11 0] for

large strains is comparable to the Pt–Pt distance in that direc-
tion (2.814 a). At larger compressive strains (s<@0.05), a sig-

nificant out-of-plane motion of the surface Pt atoms devel-
oped. Quantification of this reconstruction was not straightfor-

ward as, because of the magnitude of the out-of-plane motion
of the Pt atoms, the reconstruction began to extend across

surface distances greater than those described by a (2 V 2) unit

cell. The O@Pt interaction is consequently more significant the
Pt–Pt interaction between the surface and second layers for

compressive strains of up to s=@0.05, and becomes increas-
ingly more significant that the interaction between adjacent

surface Pt atoms for more compressive strains. On the recon-
structed surface, the O@Pt bond lengths were 2.07–2.05 a for

Figure 7. Hydroxyl (OH) binding energy EB as a function of strain s for the
(2 V 2)-OH/Pt(111) system. Binding energies EB for both the reconstructed
and unreconstructed Pt surfaces are shown. The insets show the OH groups
bound to the reconstructed Pt surface in either the on-top (O-t) or the two-
fold bridge (Bridge) positions, which occur for s< @0.01 and s + @0.01, re-
spectively (see text). The legend denotes the binding energies EB for OH
bound to the unreconstructed Pt surface in the ‘HCP’, ‘FCC’, ‘Bridge’ and
‘On-top’ positions. The solid/dotted lines are a guide for the eye.

Figure 8. Reconstruction of the (2 V 2)-OH/Pt(111) system as a function of
strain s. The schematic diagram shows the surface, second- and third-layer
Pt atoms of the unreconstructed surface and the displacement vectors
d[@11 0] and d[11@1] , which are directed along the [@11 0] and [11@1] direc-
tions, respectively. The graph shows the values of the displacement vectors
for strains s between :0.05 and the legend indicates the strain s for each
datum.
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s 2 @0:05;@0:03½ A (on-top binding) and 2.21–2.19 a for
s 2 ð@0:03;þ0:05A (bridge binding). On the non-reconstructed

surfaces, the O@Pt bond lengths were 2.02 and 2.15 a for bind-
ing in the on-top and bridge positions, respectively. These O@
Pt bond lengths varied by <0.01 a from these values as s was
varied across the interval [@0.05, + 0.05] .

Figure 9 shows the angular and magnetic quantum number
resolved oxygen and surface Pt state populations, Nl and Nl,m,
respectively, as a function of strain s for the (2 V 2)-OH/Pt(111)

system. Figures 9 a and 9 b show these populations for the re-
constructed OH/Pt(111) system and Figures 9 c and 9 d show
the populations for the on-top bound OH/Pt(111) system,
which are included to highlight differences between popula-
tions of the on-top position on both reconstructed and non-re-
constructed Pt surfaces. In the reconstructed system, the OH

group is bound at the on-top position for strains s<0.01 and

is bound at the bridge position for strains s+0.01. Conse-
quently, there should be some comparison between the orbital

populations of the reconstructed and non-reconstructed surfa-
ces, which may distinguish between general trends and those

that are more closely related the preferred site occupancy.
Figure 9 shows a splitting in the Nl of the O p and Pt d

states, which is similar to that seen for the O/Pt(111) system

and shown in Figure 3. This shows that qualitatively the pres-
ence of H does not prevent the development of magnetism.

This is a common phenomenon and is attributed to the delo-
calised H s states. However, the Pauli effect between the O and

their nearest-neighbour Pt atoms is evidently stronger than
this H damping effect for these OH/Pt(111) systems. Figures 9 a

and 9 b show a clear transition in Nl,m, as the surface undergoes

the structural transition between on-top bound OH (s<0.01)
and bridge bound OH (s+0.01). Figure 9 a shows that this

transition is accompanied by a significant decrease (increase)
in the population of the oxygen py (pz) state for both spin

components as strain s becomes increasingly tensile. Figure 9 c
shows a similar trend in the O pz state for on-top bound OH.

However, in this latter case the changes in the O pz, px and py

states are comparatively smaller.
Consequently, the O pz state is generally electrophilic as s

becomes increasingly tensile, and changes in the valence of
the OH group as it moves from on-top to the bridge site in-

crease this tendency. Smoluchowski[54] smoothing arguments
would suggest that as s and the surface lattice constant in-

creases the Pt component of the surface wavefunction will
smooth and less charge from this wavefunction would en-
croach on the O atom. This suggests that, electrostatically, the
population of the O pz state is limited by the presence of Pt
charge from the surface wavefunction. Sterically, the O atom

increases its valence with the surface Pt atoms in the bridge
position compared to its valence in the on-top position. This

increase in valence is accompanied by charge flow from the

O py state into the O pz state. By comparing Figure 9 a and 9 c,
it is clear that the charge transfers into the O pz state from the

O py state, which is enabled by the steric changes on the sur-
face that occur as the OH migrates to between the bridge and

the on-top position is central to the strain-dependant character
of the OH/Pt(111) system.

Figure 9 b shows a clear transition in the Nl,m for both spin
components of the nearest-neighbour Pt dz2 and dzx states as

the surface undergoes the structural transition between on-
top bound OH (s<0.01) and bridge-bound OH (s+0.01). Nl,m

for the clean Pt surface have been presented in Figure 3 e and
show degeneracy between the Pt dxy and dx2@y2 states as well

as the Pt dzx and dzy states for all s. These degeneracies are
lifted on the reconstructed OH/Pt(111) surface (Figure 9 b),
though only the Pt dzx and dzy degeneracy is lifted for the un-

reconstructed OH/Pt(111) surface, as shown in Figure 9 d.
To distinguish between effects that are caused by the Pt re-

construction and those that are from the OH group, the s<

0.01(compressively strained) portions of Figures 9 b and 9 d are
compared. The reason for this comparison is becuase the OH
group is binding in the on-top position for both the recon-

structed and the non-reconstructed surfaces in this strain inter-

val. Figure 9 b shows that the reconstruction lifts the degenera-
cy between the Pt dxy and dx2@y2 states as well as the Pt dzx and

dzy states when compared to Figure 9 d, which shows a lesser
lifting between the Pt dzx and dzy states and no lifting of the

degeneracy between the Pt dxy and dx2@y2 states.
Generally, the changes in registry between the surface and

second-layer Pt atoms accompanying the reconstruction may

be expected to change the symmetry of the surface wavefunc-
tion and effect the degeneracy changes. The magnitude of the

energy differences between the Pt dzx and dzy states and the
Pt dxy and dx2@y2 states would not be directly estimated by

using a purely symmetric argument, but are now quantified in
Figure 9 b. However, the amount of degeneracy lifting in the

less compressive (s+0.01) region is affected by the binding

position of the OH group, particularly for the Pt dzx and dzy

states whose separation in the s+0.01 region is significantly

more than for s<0.01.
Overall, the effect of the change in binding position of the

OH group from the on-top to the bridge site is to increase the
occupancy of the Pt dz2 and reduce the population of the

Pt dzx states for both spin polarisations. The change in the

binding position also decreases the level of the degeneracy
between the Pt dzx and dzy states and, to a lesser extent, the

the Pt dxy and dx2@y2 states. Changes in the registry between
the surface and second-layer Pt atoms during the reconstruc-

tion also contributes to this loss of degeneracy, but to a lesser
extent.

Figure 10 shows the projected density of states (PDOS) g for
the reconstructed and non-reconstructed on-top bound OH/
Pt(111) systems. The valence orbitals of the OH groups can be

seen in the compressed s =@0.05 O PDOS curves of Figure 10 a
in the interval E @ EFð Þ 2 @8:0½ A eV. A significant delocalisation

exists within these orbitals evidence the wide feature span-
ning E @ EFð Þ 2 @5:0½ A eV. This delocalisation is removed for s>

@0.03 and replaced by a more localised orbital at E@EF &
@4.5 eV. Inspection of the non-reconstructed PDOS curves in
Figure 10 b indicates that the on-top O binding to the recon-

structed surface results in a predominantly more delocalised
orbital than on-top binding to the non-reconstructed surface.

The O@Pt bond lengths for on-top binding to the reconstruct-
ed surface were 2.07–2.05 a for s 2 @0:05;@0:03½ A. These are
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Figure 9. The angular and magnetic quantum number resolved O and their nearest-neighbour surface Pt state populations, Nl and Nl,m, respectively, shown as
a function of strain s for the (2 V 2)-OH/Pt(111) system. The panels show these populations for the oxygen and their nearest neighbour surface Pt atoms for
systems a b) where the OH groups are bound across the reconstructed OH/Pt(111) system and c, d) where the OH groups are bound in the on-top sites of the
unreconstructed Pt(111) surface. The spin (down) components are shown as solid (dashed) lines.
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0.05–0.03 a longer than binding in the on-top position at the
same s on the non-reconstructed surface and are, in part, a

consequence of the lower degeneracy of the delocalised orbi-
tals seen on the reconstructed surface when compared to the

more localised orbitals seen on the non-reconstructed surface.
Bond lengthening will also be a consequence of the increase
in electron density accompanying hydrogenation. This is also

evidence by comparing the O@Pt bond lengths of the OH/
Pt(111) and those for on-top bound O/Pt(111). In the latter

case, the O@Pt bond length was 1.86 a on the compressed
(s=@0.05) surface, decreasing to 1.85 a when s= + 0.05.

These comparisons show that the O@Pt bond length is largely

governed by the binding position, degree of hydrogenation of
the O and the reconstruction of the surface, and are only nom-

inally determined by strain s.
Figure 11 shows the difference electron density 1diff for the

(2 V 2)-OH/Pt(111) system with the oxygen atoms are bound
across the a) reconstructed Pt(111) surface, and b) the on-top

sites of the unreconstructed surface. The character of the delo-

calised OH orbitals identified and discussed in the earlier dis-
cussion of the PDOS curves shown in Figure 10 are immediate-

ly apparent by comparing the s=@0.03 panel of Figure 11 a
with the more tensile (s =@0.01, + 0.01 and + 0.03) panels in
the same figure. In these latter panels, 1diff shows a localised

accumulation around the O and H atoms, which increases with
s. This compares to the s=@0.03 panel of Figure 11 a, where
charge depletion is evident around the O and H atoms, and
charge accumulation between the O atoms and the Pt surface

layer. The increase in charge around the extended surface is
consistent with the appearance of delocalised features in

Figure 10. This mechanism is unique to binding in the on-top
position of the reconstructed surface compared to on-top
binding on the non-reconstructed surface. This is evident by

inspection of the s=@0.03 panel of Figure 11 b, which does
not show charge accumulation between the O atom and the

surface Pt layer, and which shows a lower amount of charge
depletion around the O and H atoms. The low symmetry, or

‘cusping’, of the feature around the O atom and between the

O and H atoms in Figure 11 a is attributed to the differences in
the angle of elevation of the OH bond (H atom) with respect

to the surface Pt(111) plane between bridge-bound OH (s= 0)
and the on-top bound OH (s=@0.03). Removing this low sym-

metry from the O–H features introduces low symmetry fea-
tures elsewhere in the panel showing 1diff. Qualitatively, the

Figure 11. The difference electron density 1diff for the (2 V 2)-OH/Pt(111)
system for strain s=@0.03, @0.01, + 0.01 and + 0.03. The oxygen atoms are
bound a) across the reconstructed Pt(111) surface and b) at the on-top sites
of the unreconstructed surface. The legend shows the difference electron
density in units of electrons/Ry3.Figure 10. Projected density of states (PDOS) g of the O p and the nearest-

neighbour surface Pt d states shown as a function of both energy (E@EF)
and strain s for the (2 V 2)-OH/Pt(111) system. Each graph shows the spin-up
and spin-down components in the g>0 and g<0 portions of that graph, re-
spectively. Subsequent curves are offset vertically for clarity and were ob-
tained using values of s= 0.95, 0.97, 0.99, 1.01, 1.03 and 1.05. The curves
corresponding to s= 0.95 (1.05) curves lie closest to (farthest from) the line
g = 0. The oxygen atoms were bound a) across the reconstructed Pt(111) sur-
face and b) in the on-top position defined in Figure 1 of the unreconstruct-
ed surface.
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characteristics of the feature—that it identifies a region of sig-
nificant charge depletion—remains unchanged between the

low and high symmetry presentations.
Charge transfer will also contribute to changes in the work

function f of the surface. Figure 12 shows the work function f

and the work function difference f@f111, where f111 is the
work of the clean Pt(111) surface, of the reconstructed and on-
top bound (2 V 2)-OH/Pt(111) systems. Changes in f under
strain have two components, one owing to Smoluchowski

smoothing[54] and the second due to the charge redistribution
shown in terms of 1diff in Figure 11. In Figure 12 a, the f for
each of the reconstructed and on-top bound OH/Pt(111) and
the clean Pt(111) systems shows a general reduction as s be-

comes increasingly tensile. This reduction is attributed to Smo-
luchowski smoothing[54] and it’s mechanism was discussed ear-

lier when considering the work function behaviour of the O/

Pt(111) system in Figure 6. A sharp transition is seen for the f

and f@f111 curves for the reconstructed O/Pt(111) system and

shown in Figures 12 a and 12 b, respectively. This transition is
attributed to the change in the binding position of the OH

group and in the development of the Pt surface reconstruc-
tion. Changes in valency between the OH group and the Pt

surface as the OH group moves between the on-top and the

bridge site may be anticipated significantly by the surface

dipole layer and consequently the work function of the
sample. These changes in the surface dipole layer were shown

in terms of 1diff in Figure 11 a, particularly as the charge accu-
mulation that develops between the O atoms and the Pt sur-

face layer in the s=@0.03 panel. This charge accumulation
was discussed earlier ; however, the work function behaviour

presented in Figure 12 quantifies the effect of this
accumulation.

3. Conclusions

In the current work, the effects of strain s on the clean Pt(111)
and the 0.25 ML O/Pt(111) and OH/Pt(111) surfaces have been

investigated using density functional theory (DFT). The OH/
Pt(111) surface has been seen to reconstruct under compres-

sive strain (s,@0.03), and this reconstruction is accompanied

by a change in the binding position of the OH between the
on-top and bridge sites. A similar phenomenon is seen on the

O/Pt(111), where the O binding position changes from the
bridge site (s,@0.03) to the FCC site (s>@0.03).

The magnetisation of the clean Pt(111) surface and both the
O/Pt(111) and OH/Pt(111) surfaces have been seen to be carried

predominantly by the Pt d and O p states, and has been seen

to increase as the strain s becomes more tensile. The changes
in magnetism have been accompanied by changes in the oc-

cupation of the magnetic quantum number resolved state
populations Nl,m for both states, but without change to the an-

gular quantum number resolved state populations Nl. This is
the same behaviour of the magnetisation for the ordered

phases of NixPt1@x (x = 0.25, 0.5, and 0.75)[8] and both PtxFe1@x

and PtxCo1@x.
[9] The charge transfers that accompany the

changes in the magnetisation in both the current work and

the previous studies of the bulk NixPt1@x, PtxFe1@x and PtxCo1@x

systems show that the electronic changes are confined to

intra-orbital transitions for range of strains. This range was de-
fined by considering the amount of lattice mismatch between

the bulk alloy and a pure metal overlayer, which would be typ-

ical for a core–shell nanoparticle.
In the current work, phase transitions were seen for both

the O/Pt(111) and OH/Pt(111) systems at the same strain s =

@0.03. This is suggestive that changes to the O@Pt bond are

relatively insensitive to the presence of an H atom. Compari-
sons of the projected densities of states (PDOS) and the differ-

ence electron densities 1diff of both the O/Pt(111) and OH/
Pt(111) systems show that, as expected, the O@Pt and OH@Pt
interactions are substantially different. However, the observed

alignment of the changes to these interactions under s may
prove useful in further studies, particularly if the O atom is pat-

terned by a more complicated ligand than an H atom.
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