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A B S T R A C T

We developed a dispersion model (RapidAir®) to estimate air pollution concentrations at fine spatial resolution

over large geographical areas with fast run times. Concentrations were modelled at 5m spatial resolution over an

area of ∼3500 km2 in< 10min. RapidAir® was evaluated by estimating NOx and NO2 concentrations at 86

continuous monitoring sites in London, UK during 2008. The model predictions explained 66% of the spatial

variation (r= 0.81) in annual NOx concentrations observed at the monitoring sites. We included discrete canyon

models or geospatial surrogates (sky view factor, hill shading and wind effect) to improve the accuracy of model

predictions at kerbside locations. Geospatial surrogates provide alternatives to discrete street canyon models

where it is impractical to run canyon models for thousands of streets within a large city dispersion model (with

advantages including: ease of operation; faster run times; and more complete treatment of building effects).

1. Introduction

The estimation of population exposures to air pollution is increas-

ingly important as numerous studies highlight the detrimental effects of

air pollution on human health (World Health Organization, 2013,

2016). The use of air pollution monitors allows direct measurement of

ambient concentrations, and the on-going development of portable real-

time monitors is providing improvements in temporally resolved con-

centration estimates (Dons et al., 2012; Spinelle et al., 2017, 2015).

However, monitoring only provides concentration estimates at specific

locations, whereas it has been observed that pollution concentrations

can vary substantially over small areas (Gillespie et al., 2017; Lin et al.,

2016). Models can overcome some of the limitations associated with

monitoring as concentrations can be estimated at multiple locations

within a study area. However, inherent uncertainties within models

require to be quantified by comparison of predictions against air pol-

lution measurements.

Two main types of models are commonly used to estimate urban air

pollution – land use regression (LUR) models and dispersion models (we

do not include discussion of Computational Fluid Dynamics (CFD)

models in this paper as CFD models have not been used widely in op-

erational predictions of spatial patterns of urban air pollution due to

excessive computational constraints when operating over large geo-

graphical areas).

Land use regression (LUR) models use Geographical Information

Systems (GIS) to quantify relationships between measured pollutant

concentrations and land use variables (including traffic and popula-

tion), which can then be extrapolated to estimate human exposure to air

pollution at fine spatial resolution (Briggs et al., 1997). LUR models

have been widely applied in in cohort epidemiological studies (Gillespie

et al., 2016; Johnson et al., 2013; Wang et al., 2013) and in personal

monitoring studies (Dons et al., 2014a, 2014b). LUR models are fre-

quently used to estimate longer-term (e.g. annual) pollution exposure

and often do not take into account the effects of meteorology. Ad-

ditionally the transfer of LUR models between study areas has been

shown have substantial limitations including differences in monitoring

location type which can lead to model bias (Gillespie et al., 2016;

Mukerjee et al., 2012; Patton et al., 2015). Many regulatory organisa-

tions are interested in source apportionment to inform policy on air

pollution controls, which requires preparation of spatially accurate

multi-source air quality emissions. However, LUR models seldom use

direct quantitative estimates of emissions from sources (instead more

commonly they assess the effects of receptor proximity to sources) and

consequently LUR models have had limited application in air quality

management policy development.

Dispersion models simulate atmospheric transport and transforma-

tion of air pollutants emitted from sources to allow estimation of con-

centrations at receptors. The most commonly used models are based on

Gaussian plume concepts. Dispersion models can be used to estimate

short term (e.g. hourly) variations in pollution concentrations (Gibson
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et al., 2013), and to estimate population exposures in cohort studies

(Bellander et al., 2001; Nyberg et al., 2000). Additionally, projected

emissions estimates (if available) can be used to estimate future con-

centrations. Commercially available software packages have been de-

veloped to simplify user inputs and modelling procedures, however this

has often resulted in high license costs (Gulliver and Briggs, 2011),

particularly when it is necessary to apply models over large geo-

graphical areas. Furthermore, Gaussian dispersion model run-times for

large urban area can quickly become prohibitive due the computational

demands of calculating concentrations at what can extend to millions of

discrete locations. This may necessitate the use of GIS interpolation

routines to increase the spatial resolution of the model estimates which

may introduce other errors into estimated exposures (Wong et al.,

2004).

Some studies have addressed these challenges to achieve fine spatial

and temporal resolution by combining dispersion and LUR models

(Korek et al., 2016; Michanowicz et al., 2016; Wilton et al., 2010); and/

or including meteorological information within LUR models (Su et al.,

2008a; Tan et al., 2016). A hybrid GIS-dispersion model (STEMS-AIR)

has been developed to enable fine spatial and temporal resolution while

minimising run times with readily-available computer software

(Gulliver and Briggs, 2011). The STEMS-Air model estimates pollution

concentrations from emission sources in 45° upwind ‘wedge’ shaped

GIS-buffer areas, scaled by the distance between sources and receptors.

In built-up urban areas air pollution can become trapped in street

canyons surrounded by tall buildings, especially if the wind is blowing

from a direction perpendicular to the street, leading to recirculation of

pollutants within the canyon. As a result, pollution concentrations in

street canyons can become elevated and may be underestimated by

‘standard’ air pollution models, including LUR or Gaussian plume

models. Exposure estimates may be improved by combining additional

models that take into account urban topography in such locations with

background pollution estimates from Gaussian-based air pollution

models. Street canyon models range from complex computational fluid

dynamic (CFD) models to simpler empirical (e.g. USEPA STREET box-

model described by Dabberdt et al., 1973, and Johnson et al., 1973) and

semi-empirical models (e.g. Danish Operational Street Pollution Model

(OSPM) described by Vardoulakis et al. (2003). Some dispersion models

include additional software modules for street canyon effects, however

these may increase model run time (Fallah-Shorshani et al., 2017;

Jackson et al., 2016).

Geospatial surrogates can be used to estimate the effect of street

canyons on air quality in urban locations. Such metrics are commonly

used in studies of urban climate where temperature, and hence comfort

levels, are affected by building density and height. For example, sky

view factor (SVF, which estimates the percentage of sky that can be

observed using a fish-eye lens pointed vertically (Carrasco-Hernandez

et al., 2015), with areas with low SVF corresponding to the presence of

tall buildings) has been incorporated into a LUR model to estimate the

presence of street canyons (Eeftens et al., 2013). Building height and/or

volume information has also been observed to improve the accuracy of

LUR model estimates (Gillespie et al., 2016; Su et al., 2008b; Tang et al.,

2013). Geospatial surrogates can be readily applied across entire cities

in automated processes which are likely to be more reproducible than

use of currently available GUI-based street canyon models, as the latter

require user judgement to identify street canyon locations and detailed

information (e.g. on traffic flow) for each location. The use of geospatial

surrogates also has potential to improve the reproducibility of disper-

sion model pollution estimates as the number of model design choices is

reduced substantially (with corresponding substantial reduction in

manpower costs).

In this paper we describe the development and evaluation of a new

dispersion model (RapidAir®, Ricardo-AEA Ltd) that uses modern sci-

entific computing methods based on open-source Python libraries

(www.python.org). A key motivation for the development of RapidAir

was our experience of a lack of a cost-effective operational city-scale

dispersion model with convenient run times, which does not require

large amounts of manpower to operate. We focused on operational

convenience of the modelling process and accuracy of model predic-

tions in a case study and compared our results to results from other

published studies which evaluated other models in a similar geo-

graphical study area. The design concept for RapidAir is similar to the

STEMS-Air model described by Gulliver and Briggs (2011) with some

additional enhancements. RapidAir includes a dispersion model

(AERMOD), with detailed treatment of boundary layer meteorology,

and street canyon models. Additionally, we investigated the in-

corporation of geospatial surrogates to represent street canyon effects

on spatial variations in pollution concentrations; and we established

methods for efficient post-processing of the output from fine resolution

dispersion models over large geographical areas using these surrogates.

2. Methods

2.1. Study area and receptor locations

We modelled concentrations of oxides of nitrogen (NOx) in Greater

London (urban conurbation approximately bounded by the M25 orbital

motorway). Although NOx and NO2 were the pollutants of focus in this

work, the RapidAir model can be run for any pollutants for which there

are supporting emissions data, including PM2.5. Greater London was

chosen as the study area because it contains a large network of air

pollution monitoring sites, and has detailed traffic and building height

data. Additionally this was the study area used in a previous

Department for Environment, Food and Rural Affairs (DEFRA) Urban

Model Evaluation exercise, which evaluated several commercially

available and industry accepted models (Carslaw, 2011). We modelled

annual average NOx and NO2 concentrations for 2008, which was the

same year as used in the DEFRA study to enable comparison between

RapidAir and the models assessed in the DEFRA comparison. The Ra-

pidAir model can be run at higher temporal resolutions provided that

the model input data (described below) is also available at the same

higher temporal resolution.

We evaluated the RapidAir model at 86 continuous monitoring lo-

cations from the London Air Quality Network (LAQN) monitoring net-

work (Fig. A1, Table A1) (London Datastore, 2016). All of these sites

are maintained by the Environmental Research Group, Kings College

London and local authorities in the city boroughs. The data collected

were subject to national-ratification and detailed QA-QC procedures

(DEFRA, 2017a,b; Targa and Loader, 2008). For model evaluation

purposes the monitoring sites were classified as kerbside, roadside,

suburban and urban background receptors according to proximity to

road traffic: kerbside sites were located within 1m of a busy road;

roadside sites were located within 1–5m of a busy road; suburban sites

were located in a residential area on the edge of the urban conurbation;

and urban background sites were located in urban areas but were free

from the immediate influence of local sources to provide a good in-

dication of background concentrations (DEFRA, 2016).

Similar to the DEFRA Urban Model Evaluation (Carslaw, 2011), we

excluded sites which had less than 75% data during 2008. It was not

possible to use exactly the same locations as the DEFRA Urban Model

Software availability

Name of software RapidAir®

DeveloperRicardo Energy and Environment

Hardware Information General-purpose computer (4–16 Gb

RAM, Intel(R) Core(TM) i5 processor, 64-bit operating

system)

Programming Language Python 2.6 and R

Availability Contact the developers
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Evaluation: when we imported the locations used in the DEFRA into a

GIS programme some were incorrect, in a few cases up to several

kilometres from their true location. We relocated receptors to a best

approximation of their true location using aerial photography and

street level photographs but small discrepancies in the locations may

still persist. This may have affected our evaluation of the accuracy of

model predictions at measurement sites, and comparisons of our esti-

mates with the estimates of other groups in this paper.

2.2. Model description

A summary of the RapidAir model is provided below, and a tech-

nical description can be found in Appendix A. RapidAir uses open

source python libraries to rapidly estimate concentrations at fine spatial

resolution over extended geographical areas. RapidAir is conceptually

similar to the STEMS-Air model (Gulliver and Briggs, 2011) with

technical development primarily based on inclusion of open source

AERMET and AERMOD software for automated processing of meteor-

ological input data. In this evaluation study, surface and upper air

meteorological data were obtained from the nearest meteorological

stations to the study area: Heathrow Airport (National Climatic Data

Centre NOAA, 2018) and Camborne (Earth Systems Research

Laboratory NOAA, 2018) for surface and upper air data respectively.

AERMOD is used to produce dispersion model plume estimates (the

kernel) for a small idealised area source. A theoretical source is located

at the centre of the kernel in AERMOD, assigned with a nominal

emission rate of 1 g/s, and a kernel of size 55 x 55 cells was produced.

This kernel is rotated by 180° to represent the contribution of cells

within the kernel to the central cell i.e. the cell in which we are trying

to estimate the pollution concentration. This produces a plume which

identifies pollution sources that contributed to the central cell and es-

timates a scaling factor for each source that falls within the plume based

on its distance and location to the source.

The RapidAir dispersion model then uses a kernel convolution

procedure which is similar to algorithms used in image processing

software. The kernel produced above is passed over a road traffic

emission raster at the same resolution pixel by pixel so the final city-

wide model comprises millions of overlapping plumes from the road

source emissions (Fig. A2).

For each receptor cell (in this case at 5m resolution) the sum of

concentrations falling within the kernel plume, weighted by their dis-

tance to the source, are written to the centre cell of the concentration

raster (Fig. A3). In this way the pollution surface is created by the

convolution step iterating over the gridded emission data. This means

that model run time is linearly dependent on the spatial resolution of

the output number of cells and is unaffected by the number of emissions

sources in the domain. This is a key benefit compared with other

Gaussian models whose run time is linearly dependent both on re-

solution/number of receptors and number of sources. Our experience

suggests that run times in the order of several days/weeks can be ex-

pected for city-scale Gaussian models with only a few hundred thou-

sand receptor locations, which are then interpolated to provide con-

tinuous pollution surfaces. In contrast, the RapidAir model computes

concentrations at> 100 million discrete receptors in less than 10min

using a 64-bit Intel i5 8 Gb processor.

NOx emissions data for each road link were obtained for London in

2008 from the London Atmospheric Emissions Inventory (LAEI)

(London Atmospheric Emissions Inventory, 2008) (Fig. A1). Emissions

from LAEI individual road links were converted to a 5m raster using the

ESRI ArcGIS ‘Line Density’ tool (ESRI, 2014) [subsequent versions of

RapidAir use open source routines for preparing the emissions grid] and

this emissions raster used in the convolution step described above.

1×1 km regional background concentrations calculated by the

Pollution Climate Mapping (PCM) model (DEFRA, 2018) were added to

the pollution raster (Fig. A4). Categorisations of the PCM model sources

allowed us to remove road transport sources prior to adding the PCM

model to the modelled pollution concentrations above to prevent

double-counting of traffic related pollutants.

2.3. Street canyon models

Concentrations of NOx within street canyons were estimated using

two street canyon models: the STREET model (Dabberdt et al., 1973;

Johnson et al., 1973) and the AEOLIUS Model (Buckland and

Middleton, 1999). CFD models are complex, requiring very detailed

emissions data which is difficult to obtain and have long run times. This

means they are not an operationally feasible solution for large scale

model correction for canyon effects, therefore were not considered

during this study.

The STREET model estimates pollution concentrations empirically

within a street canyon based on the emissions estimates within the

canyon, and takes into account vehicle-induced turbulence and entry of

air from the top of the canyon. Concentrations were calculated for the

windward (CW) and leeward (CL) sides of the canyon using equations

(1) and (2):

= ∗
+ ∗⎡⎣

+ + ⎤⎦

C
K Q

U x z L( 0.5) ( )
L

2 2
1
2 0 [1]

= ∗ ∗ −
∗ + ∗

C
K Q H z

W U H

( )

( 0.5)
W

[2]

Where K is a scaling constant (set to 14 here); Q is the emission rate (g/

m/s); U is the wind speed (m/s); L0 is the length of individual vehicles

(set to 3m); W is the width of the canyon (m); H is the average building

height of the canyon (m); x is the distance from emission source to

receptor (m); and z is the receptor height (set to 1m).

The AEOLIUS model was developed by the UK Meteorological Office

in the 1990s (Buckland and Middleton, 1999) and the scientific basis for

the model is presented in a series of papers (Buckland, 1998; Manning

et al., 2000; Middleton, 1999, 1998a; 1998b). The AEOLIUS model

shares many common features with the Operational Street Pollution

Model (OSPM) (Berkowicz, 2000; Hertel and Berkowicz, 1989) which

underpins many street canyon models included in commercial road

source dispersion models. There are three principal contributions to

concentrations estimated by the AEOLIUS model: a direct contribution

from the source to the receptor; a recirculating component within a

vortex caused by winds flowing across the top of the canyon; and the

urban background concentration. The RapidAir model only takes the

recirculating component from the canyon model and sums this with the

kernel derived concentrations. The AEOLIUS model is written in python

2.7 and implements the equations as described in Appendix A.

2.4. Surrogates for street canyons

Building height data were used to calculate simple surrogates that

could readily indicate locations that were located within street canyons,

and consequently allow modelled concentrations in these areas to be

corrected accordingly. A 5m raster of maximum building height was

created from building height data for London (Emu Analytics, 2018)

derived by the suppliers from national scale LiDAR surveys (Survey

Open Data, 2018). We investigated three surrogates for street canyons

(Fig. A5):

- Sky view factor (SVF) representing amount of sky visible from each

location when looking vertically up to the sky with a fish eye lens

(dimensionless ratio between 0 and 1, where 1 is all visible sky). The

Relief Visualization Toolbox (RVT) (Kokalj et al., 2011; Zaksek

et al., 2011) was used to calculate SVF using building height raster

as input and a search radius of 200m (Eeftens et al., 2013).

- Hill Shading (HS) identifying areas in shade of surrounding topo-

graphical features (Zaksek et al., 2011). In our analysis we used

N. Masey et al. Environmental Modelling and Software xxx (xxxx) xxx–xxx
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wind direction in place of the direction of the sun and the ‘shading’

identified was anticipated to represent areas of higher concentration

on the windward side of a street canyon. The Analytical Hill-

Shading option was run within RVT using an elevation angle of 45°

(Kokalj et al. (2013) suggested this value to be most appropriate for

steep terrain encountered in an urban environment). We calculated

HS (dimensionless value between 0 and 255 representing shaded

and unshaded areas respectively) for 8 sectors (i.e. every 45°) and

averaged these calculated HS values for each 5m raster cell in the

study area.

- Wind Effect (WE) is a module in SAGA GIS (Conrad et al., 2015)

which predicts if an area is wind shadowed or exposed, where di-

mensionless values below and above 1 represent shadowed and

exposed areas respectively (Böhner and Antonić, 2009). WE was

calculated for 8 sectors and averaged values calculated as above. A

search radius of 200m was used.

Surrogate SVF, HS, & WE values for 5m buffers around each re-

ceptor location were calculated to allow for slight errors in the co-

ordinates of receptor locations (e.g. receptors located ‘within’ buildings

rather than on lampposts on the road).

2.5. NOx to NO2 conversion

Legislative limit values specified by the European Union and UK

government are for NO2, and not NOx, therefore we converted RapidAir

NOx concentrations to NO2 concentrations using the DEFRA NOx to NO2

model (DEFRA, 2017a,b) which is recommended for use in UK air

quality assessment for statutory purposes. Further information about

the DEFRA NOx to NO2 model is provided in the Appendix. Briefly, we

derived a polynomial regression equation between predicted NOx and

NO2 concentrations from the finite difference model within the DEFRA

tool. The model was set to use the built-in fleet composition for London

(which automatically sets the fraction of NOx emissions as NO2 (f-NO2))

and the average NOx background concentration over the study area

from the PCM model. Estimated NO2 concentrations were plotted

against NOx concentrations and fitted with a polynomial regression

equation (Equation (3) and Fig. A6) subsequently applied to the kernel

model output to estimate NO2 concentrations over the study area:

= − ∗ + ∗ + =NO NO NO R0.0001 ( ) 0.2737 18.648, 0.997x x2
2 2 [3]

where NOx and NO2 concentrations are in μg/m3. The expression is

valid between the upper and lower NOx concentrations in the curve in

Fig. A6.

The calculator uses estimates of regional NO2, NOx and O3 con-

centrations from the PCM model for individual local authority areas

being modelled. Since London comprises many local authorities we

compared NO2 conversion estimates for two local authorities within our

study area, which had different regional NO2, NOx and O3 concentra-

tions, and found little effect on the NOx to NO2 conversion rate (Fig.

A6).

2.6. Model evaluation

Modelled concentrations of NOx and NO2 were extracted from the

model outputs at the grid references for pollution monitoring sites to

enable comparison. The R package OpenAir (Carslaw and Ropkins,

2012) was used to generate model evaluation statistics commonly used

to evaluate pollution models, including FAC2, mean bias (MB), nor-

malised mean bias (NMB), root mean square error (RMSE), coefficient

of efficiency (COE) and index of agreement (IOA) (Carslaw, 2011;

Chang and Hanna, 2004; Derwent et al., 2010). We used simple data

assimilation methods to calibrate model output against observed pol-

lution concentrations at monitoring sites (Gulliver and Briggs, 2011).

We present results of the evaluation of the kernel-modelled NOx vs.

measured NOx and kernel-modelled NO2 vs. measured NO2 below. This

is followed by description of the estimation of NOx concentrations from

the kernel and street canyons/surrogates and subsequent evaluation of

modelled NO2 concentrations after accounting for street canyon effects.

3. Results and discussion

3.1. RapidAir model evaluation - NOx

The baseline RapidAir kernel model (i.e. model not including urban

morphology effects) highlighted expected contributions to NOx con-

centrations from major roads in London, and Heathrow airport in the

west of the study area (Fig. A10). The modelled concentrations at the

monitoring sites were extracted and showed that the RapidAir model

systematically underestimated observed NOx concentrations (Table 1).

Possible causes of this model underestimation are discussed further

below.

Using a similar conceptual approach to Gulliver and Briggs (2011),

we corrected our modelled concentrations to account for potential

systematic linear biases by linear regression between modelled and

observed NOx. The receptor locations were randomly split into training

(n=57) and test (n=29) data sets, with the latter used as an in-

dependent verification data set. The linear regression using the training

data (Fig. 1) was:

= ∗Measured NOx Kernel modelled NO1.98 x [4]

Where Measured NOx and Kernel modelled NOx are concentrations in μg/

m3.

A map of the modelled NOx concentrations in the study area after

correction for the systematic biases discussed previously is provided in

Fig. A10.

3.1.1. Discussion of causes of systematic bias in air pollution models

Dispersion modelling involves multiple data inputs over several

stages, any of which has potential to contribute to inaccuracies in

pollution estimates. The under-prediction of NOx concentrations in our

analyses may be due to uncertainties in emissions and/or meteor-

ological data, and/or uncertainties of representation of physical pro-

cesses in AERMOD. The simplest errors to characterise are for road

traffic emissions and meteorology data.

It is likely that road traffic NOx emissions data are underestimated

in LAEI inventory we used. This inventory was prepared by a statutory

body (Greater London Authority [GLA]) and remains the officially re-

cognised emissions dataset for London. The European Environment

Agency's COPERT road traffic emissions model, which was used by GLA

to create the LAEI, has been observed to under-predict historical NOx

emissions from diesel vehicles in the UK fleet (Carslaw et al., 2011).

Consequently, it is likely that reported under-prediction of emissions in

the diesel fleet biases the inventory towards under-prediction of at-

mospheric concentrations. NOx emissions in the GLA inventory are re-

ported to have been underestimated by approximately 31% in 2008

(Beevers et al., 2012b), consistent with predictions of a coupled re-

gional CMAQ and road source dispersion model (CMAQ-urban)

Table 1

Model evaluation statistics for measured NOx vs. unadjusted RapidAir modelled

NOx.

Receptor site type n FAC2 MB (μg/m3) NMB RMSE (μg/m3) r

All 86 0.65 −51.4 −0.46 73.2 0.81

Kerbside 8 0.38 −114.6 −0.53 150.2 0.71

Roadside 40 0.53 −66.8 −0.49 80.1 0.78

Suburban 13 0.69 −24.9 −0.46 27.0 0.92

Urban background 25 0.92 −20.2 −0.30 24.2 0.84

FAC2= fraction of modelled concentrations falling within a factor of 2 of the

measured concentrations; MB=mean bias; NMB=normalised mean bias;

RMSE=root mean square error; and r=coefficient of determination.

N. Masey et al. Environmental Modelling and Software xxx (xxxx) xxx–xxx

4



developed by other researchers for London [average NOx under-

estimation by CMAQ-urban of 32% (Beevers et al., 2012a)]. A correc-

tion for 31% underestimated emissions in our analyses would change

the slope of modelled vs. observed concentrations (= 1/1.98) in the

training dataset regression analyses above from 0.51 (49% under-

estimation of observations) to 0.73 (27% underestimation), which is of

a consistent magnitude with the above underestimation of CMAQ-urban

modelled vs. observed NOx concentrations calculated by Beevers et al.,

(2012a). The effect of using the most recent release of COPERT road

traffic emissions model on the emissions in London is discussed further

in the Appendix (and Table A2).

Meteorological input data is a further potentially important source

of systematic bias - concentrations are inversely proportional to wind

speed in the Gaussian dispersion equation meaning uncertainties in

wind speed estimates can lead to model bias. For example, Gulliver and

Briggs (2011) noted that differences in windspeed measured at the

relatively open Heathrow airport meteorological station and wind-

speeds measured during short duration periods at pollution monitoring

sites in central London resulted in PM10 model predictions using

windspeeds measured in central London being on average 67.5% lower

than PM10 predicted using windspeeds measured at Heathrow. Simi-

larly, Beevers et al. (2012a) noted that windspeeds measured at Hea-

throw were systematically higher than windspeeds forecast using the

Weather Research Forecast (WRF) model. Specifically, Beevers et al.

illustrate how average midday windspeeds for 2006 measured at Hea-

throw and modelled by WRF were ∼5m/s and ∼3.5m/s respectively

(difference representing∼43% of WRF estimate approximated from Fig

7 in Beevers et al., 2012a). These differences suggest that use of mea-

sured Heathrow windspeed data could result in an approximate 30%

underestimation of pollution concentrations compared to equivalent

concentrations estimated using WRF windspeed data. The impact of

using wind speeds from model vs. Heathrow for our study period and

Fig. 1. Scatter plot of Measured vs. unadjusted RapidAir modelled NOx concentrations for randomly selected training subset of receptors (n= 57).

Fig. 2. NO2 concentrations estimated by RapidAir for Greater London after correction for systematic biases.
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the consequent impact on the kernels created is discussed further in the

Appendix (and Figs A7 to A9, and Table A3).

The multiplicative combination of ∼31% underestimated NOx

emissions from the LAEI and ∼43% higher windspeeds from London

Heathrow measurements (cf.WRF windspeed estimates used by Beevers

et al., 2012a) suggests that the RapidAir pollution estimates in our

analyses may have underestimated NOx concentration observations in

central London by approximately 48% (≡ 0.69/1.43) in context of

above equivalent model-observation comparisons made for CMAQ-

Urban (Beevers et al., 2012a). This difference is of similar magnitude to

the underestimation of initial RapidAir model estimates compared to

monitoring site observations (e.g. underestimation of 49% of observed

concentrations represented in Fig. 1).

3.2. RapidAir model evaluation – NO2

Concentrations of NO2 estimated from RapidAir (Fig. 2) were

compared to NO2 concentrations measured at the receptor locations in

Table A1.

NO2 concentrations predicted by RapidAir were similar to measured

NO2 concentrations at most monitoring stations; however the model

underestimated concentrations at some very high concentration kerb-

side measurement sites (Fig. 3, Table 2a). Underestimation by RapidAir

model might be attributed to urban morphologies (including street

canyon effects) or underestimation in the location-specific emissions

rates used to predict the NOx concentrations (Beevers et al., 2012b).

The correlation between modelled and observed NO2 concentrations

(r=0.77) was of similar magnitude to previous evaluations of disper-

sion models (e.g. r=0.74 reported by de Hoogh et al. (2014) during

evaluation of a NOx dispersion model in the ESCAPE study).

DEFRA suggest that an air quality model is ‘acceptable’ for use if

more than half of its observations fall within a factor of 2 of the ob-

servations (Williams et al., 2011). The NO2 RapidAir model meets the

FAC2 criterion for all site types, with the lowest FAC2 value calculated

for kerbside sites (FAC2=0.88) (Table 2a). Kerbside concentrations

represent the worst-case exposure scenarios that are not representative

of population exposures over extended periods, and consequently an-

nual limit values do not apply at these sites (DEFRA, 2016). Similar

findings were reported in the DEFRA urban model evaluation exercise

for NO2 which found that FAC2 values were lower for the kerbside sites

than the three other site types tested, however all models met the above

DEFRA criterion at the different site types (Carslaw, 2011). Another

criterion suggested by DEFRA to indicate the acceptability of a model is

that NMB values should lie between −0.2 and 0.2 (Williams et al.,

2011). NMB values for RapidAir met this criterion when all sites were

considered together; and for the individual site types, with the excep-

tion of the kerbside sites (Table 2a). None of the models tested during

the DEFRA model evaluation exercise met the NMB ‘acceptance values’

proposed by DEFRA at the kerbside sites (Carslaw, 2011). The numbers

of models meeting the criteria was progressively higher for kerbside,

roadside and urban background site classifications – with all models

meeting the NMB criterion at urban background locations (Carslaw,

2011).

3.3. Accounting for street canyon effects in RapidAir

We investigated the inclusion of two techniques within the RapidAir

model to describe the effects of street canyons on pollution con-

centrations. The first technique used geospatial surrogates to account

for building morphologies within a study area, and the second applied

industry-standard street canyon models to user-defined street canyon

geometries. These techniques are discussed in the following sub-sec-

tions.

3.3.1. GIS-surrogates for street canyons

We investigated if street canyon surrogates measured at each re-

ceptor could be used to estimate, and subsequently correct for, the ef-

fects of urban morphology on modelled NOx concentrations, and NOx

concentrations converted to NO2 concentrations using the method de-

scribed above.

The NOx receptors were split randomly into the same training

(n=57) and test (n=29) datasets used to derive the OLS correction for

bias described at the start of Section 3, with the former used to develop

surrogate-correction equations and the latter used as an independent

dataset to test the correction equations derived. A multiple-linear ca-

libration equation was derived between Unadjusted modelled NOx,

measured NOx and Surrogate for each of the three surrogate values in-

vestigated using the training dataset (Table 3a).

Fig. 3. Scatter plot of NO2 estimated by bias-corrected RapidAir kernel model vs. observed concentrations at measurement stations (n= 86). Receptors are colour

coded to represent the different site types. Solid line represents 1:1. Dashed lines represent FAC2 values. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)
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The multiple linear calibrations developed were then applied to the

test NOx. Table 3b shows the Measured vs. Modelled NOx after applica-

tion of the surrogate calibrations for the test dataset. The correlation

between the concentrations and surrogates was unaffected by the sur-

rogate used (r=0.75).

3.3.2. Street canyon models

Of the 86 receptor locations we identified 19 sites that were located

within urban street canyons through observations of the urban mor-

phology using GIS and Google Maps Street View (Map data ©2017

Google) (Table A1).

A representative subset of the annual hourly meteorological data

was used in the street canyon models to reduce model run times (dis-

cussed in Appendix A). The effect of using a subset of meteorological

data on computed annual average concentrations compared to the

whole dataset was minimal for both canyon models. AEOLIUS was

slightly more sensitive to the use of a sampled meteorological record

(STREET model: slope= 1.00, intercept=−0.21, R2=1.00; AEOLIUS

model: slope=0.91, intercept= 0.71, R2=0.99) (Fig. A11).

The windward and leeward concentrations predicted by each of the

street canyon models were averaged on the assumption that over a year

concentrations are well mixed within the street canyon. The con-

centrations predicted within by the canyon model were then added to

the baseline NOx concentrations predicted by the RapidAir model (re-

presenting the urban background in the area), and the models corrected

Table 2

Summary model evaluation statistics for annual mean NO2 at receptor locations (training and test data combined) split by site type: (a) kernel model only (all sites);

(b) kernel model with surrogate or street canyon correction (all sites); and (c) street canyon sites only. Statistics are given for the bias corrected Kernel only model,

the kernel model after correction using the surrogates for street canyons and then bias corrected, and using the street canyon models with bias correction. See Table 1

caption for a description of the abbreviations used in the column headings.

Receptor site type Model n FAC2 MB (μg/m3) NMB RMSE (μg/m3) r COE IOA

(a) All sites:

All Kernel 86 0.99 −2.8 −0.05 17.1 0.77 0.46 0.73

Kerbside Kernel 8 0.88 −22.6 −0.25 45.2 0.66 0.26 0.63

Roadside Kernel 40 1.00 −4.0 −0.07 13.9 0.70 0.28 0.64

Suburban Kernel 13 1.00 2.5 0.08 4.0 0.90 0.30 0.65

Urban background Kernel 25 1.00 2.6 0.06 6.0 0.88 0.49 0.75

(b) All sites:

All SVF 86 0.99 −3.0 −0.06 16.3 0.80 0.50 0.75

WE 86 0.98 −2.8 −0.05 17.0 0.78 0.47 0.74

HS 86 0.99 −2.9 −0.06 17.0 0.77 0.47 0.73

STREET 86 1.00 −4.4 −0.09 15.9 0.85 0.42 0.71

AEOLIUS 86 0.99 −4.4 −0.08 16.4 0.83 0.46 0.73

Kerbside SVF 8 0.88 −21.1 −0.23 44.0 0.67 0.31 0.66

WE 8 0.88 −21.3 −0.24 44.9 0.65 0.28 0.64

HS 8 0.88 −22.1 −0.24 45.3 0.65 0.27 0.64

STREET 8 1.00 −22.0 −0.24 38.9 0.84 0.33 0.67

AEOLIUS 8 0.88 −23.4 −0.26 42.8 0.76 0.29 0.65

Roadside SVF 40 1.00 −4.0 −0.07 12.8 0.76 0.35 0.68

WE 40 0.98 −3.6 −0.06 13.8 0.71 0.30 0.65

HS 40 1.00 −3.8 −0.07 13.8 0.71 0.30 0.65

STREET 40 1.00 −6.6 −0.11 14.3 0.72 0.21 0.61

AEOLIUS 40 1.00 −6.2 −0.11 13.8 0.74 0.27 0.64

Suburban SVF 13 1.00 1.1 0.04 3.4 0.90 0.35 0.68

WE 13 1.00 2.0 0.06 3.7 0.90 0.33 0.66

HS 13 1.00 2.0 0.06 3.7 0.90 0.30 0.65

STREET 13 1.00 4.3 0.13 6.2 0.90 −0.16 0.42

AEOLIUS 13 1.00 3.0 0.10 4.9 0.90 0.12 0.56

Urban background SVF 25 1.00 2.3 0.06 5.2 0.90 0.55 0.77

WE 25 1.00 1.8 0.05 5.5 0.87 0.54 0.77

HS 25 1.00 2.0 0.05 5.6 0.87 0.53 0.77

STREET 25 1.00 0.2 0.01 6.1 0.87 0.48 0.74

AEOLIUS 25 1.00 0.7 0.02 5.3 0.87 0.54 0.77

(b) Street canyon sites only:

Kernel 19 0.95 −14.1 −0.18 32.4 0.68 0.22 0.61

SVF 19 0.95 −11.6 −0.15 30.9 0.70 0.31 0.66

WE 19 0.95 −12.9 −0.17 31.9 0.68 0.26 0.63

HS 19 0.95 −13.4 −0.17 32.2 0.67 0.25 0.63

STREET 19 1.00 −10.6 −0.14 28.1 0.80 0.28 0.64

AEOLIUS 19 0.95 −13.0 −0.17 30.5 0.75 0.26 0.63

Table 3

(a) Linear regression equations between measured NOx, kernel model NOx

(RapidAir_NOx) concentrations and the surrogate variables for the training data

set (n= 59), used to obtain a surrogate-adjusted RapidAir NOx concentration

(‘Surrogate’_Adj_Mod_NOx); (b) Ordinary least squares regression equations be-

tween the measured (Measured_NOx) and surrogate-adjusted kernel model NOx

concentrations (baseline and after surrogate correction) for the test data set (the

intercepts were insignificant therefore set to 0) (n=29).

Surrogate (a) Training data:

Equations for surrogate-adjusted RapidAir NOx (μg/m
3)

r

RapidAir RA_Adj_Mod_NOx = 1.98*RapidAir_NOx 0.93

SVF SVF_Adj_Mod_NOx = 1.87*RapidAir_NOx –

70.61*SVF + 55.90

0.84

WE WE_Adj_Mod_NOx = 2.00*RapidAir_NOx –

90.99*WE + 85.43

0.84

HS HS_Adj_Mod_NOx = 2.01*RapidAir_NOx –

54.04*HS + 49.57

0.83

Surrogate (b) Test data:

Measured vs Modelled NOx (μg/m
3)

r

RapidAir Measured NOx = 0.79*RA_Adj_Mod_NOx 0.86

SVF Measured_NOx = 0.79*SVF_Adj_Mod_NOx 0.87

WE Measured_NOx = 0.78*WE_Adj_Mod_NOx 0.85

HS Measured NOx = 0.78*HS_Adj_Mod_NOx 0.85
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for systematic bias following the guidance in DEFRA Technical

Guidance 2016 (DEFRA, 2016) (Table 4).

3.3.3. Evaluation of RapidAir NO2 estimates after accounting for street

canyon effects

At the receptor locations in street canyons the underestimation of

the receptor concentrations was lowest for the street canyon models,

with the surrogates model and kernel models similarly under predicting

the concentrations (NO2 NMB=−0.18 for kernel, average NMB -0.16

for surrogates, −0.14 for STREET and −0.17 for AEOLIUS models

(n=19)) (Table 2b (NO2) and Table A4 (NOx)). The STREET model

predicted higher concentrations than the AEOLIUS model which re-

sulted in the smaller NMB values (Fig. A12). The difference in modelled

concentrations between the STREET and AEOLIUS models was very

small which is similar to previously published findings (Ganguly and

Broderick, 2011, 2010; Gualtieri, 2010; Zhu et al., 2015).

When all types of receptor locations were considered, there was

little difference between the pollution concentrations estimated at the

receptor locations for the RapidAir model, surrogates and the street

canyon models (Fig. A13). Consequently, there was limited difference

in the model evaluation statistics when the surrogates and street canyon

models were included (Table 2b (NO2) and Table A4 (NOx)). Inclusion

of the street canyon models reduced the NO2 NMB values compared to

the standard kernel model, however inclusion of the surrogates had

little impact on NMB values at the kerbside sites (Kernel=−0.25,

Surrogates=−0.24, STREET=−0.24 and AEOLIUS=−0.26)

(Table 2b (NO2) and Table A4 (NOx)). LUR models for NO2 in-

corporating SVF street canyon surrogates also found little improvement

in coefficient of determination values after surrogate inclusion

(R2=0.76 vs. 0.78) (Eeftens et al., 2013).

Despite the negligible change in model evaluation statistics the

combined kernel-canyon models required less adjustment for sys-

tematic bias than the uncorrected kernel model (Table 4). Therefore,

when a combined kernel-canyon model is applied to areas of the city

which do not have any measurements the model may be subject to less

over or under estimation than the kernel model which does not attempt

to address urban morphology. For instance, the combined kernel-

STREET model required adjustment using the linear regression equa-

tion Adjusted NOX = 1.04 * Modelled NOx + 34.45. The slope here is

significantly lower than the regression equation used to correct the

kernel-only model (i.e. 1.04 vs. 1.98). Predicted concentrations were

similar for the combined kernel-STREET and combined kernel-AEOLIUS

models. The inclusion of the street canyon models is therefore an im-

portant step in accounting for urban morphology which can in practice

be as influential to air pollution concentrations as spatial variations in

emissions in an urban setting.

The use of surrogates to account for urban morphology effects,

including street canyons, has computational simplicity advantages over

street canyon models. Surrogate values can be rapidly calculated in a

GIS across a large study area. Canyon models require user selection of

canyon locations, and require additional information about canyon

widths, heights, and traffic information such as speed (and therefore

cannot be easily computed for large areas).

Additionally, the transition from ‘built up’ to ‘open’ within the city

(for example at boundaries between buildings and parkland) is treated

in a gradual manner in surrogate models - unlike street canyon models

which impose a hard boundary at the canyon edge which is ‘smoothed’

artificially in a GIS with interpolation routines. Currently surrogates do

not take wind speed into account which, for annual averages, we an-

ticipate to have little influence on the model accuracy. However, if the

surrogates were to be applied to a dispersion model with higher (e.g.

hourly) temporal resolution then some modification of the surrogates to

account for wind speed effects may be required in order to obtain si-

milar modelled and measured pollution concentrations.

3.4. Advantages and limitations of RapidAir

The main aim of this work was to evaluate an air quality modelling

platform designed for operational settings where time is often a priority

and manpower/computational resources are limited. An example of an

operational use of RapidAir is given in Appendix A. RapidAir succeeds

as an operational air quality model in the context of very large urban

areas and as a decision support tool but its efficiency comes with some

drawbacks. Therefore, it is appropriate to outline the key benefits and

limitations of the approach to enable practitioners to interpret this work

in light of their current experiences in running city scale dispersion

models.

Clearly a significant benefit with RapidAir is reduced computational

burden. Run times of 10min or less for a very large city with>8

million inhabitants present a significant benefit for the operational

modeller and decision makers who require fast but robust analyses. The

RapidAir platform allows extremely efficient policy testing and other

“what if” model runs for new emission scenarios to be undertaken in a

few minutes on a standard office computer which is to our knowledge

not possible using existing platforms.

The model performance metrics for RapidAir in Table 2 are very

similar to those computed for other dispersion modelling systems in the

DEFRA inter comparison exercise. For example, the RapidAir outputs

for kerbside locations in London have NO2 RMSE values of

38.91–45.26 μg/m3 depending on the method taking street canyons

into consideration (r= 0.65–0.84, n= 8) where the models in the inter

comparison have RMSE values ranging from 29.39 to 67.09 μg/m3

(r= 0.15–0.93, n=7). At roadside locations the RapidAir outputs have

NO2 RMSE values of 12.78–14.28 μg/m3 (r= 0.70–0.76, n=40) where

Table 4

(a) Linear adjustment equations to account for systematic bias in kernel model performance. This data was derived from the training

dataset (n=59). Equations are shown for the kernel model; and kernel model including street canyon model. The intercept was not

significant for kernel and therefore the intercept was forced through the origin. (b) Ordinary least squares regression equations

between the measured (Measured_NOx) and canyon-adjusted kernel model NOx concentrations (baseline and after canyon correction)

for the test data set (the intercepts were insignificant therefore set to 0) (n= 29).

Model (a) Training data:

Equations for canyon model-adjusted RapidAir NOx (μg/m
3)

r

Kernel RA_Adj_Mod_NOx = 1.98*RapidAir_NOx 0.94

STREET STREET_Adj_Mod_NOx = 1.16*(RapidAir_NOx + STREET) + 29.80 0.88

AEOLIUS AEOLIUS_Adj_Mod_NOx = 1.64*(RapidAir_NOx + AEOLIUS) + 8.94 0.87

Model (b) Test data:

Measured vs. Modelled RapidAir NOx (μg/m
3)

r

Kernel Measured_NOx = 0.79*RA_Adj_Mod_NOx 0.86

STREET Measured_NOx = 0.85*STREET_Adj_Mod_NOx 0.97

AEOLIUS Measured_NOx = 0.80*AEOLIUS_Adj_Mod_NOx 0.97
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the models in the inter comparison have RMSE values ranging from

9.94 to 19.69 μg/m3 (r= 0.38–0.89, n=30). Some of the variation

between RapidAir and the other models will be due to the different

number of receptors in each category (which in reality may help or

hinder our model performance) but it is impossible for us to match the

locations exactly for the reasons explained earlier. The model results

also yielded good results for the COE and IOA when compared with the

definitions for these metrics provided by Carslaw and Ropkins (2012).

The key model metrics for the 2008 model run in London are very si-

milar to standard modelling suites used in the UK and which are used

and accepted by DEFRA for use in compliance assessments at the

highest level of statutory European air quality reporting. The high

spatial resolution possible with the RapidAir model makes it a suitable

candidate for use as an exposure metric for epidemiology studies for

example.

In our view the potential drawbacks of the model must be balanced

against the benefits described above. There may be the suggestion that

the kernel based model represents a significantly simplified treatment

of urban dispersion compared with models currently in use in the UK

which iterate over thousands of receptors and calculate contributions at

those receptors as a function of those sources (with very significant run

times). In fact, all Gaussian and empirical models are already a greatly

simplified picture of reality in urban settings and the methodology in

RapidAir does not significantly alter the overall level of simplification

compared with the real situation. In any case the model results are

compared against pollution measurements as with all other models

using the same metrics and the results of that performance assessment

are comparable with other platforms.

The performance statistics for the surrogates for urban morphology

are reasonably close to those from the models which treat canyons

discretely. Again our focus is on operational modelling where re-

producible and efficient workflows are as important as the tools se-

lected for use. Based on this work we would suggest that for compliance

assessment RapidAir is used with either the STREET or AEOLIUS model

options included as the run times are not significantly impacted by

including these models. The model results should be compared with

measured concentrations and the modeller may choose the best per-

forming street canyon model for their case. The surrogate models

should be used as screening tools and perhaps to spatially delineate

locations where the street canyon models should be invoked, which is

often difficult for a large and complex urban environment where re-

sources do not permit thorough investigation and spatial treatment of

the morphological conditions.

4. Conclusions

We developed a kernel-based dispersion model (RapidAir) com-

bining AERMOD and open-source scientific computing methods to es-

timate pollution concentrations at fine spatial resolution. Model input

data was obtained from public sources to allow comparison with pol-

lution models for the same location with the same input data. The

RapidAir dispersion model took approximately 7min to model the

Greater London conurbation (∼3500 km2) at 5× 5m resolution using

an Intel i5 64-bit laptop with 8 Gb RAM.

We evaluated NOx and NO2 model predictions at 86 sites across

London. After correction for systematic under estimation bias in the

initial RapidAir model, FAC2 values for modelled concentrations

were> 0.85 at the 86 evaluation sites. RMSE values decreased through

the site categories: Kerbside, Roadside, Urban Background and

Suburban (RMSE=45, 14, 6 and 4 μg/m3 respectively). This finding is

consistent with results from other modelling groups participating in the

DEFRA inter comparison, whose RMSE values ranged from 3 to 70 μg/

m3 respectively.

The larger RMSE values at the sites in proximity to traffic sources

may have resulted from the presence of street canyons that trap pol-

lutants leading to elevated concentrations – an effect that cannot be

described in dispersion models unless urban morphologies are taken

into consideration. Correspondingly, we used geospatial surrogates

(sky-view factor, hill shading and wind effect) and separate street

canyon models (STREET and AEOLIUS) to improve modelled con-

centrations at roadside sites. The STREET canyon model and street

canyon surrogates improved the model RMSE at kerbside sites:

RapidAir base-kernel= 45.2, sky-view factor surrogate= 44.0,

STREET model= 38.9 and AEOLIUS=42.8 μg/m3. When all sites were

considered the lowest RMSE values were observed for the kernel model

combined with the STREET canyon model (RMSE RapidAir base-

kernel= 17.1 vs. STREET model= 15.9 μg/m3). Consequently, the

combined models may be anticipated to provide more accurate esti-

mates when extrapolated to locations without monitoring. The geos-

patial surrogates have potential as simple means of incorporating

canyon effects into a large city scale dispersion model. The advantage of

using simple geospatial surrogates for street canyons instead of mod-

elling canyons discretely include: reduced run times, smaller user input

required and the transition from ‘built up’ to ‘open’ environments is

treated gradually.
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