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Abstract—The capability of discriminating radar targets
exhibiting multiple moving parts has become of great interest
for both aerospace and ground-based target recognition and
analysis. In particular, helicopters and other targets with rotors,
as for instance miniature Unmanned Aerial Vehicles, exhibit
peculiar characteristics in the radar return that can be used
for their recognition. In this paper a novel algorithm to address
the problem of micro-Doppler signature unmixing is proposed,
exploiting the signal separation capabilities of the Independent
Component Analysis (ICA). The core of the algorithm is repre-
sented precisely by the use of the ICA procedure, that has been
already proved to be a very effective technique for separating
hidden information in mixtures of observations. ICA has been
successfully employed in several applications such as wireless
communications, radar beamforming, trace-gases unmixing and
medical imaging processing. The helicopter’s rotor blade signa-
ture unmixing from a multi-static radar system is considered as
case study and results obtained through the application of ICA
to simulated multi-component micro-Doppler signatures show the
capability of the proposed approach to successfully accomplish
the unmixing operation.

Index terms— helicopter classification, micro-Doppler

features, Independent Component Analysis (ICA)

I. INTRODUCTION

In recent studies the main objectives of micro-Doppler

analysis and investigation have been to pursue reliable

micro-Doppler signature classification procedures, able of

describing and identifying uniquely the target by using

a very limited amount of data and observations. Very

interesting researches in this sense are presented in [1]-[2]

where information on micro-Doppler signatures is extracted

from the cadence velocity diagram (CVD) of received

data in order to perform target recognition. The approach

proposed in [1] aims to classify human activity based on the

actual cadence frequencies used as features. In [2] a novel

algorithm is presented, based on the application of orthogonal

pseudo-Zernike polynomials. Features of micro-Doppler

are derived from the pseudo-Zernike moments extracted

from the CVDs. The proposed algorithm has shown good

properties of invariance with respect to translation and scale

dependencies, and high accuracy in classification of real

micro-Doppler data in Ku- and X- bands. In [3] a model-

based approach exploiting sparsity has been used to recognize

helicopters’ returns, allowing the target recognition based on

the knowledge of the helicopter’s rotor characteristics only

and no express need of real training radar measurements. The

algorithm has been proved to get very good results in almost

all the cases of interest. Since in many situations where

a target is composed by a main body with other moving

parts, rotating or vibrating, such as the case of helicopter

blades, the reflected signal is the superposition of all these

components, the capability to unmix these returns in either

the time, frequency or time-frequency domain would provide

a potential benefit for the development of advanced target

recognition algorithms based on micro-Doppler.

In this paper an algorithm to pursue this objective is presented

exploiting a version of Independent Component Analysis

(ICA) applied to the time-frequency representation of the

mixed signal. ICA has been proved to be a very effective

technique for separating complex-valued signals hidden

in mixtures of observations. It has found great utility in

several applications where signal unmixing was required,

such as wireless communications [4], radar beamforming [5],

trace-gases retrieval from hyperspectral data [6], data analysis

in magnetic resonance imaging [7] and electroencephalograph

[8]. In [9] a method for using complex-valued ICA to

radar target detection in sea clutter has been successfully

applied, and in [10] spatial and temporal ICA of micro-

Doppler features has been studied by using simulated data

from rotating and tumbling objects, but at the best of our

knowledge ICA has not yet been applied in the frequency

domain to the spectrograms of the signal samples containing

micro-Doppler components belonging to moving helicopter

blades.

The paper is organized as follows. Section II introduces

the signal model of a target with multiple moving parts, in

particular the helicopter rotor case from multiple-receivers is

assumed as case study. Section III introduces the Fourier ICA

method used in this paper. Section IV illustrates the proposed

algorithm for signature unmixing. Results on simulated radar

data are presented in Section V. Conclusions and future work

are reported in Section VI.

II. SIGNAL MODEL

The analyzed scenario is represented by an helicopter

observed at the same time in a coherent multistatic-system



with M receivers illuminating the same surveillance area. An

illustration of the scenario is shown in Figure 1.

Without loss of generality the baseband slow-time micro-

Fig. 1. Observation scenario consisting in a multistatic-system

with 2 radar illuminating an helicopter.

Doppler signal received at the i-th receiver from the helicopter

can be written as [3], [11]:
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where i = 1, . . . ,M , represents the index of i-th receiver, K

is the total number of blades of the rotor, σl,i is the reflectivity

of the l-th blade seen from the i-th receiver, λ is the radar

carrier wavelength, ρ is the rotor blade length, ω is the rotor

angular velocity, θ is the rotor initial angle, Ts is the sampling

period1 and ∆i is the scaling factor depending on the specific

transmitter-target-receiver geometry.

To better illustrate the nature of the signals at hand the

spectrogram is generally used as representation of the micro-

Doppler signatures, obtained through the calculation of the

short FFT of the xi(n) samples. Since the χi(ν, γ) values

are generally complex, the spectrogram is represented on

the frequency axis through its square modules |χi(ν, γ)|
2 in

accordance with the equation (3):
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for γ = 0, . . . ,Γ− 1, and with ν the normalized frequency

and h(·) the smoothing window respectively.

1In a pulsed radar it is the radar Pulse Repetition Interval

As an example the micro-Doppler signature of an oscillating

point target observed from 2 different aspect angles is shown

in Figure 2, in which it is evident the dependence on the

aspect angle affecting the maximum micro-Doppler shift.

Fig. 2. Micro-Doppler of an oscillating target from 2 different

aspect angles.

III. THE FOURIER ICA MODEL

Assuming that the micro-Doppler features are statistically

independent it is possible to interpret the spectrogram values

as observations of a mixing model resolvable with ICA.

Specifically, supposing of reshaping the spectrograms in vector

form, it is possible to consider the model

χ = AS (4)

where:

• χ is the vector of the M spectrogram observables,

• S is the vector of the N micro-Doppler features within

the spectrograms, with N ≤ M ,



• A is the M × N mixing matrix (if M > N a common

practice is to reduce the observation dimensionality from

M to N ).

With ICA the unmixing is performed in a single step, estimat-

ing both micro-Doppler features and mixing matrix compo-

nents at the same time. Thus, Eq. 4 represents the ICA standard

probem model, whose solution is found via a trasformation W,

that maximizes the statistical independence of the sources S,

on the observations χ [12]

Y = Wχ = WAS. (5)

Note that, if W is equal to the inverse of the mixing matrix A,

the estimate sources Y will coincide with the sources vector

S.

The problem of finding the linear transformation (5) that

reaches statistical independence can be organized in two steps:

first a whitening operation, to make data uncorrelated, with the

same variance, and then a coordinate rotation [13], that pre-

serves whiteness and gets data independence. This means that

the transformation matrix is decomposed as W = RV where

V = ΛX
−1/2

UX
T is the whitening matrix, defined through

eigenvalues ΛX and eigenvectors UX of the covariance matrix

of X, and R is a unitary, rotation matrix that can be found by

minimizing a measure of dependence.

A possible measure of statistical dependence among ran-

dom variables is the mutual information: it is always non-

negative and is zero if and only if all variables are mutually

independent. Using the Shannon differential entropy, defined

as [14]

H(Y1,. . ., YN )= (6)

−

∫

p(y1,. . ., yN ) log[p(y1,. . ., yN )]dy1. . .dyN

the mutual information of the observables can be expressed as

[14]

I(Y1, ..., YN ) =

N
∑

n=1

H(Yn)− H(Y1, ..., YN ). (7)

It can be shown [12] that minimizing the mutual information

with respect to the rotation angles is equivalent to minimizing

the sum of the Shannon entropies of the observed random

variables.

IV. UNMIXING OF RADAR MICRO-DOPPLER SIGNATURES

For simplicity we refer here to the case of two receivers,

even if it is worth to notice that extension to multiple receivers

is possible, but it is out of the scope of this paper.

In the scheme reported in Figure 3, we show the three

main steps accomplished to unmix the micro-Doppler features

from the received signals.

A. Pre-processing

Firstly, it is necessary to pre-process the received baseband

signals, x1(n), x2(n), as defined in the Equation (1), in

order to obtain next two equal sized spectrograms of the

observations, on which to apply the ICA technique. This

pre-processing step consists substantially of removing the

dependence from the geometry scale factor ∆i in the phase

term, that is related to the specific viewing geometry. In

order to do that the micro-Doppler bandwidths of the two

received signals are estimated to evaluate the re-sampling

factor necessary to obtain the scale-invariance of the phase

term. Specifically, as outlined in the block scheme of Figure

3, the second received signal x2(n) is re-sampled, using

the factor Nd evaluated as the ratio between the estimated

bandwidths, thus obtaining the new sequence x2S(nNd).
This is a necessary step for the successive application of

the unmixing via ICA, because different scale factors would

have produced an increasing of the unknown sources to be

extracted.

B. Spectrogram calculation

The second step of the procedure consists of the

spectrogram calculation, as defined in the Equation (3), for

both the received signals, with fixed dimensions, in terms of

the number U of FFT bins and the time window size V . In

Figures 4 and 5, the spectrograms of the simulated signals

received from the first and the second receivers are shown,

respectively. In Figure 5, it is also shown the spectrogram

of the original signal, at the top, and that of the re-sampled

version. It is possible to notice that re-sampling procedure has

resulted in a spectral leakage effect, that is then compensated

in the third algorithm step using a cascade ICA. The results

of spectrogram calculation are the matrices χ1 and χ2,

that have been forced to have equal dimensions U × V , to

effectively apply the unmixing procedure.

C. Unmixing

The last step consists of the unmixing process aiming at the

micro-Doppler feature extraction. As pointed out in the step B

and shown in the Figures 4 and 5, the re-sampling procedure

accomplished in the pre-processing step has resulted into a

spectral leakage. In this step we show that this leakage can be

efficiently removed via ICA. The unmixing is reached via two

ICAs in cascade. The first unmixing is obtained by reshaping

the two matrices χ1 and χ2 into vectors of length 1 × UV

and arranging them into a matrix χ of dimension 2× UV so

that:

χ = AZ (8)

where A represents the 2 × 2 mixing matrix and Z is the

2 × UV independent sources matrix. Therefore, the problem

can be splitted into two steps: first a whitening operation,

to make data uncorrelated and with the same variance, and

then a coordinate rotation, that preserves whiteness and gets



Fig. 3. Block diagram of the proposed unmixing algorithm.

Fig. 4. Spectrogram of the signal received at the first receiver.

statistical independence of data [15], as explained in detail in

Section III.

As a standard ICA problem, the solution is found via a matrix

transformation W1, that maximizes the statistical indepen-

dence of the sources on the observations:

Z = W1χ. (9)

The first ICA is thus able to discriminate between the mixed

micro-Doppler features and the spectral leakage effect, namely

the extracted independent source matrices components, Z1 and

Z2.

The second application of ICA uses as input the first ex-

tracted source Z1 and the spectral leakage purified component

χ2 − Z2. The micro-Doppler features extraction is finally

achieved via a second matrix transformation W2 as before:

Y = W2Z. (10)

This second ICA application finally permits to unmix the two

sources as rows of Y.

V. RESULTS ON SIMULATED RADAR DATA

In this section the results obtained applying the ICA

unmixing procedure to simulated radar micro-Doppler signa-

tures are reported.

Fig. 5. Spectrograms of the signal received at the second

receiver, before (top) and after (bottom) the re-sampling pre-

processing.



The received signals, x1(n) and x2(n), are generated on the

basis of the model represented by Equation (1), in the case of

l = 2 and M = 2. Both radar sensors have been simulated

using a carrier frequency of 2.5 GHz and a PRF of 20 kHz.

The geometric scale factor is assumed to be 1 and 0.5 for the

two receivers respectively. The target rotors has 2 blades of

length 7.32 m and rotating at 4.9 rps. Finally the radar cross-

sections for each blade return are modeled as the following

mixing matrix:
[

σ11 σ12

σ21 σ22

]

=

[

0.6 0.4
0.7 0.3

]

(11)

as in a classical mixing problem.

All the steps illustrated in the above Section IV are applied,

in accordance with the Block Diagran shown in Figure 3. The

application of the proposed algorithm results in the extraction

of the two generated components and the obtained results are

presented in Figure 6. The Figure shows the unmixed sources

after reshaping, in matrix form. Even if some residuals from

the other source are still visible, the unmixing procedure

effectively separates the two micro-Doppler contributions and

allows to identify each of them separately.

VI. CONCLUSIONS AND FUTURE WORK

In this paper the problem of micro-Doppler signature un-

mixing has been investigated. The proposed approach ex-

ploits the capability of ICA to separate hidden information

in mixtures of observations. ICA has been applied to the

spectrograms of received signals and the specific case of rotor

blades return unmixing in a radar system has been analyzed.

Simulated signals have been used to verify the performance

of proposed technique. The results demonstrate the effective-

ness of the proposed approach as an useful tool to unmix

signatures, to be then exploited for advanced micro-Doppler

based target recognition algorithms. Future work will validate

the concept on real radar data, asses the radar cross section

estimation capabilities and integrate the proposed approach in

a target recognition algorithm. Additionally, the extension to

the classification of miniature Unmanned Aerial Vehicles will

also be considered by the authors.
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