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Abstract

Purpose
Both intravenous thrombolysis (IVT) and intra-arterial endovascular thrombectomy (ET) improve 
the outcome of patients with acute ischaemic stroke, with ET being an option for those patients with
large vessel occlusions. We sought to understand how organisation of services affects time to 
treatment for both IVT and ET.

Method
A multi-objective optimisation approach was used to explore the relationship between the number 
of IVT and ET centres and times to treatment. The analysis is based on 238,887 emergency stroke 
admissions in England over three years (2013-2015).

Results
Providing hyperacute care only in comprehensive stroke centres (CSC, providing both IVT and ET, 
and performing >150 ET per year, maximum 40 centres) in England would lead to 15% of patients 
being more than 45 minutes away from care, and would create centres with up to 4,300 stroke 
admissions/year.  Mixing hyperacute stroke units (HASUs, providing IVT only) with CSCs speeds 
time to IVT and mitigates admission numbers to CSCs, but at the expense of increasing time to ET. 
With 24 CSC and all remaining current acute stroke units as HASUs, redirecting patients directly to 
attend a CSC by accepting a small delay (15-minute maximum) in IVT reduces time to ET: 25% of 
all patients would be redirected from HASUs to a CSC, with an average delay in IVT of 8 minutes, 
and an average improvement in time to ET of 80 minutes. The balance of CSC:HASU admissions 
would change from 24:76 to 49:51.

Conclusion
Planning of hyperacute stroke services is best achieved when considering all forms of acute care 
and ambulance protocol together. Times to treatment need to be considered alongside manageable 
and sustainable admission numbers.



Introduction
In England, Wales and Northern Ireland 85,000 people are hospitalised with stroke each year(1). 
Standard care for eligible patients with acute ischaemic stroke within 4.5 hours of onset has been 
intravenous thrombolysis with alteplase (IVT)(2). Time from onset to treatment is known to be 
especially critical, with the effectiveness of IVT declining rapidly in the first few hours after 
stroke(3). More recently, endovascular thrombectomy (ET) has shown substantially improved 
clinical outcomes in patients with large vessel occlusion (LVO) present in approximately 40% of 
patients with acute ischaemic stroke(4,5). ET may be effective up to 6 hours or more after stroke 
onset (depending on patient selection), but also demonstrates reducing effect size with increasing 
time from stroke onset(6). The proportion of patients eligible for ET in the UK has been estimated 
at about 10%(7). In England the proportion of patients receiving IVT is about 11%(1), although 
higher rates have been achieved as a result of reconfiguration of urban hyperacute services(1,8), 
with maximum rates of about 20%(1).

Providing ET presents a significant challenge for health services. The procedure is typically carried 
out by a neuro-interventionist and requires support from a whole theatre team (anaesthesia, nurses, 
radiographers) and additional imaging work up, usually with computed tomography angiography 
(CTA), sometimes in association with other advanced imaging techniques (CT perfusion or MRI). 
These additional staffing/infrastructure demands for ET require a more centralised model of service 
provision than currently employed for IVT(7,9). 

Two models of hyperacute stroke care have been described and compared(10,11). In a mothership 
model all services are provided by large centres (comprehensive stroke centres, CSCs) providing 
both IVT and ET, at the expense of greater travel times for some patients. In a drip and ship model 
local IVT may be delivered at hyperacute stroke units (HASUs) before transfer of an eligible subset 
of patients with LVO to a CSC (ET-capable) centre. The choice between these models can depend 
on geography and travel times, availability of experienced staff, urban/rural split, and other factors, 
including the maximum practical size of a CSC under a mothership configuration, and the minimum
required size of a HASU in a drip and ship model. Exploration of the advantages and disadvantages 
of each model may be explored by computer modelling.

Pareto-based genetic algorithms, which develop a population of solutions with varying trade-off 
between competing objectives have previously been established as efficient and suitable methods 
for addressing the complex problem of capacity-limited facility location optimisation(12). We have 
previously used these types of genetic algorithms to identify national configurations of hyperacute 
stroke services(13) that meet national guidelines recommending a minimum number of admissions 
to a HASU of 600 patients per year(14), coupled to the recommendation that travel time to 
hyperacute care should be ideally 30 minutes or less, and no more than 60 minutes(15). Here we 
apply that method to understanding how best ET can be provided at a national level in England, and
explore how ET and IVT provision interacts. Multisociety consensus standards for thrombectomy 
centres have been published(16). Guidance on the minimum number of cerebral vascular 
procedures (40), including thrombectomy, to maintain individual operator skills has been published 
nationally(17), though a minimum number of thrombectomy procedures per centre in England has 
not yet been described. Rinaldo et al.(18) have, however, demonstrated that outcomes in high 
volume centres in the US, with at least 132 ET procedures per year, were better. Additionally, to 
provide a robust 24/7 ET service realistically requires at least 5 operators and, even with some 
“double scrubbing” on daytime cases, all 5 could not hope to meet minimum activity levels to 
maintain competence if centre volume was <150. There is no guideline on the maximum size of an 



acute stroke unit, but NHS England reconfiguration guidance recommends a maximum of 1.500 
admissions for  single team(15), and the largest centre currently in the UK has about 2,000 
admissions(1).

Method
We used a genetic algorithm based on NSGA-II(19) to derive potential configurations of stroke 
centres across England, balancing competing objectives. Genetic algorithms maintain a population 
of solutions. These solutions go through a series of generations where new solutions are formed by 
hybridising two existing solutions (with occasional random mutation). In each generation the best 
solutions are kept. We used a pareto-based method whereby, when there are multiple objectives, 
generated solutions are eliminated if another solution is equally as good in all optimisation 
parameters and is better in at least one parameter. The selected configurations were based on a range
of optimisation parameters which seek to minimise travel times and to control admission numbers. 
Further details are given in online Appendix 1.

This location optimisation algorithm, with links to underlying data, has previously been 
published(13). The model predicts, for any configuration of stroke centres, the values for each of 
the competing objectives: travel times (estimated fastest road travel time, from home location of 
patient to hospital); number of admissions to each stroke centre. 

We included 238,887 patients coded with ischaemic or haemorrhagic stroke (ICD-10 I61, I63, I64) 
with an emergency admission over a three-year period (2013-2015). Stroke admission numbers 
were counts of admissions for each of 31,771 Lower Super Output Areas (LSOAs) in England. No 
individual patient level data was accessed: counts of admissions per LSOA were extracted from 
Hospital Episode Statistics (HES; http://www.hscic.gov.uk/hes) with access to national HES data 
managed through Lightfoot Solutions (http://www.lightfootsolutions.com/). Estimated fastest road 
travel times were obtained from a geographic information system (Maptitude, with MP-MileCharter
add-in). These travel times were used for travel time from the patient’s home location to the closest 
stroke unit, and for travel time for onward transfer from a local HASU to the nearest CSC centre if 
required.

We set a preferred size for any centre providing ET as at least 150 ET procedures per year (as 
outcomes have been shown to be better in centres with at least 132 admissions per year(18)). In a 
mothership model this would equate to 1,500 admissions/year of confirmed stroke patients if 10%  
were eligible for ET(7). In a drip and ship model where patients may first attend a local HASU 
providing IVT only before onward transfer to an ET centre if appropriate, we used a minimum 
centre size of 600(2). As the largest stroke centre currently admits about 2,000 patients(1), we 
looked for solutions with the least impact on this maximum.

Outside limited randomised controlled trial data(20) there is no published evidence for what the 
organisational delay will be for ET in the UK, but significant transfer-related delays in ET have 
been described. In a large international multi-centre trial (1,000 patients across 55 sites), evaluating 
the use of Medtronic market-released ET devices, patients receiving ET after transfer received ET 
110 minutes later than patients admitted directly, 35 minutes of which was attributable to inter-
hospital travel time, suggesting a net delay of 75 minutes + travel time(21). In our modelling we 
have assumed some improvement over these results and have assumed a 60 minutes net delay in 
addition to the inter-hospital transfer travel time. 

http://www.hscic.gov.uk/hes
http://www.lightfootsolutions.com/


We also sought to model the impact of a preference for ambulance personnel to convey a patient 
with suspected acute stroke directly to an ET-capable CSC, even if a HASU (not providing ET) 
were closer.  Again, there is no published or real-world data on the extent of this effect, but expert 
consensus considered that this effect may be at least 15 minutes, and we have termed this parameter
‘allowable delay’ i.e. an acceptable delay for all patients in arrival at hospital for the sake of a 
proportion who will receive ET sooner through being taken directly to a CSC.  We have not 
modelled any attempt at the pre-hospital selection of patients with potential LVO for selective 
transfer directly to a CSC, but this paradigm is currently under research(22).

Results
We examined the feasibility of a mothership model by analysing the impact of having CSCs at one 
national centre, up to all current 127 English HASUs(1) (figure 1). With all 127 centres as CSCs the
predicted average patient travel time is 18 minutes, with 90%, 98% and >99% of patients within 30,
45 and 60 minutes of their closest CSC. In this configuration, 38% of patients attend units with 
fewer than 600 admissions/year, and 54% of units have fewer than 600 admissions per year. If the 
minimum number of confirmed stroke admissions required to sustain an ET service is 1,500 
(resulting in ~150 ET procedures per year) then the maximum number of CSCs from the solutions 
identified by the algorithm is 40. The fastest average travel time for solutions with at least 1,500 
admissions per year is 29 minutes, with 62%, 85% and 95% within 30, 45 and 60 minutes of their 
closest centre. Under these parameters, the largest of the 40 CSCs would receive about 3,000 
confirmed stroke admissions per year. 

We examined the distribution of unit sizes in the obtained solutions. For example, 69 solutions were
identified with 30 CSCs that also had a minimum number of admissions of 1,500. The range in 
admission numbers per year across all solutions was 1,515 to 5,722 (interquartile range [IQR] 
2,071-3,246).

The maximum number of CSCs is highly sensitive to the proportion of patients eligible for ET and 
the minimum recommended thrombectomy procedures. In our base case we have assumed that a 
CSC must have a catchment of at least 1,500 stroke admissions per (derived from an estimate of 
10% receiving thrombectomy, and 150 procedures per year being the acceptable minimum). This 
limits the number of CSCs to 40 (assuming there are no other constraints). These patients may all 
attend the CSC directly, or those requiring thrombectomy may arrive via a HASU. At this point 
62% of patients are within 30 minutes of a CSC. Figure 1 (middle panel) shows the how the 
maximum number of CSCs would change if the required catchment changed. The required 
catchment may change because of differences in thrombectomy rate, or changes to the minimum 
acceptable number of thrombectomy procedures carried out. For example, if a CSC only required a 
catchment of 1,000 patients per year there could be 57 CSCs (if no other constraints exist) with 72%
of patients within 30 minutes. However, if a a CSC required a catchment of 2,000 patients per year, 
the maximum number of CSCs would be 30, with 57% patients being within 30 minutes.

The most practical starting point for the location of ET centres is the 24 current English 
neurosciences centres, which already have neurointerventional staff and the necessary imaging and 
interventional suite infrastructure to deliver ET.  A mothership model based solely on these centres 
is predicted to have an average travel time of 38 minutes, with 43%, 71% and 86% of patients 
within 30, 45 and 60 minutes of their closest centre. The number of admissions to each centre 
would range from 1,264 to 6,117 (IQR: 2,292-4,169). We compared these performance statistics 
with other configurations of 24 centres (if those centres could be chosen from any of the current 127



English HASUs). We made no judgement in the model on the practicality of “relocating” any 
[neuroscience] centre. The fastest average travel times for any 24-unit configuration would be of 33 
minutes, with 48%, 80% and 93% of patients within 30, 45 and 60 minutes of their closest centre, 
with admissions ranging from 1,595 to 7,639 (IQR: 2,092-3,849). Admissions could be more even 
distributed by choosing an alternative 24-centre scenario which produces an average travel time of 
36 minutes, with 48%, 73% and 88% of patients within 30, 45 and 60 minutes of their closest 
centre, and with admissions ranging from 2,236 to 4,382 (IQR: 2,732-3,978). However, in all these 
scenarios the upper limit of the pre-set desirable admission range (600-2,000) is substantially 
exceeded in many centres.

When looking for feasible mothership solutions we have assumed an upper limit of size of 2,000 
admissions per year. If this is the case, then at least 55 units would be needed across England which 
cannot be reconciled with the maximum number of 40 units required to sustain 1,500 admissions 
per year to all CSCs. If the minimum unit size must be 1,500 admissions per year (and no HASUs 
are used) then solutions exist with largest unit admissions per year in the range 2,750 to 3,000.

If a pure mothership model is considered unfeasible, then HASUs need to co-exist with the CSCs 
within a drip and ship model of care, whereby patients thought likely to be suitable for ET would 
receive IVT at a HASU (if that centre is their closest centre) and would then be transferred to the 
nearest CSC.  In order to explore the impact of adding HASUs to a configuration of CSCs (moving 
away from a pure mothership model towards a drip and ship model) we took the current 24 
neuroscience centres in England as a baseline CSC configuration, and sequentially added HASUs 
centres from the subset of 103 remaining HASU locations.  We assumed, initially, that patients 
travel first to their closest centre of any type.  All patients eligible for IVT would receive IVT at this
first centre, but those with LVO likely to benefit from ET will then be transferred to the closest ET 
capable CSC.  In this configuration, we assumed a net delay to ET of 60 minutes (excluding travel 
time from the CSC to the HASU) for those patients taken first to a HASU.

If additional HASUs are chosen to minimise the average time to arrival at the first centre, increasing
the number of HASUs reduces average time to IVT, but increases the average time to ET (figure 2). 
With only 24 CSCs in a mothership model, average time to arrival for ET and IVT is 38 minutes, 
with 71% of patients arriving within 45 minutes travel time.  If at the other extreme, the remaining 
103 current English units are present as HASUs in a drip and ship model, the average time to arrival
for IVT is reduced from 38 to 18 minutes, but the average time to arrival for ET is increased from 
38 to 96 minutes, with only 24% of patients arriving within 45 minutes of stroke onset.  The 
complex relationship between the number of HASUs, travel times and admission numbers for the 
first hospital attended is shown in figure 3.  

If all acute stroke centres have a minimum of 600 admissions/year then the maximum number of 
additional HASUs would be 58 (82 centres in total) and all first hospital admissions would be 
between 600 and 1,810 per year (IQR: 781-1,119).  Average time to arrival for IVT falls from 38 
minutes (with 24 neuroscience centres only) to 22 minutes, with 80%, 94% and 98% of patients 
within 30, 45 and 60 minutes.  However, the average time to ET would increase from 38 to 89 
minutes, with 31% of patients arriving within 45 minutes travel time (travel times include an 
additional 60 minutes net organisational delay).  The algorithm identified 988 solutions where 
annual admissions to all centres are within the range 600 to 2,000; these solutions have between 57 
and 82 centres in total (from which the 24 existing neurosciences centres provide ET).  We 
examined the distribution of unit sizes in these obtained solutions.  The range in admission numbers
per year across all solutions was 601 to 2,000 (IQR: 911-1,394).



We anticipated that in a mixed system of HASU and CSCs, there may be a preference to convey 
suspected stroke cases directly to the CSC, even if a HASU were closer, a phenomenon we have 
called ‘allowable delay’. A 15-minute allowable delay would mean that the ambulance would 
transfer a patient directly to a more distant CSC so long as there was no more than 15 minutes extra 
travel time.

We modelled the impact of ‘allowable delay’ in the drip and ship model, with 24 CSCs located at 
the current neuroscience centres and with 103 HASUs at all the remaining centres.  As before, 
assessment and IVT at a nearer HASU incurred a net delay of 60 minutes plus transport time.  In the
model, patients could be taken straight to a CSC with an allowable delay in IVT of 0-100 minutes, 
applied to all patients.  Generally, allowing a delay in IVT to directly attend a CSC increases 
average time to IVT and decreases average time to ET (figure 4).  However, the effects are not 
equal; allowing up to 15 minutes delay for IVT increases average time to IVT by just 2 minutes 
while reducing average time to ET by 20 minutes. This allowable delay affects 25% of all patients, 
who have an average delay in IVT of 8 minutes, and an average improvement in time to ET of 80 
minutes. 

The practice of accepting a delay in IVT for the sake of directly attending a CSC was found to have 
a significant effect on admission numbers to hospitals (figure 5).  As the allowable delay in IVT 
increases, admissions to CSCs increase while admission numbers to HASUs reduce.  With a 15-
minute allowable delay for IVT, the number of centres with fewer than 300 admissions per year 
increases from 7 to 30, while the number of centres with fewer than 600 admissions per year 
increases from 69 to 92 (out of 127 HASUs).  At the same time the number of centres with more 
than 2,500  admissions increases from none to five. With a 30-minute allowable delay for IVT the 
number of centres with fewer than 300 IVT admissions per year increases further to 68, the number 
with fewer than 600 IVT admissions per year increases to 99, and the number with more than 2,500 
IVT admissions increases to 11. The balance of CSC:HASU admissions would change from 24:76 
to 49:51.

The effect of mixing HASUs with 24 CSCs was examined in more detail with an allowable delay in
IVT of 15 minutes to directly attend a CSC (figure 6).  The maximum total number of centres that 
can maintain at least 600 admissions per year is 54 (reduced from 82 in configurations with no 
allowable delay in IVT).  With this configuration the average time to IVT is 26 minutes with 67%, 
91% and 97% of patients within 30, 45 and 60 minutes of the first admitting centre.  The average 
time to ET is 78 minutes (61% of patients within 45 minutes and 65% within 60 minutes).  
Admission numbers to the first admitting hospital range from 610 to 4,936 (IQR: 789-1,840).

The on-line appendix contains example maps and more detailed analysis of some specified 
configurations: a 24 CSC mothership model, a 30 CSC mothership model, and a 30 CSC + 50 
HASU drip and ship model with either 0 or 15-minute allowable delay in IVT.

Discussion
In an ideal configuration of hyperacute stroke care, all patients would live close to a CSC offering 
high quality acute stroke unit care and both IVT and ET.  Our results suggest that in England, 
providing all acute stroke care in such centres is not likely to be considered feasible.  There are 
three limitations to the number of CSCs: 1) economic, 2) time to train required staff in 
thrombectomy procedures, and 3) admission numbers (beyond a certain number of CSCs some units
will fall below the admission numbers anticipated to be required to maintain a 24/7 expert 
thrombectomy service). With our base assumptions (10% of patients eligible for ET, and minimum 



CSC size delivering >150 ET/year) the algorithm identified that configurations would have up to 40
centres, however, 15% of stroke patients (over 12,000 patients annually) would be further than 45 
minutes away from such centres, and centres would have to cope with 3,000 or more confirmed 
stroke admissions per year (the largest stroke centre in England currently admits just over 2,000 
patients per year(1)). Additionally, when considering substantial service reconfiguration there is 
some uncertainty over the exact proportion of stroke patients who will receive ET.

On this basis, a mixed model of CSCs (offering both IVT and ET) and HASUs (offering only IVT) 
appears necessary. Such a model of care reduces time to admission at the first centre (providing 
IVT) but will delay ET for many eligible patients. The delay comes from additional transport time 
and from organisational delays in arranging/starting onward travel(21). The organisational delay 
could be reduced by having ambulances wait at the first-admission hospitals to see if CTA indicates 
that ET is required, or by prioritising ambulance provision for transfer to a CSC. Consideration of 
the substantial impact on ambulance services would need to be given with either of these 
strategies(23).

The balance between HASUs and CSCs will vary across the country. Where population is dense 
(such as London and other large cities), it is likely that services may delivered entirely through 
CSCs. Where population is less dense, in areas with more rural populations, more HASUs will be 
required to control the time to admission to first hospital.

When planning both IVT and ET services, time to treatment for both procedures and broader issues 
of access to sustainable high quality hyperacute stroke services must be considered. It is possible 
that there could be an ‘over-supply’ of more local IVT services where time to ET is increased 
significantly with minimal improvements in time to IVT. However local HASUs may be required, if
only to mitigate the number of direct admissions to CSCs.

Our modelling suggests that allowing a small delay in IVT for patients to be taken straight to a CSC
may significantly reduce time to ET without significant effect on time to IVT. This is similar to an 
analysis by Froehler et al. who found, in a hypothetical bypass analysis, if patients were brought 
directly to the ET-capable centre, IVT would be slightly delayed (by 12 minutes) but ET would be 
delivered 91 minutes sooner(21). However, the population sizes are different – about 30% of all 
patients would have some delay in initial assessment and treatment (with IVT for up to 1 in 5 of 
these patients), whereas only about 1 in 10 of these diverted patients would be expected to benefit 
from improved time to ET. Ideally, we would like to model expected clinical outcomes as times to 
thrombolysis and thrombectomy are changed. At the moment, however, there is not the available 
data or analysis to model clinical outcome as a function of both time to thrombolysis and time to 
thrombectomy.

Our modelling also anticipates the practicality of implementing a mixed model of HASUs and 
CSCs, in that there may be a preference to convey a patient with suspected stroke to a CSC that is 
more distant, so long as the additional travel time is not excessive.  We have shown that such an 
‘allowable delay’ may significantly reduce time to ET without a substantial adverse effect on 
average time to IVT.  Though models of clinical outcome are in relatively early stages of 
development, a probabilistic model of good outcome is being developed whereby for any individual
patient it may be determined whether a good outcome is more likely to be achieved by going 
straight to an ET-capable centre rather than first attending a local IVT-only centre(10,11). There is, 
however, a potential conflict between making the best decision for any individual patient, and 
making decisions that destabilise the wider services for all patients. Holodinsky et al.(11)  examined
the likely outcome of drip and ship vs. mothership models of care, focussing on decisions which 



maximise the likelihood of a good clinical outcome for any individual patient. Such decisions, 
however, may undermine the sustainability of stroke services, either by undermining the capability 
of a local HASU by falling below minimum recommended levels of activity, or by overwhelming 
the capacity of CSCs with very large numbers of suspected stroke patients. The reduction in the size
of centres may be mitigated, at least in part, by additional expert support to HASUs provided by the 
CSCs, such as the use of telemedicine/teleradiology to support clinical decision making(24). By the 
same token, the large numbers of admissions directly to a CSC may be mitigated by the pre-hospital
selection of patients more likely to have a LVO, and the use of such instruments is currently under 
investigation(22).

We have modelled on the basis that determination of suitability for thrombectomy can only be made
at a hospital. There are however attempts to improve pre-hospital decision-making, ranging from 
pre-hospital triage scales(22), through biochemical tests(25), through to ambulances equipped with 
imaging equipment(26). It is beyond the scope of this paper to deal with the effects of such pre-
hospital systems, but this is an area where further modelling should be of value.

It is not only provision of ET that may pull in more patients to a CSC. Advanced imaging 
techniques available there 24/7, but not necessarily elsewhere, may identify patients who might 
benefit from ET whose stroke onset time is either unknown or is longer than would be considered 
for IVT(27,28). 

Our model makes assumptions about, and simplifications of, the real world. Indeed, modelling may 
be thought of as the art of abstracting a messy real-world application into a clean problem suitable 
for an algorithmic solution. While not detracting from the key learnings, these simplifications need 
to be born in mind when interpreting our findings. A key assumption is that patients will be taken to
the closest appropriate stroke centre to their home. We have previously shown that our model 
generally has very good predictability for admission numbers, but the prediction of admission 
numbers is poorer when centres are located close to each other(13). When comparing predicted with
actual admissions there was a median absolute error of 105 admissions per centre per year, or a 
relative absolute error of 17%, but the error was typically about 12% when centres were separated 
by 30 minutes or more travel time, and 20-30% when centres were separated by less than 30 
minutes. This inaccuracy may reflect considerations other than expected travel time, such as on-the-
day traffic conditions, or may reflect a person having a stroke close to, but not actually, at home,  
such as a place of work.  When centres are more closely located such as in city metropolitan areas 
like London, there may therefore be more potential to smooth admissions across centres without a 
significant detrimental effect on travel time.

We have assumed that once at the destination hospital, all hospitals will perform equivalently in 
speed to treatment. Bray et al.(29) have noted, however, that larger hospitals (those performing  at 
least 50 thrombolysis procedures per year) delivered treatment 20-30 minutes faster than smaller 
hospitals (performing <50 thrombolysis procedures per year). In the objectives for our modelling 
we have sought to avoid small units, but it is still possible that larger units will be better able to 
deliver treatment faster or more consistently across the day and week. Decisions on whether a 
patient is a suitable candidate for thrombectomy depend on the patient having a CT-angiogram. 
While it is anticipated that all HASUs in England will be able to perform this, having rapid time to 
analyse and report on scans may be more challenging for smaller units (though this may be 
mitigated, at least in part, by alternative strategies, such as telemedicine).

We have not taken into account the admission of stroke mimics to centres in these models. Recent 
experience evidence suggests that about 25% of admissions to an acute stroke unit are subsequently 



identified as a stroke mimic(30). In large volume centres, stroke mimics have significant impact on 
bed utilisation and infrastructure support.  Improvements in pre-hospital diagnosis of ischaemic 
stroke may in the future lessen the potential impact of stroke mimics on centralised stroke services.

We have also not considered ischaemic stroke patients who are not recognised to have stroke prior 
to hospital admission.  The majority, but not all, ischaemic stroke patients eligible for IVT and 
nearly all patients suitable for ET are FAST positive(31). However, these patients may be admitted 
to hospitals without HASUs and require secondary transfer to hospitals with a HASU.

We have not taken growth in stroke incidence into account in this analysis.  With an ageing 
population, we anticipate a significant increase in admissions to hospital with disabling stroke 
despite better preventative care, particularly in stroke related to atrial fibrillation24. Although such 
forecasting is imprecise, a potential increase in stroke incidence and hospital admissions could be 
driven by a predicted 54% increase in the population of England aged 75 or over the next 15 
years(32). These increases may have significant implications for centres close to the lower margin 
of institutional activity in current recommendations. 

Though models always have simplifications, we believe this analytic approach provides clear 
guidance regarding provision of ET services.  In England, a mothership model based on providing 
hyperacute stroke care only in CSCs does not look feasible, and so consideration must be given to 
the optimal configuration of a drip and ship model with local HASUs providing IVT and 
transferring eligible patients to a tertiary CSC.  In such a mixed model the HASUs not only help to 
provide more rapid IVT, but they also mitigate admission numbers that directly attend CSCs, thus 
preventing overload of the tertiary CSC and helping maintain flow through patient pathways.  
However, an over-reliance on local HASUs may significantly increase time to ET with little benefit 
to time to IVT, and may also exceed the optimum number of HASUs necessary to control direct 
admissions to CSCs.  When considering individual patients it may appear beneficial to accept a 
short delay in IVT for the sake of direct admission to a more distant CSC for consideration of ET.  
However when considering the overall population disability benefit, this strategy should be applied 
carefully as it has the potential to destabilise both IVT and ET provision by distorting admission 
numbers to both types of centre, risking making many HASUs too small to be sustainable and CSC 
admissions too large to be manageable, to the detriment of all stroke patients not just those eligible 
for IVT &/or ET.  Improvements in pre-hospital diagnosis of stroke due to LVO and stroke mimics 
would enable such a strategy to be implemented with less destabilising effect.

Conclusion
Planning of hyperacute stroke services is best achieved when considering all forms of acute care, 
and ambulance protocol, together. Times to treatment need to be considered alongside manageable 
and sustainable admission numbers to different types of acute stroke centre.
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Figures
Figure 1. Feasibility of a mothership model where all patients attend their closest comprehensive stroke centre which provides both IVT and ET. The 
panels show the relationship between the number of centres and best identified results for: (left panel) average and maximum travel time to centre, 
(centre panel) greatest and fewest admissions per year to any single centre, and (right panel) the proportion of patients attending a centre within 45 
minutes and providing at least 150 ET procedures per year. 



Figure 2. Travel times drip n ship model, where all patients first attend closest centre, with onwards travel to comprehensive stroke centre (CSC) if 
patient requires endovascular thrombectomy (ET). The base case has 24 CSCs (located in current 24 neuroscience centres), with Hyper Acute Stroke 
Units (HASUs) providing only intravenous thrombolysis (IVT) being added from the remaining 103 existing acute stroke centres in order to minimise 
average travel time to the first hospital. Showing the effect of adding HASUs (that only offer IVT) on the average time to arrival at hospital for IVT 
and ET. Onward travel for ET includes the transfer travel time and an additional 60-minute transfer-related delay in receiving ET.



Figure 3.  Feasibility of a drip n ship model, where all patients first attend closest centre, with onwards travel to comprehensive stroke centre (CSC) if 
patient requires endovascular thrombectomy (ET).  The base case has 24 CSCs (located in current 24 neuroscience centres), with Hyper Acute Stroke 
Units (HASUs) providing only intravenous thrombolysis (IVT) being added from the remaining 103 existing acute stroke centres in order to minimise 
average travel time to the first hospital.  Showing the effect of adding HASUs on the arrival characteristics of the first hospital attended (for IVT 
treatment).  The panels show the relationship between the number of IVT centres and best identified results for: (left panel) average and maximum 
travel time to first hospital attended, (centre panel) greatest and fewest admissions per year to any single centre, (right panel) the proportion of 
patients attending a centre within 30 minutes and admitting at least 600 confirmed stroke patients per year.



Figure 4. A drip n ship model where all patients first attend closest centre, with onwards travel to comprehensive stroke centre (CSC) if patient requires
endovascular thrombectomy (ET). Taking a fixed configuration (the current neuroscience centres as the 24 CSCs and the remaining 103 existing acute 
centres as Hyper Acute Stroke Units, HASUs), the chart shows the effect of allowing a time delay in receiving intravenous thrombolysis (IVT) in order 
to travel directly to a CSC (capable of both IVT and ET, thus saving transfer delays for ET). The lines show average time to arrival for ET (solid line) 
and IVT (dashed line). Onward travel for ET includes the transfer travel time and an additional 60-minute transfer-related delay in receiving ET.



Figure 5. A drip n ship model where all patients first attend closest centre, with onwards travel to comprehensive stroke centre (CSC) if patient requires
endovascular thrombectomy (ET).  Taking a fixed configuration (the current neuroscience centres as the 24 CSCs and the remaining 103 existing acute
centres as Hyper Acute Stroke Units, HASUs) the panels show the effect of allowing a time delay in receiving intravenous thrombolysis (IVT) in order 
to travel directly to a CSC (capable of both IVT and ET, thus saving transfer delays for ET). The violin plot (left panel) shows the effect on the 
admissions to the first admitting centres: range, median (middle bar) and distribution (shaded body).  The line chart (right panel) shows the effect on 
the number of centres below or above a given threshold of annual admissions.



Figure 6. Feasibility of a drip n ship model, where all patients first attend closest centre, with onwards travel to comprehensive stroke centre (CSC) if 
patient requires endovascular thrombectomy (ET), assuming an allowable intravenous thrombolysis (IVT) delay of up to 15 minutes in order to travel 
directly to a CSC (capable of both IVT and ET, thus saving transfer delays for ET).  The base case has 24 CSCs (located in current 24 neuroscience 
centres), with Hyper Acute Stroke Units (HASUs) being added from the remaining 103 existing acute stroke centres in order to minimise average 
travel time to the first hospital.  Showing the effect of adding HASUs on the arrival characteristics of the first hospital attended (for IVT treatment).  
The panels show the relationship between the number of IVT centres and best identified results for: (left panel) average and maximum travel time to 
CSC, (centre panel) greatest and fewest admissions per year to any single CSC, (right panel) the proportion of patients attending a CSC within 30 
minutes and having at least 600 confirmed stroke admissions per year.



Appendix 1: Methodology

1 Description of problem
In order to establish a hyper-acute stroke unit (HASU) model for emergency stroke care across 
England, all HASUs (providing thrombolysisis) should ideally have a minimum of 600 yearly 
admissions of confirmed strokes. Comprehenisve stroke centres (providing thrombolysis and 
thrombectomy) should perform a minimum of 150 thrombectomy proecures per year (10% of stroke
patients are assumed to receive thrombectomy). No unit should be infeasibly large, and we have 
taken the current largest unit with ~2,000 stroke admissions per year as our upper target, though the 
algorithm also explores use of larger units. 

The problem involves looking for solutions that can place any number of hospitals in any of 127 
locations. There are therefore 2^127 or 10^38 possible solutions. Each solution requires looking up 
road travel times from each of 31,171 patient locations to all open hospitals to allocate patients to 
their closest hospital. There are 13 possible objectives to try to achieve or trade-off (see section 3.1).

This type of problem is termed ‘NP-hard’ - it cannot be solved explicitly in reasonable time. And as 
there are multiple-objectives that trade-off against each other there is no single  solution to the 
problem (as there is no way to objectively determine the weighting of different objectives); rather 
we are looking for a population of solutions which demonstrate the trade-off between different 
objectives.

With NP-hard problems there are often a range of different heuristic algorithms which search for 
good solutions to the problem, while never guaranteeing an optimal solution is found. One set of 
general purpose heuristic methods are a family of algorithms known as ‘genetic algorithms’, due to 
their inspiration coming from the theory of evolution. Here we describe the specific genetic 
algorithm used in our study.

2 Code and data repository
Data and code used for the model are available at: 
https://github.com/MichaelAllen1966/1805_thrombectomy_location

Note: The code contains a bespoke Genetic Algorithm written in Python/NumPy. No Genetic 
Algorithm libraries were used.

3 Multi-objective problem

3.1 Pareto dominance
When solving an optimisation problem based on one objective, the optimal solution is given by the 
configuration with the best (highest or lowest) objective value. In the case of multi-objective 
optimisation, comparing several solutions requires to reference to the notion of dominance: a vector
aof the objective space dominates another vector b if all criteria of a are better or equal to criteria of
b and a≠ b[1]. Then, a solution is non-dominated if there are no other solutions at least equal in all 
objectives and better in at least one objective. At the end of the optimisation process, there is no 



single best solution but a set of non-dominated solutions, called the Pareto Front. An example of a 
Pareto Front using two objectives is shown in figure 1.

The greater the number of objectives on the Pareto Front the lower the chance that a point will be 
dominated by another. If there is no correlation between objectives and solutions are entirely 
random then the chance of a single point being dominated by another single point picked at random 
is 0.5^nobj. 

3.2 Algorithm code and data
The algorithm code and data used may be downloaded from.

https://github.com/MichaelAllen1966/1805_thrombectomy_location

(Note: A general version of this algorithm is also available here: 
https://github.com/MichaelAllen1966/1802_acute_healthcare_location_algorithm)

The algorith was run in two stages:

1) Identify best locations of thrombolysis/thrombectomy centres (this is all that is neeed for the 
mothership model).

2) For drip’n’ship models, fix the location of thrombectomy centres and identify best locations of 
thrombolysis-only centres.

Initial algoithm runs focussed on a reduced criteria set of reduce the number of hospitals used, 
reduce average distance, minimise the the nunebr of admissions to the smallest unit, maximise the 
size of the smallest unit. This limited approach has two advantages: 1) it finds solutions that are 

Figure 1:  Example of identification of Pareto front (non-dominated) points when comparing two 
objectives.

https://github.com/MichaelAllen1966/1805_thrombectomy_location


independnent of specific taregts for distance or admission numbers, and 2) it provdes more praid 
progress of the algorithm. This progressive extension of objectives is an established general 
methodology for genetic algorithms [2]. After the initial limited run is complete the numebr of 
objectives is enlarged (though the algorithm allows for three different target travel times, the next 
expansion used only one target travel time, with a final run of the algorthm expandinf solutions 
based on all objectives). 

4 Genetic algorithms
Genetic algorithms manage a population of individuals encoded as vectors through a given number 
of generations. At each generation, ‘good’ parents are selected from the population according to 
their fitness (any measure of superiority over other potential parents). Parents are then combined, 
using a cross-over operator, to create children which are finally mutated. Genetic algorithms differ 
in the parent selection process, in the cross-over and mutation processes, and in the way the 
population is archived. 

4.1 Representation
Solutions are coded as binary string of genes with either 1 for an open location or 0 for closed. For 
instance, 001011 would be six genes that represent hospitals 3, 5 and 6 being open and 1, 2 and 4 
being closed. In this study, vectors represent the 127 hospitals (SSNAP acute admitting stroke 
units).

4.2 Selection
The selection operator chooses a part of the population to become parents. The better individuals in 
terms of objective values are more likely to become parents. The selection probability can be 
proportionate to fitness by roulette-wheel sampling[3] or  stochastic universal sampling[4]. The 
sigma scaling method normalises the fitness by its variance in the population, so that the individuals
with the highest fitness always have a higher probability than others to produce children. However, 
these approaches focus on exploitation of existing population rather than exploration of the decision
space and they can lead to premature convergence.

Other selection methods rely on ranking rather than fitness value. With ranking selection, 
individuals are ranked according to their fitness and their probability to become parents is function 
of their rank[5]. Similarly, the tournament selection creates random pairs of individuals and keeps 
the one with the highest fitness value with a given probability[3]. Such methods allow the algorithm
to keep some individuals with low fitness values (with the advantage of keeping a broader gene 
pool).

Finally, the Boltzmann selection[6] controls the selection rate via a temperature. At the beginning, 
all individuals have a similar probability to be selected. As the temperature decreases, the selection 
focusses on high-fitness individuals. 

4.3 Cross-over
The cross-over is the process which exchanges genes from parents to create new children. The 
simplest option is the single-point cross-over which selects one locus and exchanges the blocks of 
parents before and after that locus. For instance, a crossover at point five would perform the 
following:



Parent A: 1 1 1 1 1 1 

Parent B: 0 0 0 0 0 0

Child A: = 1 1 1 1 0 0

Child B: 0 0 0 0 1 1

The choice of the single-point location can be made by a uniform distribution. In the case of binary 
vectors, the single-point cross-over is less likely to exchange the endpoints of vectors [2]. To reduce
this effect, the cross-over can rely on two or more exchange points.

4.4 Mutation
Mutation changes the gene value of each locus, with a very small probability for each individual 
each generation. According to [7], the mutation process avoids the loss of diversity in the 
population. 

4.5 Archive
Genetic algorithms also vary by the way solutions are archived and if the population size is 
variable. The simple option is to keep only children. However, it assumes that children are better 
than parents which are lost. Several methods build an archive which is union of parents and 
children. If the population size is variable, an option is to keep the Pareto Front of this archive. 
However, the size of this Pareto Front can increase dramatically, in particular with many objective 
functions. Then, individuals from the archive are ranked, based on their Pareto dominance and 
another metric. NSGA-II [8] and SPEA2 [9] both rank individuals by combining dominance and 
spread metric in order to maximise population diversity.

4.6 The NSGA-II method
In NSGA-II [8] the archive and the new population are merged and all individuals are ranked 
according to a two-step mechanism. In the first step, the merged population is split into layers of 
non-dominated fronts, the first layer being the Pareto Front (the second layer being the next Pareto 
Front after removal of the first layer). In the second step, the spread of the population is measured 
by the crowding distance which gives the distance from an individual to its nearest neighbour. To 
keep the size of the population constant, a given number of individuals is selected from the merged 
population, preferably from the upper layers and with the largest crowding distance. 

NSGA-II has the advantage to keep not only optimal solutions but also near-optimal solutions in 
lower layers. However, to do so, the population must be large enough. The second advantage is to 
provide a diverse population in terms of score values, thanks to the crowding distance ranking. 

The NSGA-II was chosen for this study after a pilot comparison with SPEA2[9], MOEAD[10], and 
HypE[11] which showed that NSGA-II provided similar objective performances with a more 
diverse population.

4.7 Convergence indicator
Population diversity can  be monitored using average Hamming distance. The Hamming distance 
between any two solutions is the proportion of genes that are different. Average Hamming distance 



is the mean Hamming distances for all pairwise comparisons in the population (after first Pareto 
Front selection). 

4.8 Description of our genetic algorithm
The code contains a bespoke implementation of a genetic algorithm, based on NSGA-II[8]. Our 
method evolves solutions based on multiple objectives, but without any weighting of objectives. In 
each generation, the Pareto Front of non-dominated solutions is identified. Larger populations may 
be selected by picking subsequent Pareto Fronts (re-evaluation the Pareto Front after removal of the

previous Pareto Front identified). The population size is maintained in the interval [ Pmin ; Pmax ].

The steps of the algorithm are:

1) Identify which combination of objectives to use for selection in algorithm (may be from 2
objectives to all objectives).

2) Set up initial population of solutions (a typical starting population is 10,000 solutions).

i) Randomly choose number of hospitals to open in each solution.

ii) Randomly assign open hospitals.

iii) A library of solutions may be imported instead of, or in addition to, a random 
population of solutions.

iv) Non-unique solutions are removed.

3) Breed solutions:

            i) Choose pairs of solutions at random from the population.

While NSGA-II selects parents with the tournament method based on weighted 
criteria, our method selects parents randomly to avoid weighting any objective. 

 ii) Select a single crossover point at random within the solution binary string.

 iii) Apply the cross-over operator to produce children. 

iv) Randomly mutate children with a probability per element of 0.002.

v) Combine parents and children into a new population.

vi) Remove non-unique solutions and any solutions where all hospitals are closed.

4) Calculate the performance of all solutions against the objectives used for selection.

5) Identify all non-dominated (Pareto Front) solutions

i) If the number of selected solutions is greater than the maximum permitted 
population size then reduce the number of solutions by either 

(1) picking the required number of solutions at random, or 

(2) pick two solutions at random and use tournament selection based on 
crowding distance

ii) If the number of selected solutions is lower than the target population then remove
the previously selected non-dominated solutions and repeat the Pareto selection until 
sufficient solutions have been identified. 



 6) Repeat steps 3-5 until the maximum number of generations is reached or the algorithm is
stopped by another indicator:

 i) Stop the algorithm when there is a change of <0.001 in average Hamming 
distance across 5 generations. 

Note: The minimum and maximum number of solutions to pass on to the next generation may be 
the same number to keep solution size constant. Alternatively, a range of population size may be 
acceptable (e.g. a minimum number of 1,000 solutions may be chosen, but a maximum number of 
5,000 solutions may be permitted. In this case Pareto selection is repeated until at least 1,000 
solutions have been selected, but restriction on the number of solutions only occurs if the number of
solutions chosen exceeds 5,000).

The time taken to reach convergence depended on the the number of objectives in the Pareto Front. 
Typical populations sizes and run times were: 

• For 3-4 objectives: population sizes of 2,500 to 5,000 were used. Typical run time to 
convergence on a single core of a 2GHz processor was 48hrs.

• For 8-12 objectives: population sizes of 5,00 to 10,000 were used. Typical run time to 
convergence on a single core of a 2GHz processor was 4-7 days.

Note: algorithms may be speeded up by restricting solutions to a smaller range of acceptable 
number of hospitals (strict filters may be introduced into the algorithm to remove unacceptable 
solutions before identifying the Pareto Front). 
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Appendix 2: Example scenarios
Four scenarios were mapped and analysed in more detail as examples. These are not intended to describe definitive solutions, but were selected as 
examples of good solutions:

I. Mothership model with 24 comprehensive stroke centres (CSC) providing intravenous thrombolysis (IVT) and endovascular thrombectomy (ET), 
where all patients attend their closest CSC.  Locations based on the existing 24 neuroscience centres.

II. Mothership model with 30 CSCs providing IVT and ET, where patients attend closest centre.  Locations based on using all 18 neuroscience centres 
outside of London, 4 London neuroscience centres, and 8 further centres that maximise the proportion of patients within 45 minutes of a CSC while 
keeping all admissions to hospitals above 1,500.

III. Drip n ship model with 30 CSCs as in scenario II.  The location of 50 additional Hyper Acute Stroke Units (HASU) were selected in order to 
maximise the proportion of patients within 30 minutes of a HASU while keeping all the first admissions to hospitals in the range 600 to 2,00 per year.  
Patients first attend their closest unit regardless of type with onwards travel to CSC if patient requires endovascualr thrombectomy (ET).  Show a map 
for IVT and for ET

IV. Drip n ship model with 30 CSCs and 50 HASUs as in scenario III, but with a 15 minute allowable delay to IVT to first attend a CSC in favour of a 
HASU, with onwards travel to CSC if patient requires endovascualr thrombectomy (ET). 

A summary of the performance of the scenarios is shown below:



Map 1. Scenario 1 - Mothership model with 24 CSC: patient travel times and centre catchment areas for patients attending their closest centre.

Map 2. Scenario 2 - Mothership model with 30 CSC: patient travel times and centre catchment areas for patients attending their closest centre.





Map 3. Scenario 3 - Drip n ship model with 30 CSC and 50 HASU: patient travel times and centre catchment areas for patients attending first admitted 
centre (for IVT).



Map 4. Scenario 3 - Drip n ship model with 30 CSC and 50 HASU: patient travel times (including transfer & related delays) and CSC catchment areas 
for patients attending CSC for ET. Yellow stars show CSC locations, yellow dots show HASU locations.



Map 5. Scenario 4 - Drip n ship model with 30 CSC and 50 HASU with a 15 minute allowable IVT delay: patient travel times and centre catchment 
areas for patients attending first admitted centre (for IVT).



Map 6. Scenario 4 - Drip n ship model with 30 CSC and 50 HASU with 15 minute allowable IVT delay: patient travel times (including transfer & 
related delays) and CSC catchment areas for patients attending centre for ET. Yellow stars show CSC locations, yellow dots show HASU locations.



Figure 1. Arrival times to intravenous thrombolysis (IVT) and endovascular thrombectomy (ET) centres.  The left panel shows percentile travel times 
to arrival at first admitting hospital (which is able to provide IVT if required).  The right panel shows percentile travel times to an ET-capable centre.  
Four example scenarios are shown: I) 24 comprehensive stroke centres (CSC) providing IVT and ET where all patients attend closest centre, II) as (I) 
with 30 CSCs, III) 30 CSC and 50 hyper acute stroke centres (HASU) providing IVT-only, where all patents first attend closest centre with onwards 
travel to CSC if patient requires endovascular thrombectomy (ET), IV) as (III) but with an allowable IVT delay of 15 minutes.



Figure 2. Hospital admissions per year at first admitting hospital (top panel) and ET centre (bottom panel).  Four examples scenarios are shown: I) 24 
comprehensive stroke centres (CSC) providing IVT and ET where all patients attend closest centre, II) as (I) with 30 CSCs, III) 30 CSC and 50 hyper 
acute stroke centres (HASU) providing IVT-only, where all patents first attend closest centre with onwards travel to CSC if patient requires 
endovascular thrombectomy (ET), IV) as (III) but with an allowable IVT delay of 15 minutes.
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