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Abstract 

This study examined how starting each shuttle in the prone position altered the internal, 

external and perceptual responses to the Yo-Yo Intermittent Recovery Test Level 1. Using a 

randomized crossover design, 17 male rugby players completed the Yo-Yo IR1 and prone Yo-

Yo IR1 on two separate occasions. External loads (via microtechnology), �̇�O2, heart rate (HR), 

rating of perceived exertion (RPE) were measured at 160, 280 and 440 m (sub-maximal) and 

when the test was terminated (peak). The pre-to-post change in blood lactate concentration 

(∆[La]b) was determined for both tests. All data were analysed using effect sizes and 

magnitude-based inferences. Between-trial differences (ES  90%CL) indicated total distance 

was most likely lower (-1.87  0.19), whereas other measures of peak external load were likely 

to very likely higher during the prone Yo-Yo IR1 (0.62-1.80). Sub-maximal RPE was likely to 

most likely higher (0.40-0.96) and peak RPE very likely higher (0.63  0.41) in the prone Yo-

Yo IR1. The change in [La]b was likely higher after the prone Yo-Yo IRl. Mean HR was 

possibly lower at 440 m (-0.25  0.29) as was peak HR (-0.26  0.25) in the prone Yo-Yo IR1. 

V̇E, V̇O2 and V̇CO2 were likely to very likely higher at 280 and 440 m (ES = 0.36-1.22), while 

peak values were possibly to likely higher (ES = 0.23-0.37) in the prone Yo-Yo IR1. Adopting 

a prone position during the Yo-Yo IR1 increases the internal, perceptual and external 

responses, placing greater emphasis on metabolically demanding actions typical of rugby. 
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Introduction 

High-intensity efforts, involving repeated running and collisions, are important to 

success in rugby and are strongly associated with ‘critical’ moments (e.g. scoring/conceding a 

try) and match outcomes (Gabbett & Gahan, 2015; Kempton, Siroctic, Rampinini, & Coutts, 

2015).  For example, players perform up to 25 high-intensity efforts during rugby league 

match-play with ~56% of these preceding a try (Gabbett & Gahan, 2015). Players are engaged 

in metabolically demanding actions including collisions, followed by getting up from the floor, 

acceleration/deceleration and changes of direction (Atkins, 2006; Gabbett, 2005; Gabbett & 

Gahan, 2015; Kempton et al., 2015). These actions, when combined with running, impose a 

greater physiological load on an individual when compared to running alone (Mullen, Highton, 

& Twist, 2015; Oxendale, Highton, & Twist, 2017). As such, the ability to monitor an athlete 

using a test that employs match specific movements would be beneficial to understand 

performance capability (Gabbett, 2005) in collision sport athletes. 

The Yo-Yo Intermittent Recovery Test (Yo-Yo IR1; Atkins, 2006) and 30-15 

Intermittent Fitness Test (30-15IFT; Scott et al., 2015) have been used to assess the intermittent 

running ability of rugby players. However, as players must get up from the floor after a collision 

before moving to the next position ~40 times during match-play (i.e. joining the attack or 

retreating into the defensive line; Gissane, White, Kerr, & Jennings, 2001), incorporating some 

of these actions within traditional running-based tests might provide a better reflection of the 

metabolic and physiological responses typically observed during match-play. Whilst the 

inclusion of a collision during the test could increase the risk of injury, incorporating repeated 

up-and-downs might provide further insight into a player’s ability to perform this fundamental 

action, accelerate/decelerate and change direction alongside high-intensity running. The 

addition of these sport-specific actions has been used in simulations of rugby league match-

play (Sykes, Nicholas, Lamb, & Twist, 2013), and our own in-house data has revealed strong 
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associations (r = 0.48-0.78) between distance covered during a modified Yo-Yo IR1 (i.e. 

including an up and down) and measures of external (e.g. relative distance, high metabolic 

power [> 20 W∙kg-1] and repeated sprinting) and internal (e.g. heart rate, RPE) responses during 

simulated match-play (Dobbin, Moss, Highton, Hunwicks, & Twist, 2017b). Despite the 

potential for this modified test, the physiological and performance responses to intermittent 

running tests with and without repeated up and down actions remain unknown. In particular, 

repeatedly getting up and down is likely to alter running performance when trying to maintain 

a given speed, while heavier players might be disadvantaged (Darrall-Jones et al., 2016). 

Furthermore, it seems prudent to investigate if, and to what extent, a modified test assesses 

distinct physical qualities, thus differentiating it from the original test and providing 

practitioners with further insight into an athlete’s performance capabilities.  

This study proposed to: 1) investigate the internal and external responses to the Yo-Yo 

IR1 test; whereby participants start each shuttle in either a prone (prone Yo-Yo IR1) or standing 

position (Yo-Yo IR1), and 2) determine the relationship between the Yo-Yo IR1 and prone Yo-

Yo IR1, and body mass. It was hypothesized that the up-and-down actions would elicit a greater 

cardiovascular, metabolic and perceptual response due to the greater involvement of upper-

body musculature and greater emphasis on accelerated running, both of which would 

negatively impact on total distance covered. Further, it was hypothesized that a strong 

relationship between Yo-Yo IR1 tests would be observed but that the modified Yo-Yo IR1 

would provide greater insight on the participant’s ability to perform high metabolically 

demanding actions. It was also hypothesized that there would be a negative association between 

body mass and distance covered in both tests, with a stronger association observed for the prone 

Yo-Yo IR1.  

 

Methods  
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Participants  

With institutional ethics approval and informed consent, 17 male university-standard 

rugby players (age = 20.4  1.2 y, stature = 182.6  5.7 cm, body mass = 83.7  9.5 kg) 

volunteered to participate in the study. Data were collected one month before the end of the 

season, with all participants actively participating in a minimum of two rugby-specific training 

sessions and one match per week. 

Design 

Participants were required to attend the laboratory on two separate occasions at the 

same time of day ( 2 hours) separated by 2-5 days. During the initial visit, participants 

completed measures of stature and body mass before being randomly allocated to the Yo-Yo 

IR1 or prone Yo-Yo IR1. During the second visit, participants completed the remaining 

condition. Mean and standard deviation ambient temperature and humidity during the two trials 

was 16.5  2.3C and 59.0  5.0%, respectively. During both trials, measurements of expired 

air, blood lactate concentration ([La]b), rating of perceived exertion (RPE) and heart rate (HR) 

were recorded, and participants were required to wear a micro-technology device. Participants 

were asked to avoid exercise and replicate their diet in the 24 h before each visit as well as 

avoiding any form of supplementation (i.e. caffeine).  

Procedures 

Yo-Yo Intermittent Recovery Test Level 1 

The Yo-Yo IR1 was performed as previously described (Krustrup et al., 2003) on an 

outdoor synthetic grass pitch (3G all-weather surface). Briefly, the Yo-Yo IR1 consisted of two 

20-m shuttles followed by a 10 s active recovery (5 m deceleration, 180° change of direction 

and walk to the line), with all participants completing two practice shuttles at a low-speed 



 

6 
 

6 

before the test started. The test consisted of 4 shuttles at 10-13 km·h-1 (0-160 m), 3 shuttles at 

13.5 km·h-1 (200-280 m) and 4 shuttles at 14.0 km·h-1 (320-440 m), thereafter the speed 

increased 0.5 km·h-1 every 8 shuttles (i.e. 760, 1080, 1400 m, etc.). Running speed was 

governed by an audio signal and participants were instructed to complete as many 40 m shuttles 

as possible. The test was terminated when the participant failed to reach the start line before 

the audio signal on a second occasion and the total distance covered recorded (no. shuttles x 

40 m). During the prone Yo-Yo IR1, participants completed the same test described above but 

were required to start each shuttle from a prone position that was adopted at the end of each 10 

s recovery phase with their head behind the start line, legs straight and chest in contact with the 

ground. All trials were completed individually to remove any external influences and the 

researcher provided consistent encouragement during the testing procedures. The coefficient 

of variation (9.9%) and intra-class correlation coefficient (0.98) has been determined for the 

prone Yo-Yo IR1 (Dobbin, Hunwicks, Highton & Twist, 2017a).  

Internal and perceptual responses  

Respiratory gas exchange was measured continuously using a portable, breath-by-

breath system (Cosmed, K4b2, Cosmed, Rome, Italy). Before each test, O2 and CO2 were 

calibrated with known concentrations. Upon completion, minute ventilation (V̇E), oxygen 

uptake (V̇O2) and carbon dioxide production (V̇CO2) data were averaged over 15-s epochs and 

matched with distance (based on time) to calculate mean sub-maximal values at 160 m, 280 m 

and 440 m. Finally, peak values for each variable were considered as the highest value achieved 

during the test. Previous literature has reported acceptable limits of agreement and mean bias 

for V̇E (± 16.3 and ± 1.27 L∙min-1), V̇CO2 (± 0.67 and ± 0.06 L∙min-1), V̇O2 (± 0.82 and ± 0.08 

L∙min-1), strong intra-class correlation (> 0.75) and low technical error of measurement (< 5%) 

between repeated trials exceeding 3-minutes when using the Cosmed K4 to measure V̇E, V̇O2, 
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and  V̇CO2 (Duffield, Dawson, Pinngton, & Wong, 2004). Heart rate, monitored via telemetry 

(Polar, FS1, Polar Electro, Oy Finland), was measured continuously during both trials to 

ascertain mean heart rate (HRmean) at 160 m, 280 m and 440 m, and peak heart rate (HRpeak), 

defined as the highest recorded heart rate during the test.  

Fingertip capillary blood samples (5 L) were taken immediately before and within 30 

s of completing the Yo-Yo IR1 tests and analysed for blood lactate concentration ([La]b) 

(Lactate Pro analyser, Arkay, Kyoto, Japan). To remove any inter-analyser variability, the same 

Lactate Pro was used throughout (CV = 8.2%). After habituation to the scale and standardized 

instructions (Morris, Lamb, Cotterrell, & Buckley, 2009), rating of perceived exertion (RPE; 

in-house CV = 2.4%) was recorded after 160 m, 280 m, 440 m and at exercise cessation using 

the Borg 6-20 scale (Borg, 1998). 

External responses  

A 10 Hz micro-technology device fitted with a 100 Hz tri-axial accelerometer, 

gyroscope and magnetometer (Optimeye S5, Catapult Innovations, Melbourne, Australia) was 

worn in a custom-made vest with the unit positioned between the participant’s scapulae. The 

available satellites and HDOP were 14.2  1.2 (range 12.0–18.0) and 0.6  0.1 (range 0.5–1.6), 

respectively. To exclude any possible intra-device variability, all participants wore the same 

GPS unit for each trial. Data were later downloaded and analysed (Sprint Version 5.1, Catapult 

Sports, VIC, Australia) for PlayerLoadTM (AU∙min-1), high metabolic power (> 20 Wkg-1∙min-

1) and accelerations at 0-2, 2-3, 3-4 and 4-20 ms-1 (m∙min-1). This micro-technology device is 

reliable and valid for measuring the movement of team sport athletes (Johnston, Watsford, 

Kelly, Pine, & Spurrs, 2014).  

Statistical analysis  
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All data are presented as mean  SD and represent all participants (except for sub-

maximal responses at 440 m; n = 15). Magnitude-based inferences (MBI) and effect sizes with 

90% confidence limits were used, with effect sizes calculated as the difference between trials 

divided by the pooled SD. This approach was applied to the peak movement, physiological and 

perceptual responses as well as sub-maximal responses at three sub-maximal distances of each 

test (160 m, 280 m and 440 m). Threshold values for effect sizes were: 0.0-0.2, trivial; 0.2-0.6, 

small; 0.6-1.2, moderate; 1.2-2.0, large; >2.0, very large (Hopkins, Marshall, Batterham, 

Hanin, 2009). Threshold probabilities for a mechanistic effect based on the 90% confidence 

limits were:  25-75% possibly, 75-95% likely, 95-99% very likely and > 99.5 most likely 

(Batterham & Hopkins, 2006). If the likely range of a true value overlapped substantially 

positive or negative values, the change was classified as unclear. To ascertain the relationship 

between the two tests, and with body mass, Pearson’s correlation (r) was used to determine the 

correlation coefficient with the following criteria applied: < 0.1, trivial; >0.1-0.3, small; >0.3-

0.5, moderate; >0.5-0.7, large; >0.7-0.9, very large; and >0.9-1.0, almost perfect. In addition, 

linear regression was used to determine how much of the prone Yo-Yo IR1 distance was 

explained by the Yo-Yo IR1 distance. Statistical analysis was conducted using a predesigned 

spreadsheet for comparing means (Hopkins, 2006), and correlation and regression (Hopkins, 

2015).  

 

Results  

Total distance was most likely lower during the prone Yo-Yo IR1 with a mean difference of    -

346 ± 115 m. PlayerLoad™ and high metabolic power were very likely and most likely higher 

during the prone Yo-Yo IR1 compared to the Yo-Yo IR1, respectively (Figure 1 and 2). The 

peak acceleration responses across all thresholds were likely to very likely higher during the 

prone Yo-Yo IR1 compared to the Yo-Yo IR1 (Table 1). These higher loads are reflected in 
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the possibly to very likely higher ∆[La]b, peak RPE and peak metabolic responses during the 

prone Yo-Yo IR1 compared the Yo-Yo IR1 (Table 1, Figure 1).  

*** Insert Table 1 About Here*** 

***Insert Figure 1 About Here*** 

***Insert Figure 2 About Here*** 

Differences between sub-maximal metabolic and HR responses at 160 m were unclear, 

although there was a likely higher RPE during the prone Yo-Yo trial (Table 2). The effect on 

HR was unclear at 160 m and 280 m, but RPE, V̇E, V̇CO2 and V̇O2 were likely to very likely 

higher during the prone Yo-Yo IR1 (Table 2). At 440 m HR was possibly lower, while RPE 

and metabolic responses were very to most likely higher during the prone Yo-Yo IR1 compared 

to the Yo-Yo IR1 (Table 2).  

***Insert Table 2 About Here*** 

There was a large correlation for distance covered between the Yo-Yo IR1 and prone Yo-Yo 

IR1 (r = 0.87) and linear regression revealed that performance on the Yo-Yo IR1 explained 

76% (R2 = 0.76) of the variance during the prone Yo-Yo IR1. A small and trivial correlation 

was observed between body mass and the distance covered during prone Yo-Yo IR1 (r = -0.28, 

90% CL -0.62 – 0.15) and Yo-Yo IR1 (r = -0.07, 90% CL -0.47 – 0.36), respectively. A small 

correlation was also observed between body mass and the difference in distance covered 

between tests (r = 0.27, 90% CL -0.16 – 0.61). Body mass explained 8% (R2 = 0.08) of prone 

Yo-Yo IR1 performance, 0.4% (R2 = 0.004) of Yo-Yo IR1 performance and 7.2% (R2 = 0.072) 

of the differences between tests.  
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Discussion  

This study investigated the effects of introducing the up-and-down actions typically 

observed after a tackle on internal and external responses during the Yo-Yo IR1 in rugby 

players. Consistent with our first hypothesis, participants performing the prone Yo-Yo IR1 

elicited greater sub-maximal and peak (except HRpeak) metabolic, physiological and movement 

responses, but covered less total distance. There was a strong agreement between both Yo-Yo 

IR1 tests, although a proportion of the variance in the prone Yo-Yo IR1 performance did not 

explain performance in the Yo-Yo IR1. In contrast to final our hypothesis, only a small 

relationship was observed between body mass and the prone Yo-Yo IR1.  

Total distance was lower during the prone Yo-Yo IR1 compared to standard Yo-Yo 

IR1 trial. It is likely that the repeated up-and-down action emphasised players having to 

accelerate to maintain a given speed, which was responsible for a greater energetic demand 

during the prone Yo-Yo IR1 compared with the Yo-Yo IR1, which in turn, caused earlier 

exercise cessation. As the audio signal did not account for the time taken to get up from the 

prone position, participants were required to place greater emphasis on the initial acceleration 

during this trial to cover the 40 m within the allocated time. Greater distances covered within 

all acceleration thresholds, higher metabolic power and PlayerLoad™ during the prone Yo-Yo 

IR1 further support this notion (see Figure 2). Getting up from the floor and accelerating would 

also increase upper- and lower-body muscle activation at the start of the shuttle. Compared to 

the standard Yo-Yo IR1, these additional actions would likely result in a greater reliance on 

fast twitch muscle fibres and subsequent metabolite disturbances that are associated with 

fatigue, including K+ efflux, which has been reported to impact the transmission of surface 

member action potential (Westerblad, Allen, & Lannergren, 2002; Allen, Lamb, & Westerbald, 

2008). Furthermore, an increase in Pi, ADP and a decrease in ATP are reported to impact the 

sarcoplasmic reticulum calcium ion (Ca2+) uptake, and the increase in Pi and H+ ions can lower 
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the pH which negatively impacts on Ca2+ activated muscular force (Allen et al., 2008; Hvid, 

Gejl, Bech, Nygaard, Jensen, Fransend & Ørtenbald, 2013). It is also important to acknowledge 

the role of the central nervous system and that an increase in perception of effort and feedback 

from the muscle afferents might have reduced the neural drive (i.e. greater corollary discharge) 

(Smiraul, Dantas, Nakamura & Pereira, 2013); thus, potentially explaining the lower distance 

covered in the prone Yo-Yo IR1.  

Our results indicate that no practically meaningful difference was observed in sub-

maximal or peak heart rate. These findings agree with Haydar, Haddad, Ahmaidi, and Buchheit 

(2011) who reported no differences in HRpeak when participants completed several modified 

(continuous, linear and greater number of changes of direction) 30-15IFT tests. However, the 

results appear to contrast those of Ashton and Twist (2015), who observed a possibly lower 

HRmean during an intermittent shuttle test with an increased number of directional changes. 

Whilst it is important to acknowledge that neither study adopted the prone position during their 

investigations, they provide some, albeit conflicting, evidence regarding changes in HR when 

the mechanical load is altered during intermittent running. It is noteworthy that HRmean at 400 

m and HRpeak were possibly lower during the latter stages of the prone Yo-Yo IR1 compared 

to the Yo-Yo IR1, despite the increased acceleratory demands. One possible explanation is the 

contrasting body positions during the two trials, which might have had a small influence on 

heart rate (Buchheit, Haddad, Laursen, & Ahmaidi, 2009). Furthermore, as the prone Yo-Yo 

IR1 resulted in greater accelerated running during the outward shuttle due to the time lost when 

getting up, this speed was continued into the inward shuttle unnecessarily (Figure 2). Such an 

approach likely resulted in participants slowing down towards the end of the inward shuttle, 

perhaps explaining a slightly lower HR. Nonetheless, it is important to note that the difference 

between the tests (2-3 b·min-1) was of little practical significance when considering the 

reliability of this measure during the Yo-Yo IR1 (Deprez et al., 2014).  
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V̇O2peak was likely higher during the prone Yo-Yo IR1 at exercise cessation, and was 

unclear, likely and very likely higher, respectively, during each of the sub-maximal distances 

when compared to the Yo-Yo IR1. These findings agree with Buchheit, Bishop, Haydar, 

Nakamura, and Ahmaidi (2010) who reported possibly higher V̇O2 responses when 

incorporating 180̊ change of direction during repeated shuttle running. Whilst this protocol is 

different to that used in the current study, these findings suggest that changes in the mechanical 

loading through a change of direction or adopting a prone position during shuttle-based and 

incremental shuttle running can alter the V̇O2 response. These findings are, however, in 

contrast to those of Hader et al. (2014) who reported no differences in O2 demand during 

repeated sprinting with and without changes of direction. As the authors note, the increase in 

O2 demand associated with changes of direction was probably offset by the reduction in 

running speed. In contrast, the present study controlled the running speed during both tests, 

though potential differences in activity (i.e. getting into the prone position) during the rest 

period should be acknowledged. 

Unsurprisingly, V̇CO2 increased as both tests progressed and was higher during the 

prone Yo-Yo IR1. The higher V̇CO2 reflects an increased metabolism to maintain a higher ATP 

turnover that was required during the prone Yo-Yo IR1 trial due the greater accelerated 

running. It is possible that the emphasis on accelerated running was lower at 160 m where the 

time permitted to cover the 40 m was longer; thus, explaining the unclear difference in V̇CO2 

compared to 280 and 440 m. Furthermore, V̇E was possibly higher at exercise cessation and 

was most likely higher at 280 m and 440 m during the prone Yo-Yo IR1. These results support 

the notion that during the prone Yo-Yo IR1 there was a greater and earlier reliance anaerobic 

metabolism which might explain the higher [La]b and V̇CO2 production. The physiological 

responses to starting the Yo-Yo IR1 from a prone position are consistent with studies reporting 
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an increased reliance on anaerobic metabolism with accelerated running (Zamparo et al., 2016; 

Jameson & Ring, 2000). 

Between-trial differences in RPE revealed a higher perception of effort at each sub-

maximal distance and at exercise cessation of the prone Yo-Yo IR1. Such findings might be 

explained by both peripheral and central factors. Greater and earlier production of metabolic 

by-products during the prone Yo-Yo IR1 could have activated group III and IV afferents 

(Enoke & Duchateau, 2008) and compromised performance in an attempt to limit disturbances 

through inhibition of the central motor drive (Amann et al., 2013). In contrast, higher RPE 

during the prone Yo-Yo IR1 might be explained by corollary discharge from premotor and 

motor areas of the cortex responsible for muscle contraction (de Morree, Klein & Marcora, 

2014). If so, our results might suggest that the increase in RPE is a reflection of the greater 

corollary discharge in order to in maintain the required running speed during the prone Yo-Yo 

IR1 through greater accelerated running (Smiraul, Dantas, Nakamura & Pereira, 2013). Whilst 

is it beyond the scope of this study to determine the exact mechanism, our results support the 

notion that the addition of starting the Yo-Yo IR1 in the prone position increases an individual’s 

rating of perceived exertion.  

Both versions of the Yo-Yo IR1 could be considered maximal, as evidenced by 

attainment of (similar) HRpeak (< ±10 b·min-1 age-predicted HRpeak), [La]b (≥ 8 mmol·L-1), near-

maximal RPEs and similar V̇O2peak values to those previously reported for rugby union (Duthie, 

Pyne, & Hooper, 2003) and league players (Gabbett, 2005). The large covariance (76%) 

between tests suggests that both tests can be used to assess intermittent running ability. 

However, it is worth noting that 24% of player performance on the prone Yo-Yo IR1 is not 

explained by intermittent running (as determined using the Yo-Yo IR1) and likely refers to 

their ability to get from the prone position and accelerate during the early stages of the outward 

shuttle. As such, the prone Yo-Yo IR1 allows practitioners to assess distinct qualities that are 
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specific to collision sports beyond that of the Yo-Yo IR1, including their ability to sustain time 

above 20 W·kg-1 (r = 0.48), mean speed (r = 0.64), sprint speed (r - 0.71) and repeated sprints 

(r = 0.78) over two bouts of simulated match-play (Dobbin et al., 2017b). Given the importance 

of such actions during collision sports it is essential that practitioners can evaluate a player’s 

capability to repeatedly perform these actions as well as evaluating and focusing training 

practices.    

The trivial and small correlations between body mass, distance covered and the change 

in distance covered between tests suggest a higher body mass does not necessarily impair 

performance during the prone Yo-Yo IR1. These observations also contradict those of Darrall-

Jones and colleagues (2016) who reported body mass to influence peak running speed, and thus 

performance, attained in the 30-15IFT. That the players studied by Darrall-Jones et al. (2016) 

were considerably heavier (~15-20 kg) with greater heterogeneity of body mass, might explain 

these differences. Future studies might explore the relationship between body mass and 

distance covered during the prone Yo-Yo further, using a large sample across all playing 

positions in rugby league.    

 

Conclusions 

This study has confirmed that the addition of a rugby-specific action decreases the total 

distance covered during the Yo-Yo IR1. We postulate that this change in Yo-Yo IR1 

performance is attributed to increases the metabolic, cardiovascular and perceptual responses 

caused by starting each shuttle from a prone position. This is likely a consequence of greater 

involvement of the upper-body musculature to get up from the floor quickly and the greater 

emphasis placed on accelerated running to meet the required running speed. The large 

covariance between tests suggests that performance on one can, to some degree, explain 
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performance on the other. However, with a proportion of performance not explained by a 

running-based Yo-Yo IR1, it likely refers to the ability to perform distinct metabolically 

demanding actions typical of collision sports. The results of this study have several practical 

applications. Firstly, the increased metabolic, physiological and perceptual responses elicited 

by adopting the prone position prior to accelerated running suggest this as a method that can 

be used by coaches to modify training load within the periodized plan. This option might be 

preferable for coaches in the lead up to match-play, enabling exposure to a high training load 

without the added injury risk that might accompany collisions/tackles (Gabbett, Jenkins & 

Abernethy, 2011).  In addition, the test allows coaches to evaluate several determinants of 

rugby specific performance for monitoring purposes over the season and to assess the efficacy 

of specific training interventions. Future studies might wish to investigate the concurrent 

validity of the prone Yo-Yo IR1 and its relationship to match performance. Furthermore, the 

sensitivity of the prone Yo-Yo IR1 to detect a meaningful change in performance after a period 

of training would be practically useful.   
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Figure 1. Percentage difference in metabolic, physiological and 1 

external responses measured for Yo-Yo IR1 and prone Yo-Yo 2 

IR1 (bars indicated uncertainty in the true mean difference with 3 

90% confidence intervals). Trivial areas were calculated from 4 

the smallest worthwhile change.  5 

 6 

Figure 2. Changes in PlayerLoad™ (upper panel) and 7 

metabolic power (lower panel) for one representative 8 

participant during two consecutive shuttles at 14 km·h-1 during 9 

the Yo-Yo IR1 and prone Yo-Yo IR1.  10 

 11 
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Table 1. Peak external and internal responses to the Yo-Yo IR1 and prone Yo-Yo IR1 

  Yo-Yo IR1 Prone Yo-Yo IR1 ES (CL) Descriptor  

External Responses  

Distance (m) 964 ± 222 619 ± 160  -1.87 (-2.06; -1.68) Most likely ↓ 

PlayerLoad™ (AU·min-1) 13.9 ± 0.9 14.6 ± 1.4 0.70 (0.27; 1.12) Very likely ↑ 

High metabolic power (> 20W·kg-1·min-1) 3.5 ± 0.9 5.3 ± 1.2 1.80 (1.43; 2.07) Most likely ↑ 

Acceleration 0-2 m/s (m·min-1) 6.2 ± 1.0 6.7 ± 1.6 1.10 (0.41; 1.73) Very likely ↑ 

Acceleration 2-3 m/s (m·min-1) 6.0 ± 1.0 6.7 ± 0.5 0.62 (0.16; 1.08) Likely ↑ 

Acceleration 3-4 m/s (m·min-1) 2.9 ± 0.5 3.5 ± 0.9 0.94 (0.47; 1.41) Very likely ↑ 

Acceleration 4-20 m/s (m·min-1) 2.4 ± 0.6 3.0 ± 0.9 0.78 (0.36; 1.23) Very likely ↑ 

Internal Responses  

HRpeak (b·min-1) 197 ± 8 195 ± 7 -0.26 (-0.51; -0.02) Possibly ↓ 

∆[La]b (mmol·l-1) 9.2 ± 2.0 9.9 ± 1.2 0.36 (0.10; 0.72) Likely ↑ 

RPE (AU) 17.1 ± 1.6 18.2 ± 1.5 0.63 (0.21; 1.04) Very likely ↑ 

V̇Epeak (L·min-1) 136.7 ± 33.4 144.3 ± 13.8 0.23 (-0.18; 0.64) Possibly ↑ 

V̇O2peak(mL·min-1·kg-1) 48.7 ± 3.8 50.2 ± 4.5 0.37 (-0.02; 0.76) Likely ↑ 

V̇CO2peak (L·min-1) 4.8 ± 0.37 4.9 ± 0.44 0.26 (-0.15; 0.68) Possibly ↑ 

Note: Peak heart rate (HRpeak), delta blood lactate concentration ∆[La]b, rating of perceived exertion (RPE), minute ventilation (�̇�Epeak), oxygen 

uptake (V̇O2peak) and carbon dioxide production (V̇CO2peak). ↑ = increase. ↓ decrease.
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Table 2. Sub-maximal cardiovascular, perceptual and metabolic responses to the Yo-Yo IR1 and prone Yo-Yo IR1. 

Note: Mean heart rate (HRmean), rating of perceived exertion (RPE), minute ventilation (V̇E), oxygen uptake (V̇O2peak) and carbon dioxide 

production (V̇CO2). ↑ = increase. ↓ decrease.

  160 m (n = 16) 280m (n = 16) 440 m (n = 15) 

HRmean (b·min-1)       

       Yo-Yo IR1 138 ± 16 174 ± 10 187 ± 11 

       Prone Yo-Yo IR1 131 ± 13 172 ± 9 184 ± 10 

       ES (CL) -0.37 (-0.96; 0.21) -0.20 (-0.33; 0.74) -0.25 (0.04; 0.55) 

       Descriptor Unclear  Unclear Possibly ↓ 

RPE (AU)       

       Yo-Yo IR1 9.7 ± 1.5 13.4 ± 1.4  16.2 ± 2.1  

       Prone Yo-Yo IR1 10.4 ± 1.5 14.9 ± 1.8 17.6 ± 1.4 

       ES (CL) 0.40 (-0.06; 0.87) 0.96 (0.46; 1.45) 0.76 (0.45; 1.07) 

       Descriptor Likely ↑ Very likely ↑ Most likely ↑ 

V̇E (L·min-1)       

       Yo-Yo IRI1 57.9 ± 10.8 99.4 ± 11.7 122.7 ± 14.9 

       Prone Yo-Yo IR1 60.4 ± 10.5 114.8 ± 11.6 133.8 ± 13.0 

       ES (CL) 0.23 (-0.25; 0.70) 1.20 (0.95; 1.45) 0.70 (0.43; 0.97) 

       Descriptor Unclear  Most likely ↑ Most likely ↑ 

V̇O2 (mL·min-1·kg-1)       

       Yo-Yo IR1 29.9 ± 3.9 43.2 ± 4.4 45.1 ± 4.4 

       Prone Yo-Yo IR1 31.1 ± 4.2 45.2 ± 3.5 46.8 ± 4.8 

       ES (CL) 0.27 (-0.34; 0.89) 0.48 (0.02; 0.93) 0.36 (0.23; 0.48) 

       Descriptor Unclear  Likely ↑ Very likely ↑ 

V̇CO2 (L·min-1)       

       Yo-Yo IR1 2.2 ± 0.4 3.8 ± 0.4 4.4 ± 0.3 

       Prone Yo-Yo IR1 2.2 ± 0.4 4.3 ± 0.4 4.7 ± 0.5 

       ES (CL) 0.13 (-0.44; 0.69) 1.22 (0.86; 1.59) 0.67 (0.31; 1.04) 

       Descriptor Unclear Most likely ↑ Very likely ↑ 
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