Reconstructing the Neanderthal brain using computational anatomy

Takanori Kochiyama, Naomichi Ogihara, Hiroki C. Tanabe, Osamu Kondo, Hideki Amano, Kunihiro Hasegawa, Hiromasa Suzuki, Marcia S. Ponce de León, Christoph P. E. Zollikofer, Markus Bastir, Chris Stringer, Norihiro Sadato & Takeru Akazawa

Supplementary Information

Extended Data Figure 1 | **Comparisons of brain surface morphology among NT, EH and MH.** The surface statistical map shows the surface area with statistically significant differences (p < 0.05, FWE-corrected).

Extended Data Figure 2 | **Comparisons of brain surface morphology among NT, EH and MH.** The surface displacement maps show the morphological difference in the direction perpendicular to the tangential surface. The displacement maps were calculated by subtracting MH from NT, EH from NT, and MH from EH, respectively.

Extended Data Figure 3 | Evaluation of brain reconstruction accuracy. The colour map indicates the degree of accuracy.

Extended Data Figure 4 | Comparisons of the relative volumes of the parcellated brain regions among NT, EH and MH, assuming that the variation within NT and EH was equivalent to that of MH. To account for possible large variation in the volume of the parcellated brain regions within NT or EH, each NT and EH brain was reconstructed from 1185 individual MH brains instead of the average human brain. Therefore, 4×1185 NT, 4×1185 EH and 1185 MH brains were used to estimate the regionally specific volume for the 13 parcellated brain regions. Each parcellated volume was normalized to the mean MH volume to calculate a ratio (i.e. relative volume unit). The general pattern of the inter-specific variation shown here is essentially similar to that shown in Figure 3 based on the averaged-brain based reconstruction. However, the intraspecific variation represented by the standard deviation here is much larger than that in Figure 3 because the variation within NT and EH was emulated by that of MH in this individual brain-based reconstruction. The intra- and inter-specific variation in each parcellated brain region was evaluated based on the Cohen's d effect size and statistical test under the assumption that the variation within NT and EH was equivalent to that of MH. The posterior cerebellar volumes were found to be significantly smaller in NT than in EH and MH as in Figure 3, with large effect size (Cohen's d = 0.90 and p < 0.001 for NT vs. EH and 1.23 and p < 0.001 for NT vs. MH, respectively) indicating our results are not affected by the use of the averaged brain for our reconstructions.

Extended Data Figure 5 | **Evaluation of the bonobo (chimpanzee) brain reconstructed by deforming the chimpanzee (bonobo) brain. a**, Reconstructed brains compared with the originals (the average brain transformed back to the specific individual using a DARTEL algorithm). **b**, Evaluation of accuracy. The colour map indicates the mean deviation from the true value. The colour map is overlaid on the average brain surface across 8 chimpanzees and 3 bonobos.

Extended Data Table 1 Correspondence between the AAL atlas and the parcellated brain region

Region	Subregion	Region name of AAL atlas				Abbrevation		
Frontal	Superior / Middle regions	Frontal_Sup	Frontal_Mid	Supp_Motor_Area			Fr SM	
	Inferior regions	Frontal_Inf_Oper	Frontal_Inf_Tri				Frl	
	Orbitofrontal regions	Frontal_Sup_Orb	Frontal_Mid_Orb	Frontal_Inf_Orb	Frontal_Med_Orb	Rectus	Fr O	
Sensory-motor		Precentral	Postcentral	Paracentralobule			Sm	
Parietal	Superior / Inferior regions	Parietal_Sup	Parietal_Inf	Precuneus			Pa SI	
	Temporo-parietal junction	SupraMarginal	Angular				Pa TP	
Temporal	Superior / Middle regions	Temporal_Sup	Temporal_Mid				Te SM	
	Inferior / Medial regions	Temporal_Inf	ParaHippocampal	Temporal_Pole_Sup	Temporal_Pole_Mid		Te I	
Occipital	Superior / Middle regions	Calcarine	Cuneus	Occipital_Sup	Occipital_Mid		Oc SM	
	Inferior regions	Occipital_Inf	Lingual				Oc I	
Cerebellum	Anterior parts	Cerebelum_3	Cerebelum_4_5				Ce A	
	Posterior parts	Cerebelum_Crus1	Cerebelum_Crus2	Cerebelum_6	Cerebelum_7b		Ce P	
		Cerebelum_8	Cerebelum_9	Cerebelum_10				
	Vermis	Vermis_1_2	Vermis_3	Vermis_4_5	Vermis_6		Ce V	
		Vermis_7	Vermis_8	Vermis_9	Vermis_10			

Region	Subregion	LH	RH	
	Superior / Middle regions	88.2 ± 2.4	88.6 ± 2.6	
Frontal	Inferior regions	88.3 ± 2.4	89.9 ± 2.3	
	Orbitofrontal regions	92.7 ± 1.2	93.0 ± 1.2	
Sensory-motor		83.6 ± 2.8	84.3 ± 2.7	
Pariotal	Superior / Inferior regions	90.1 ± 1.9	90.1 ± 1.9	
Failetai	Temporo-parietal junction	92.4 ± 1.7	92.3 ± 1.5	
Tomporal	Superior / Middle regions	92.6 ± 1.3	91.7 ± 1.5	
Temporal	Inferior / Medial regions	93.9 ± 1.3	94.1 ± 1.1	
Oppinital	Superior / Middle regions	92.0 ± 1.4	92.0 ± 1.5	
Occipital	Inferior regions	94.7 ± 1.3	94.0 ± 1.3	
	Anterior parts	94.3 ± 2.0	96.2 ± 1.5	
Cerebellum	Posterior parts	95.9 ± 1.1	95.6 ± 1.1	
	Vermis	92.0	± 2.3	

Extended Data Table 2 | Mean accuracy of the estimated volume in each parcellated brain region

LH, left hemisphere; RH, right hemisphere. Data are means \pm s.d.

Extended Data Table 3	Statistical test results of differences in the relative volumes of the parcellated brain regions among N	Г,
EH and MH.		

Region	Subregion	F _{2,1190}	p	t 1190			
rtogion	Cabiogion			NT vs. EH	NT vs. MH	EH vs. MH	
Frontal	Superior / Middle regions	1.015	0.363				
	Inferior regions	0.181	0.834				
	Orbitofrontal regions	0.252	0.777				
Sensory-motor		3.646	0.026	0.640	1.407	2.310	
Parietal	Superior / Inferior regions	9.313	0.000	0.902	3.626	2.353	
	Temporo-parietal junction	0.870	0.419				
Temporal	Superior / Middle regions	2.932	0.054				
	Inferior / Medial regions	2.437	0.088				
Occipital	Superior / Middle regions	8.149	0.000	0.043	2.890	2.829	
	Inferior regions	5.639	0.004	0.796	1.749	2.873	
Cerebellum	Anterior parts	0.689	0.502				
	Posterior parts	6.699	0.001	2.331	3.644	0.354	
	Vermis	7.339	0.001	3.413	3.642	1.176	

Bold: p < 0.05 corrected for multiple comparisons with Ryan's method.