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Here we study the global existence of “hairy” dyonic black hole and dyon solutions
to four-dimensional, anti-de Sitter Einstein-Yang-Mills theories for a general simply
connected and semisimple gauge group G, for the so-called topologically symmetric
systems, concentrating here on the regular case. We generalise here cases in the liter-
ature which considered purely magnetic spherically symmetric solutions for a general
gauge group and topological dyonic solutions for su(N). We are able to establish the
global existence of non-trivial solutions to all such systems, both near existing embed-
ded solutions and as |Λ|→∞. In particular, we can identify non-trivial solutions where
the gauge field functions have no zeroes, which in the su(N) case proved important to
stability. We believe that these are the most general analytically proven solutions in
4D anti-de Sitter Einstein-Yang-Mills systems to date. Published by AIP Publishing.
https://doi.org/10.1063/1.5000349

I. INTRODUCTION

The study of “hairy back holes”—black hole models with a Lagrangian which includes other
matter field terms—is now abundant in the literature, starting with when Bizon1 and Bartnik and
McKinnon2 published their results for non-Abelian black holes in asymptotically flat Einstein-Yang-
Mills (EYM) theory, characterised by a single su(2)-invariant gauge field ω. The significance of this
is that purely gravitational solutions are entirely characterised by their mass m, their charge e, and
their angular momentum a, as proven by the uniqueness theorems of Israel, Penrose, and Carter;3–5

whereas, “hairy” black holes require extra degrees of freedom to entirely characterise them. For
su(N), EYM solutions have been widely explored,6,7 and indeed a wide variety of EYM solutions of
various types are now known, including results for non-spherically symmetric spacetimes,8–10 higher
dimensions,11,12 other matter fields,11,13,14 etc.

The case of asymptotically anti-de Sitter (adS) space is analytically interesting for a few reasons.
In asymptotically flat space, the solutions are sparse, requiring a specific discrete set of boundary
values at both extremes of the spacetime, whereas adS cases possess solutions in continuous ranges
of the parameter space (see, e.g., Refs. 7, 15, and 16). This is related to stability: in adS, perturbing
a solution finds a nearby solution, hence these may be stable, whereas the contrary is true for flat
space. In addition and also due to the relaxed boundary requirements, adS space allows for “dyonic
solutions” possessing a non-trivial electric sector. This is in contrast to the asymptotically flat “no
magnetic charge” case17–19 where the electric sector must be trivial for asymptotic regularity. Since
globally regular dyonic solutions are only generally supported in adS space due to the closed geometry,
such solutions are less common in the literature; but monopole and dyon solutions have been found20

and notably for us in the dyonic su(2)21,22 for which stability is proven22 and the dyonic su(N)33

case. Moreover, these solutions are “nodeless” in the sense that the magnetic gauge functions possess
no zeroes, which has been a necessary result for stability in previous cases.7,22–24

a)E-mail: e.baxter@shu.ac.uk
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In this research, we also consider relaxing spherical symmetry to allow for the “topological”
case, investigated for su(2) by van der Bij and Radu.25 Here we foliate spacetime by general surfaces
of constant Gaussian curvature. Analytical and numerical results exist for increasingly general topo-
logical systems already.16,26 Recently published work on topological dyonic solutions in su(N) and
for purely magnetic solutions with a general semisimple gauge group suggests there is a gap in the
field that we intend to address. The author believes that this model represents the most general 4D adS
EYM model which has been analytically investigated to date. The possible applications of this work
mainly pertain to the adS/CFT (Conformal Field Theory) correspondence due to Maldacena;27,28 for
instance, results from the study of planar dyonic black holes have already been used in the study of
holographic superconductors,29,30 and higher-dimensional black holes have been connected analyti-
cally to the study of superfluids.31 There is also the question of continuing to test Bizon’s “no-hair”
conjecture1 and possible investigation of the black hole information paradox;32 this is a subject to
which we will return in Sec. VII.

In this paper, we shall prove the existence of black hole and soliton solutions to 4D static adS
EYM field equations for general compact, simply connected, and semi-simple Lie gauge groups. We
shall do this using the following general method. We shall construct our topological ansätze before
deriving the field equations themselves, reducing them down to the “regular” case.17,33 We shall
identify various embedded solutions whose existence has been proven elsewhere—these are crucial
to our proof. We shall investigate the necessary boundary conditions such that these solutions are
regular at the boundaries r = 0, r = rh, and as r → ∞. We shall prove that global solutions exist to
the field equations in some neighbourhood of the boundaries and that these solutions are analytic in
their boundary values. We shall demonstrate that the solutions may be integrated from one boundary
to the other regularly and that when in the asymptotic regime, the solutions remain regular. Finally,
we use all of this to prove that non-trivial global solutions to this system may be found (a) in some
neighbourhood of a number of different existing trivial solutions and (b) as the absolute value of
cosmological constant |Λ|→∞.

II. ANSÄTZE FOR EINSTEIN-YANG-MILLS MODELS WITH NON-SPHERICAL SYMMETRY

Einstein-Yang-Mills models with spherical symmetry are a relatively well-covered subject in
the literature. The asymptotically flat case for the specific case of su(N) was considered in Ref. 34
and extended to general gauge groups in Refs. 17–19. There, it was discovered that the requirement
of asymptotic regularity of the field variables was very restrictive and necessitated that the electric
sector be trivial—i.e., these solutions are “purely magnetic,” referred to as “zero magnetic charge
models.”19,35 These purely magnetic solutions have been extended to asymptotically adS space for
a general gauge group in the spherically symmetric case36 and to su(N) in the case of “topological
symmetry”16,26,33 (which we shall outline). However since there are no similar restrictions on the
electric gauge field for adS solutions, we will extend the model to cover the cases of dyonic solutions
with topological symmetry.

A. Topological symmetry

We begin by introducing the elements of the theory. Let G be a compact, simply connected,
semisimple Lie group with Lie algebra g. Then to demand a symmetry on the theory, we consider
principal S-valued automorphisms (where S is the Lie group representing the symmetry) on principal
G-bundles P over our 4D spacetime manifold M with metric g, such that the automorphisms project
onto isometry actions in M whose orbits are diffeomorphic to 2-surfaces with topology Σ2 which
foliate the manifold, and where Aut(Σ2)=S.

Spherical symmetry considers the case where S= SU(2) and Σ2 � S2. However we may extend
the spherically symmetric SU(N) system to the topological case.25 This generalises to three sep-
arate cases, each of which foliate spacetime by 2D surfaces of constant Gaussian curvature K
parametrised by “generalised angles” (θ, φ) and which are parametrised by the sign of the curvature
k ≡ sign(K):
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(i) k = 1 corresponds to the usual spherical symmetry, with Lie group S1 = SU(2) and topology
Σ2

1 � S2;
(ii) k = 0 corresponds to planar symmetry, with Lie group S0 =E(2) and topology Σ2

0 �R2;
(iii) k = �1 corresponds to hyperbolic symmetry, with Lie group S−1 = SU(1, 1) and topology

Σ2
−1 �H2,

where we use Σ2
k to stand for the topology of the foliation and Sk to stand for the symmetry group

in question. Each of these values of k are also associated with a function f k(θ), which endows the
connection and metric tensor with the correct topology,

fk(θ)=




sin θ for k = 1,

θ for k = 0,

sinh θ for k =−1.

(1)

B. Metric ansatz

As in Ref. 19, the induced action of Sk on M is isometric, and hence we may write the metric
as g= g̃ + r2ĝk , with g̃ the metric on the submanifold parametrised by (t, r) and ĝk the metric on the
“angular” part parametrised by (θ, φ). The same arguments there apply here, and so we conclude that
it is possible to find local Schwarzschild-like topologically symmetric co-ordinates (t, r, θ, φ) such
that the metric can be written as

ds2 =−µS2dt2 + µ−1dr2 + r2
(
dθ2 + f 2

k (θ)dφ2
)
, (2)

for S(r) the lapse function and µ(r) the usual mass fraction, defined as

µ= k −
2m
r

+
r2

`2
, (3)

where m(r) is the usual mass function and ` is the adS radius of curvature ` =
√
−3
Λ

(where the
cosmological constant Λ < 0). Note that we are dealing solely with the static case here, imply-
ing the existence of a time-like Killing vector to which t is adapted, hence all functions are of r
alone.

C. Connection ansatz

Now we consider the possible G-invariant connections on our bundle P in order to derive a form
for the gauge potential. The subject of possible classes of connections over principal bundles has been
covered by Wang,37,38 whose work in turn has been adapted to spherically symmetric connections
by Künzle.34 There is no distinguished action of Sk on M so we must examine all conjugacy classes
of such connections, which are in one-to-one correspondence with (and hence are characterised by)
integral elements W0 of the closed fundamental Weyl chamber W (Σ) of the roots of g with respect
to some Cartan subalgebra h and a base Σ.35,39,40

We let g0 be the Lie algebra of G, the structure group of the bundle E. In that case, g is equal
to its complexification (g0)C. Also we take {τi} to be a standard basis for the Pauli matrices. Then
Wang’s results37 tell us that we can write

W0 = 2iw(τ3), (4)

where w is the homomorphism from the isotropy group Ix0 of the SU(2)-action on M at the point
x0 ∈ M, determined by

y ·π0 = π0 ·w(y), ∀y ∈ Ix0 if π0 ∈ π
−1(x0), (5)

where π�1(x0) is the fibre above x0 and the central dot notation denotes the adjoint action. Equations (4)
and (5) are then known as the “Wang equations” for the system and allow us to determine the entire
gauge potential.
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Given the product structure of the manifold, we write the corresponding decomposition of the
gauge potential as A= Ã + Â. In the spherical case,19 where k = +1, a gauge may always be found
in which the magnetic part of the potential, Â, can be written as

Â=W1dθ + (W2 sin θ + W3 cos θ)dφ. (6)

This may be derived by finding the Maurer-Cartan form for an appropriate section χ in the bundle,
where for our purposes we choose

χ = exp(φτ3) exp(θτ1). (7)

The result (6) conveniently matches the potential we derived in Ref. 26 for the purely magnetic case.
We now wish to generalise this result to topological solutions.

First, we notice that being fairly general in scope, Proposition 3 in Ref. 19 carries over so that in
this case a gauge may again always be found such that the potential takes the form

Â=W ◦ Θ, (8)

where Θ is the Maurer-Cartan form for a section χ, i.e., Θ = χ�1dχ, and W is the homomorphism
on G which is induced by w. We will need to apply the commutation relations for the topology in
question, which in our chosen bases {τi} are

[τ2, τ3]= τ1, [τ3, τ1]= τ2, [τ1, τ2]= kτ3. (9)

We begin by calculating Θ,

Θ= χ−1d χ = τ1dθ + exp(−θτ1)τ3 exp(θτ1)dφ. (10)

The second term is clearly just a finite rotation of τ3 about τ1 by angle θ. To deal with this term, we
invoke the Hadamard lemma,41 giving

exp(−θτ1)τ3 exp(θτ1)= τ3 − θ[τ1, τ3] +
θ2

2!
[τ1, [τ1, τ3]] −

θ3

3!
[τ1, [τ1, [τ1, τ3]]] + . . . . (11)

We start with the k = �1 case. Using the commutators (9) in (11), we find

exp(−θτ1)τ3 exp(θτ1)= τ3 cosh θ + τ2 sinh θ. (12)

This then gives

Θ= τ1dθ + (τ2 sinh θ + τ3 cosh θ)dφ, (13)

which in turn implies that

Â=W ◦ Θ=W1dθ + (W2 sinh θ + W3 cosh θ)dφ, (14)

where W i ≡ W (τi).
For k = 0, beginning with (11) we find

exp(−θτ1)τ3 exp(θτ1)= τ3 + τ2θ, (15)

where again we have used (9). Thus,

Â=W1dθ + (W2θ + W3)dφ. (16)

To summarise, we may compile expressions [(6), (14), and (16)] into a single expression covering
all three cases,

Â=W1dθ +

(
W2fk(θ) + W3

dfk
dθ

)
dφ. (17)

Note that this is the same form as we derived in Ref. 26 for purely magnetic topological su(N)
solutions, with

W1 =
1
2

(C − C†), W2 =
−i
2

(C + C†), W3 =
i
2

kD, (18)
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where C, D ∈ su(N) in the adjoint representation, C is real and skew-Hermitian, and D is real and
diagonal. We further note that the same arguments carry over for the (here non-trivial) electric part
of the gauge potential Ã, and to simplify the equations we must deal with, we use a temporal gauge
as in Ref. 19, and we may again write

Ã=Adt (19)

for A ∈ g. Hence, the gauge potential we shall use can be given as

A=A(r)dt + W1(r)dθ +

(
W2(r) fk(θ) + W3

dfk
dθ

)
dφ, (20)

where we have W3 =−
i
2 W0 as the constant isotropy generator, the Wang equations become

[W3, W1]=W2, [W2, W3]=W1, (21)

and finally, [A, W3] = 0 so that A ∈ h.

D. Asymptotic regularity requirements for Λ < 0

We here take a moment to discuss the asymptotic regularity of the solutions which highlights a
major difference between the cases for Λ = 0 and Λ < 0—that is, the fact that the solution space for
asymptotically adS models is much larger and richer than for asymptotically flat models, due to the
comparatively relaxed requirements at infinity for the former case.

In the case ofΛ = 0, we may17 reduce our attention to the so-called “regular” models as described
in Refs. 35 and 39, which are those defined by conjugacy classes of bundle automorphisms that drop
off sufficiently quickly at infinity (and zero, for solitons). These are described as the “zero magnetic
charge models” in Ref. 19. Essentially this mandates that at infinity (and at the origin in the case
of solitons), the magnetic gauge field functions take specific values dictated by the chosen group G
and also that the electric gauge field vanishes identically. This is due to the following requirements
for Λ = 0: let

A(i) ≡ lim
r→i

A(r), W (i)
j ≡ lim

r→i
Wj(r), (22)

for i ∈ {0,∞}, j ∈ {1, 2}. Then we must have (for the topological case in hand)

[A(i), W (i)
j ]= 0, [W (i)

1 , W (i)
2 ]= kW3 (23)

so that in these limits, there must be a homomorphism of su(2) into g. This is why in asymptotically
flat space such models are sparse in the solution space.

However, for the case ofΛ < 0, this is no longer true. This analysis is in Sec. V; but to summarise,
we transform r to a variable τ that is good asymptotically and consider the phase plane of the system

essentially composed of

(
A, Wj,

dA
dτ

,
dWj

dτ

)
. Looking for the fixed (or “critical”) points of this system,

where the τ derivative of each of the variables is zero and hence where phase plane trajectories end
at finite values, we find a finite number of critical points, suggesting that regular solutions must
approach these points asymptotically. However, the asymptotic structure of adS space is such that
we may compactify the domain of integration from infinite to finite range, meaning that a solution in
the variable phase space will in general not reach the end of its trajectory. Therefore the values of the
critical points of the asymptotic system and the values that the field variables attain asymptotically
are not in general the same–this is contrary to what we find in the case of Λ = 0. Thus we might say
that if we let A(∗), W (∗)

j be the values of A and W j at these critical points, we still have the altered
constraints

[A(0), W (0)
± ]= [A(∗), W (∗)

± ]= 0, [W (0)
1 , W (0)

2 ]= [W (∗)
1 , W (∗)

2 ]= kW3, (24)

but that in general

A(∞) ,A(∗), W (∞)
j ,W (∗)

j (25)
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for j ∈ {1, 2}. Hence, in adS space, solutions are far more plentiful, and it is this that enables us
to prove the existence of global solutions in these cases. Thus as in the purely magnetic case, the
definition of a “regular model” must be extended in light of the above.

III. DERIVING THE FIELD EQUATIONS IN THE REGULAR CASE

We have reduced the possible conjugacy classes of our bundle automorphisms to meet the
requirement of boundary regularity, but we still have one possible action of SU(2) on the bundle
E for each element in W (Σ) ∩ I , the intersection of the closed fundamental Weyl chamber and the
integral lattice defined by I ≡ ker(exp |h). This is still a countably infinite quantity of possible actions.
For regular models, however, the constraints (24) must still be obeyed by W0 (and hence W3) and
therefore W0 must still be an A1-vector, i.e., the defining vector of an sl(2)-subalgebra. This set
of vectors is finite and has been tabulated for the simple Lie groups by Dynkin and Mal’cev.42,43

These “characteristics” are in one-to-one correspondence with strings of integers from the set
{0, 1, 2}, which define the values of the simple roots on W0 chosen so that it lies in W (Σ) and
so provides a classification of all possible models, including these topological ones, which obey
appropriate regularity requirements at one or both boundaries for any semisimple compact gauge
group.

A. Field equations

In this section, we will reduce the field equations for Λ < 0 to the regular case and show that
as in the purely magnetic and asymptotically flat cases, these models coincide with those for the
principal action, for any semisimple gauge group. We will show that such models can be entirely
characterised by 2 real functions, m(r) and S(r), and 2L real functions of r representing the gauge
fields.

The EYM field equations are well known,

2Tµν =Gµν + Λgµν ,

0=∇λF λ
µ + [Aλ, F λ

µ ],
(26)

where gµν is the metric tensor defined using (2), Gµν is the Einstein tensor, F λ
µ is the mixed anti-

symmetric field strength tensor defined with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν], (27)

where Aµ is the Yang-Mills one-form connection (20) given byA=Aµdxµ, and the energy-momentum
tensor Tµν is given by

Tµν ≡Tr

[
FµλF λ

ν −
1
4

gµνFλσFλσ
]
. (28)

We note that Tr is the Lie algebra trace, we have used the Einstein summation convention where
summation occurs over repeated indices, and we have rescaled all units so that 4πG = c = q = 1 (for
the gauge coupling constant q).

A more convenient basis to use here for the Wang equations (21) in place of the generators W1

and W2 is

W± =∓W1 − iW2, (29)

in which case Eqs. (21) become

[W0, W±]=±2W±. (30)

Then W±(r) are g-valued functions, W0 is a constant vector in a fundamental Weyl chamber of h,
and {W0, W±} is a standard su(2) triple in the limit r = 0 and at the critical points of the system (see
Sec. V). Also, h is the Cartan subalgebra of the complexified form of the Lie algebra, i.e., h= h0 + ih0,
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for h0 the real Cartan subalgebra of g0, which in turn is the real compactified form of g. We introduce
a complex conjugation operator c : g→ g such that

c(X + iY )=X − iY , ∀X , Y ∈ g0, (31)

which implies
W− =−c(W+). (32)

This is consistent with us having written the field equations such that c(A)=A.
Using (2), (20), and (26), we may derive the field equations. Defining the following quantities

η =− 1
2 (A′, A′), F̂ = i

2 (kW0 − [W+, W−]),

G= 1
2 (W+, W−), ζ =− 1

2 ([A, W+], [A, W−]),

F=−i[F̂, W+], Z= [W+, [A, W−]],

P=− 1
2 (F̂, F̂),

(33)

we find the Einstein equations to be

m′ =
r2η

S2
+

ζ

µS2
+ µG +

P

r2
, (34a)

S′

S
=

2G
r

+
2ζ

µ2S2r
, (34b)

and the (non-zero, independent) Yang-Mills equations can be written as

0= [W+, W ′
−] − [W ′

+, W−], (35a)

0=A′′ +

(
2
r
−

S′

S

)
A′ −

Z
µr2

, (35b)

0= r2µW ′′
+ + r2

(
µ′ + µ

S′

S

)
W ′

+ −
r2

µS2
[A, [A, W+]] + F. (35c)

Above we have used an invariant inner product (,) on g, which we will define properly below. This
arises from the Lie algebra trace and is determined up to a factor on each simple component of a
semisimple g. This inner product induces a norm | | on (the Euclidean) h and therefore also on its
dual, and the factors are chosen so that (,) is a positive multiple of the Killing form 〈,〉 on each simple
component. Also, we note that since c(F̂)= F̂, c(A) = A, and 〈X |Y〉 ≡�(c(X), Y ) is a Hermitian inner
product on g, then the quantities η, ζ , G, P ≥ 0. Finally then, we may calculate the energy density e,
which is a quantity we will need when we simplify our solutions by considering only those with the
correct asymptotic behaviour, noting that as expected it is non-negative,

e= r−2
(

r2η

S2
+

ζ

µS2
+ µG +

P

r2

)
. (36)

Now we reduce the field equations down to the case of a regular action by choosing an explicit
Chevalley-Weyl basis for g. Let R be the set of roots on h∗ and Σ = {α1, . . . , αL} be a basis for R
(where L is the rank of g). To define the inner product (,), we make the definitions

(tα, X)≡ α(X), ∀X ∈ h, hα ≡
2tα
|α |2

. (37)

We let {hi ≡hαi , eα, e−α | i= 1, . . . ,L; α ∈ R} be a basis for g. This basis induces the natural
decomposition

g= h ⊕
⊕
α∈R+

gα ⊕ g−α, (38)

where R+ are the set of positive roots expressed in the basis Σ. For this decomposition, we take the
conventions
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[eα, e−α]=hα, [e−α, e−β]=−[eα, eβ], (eα, eβ)=
2δα−β
|α |2

, (39)

for δαβ the Kronecker symbol. We define an sl(2)-subalgebra span{e0, e±} of g using the appropriate
commutators, i.e.,

[e0, e±]=±2e±, [e+, e−]= e0, (40)

and if we notice that
[h, eα]= α(h)eα, (41)

then according to Ref. 43, e0 can only be an A1-vector if there exists an α ∈ R such that

α(e0)= 2. (42)

Using these facts then, we may write W0 ∈ h in the basis

W0 =

L∑
i=1

wihi ∈ h (43)

so that Eq. (30) imply that

W+(r)=
∑
α∈Σw

ωα(r)eα, W−(r)=
∑
α∈Σw

$α(r)e−α (44)

for two sets of complex functions ωα and $α, where we have defined Σw , a set of roots depending
on the homomorphism w—i.e., the constants wi—as

Σw ≡ {α ∈ R | α(W0)= 2}. (45)

However, given that the complex conjugation operator c maps

hi 7→−hi, eα 7→−e−α, (46)

it is clear that
$α(r)= c(ωα(r)), (47)

reducing the number of independent functions we have. As for the electric sector, since [A, W3] = 0,
then A ∈ h, and we can write A in the form

A= i
L∑

j=1

aj(r)hj. (48)

This is because c(A) = A so that (46) implies the functions ai(r) are purely real. In addition, the first
Yang-Mills equation (35a) can be solved using the same argument as in Refs. 17 and 36, implying that
ωj(r) ∈R, ∀j. We note that in Λ = 0 purely magnetic solutions, this is only possible for the regular
case.17 Therefore, the system is determined by two real functions m(r), S(r), and 2L real functions
ai(r), ωi(r), ∀i ∈ {1, . . . ,L}.

We further note that as in Ref. 19, we must also consider the form of A, since it still may be
expressed as the direct sum of two orthogonal sectors. The element A is valued in LT, the infinitesimal
torus which is the centraliser of G. Therefore, relative to the decomposition LT = 〈Σw〉⊕〈Σw〉⊥, where
here 〈 〉 indicates the span, we can write A = A‖ + A⊥. Note that this decomposition is independent
of our choice of Ad G-invariant inner product. We wish to examine the form of A⊥. The cases of
solitons and black holes must be taken separately.

For solitons, the argument in Ref. 19 applies identically here and shows that A⊥ may be gauged
away. Examining the perpendicular component of (35b), noting that again [W+, [A, W

�

]] ∈ 〈Σw〉,
then we find r2S−1A′⊥ = c, for a constant arbitrary vector c ∈ 〈Σw〉⊥. For the energy density (36) to
be finite at the origin, then we must have c= 0 so that A⊥ is a constant. Finally, the gauge transform
A → (ad(g))�1A + g�1dg with g = exp(�A⊥t) gauges A⊥ to zero but leaves the rest of the potential
unaffected.

For black holes, we still have r2S−1A′⊥ = c, but since r ≥ rh, regularity does not immediately
imply that c= 0. Hence, as in Ref. 44, we adopt a gauge where limr→∞A⊥ = 0, and we obtain the
integral solution
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A⊥(r)= c

∞∫
r

S(y)

y2
dy. (49)

This matches what is found in Ref. 44. Noting also that [〈Σw〉⊥, W±]= 0, then (49) decouples from
the rest of the equations and thus A⊥ can be found when S(r) is known.

Hence, from now on we simply work with A; knowing that for solitons, A = A‖ , and for black
holes, once we have found a solution to the field equations, we can use knowledge of S(r) in (49)
to “separate” A‖ from A⊥. This is perhaps why the term has not been mentioned in previous treat-
ments of su(N) dyonic black holes.21,22,33 We should mention that the rest of the proof in Ref. 19,
where also A‖ = 0 for regularity, fails because of the altered asymptotic requirements for Λ < 0
(Sec. V).

B. Regular models

It is noted in Ref. 17 that we may simplify the system a lot by considering only the regular case,
where W0 is a vector in the open fundamental Weyl chamber W (S).19 We begin with an extension of
a theorem from the work of Brodbeck and Straumann:

Theorem 1 [Ref. 19]. If W0 is in the open Weyl chamber W (Σ), then the set Σw is a Π-system,
i.e., satisfies the following:

(i) if α, β ∈ Σw , then α � β < R.
(ii) Σw is linearly independent and is therefore the base of a root system Rw which generates a Lie

subalgebra gw of g spanned by {hα, eα, e
�α | α ∈ Rw}. Moreover, if hw ≡ span{hα | α ∈ Σw }

and h⊥w ≡
⋂
α∈Σw ker α, then

h= h
‖
w ⊕ h

⊥
w and W0 =W ‖

0 + W⊥0 with W ‖

0 =
∑
α∈Rw

hα. (50)

If W0 is an A1-vector, then W⊥0 = 0 (though h⊥w need not be trivial).
To this theorem we may add the extra point from above, only applicable to Λ < 0:

(iii) Let A = A‖ + A⊥. Then for solitons, we may find a gauge in which A⊥ = 0, and for black holes,
we can at least show that A⊥ decouples and can be found when we know S(r). We also note
that A‖ is not required to vanish, unlike the asymptotically flat case.

As in the purely magnetic case, we will see that this reduces the equations down to a form resembling
the su(N) equations studied in Ref. 33. First we can consider W+ to be a gw-valued function and
write

W+(r)=
Lw∑
j=1

ωj(r)ẽj, A= i
Lw∑
j=1

aj(r)h̃j, (51)

where we now take {α̃1, . . . , α̃Lw } as the basis for Σw and define ẽj ≡ eα̃j . The functions aj are purely
real. As in the dyonic su(N) case,26 we find it more convenient here to write the electric field in a
different basis, defined by

E+ ≡−i[A, ẽαj ]≡
Lw∑
j=1

Ej ẽαj , i.e., Ej =

Lw∑
l=1

al(r)α̃j(h̃l) (52)

for Lw real functions Ei(r). This conveniently sets both equations in the same basis of vectors. Also
using this basis, we may define the Cartan matrix of the reduced subalgebra gw as

Cij ≡ 〈α̃i, α̃j〉, (53)

noting that by definition this is a symmetric and positive operator. In addition, we are now in a position
to elucidate the structure of our inner product a little: We note that in this basis for the roots, then due
to the definition of the Killing form, and using (37) and (53), we can derive that
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(h̃i, h̃j)=
2

|α̃j |
2

Cij, (54)

a relation that will be useful to us momentarily.
Now we rewrite the remaining Yang-Mills equations. The field equation for the electric sector

(35b) easily becomes

Lw∑
i=1


a′′i +

(
2
r
−

S′

S

)
a′i −

ω2
i

µr

Lw∑
j=1

ajα̃i(h̃j)


h̃i = 0, (55)

and if we take the commutator of this with ẽαk and sum over k, we get the Lw equations

E′′i +

(
2
r
−

S′

S

)
E′i −

1
µr

Lw∑
j=1

CijEjω
2
j = 0. (56)

This leaves the magnetic equations (35c). Using the first equation in (39), we can compute F̂ to be

F̂ =
i
2



Lw∑
i=1

λihi −



Lw∑
i=1

ωiẽi,
Lw∑
i=j

ωj ẽj





=
i
2

Lw∑
i=1

(
λi − ω

2
i

)
h̃i,

(57)

then using this, (37), and (54), we can calculate P as

P=
1
8

*.
,

Lw∑
i=1

(λi − ω
2
i )h̃i,

Lw∑
j=1

(λj − ω
2
j )h̃j

+/
-

=
1
8

Lw∑
i,j=1

(λi − ω
2
i )hij(λj − ω

2
j ),

(58)

where

hij ≡
2Cij

|α̃j |
2

. (59)

Also,

[A, [A, W+]]=−



Lw∑
i=1

ai(r)h̃i ,
Lw∑
j=1

Ejωj ẽαj


=−

Lw∑
i=1

E2
i ωiẽαi . (60)

Hence, the Lw magnetic gauge field equations (35c) remain the same as in the purely magnetic case36

with the addition of the term (60), and we obtain

ω′′j +

(
µ′

µ
+

S′

S

)
ω′j +

E2
j ωj

µ2S2
+

ωj

2µr2

Lw∑
i=1

Cij

(
kwi − ω

2
i

)
= 0. (61)

Now for the Einstein equations (34), the quantities G and P are also the same as in the purely magnetic
case,36 and we need only consider ζ and η,

ζ =−
1
2

([A, W+], [A, W−]) η =−
1
2

(A′, A′)

=
1
2

Lw∑
i,j=1

EiEjωiωj

(
ẽαi , ẽα−j

)
=

1
2

Lw∑
i,j=1

a′i a
′
j

(
h̃i, h̃j

)
=

Lw∑
i=1

E2
i ω

2
i

|αi |
2

, =
1
2

Lw∑
i,j=1

a′i hija
′
j .

(62)
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We note that η can also be written in our new basis E+ (52) as

η =

Lw∑
i,j=1

E′i
(C−1)ij

|αj |
2
E′j , (63)

with (C−1)jk being the matrix inverse of Cjk , which therefore is also positive and symmetric. This is
due to (39) which implies for the regular case that in our Chevalley-Weyl basis, [h̃i, ẽαj ]=Cij ẽαj , and
thus

Ei =

Lw∑
j=1

Cijaj. (64)

Finally then, we can present our field equations for regular models. The Einstein equations are as
above (34), with ζ and η given in (62) and (63), and

P=
1
8

Lw∑
i,j=1

(kwi − ω
2
i )hij(kwj − ω

2
j ), (65a)

G=
Lw∑
i=1

ω′2i

|αi |
2

, (65b)

Fi =
ωi

2

Lw∑
j=1

Cij(kwj − ω
2
j ), (65c)

Zi =

Lw∑
j=1

CijEjω
2
j , (65d)

and hij given by (59). The 2Lw Yang-Mills equations are these, where we have rewritten them using
the Einstein equations (34),

0= E′′i +
2
r

(
1 − G −

ζ

µ2S2

)
E′i −

Zi

µr2
, (66a)

0= r2µω′′i + 2

(
m −

P
r
−

r3η

S2
+

r3

`2

)
ω′i +

r2E2
i ωi

µS2
+ Fi. (66b)

The final step is to determine the values of the constantswj, which involves determining the subalgebra
gw for a given A1-vector W0 in the open fundamental Weyl chamber. For a semisimple group, for
which the Cartan subalgebra splits into the direct sum of (orthogonal) space h=

⊕
k hk , then the

orthogonal decomposition given in Theorem 1 splits into analogous decompositions of each of hk .
Hence we only need to consider the regular actions of simple Lie groups.

However, we note that the A1-vector in the Cartan subalgebra h of a Lie algebra g is uniquely
determined by the integers

{ν1, . . . , νL} ≡ {α1(W0), . . . , αL(W0)} (67)

chosen from the set {0, 1, 2}. In Ref. 43, this set is referred to as the characteristic. From (45), it is
obvious that for the principal action,

νj = 2 (∀j ∈ {1, . . . ,L}) (68)

for hw . A1-vectors satisfying this define principal su(2)-subalgebras and hence principal actions of
SU(2) on the bundle. Therefore may rely on the following theorem, the gist of which is that the
regular action coincides with the principal action:

Theorem 2 [Ref. 17].

(i) The possible regular su(2)-subalgebras of simple Lie algebras consist of the principal subal-
gebras of all Lie algebras AL, BL, CL, DL, G2, F4, E6, E7, and E8 and of those subalgebras
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of AL = sl(L + 1) with even L corresponding to partitions [L + 1 − k, k] for any integer
k = 1, . . . ,L/2 or, equivalently, characteristic (22. . .2211. . .1122. . .22) (2k “1”s in the middle
and “2”s in all other positions).

(ii) The Lie algebra gw is equal to g in the principal case and for AL with even L equal to AL−1

for k = 1 and to AL−k ⊕ Ak−1 for k = 2, . . . ,L/2.
(iii) In the principal case, h ‖w = h. For all su(2)-subalgebras of AL with even L, the orthogonal

space h⊥w is one-dimensional.

In light of the above, we now drop tildes and w-subscripts for clarity. Finally then we may determine
an expression for the constants wj, derived by using [(59), (65a), (67), and (68)],

wj = 2
L∑

k=1

(C−1)jk . (69)

C. Trivial solutions

In Sec. VI C, we will argue the existence of global solutions in some neighbourhood of existing
embedded (or “trivial”) solutions. Therefore, we here review some known trivial solutions to the field
equations (34) and (66).

1. Schwarzschild anti-de Sitter (SadS)

Here we notice that a solution is found if we let ωi(r)≡
√

kwi, ai(r) ≡ 0, ∀r, i (implying also
that Ei ≡ 0∀r, i). Note though that this solution is only really valid for k = 1 [so ωi(r)≡

√
wi] because

for k = 0 we instead get the Reissner-Nördstrom-adS solution (see Sec. III C 2 below), and for
k = �1, ωi <R. Substituting into the defined quantities (62) and (65) we find that η = ζ = P = G = 0
and Fi =Zi = 0, ∀i. This implies (a) that m′(r) = 0 from (34a) so that M is a constant which we set to
the Arnowitt-Deser-Misner (ADM) mass, (b) that we have S′(r) = 0 from (34b) so that S is a constant
which we scale to 1 for the asymptotic limit, and (c) the Yang-Mills equations (66) are automatically
satisfied. Since η = P = 0, this solution carries no global charge. This can thus be identified as the
embedded Schwarzschild-anti-de Sitter solution.

2. Reissner-Nördstrom anti-de Sitter (RNadS)

Here we let ωi(r)≡ Ei(r)≡ 0. In that case, again we find ζ = G = 0 and therefore S(r) becomes a
constant, which we scale to 1. Also, η = 0, and so the metric function µ(r) becomes

µ= k −
2M
r

+
Q2

r2
+

r2

`2
. (70)

Again, M is the ADM mass of the solution, and the magnetic charge Q is defined as

Q2 ≡ 2P=
k2

4

L∑
i,j=1

wihijwj. (71)

Thus we have the embedded Reissner-Nördstrom anti-de Sitter solution, which we note only exists
with this value of Q2. Note that the hyperbolic and spherical cases carry the same charge, and the
planar case necessarily has zero magnetic charge, similar to the Λ = 0 case. We also note that since
P ≥ 0, Q2 ≥ 0 always.

3. Embedded Reissner-Nördstrom Abelian solutions

Here we let ωi ≡ 0, and

ai(r)≡
ãi

r
, (72)

for all i, where ãi are arbitrary real constants. Then we have
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m(r)=M −
1
2r

*.
,

1
2

L∑
j=1

ãihijãj +
k2

4

L∑
i,j=1

wihijwj
+/
-
. (73)

Identifying the bracketed terms as the electric and magnetic charges, respectively, we let

Q2
E =

1
2

L∑
j=1

ãihijãj, Q2
M =

k2

4

L∑
i,j=1

wihijwj. (74)

Then we may write the metric function µ(r) as

µ= k −
2M
r

+
Q2

E + Q2
M

r2
+

r2

`2
. (75)

This solution is essentially an embedded [u(1)]L solution, which lives entirely in 〈LT〉. The
arbitrariness of the constants ãi is something that is familiar from the su(2)21 and su(N) cases.33

4. Embedded su(2) solutions

Noting that we can embed SU(2) isomorphically into any semisimple gauge group G, then there
must always exist trivial embedded su(2) solutions to the field equations. We may show this by a
simple rescaling.

Consider the gauge group G, fixing the symmetry action such that W0 is regular. Select any basis
such that the set {W0, Ω+, Ω

�

} spans su(2), with c(Ω+) = �Ω
�

. We rescale the field variables as
follows:

r =Q−1r̄ ωj(r)≡ w1/2
j ω(r̄), ai ≡

a(r̄)
2

, m≡Qm̃(r̄), ` ≡Q ˜̀, (76)

for all i ∈ {1, . . . ,L}, with A(r) and W+(r) set in the basis (44) and with Q2 given in (71), noting that
(69) implies

∑L
j=1 wj =Q2. Then the field equations become

m̃′ =
r̄2

2S2

(
da
dr̄

)2

+
a2ω2

µS2
+ µ

(
dω
dr̄

)2

+
(k − ω2)2

2r̄2
,

1
S

dS
dr̄
=

2
r̄

(
dω
dr̄

)2

+
2ω2a2

r̄µ2S2
,

0= r̄2µ
d2ω

dr̄2
+ *

,
2m̃ −

(k − ω2)2

r̄
+

r̄3

˜̀2
−

r̄3

2S2

(
da
dr̄

)2
+
-

dω
dr̄

+
r̄2a2ω

µS2
+ ω(k − ω2),

0= r̄2µ
d2a

dr̄2
+ r̄2µ

(
2
r
−

S′

S

)
da
dr̄
− 2aω2, (77)

with

µ(r̄)= k −
2m̃
r̄

+
r̄2

˜̀2
. (78)

These equations are identical to those for the dyonic su(2) adS case for k = 1, and for general k and
a = 0, we obtain the purely magnetic topological su(2) equations. The existence of (nodeless) solutions
has been proven in both of these cases.21,25

IV. PROOF OF LOCAL EXISTENCE AT THE BOUNDARIES r = 0, r = rh, r →∞

Since we know the boundary conditions to expect, we can turn our attention to proving the
local existence of solutions near those boundaries. To do this, we rely on a well-known theorem of
differential equations,6 generalised to the appropriate case by Ref. 17.

Theorem 3 [Ref. 17]. The system of differential equations
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t
dui

dt
= tµi fi(t, u, v),

t
dvi

dt
=−hi(u)vi + tνi gi(t, u, v),

(79)

where µi, νi ∈Z>1, f i, gi are analytic functions in a neighbourhood of (0, c0, 0) ∈R1+m+n and the
functions hi : Rm→R are positive in a neighbourhood of c0 ∈Rm, has a unique solution t 7→ (ui(t),
vi(t)) such that

ui(t)= ci + O(tµi ), and vi(t)=O(tνi ), (80)

for |t | > r̄ for some r̄ > 0 if |c � c0| is small enough. Moreover, the solution depends analytically on
the parameters ci.

The proof of this theorem involves an approach similar to the proof of the Picard-Lindelhöf
existence theorem for initial value problems.45 Now, for each of the boundaries r = 0, r = rh, and
r→∞, we proceed by first identifying the boundary conditions that we expect and then by formulating
the field equations in a form such that we may apply Theorem 3.

A. Local existence at the origin
1. Boundary conditions at r = 0

Near the origin r = 0 we may simply use the independent variable r, and hence we expand func-
tions like f (r)=

∑∞
k=0 fkrk . Thus we obtain the following recurrence relations. The Einstein equations

give for mk+1, Sk ,

(k + 1)mk+1 =Gk +
1

`2
Gk−2 + Pk +

ηk−4

4`2S2
0

+
ζk

4S2
0

+
ηk−2

4S2
0

+
k−2∑
l=2

M̄l, (81a)

kSk = 2Gk +
ζk

2S2
0

+
k−2∑
l=2

S̄l, (81b)

and the Yang-Mills equations give for ωk+1 and Ek ,

bi,k+1 =

L∑
j=1

(
Tij − k(k + 1)δij

)
ωj,k+1, (82a)

zi,k =

L∑
j=1

(
Tij − k(k + 1)δij

)
Ej,k . (82b)

Here, T ≡ T ij is the matrix defined by

Tij ≡ωi,0Cijωj,0, (83)

δij is the Kronecker symbol, the left-hand sides of (82a) and (82b) are the vectors bk ≡ (b1,k , . . . , bL,k)
and zk (defined similarly). The quantities bk , zk , S̄k , and M̄k are complicated expressions whose form
is unimportant here.

We can see that these equations are identical to the dyonic su(N) case,36 and so as in that case,
we may solve (34) and (66) near r = 0 and obtain a solution with 2L free parameters on condition that
the recurrence relations (82a) and (82b) can be solved. This in turn is conditional upon the vectors
bk and zk lying in the left kernel of the matrix T. Particular methods will exist for this purpose in
each Lie group: in Sec. IV A 2, we state and generalise proofs in Ref. 17 which depend directly on
the root structure of the Lie algebra g treated as an sl(2,C) submodule.

We note here that Gk = Pk = ζ = 0 for k < 2. For the lower order terms, we find

S0 , 0, m0 =m1 =m2 = 0, Ej,0 = 0, ω2
j,0 = wj, ωj,1 = 0. (84)
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TABLE I. This table showsE, for the calculation of spec(T)= {k(k+1) | k ∈
E}. For the classical Lie algebras, the table shows kj for j = 1, . . . ,L,
L= rank(g). We note that 1 ∈E always so that k = 1 belongs to all Lie
algebras.

Lie algebra E

AL j

BL 2j � 1

CL 2j � 1

DL




2j − 1 if j ≤ (L + 2)/2,

L − 1 if j = (L + 2)/2,

2j − 3 if j > (L + 2)/2

G2 1, 5
F4 1, 5, 7, 11
E6 1, 4, 5, 7, 8, 11
E7 1, 5, 7, 9, 11, 13, 17
E8 1, 7, 11, 13, 17, 19, 23, 29

The higher order coefficients which remain arbitrary are at the orders rk for which k(k + 1) is
an eigenvalue of the matrix T. But the eigenvalues of T are k(k + 1) for a set {k} depending
on the Lie algebra in question. For all the simple Lie algebras, we may calculate the spectrum of
eigenvalues from the Cartan matrix by using the definition (83); see Table I for this information.
The proof for the classical Lie algebras then follows from the root structure, i.e., the results in
Sec. IV A 2.

We will see in Sec. IV A 3 that in some neighbourhood of r = 0, the relevant field variables have
the following behaviour:

m(r)=m3r3 + O(r4),

S(r)= S0 + O(r2),

ωi(r)=ωi,0 +
L∑

j=1

Qijûj(r)rκj+1,

Ei(r)=
L∑

j=1

Qijψ̂j(r)rκj (i= 1, . . . ,L).

(85)

Here, Qij is a non-singular matrix, κj are integers, and ûj and ψ̂j are some functions which will
be defined in Sec. IV A 3. Also, m3 is a constant fixed by the gauge functions, S0 is fixed by the
requirement that S→ 1 as r→∞, and ω2

j,0 = wj. Therefore we have 2L free solution parameters here
in total.

2. Necessary results for local existence at r = 0

Now we are ready to state a series of results proven in Ref. 17 which will help us to prove
existence locally at r = 0. Essentially, these are necessary because we find that the terms F and Z
in the Yang-Mills equations (66) are troublesome in that in general they contain non-regular terms.
The results of this section are necessary to ensure that these terms are identically zero. We emphasise
that solitons are only available for the spherical case k = 1; hence for the rest of this section, k ∈Z is
simply used as an index.

First we introduce our conventions. We begin by defining a non-degenerate Hermitian inner
product 〈 | 〉 : g × g→C such that

〈X | Y〉 ≡−(c(X), Y ), ∀X, Y ∈ g. (86)
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Then 〈 | 〉 is a real positive definite inner product on g0, since c : g→ g is the conjugation operator
determined on the compact real form g0. We may show that 〈 | 〉 satisfies

〈X | Y〉= 〈Y | X〉,

〈 c(X) | c(Y ) 〉= 〈X | Y〉,

〈 [X, c(Y )] | Z 〉= 〈X | [Y , Z] 〉

(87)

for all X, Y , Z ∈ g. We use this to create a positive definite, real inner product 〈〈 | 〉〉 : g× g→R, with

〈〈X | Y 〉〉 ≡Re〈X | Y 〉, ∀X, Y ∈ g. (88)

Let ‖ ‖ be the norm induced by (88), i.e., ‖X ‖2 = 〈〈X | X 〉〉, ∀X ∈ g. Then we may verify the following
properties of 〈〈 | 〉〉 for all X, Y , Z ∈ g:

〈〈X | Y 〉〉= 〈〈 Y | X 〉〉,

〈〈 c(X) | c(Y ) 〉〉= 〈〈X | Y 〉〉,

〈〈 [X, c(Y )] | Z 〉〉= 〈〈X | [Y , Z] 〉〉.

(89)

Let Ω+,Ω− ∈ g be two vectors such that

[W0,Ω±]=±2Ω±, [Ω+,Ω−]=W0, c(Ω+)=−Ω−. (90)

Then spanC{W0,Ω+,Ω−} � sl(2,C). We again use a central dot notation · to represent the adjoint
action,

X ·Y ≡ ad(X)(Y ), ∀X ∈ spanC{W0,Ω+,Ω−}, Y ∈ g. (91)

Since W0 is a semisimple element, ad(W0) is diagonalisable, and so basic sl(2) representation theory
says that we know that the eigenvalues must be integers. Therefore we define Vn as the eigenspaces
of ad(W0), i.e., with

Vn ≡ {X ∈ g |W0 ·X = nX , n ∈Z }. (92)

Given that we are investigating the principal case here, it follows that V2 is the space we are most
interested in. It also follows from sl(2,C) representation theory that if X ∈ g is a highest weight vector
of the adjoint representation of spanC{W0,Ω+,Ω−} with weight n and we define X

�1 = 0, X0 = X, and
Xj = (1/j!)Ωj

− ·X0 (j ≥ 0), then

W0 ·Xj = (n − 2)Xj,

Ω− ·Xj = (j + 1)Xj+1,

Ω+ ·Xj = (n − j + 1)Xj−1

(93)

so that Ω± act as “ladder” operators, taking us between the various weight spaces.

Proposition 4 [Ref. 17]. There exist Σ highest weight vectors ξ1, ξ2, ,. . ., ξΣ for the adjoint
representation of spanC{W0,Ω+,Ω−} on g that satisfy the following:

(i) the ξ j have weights 2kj, where j = 1, . . ., Σ and 1 = k1 ≤ k2 ≤ . . . ≤ kΣ;

(ii) if V (ξ j) denotes the irreducible submodule of g generated by ξ j, then the sum
Σ∑

j=1
V (ξ j) is

direct;
(iii) if ξ j

l = (1/l!)Ωl
− ·ξ

j, then c(ξ j
l )= (−1)lξ

j
2kj−l;

(iv) Σ = |Σλ| and the set {ξ j
kj−1 | j = 1, . . . ,Σ} forms a basis for V2 over C.

This proposition establishes a basis over V2 of weight vectors ξ j and their properties in terms of the
operators (93). To deal with the problem terms in the gauge equations, we define an R-linear operator
T : g→ g by
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T ≡
1
2

ad(Ω+) ◦ (ad(Ω−) + ad(Ω+) ◦ c). (94)

It is proven in Ref. 17 that T (a) is symmetric with respect to the inner product 〈〈|〉〉, i.e., 〈〈 T (X) | Y 〉〉
= 〈〈X | T (Y ) 〉〉, ∀X , Y ∈ g, and (b) restricts to V2, i.e., T (V2) ⊂ V2; therefore, we define T2 ≡T |V2 .

Now we label the set of integers kj from Proposition 4 as follows:

1= kJ1 = kJ1+1 = . . .= kJ1+k1−1 < kJ2 = kJ2+1 = . . .= kJ2+m2−1

< . . .

< kJI = kJI +1 = . . .= kJI +mI−1,

(95)

where we define the series of integers J1 = 1, Jk + mk = Jk+1 for k = 1, . . ., I and J I+1 = Σ � 1. To
ease notation we define

κj ≡ kJj , for j = 1, . . . , I . (96)

As noted in Proposition 4, the set {ξ j
kj−1 | j = 1, . . . ,Σ} forms a basis of V2 over C. Therefore the set

of vectors {X l
s, Y l

s | l = 1, . . . , I; s= 0, 1, . . . , ml − 1}, where X l
s = ξ

Jl+s
κl−1 for κl odd or X l

s = iξJl+s
κl−1 for κl

even, and Y l
s = iX l

s. Then T is symmetric, and so also is T2, and hence T2 must be diagonalizable.
Then the following lemma is true.

Lemma 5.
T2(X l

s)= κl(κl + 1)X l
s and T2(Y l

s)= 0, (97)

for l = 1, . . ., I and s = 0, 1, . . ., ml � 1.
In other words, the set {X l

s, Y l
s | l = 1, . . . , I; s= 0, 1, . . . , ml − 1} forms an eigenbasis of T2. An

immediate consequence of this is that spec(T2) = {0}∪{κj(κj + 1) | j = 1, . . ., I}, and mj is the
dimension of the eigenspace associated with the eigenvalue κj(κj + 1) (I being the number of distinct
positive eigenvalues of T2).

Following Lemma 5, we define the spaces

El
0 ≡ spanR{Y

l
s | s= 0, 1, . . . , ml − 1}, El

+ ≡ spanR{X
l
s | s= 0, 1, . . . , ml − 1} (98)

and

E0 ≡

I⊕
l=1

El
0, E+ ≡

I⊕
l=1

El
+. (99)

Then E0 = ker(T2) and Ej
+ is the eigenspace of T2 corresponding to the eigenvalue κj(κj + 1). Also,

from Proposition 4 (iv) we see that V2 = E0 ⊕ E+.

Lemma 6. Suppose X ∈ V2. Then X ∈
⊕l

q=1 Eq
0 ⊕ Eq

+ if and only if Ωκl
+ ·X = 0.

Lemma 7. Suppose X ∈ V2. Then X ∈
⊕l

q=1 Eq
0 ⊕ Eq

+ if and only if Ωκl+2
+ ·c(X)= 0.

Lemma 8. Let ˜ : Z≥−1→{1, 2, . . . , I } be the map defined by

−̃1= 0̃= 1 and s̃=max {l | κl ≤ s} if s > 0. (100)

Then

(i) κ s̃ ≤ s for every s ∈Z≥0,
(ii) κ s̃ ≤ s ≤ κ s̃+1 for every s ∈ {0, 1, . . ., κI�1}.

Lemma 9. If X ∈ V2, κp̃ + s < κp̃+1 (s ≥ 0), and Ω
κp̃+s
+ ·X = 0, then Ω

κp̃
+ ·X = 0.
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The next two theorems are the crux of the proof of local existence at the origin. The first was
proven in Ref. 17, using the above Lemmata 6 to 9:

Theorem 10. Suppose p ∈ {1, 2, . . ., κI � 1} and let Z0, Z1, . . ., Zp+1 ∈ V2 be a sequence of

vectors satisfying Z0 ∈ E1
0 ⊕ E1

+ and Zn+1 ∈
⊕ñ

q=1 Eq
0 ⊕ Eq

+ for n = 0, 1, . . ., p. Then for every j ∈ {1,
2, . . ., p + 1}, s ∈ {0, 1, . . ., j},

(i) [[c(Zj−s), Zs], Zp+2−j] ∈
⊕p̃

q=1 Eq
0 ⊕ Eq

+,

(ii) [[c(Zp+2−j), Zj−s], Zs] ∈
⊕p̃

q=1 Eq
0 ⊕ Eq

+.

The second is an extension of Theorem 10 that we must make, in order to include the electric gauge
field. It is very similar, but we must use two sequences of vectors here.

Theorem 11. Suppose s ∈ {1, 2, . . ., κI � 1} and let Z i,0, Z i,1, . . ., Z i,s+1 ∈ V2 (for i ∈ {1, 2})
be two sequences of vectors satisfying Zi,0 ∈ E1

0 ⊕ E1
+ and Zi,n+1 ∈

⊕ñ
q=1 Eq

0 ⊕ Eq
+ for n = 0,

1, . . ., s. Then for every l ∈ {1, 2, . . ., s + 1}, m ∈ {0, 1, . . ., l}, the following terms all lie in⊕s̃
q=1 Eq

0 ⊕ Eq
+:

(i) [[c(Z2,s−j+2), Z1,j], Z2,0], (ii) [[c(Z2,0), Z1,j], Z2,s−j+2],

(iii) [[c(Z2,0), Z2,s−j+2], Z1,j], (iv) [[c(Z1,j), Z2,q−j+1], Z2,s−q+1].
(101)

Proof. We demonstrate the proof using point (iv); the others are similar and simpler. The thrust
of it is that all of the results in this section so far will apply to both sequences of vectors Z1,k and
Z2,k . Hence, we can use Lemmata 6 and 7 to show that

Ω
κ(n−1)̃
+ .Zi,n =Ω

κ(n−1)̃ +2
+ .c(Zi,n)= 0 (102)

for i ∈ {1, 2} and n ∈ {0, 1, . . ., s + 1}. Also, if l ∈ {1, 2, . . ., s + 1}, m ∈ {0, 1, . . ., l}, we find

Ω
s
+.[[c(Z1,j), Z2,q−j+1], Z2,s−q+1]=

s∑
l=0

l∑
m=0

(
s
l

) (
l
m

)
ajlmqs (103)

with

ajlmqs = [[Ωm
+ .c(Z1,j),Ω

l−m
+ .Z2,q−j+1],Ωs−l

+ .Z2,s−q+1]. (104)

Now we apply (102), implying that ajlmqs = 0 if m − 2 ≥ κ(j−1)̃ or l −m ≥ κ(q−j)̃ or s − l ≥ κ(s−q)̃ —by
Lemma 8, this becomes the condition m � 2 ≥ j � 1 or l � m ≥ q � j or s � l ≥ s � q. Therefore,
ajlmqs , 0 only if we can find integers m, l such that q < l < q + m � j < q + 1, which is impossible. Hence
ajlmqs = 0 for all l, m, and we find thatΩs

+.[[c(Z1,j), Z2,q−j+1], Z2,s−q+1]= 0. From Lemmata 8 and 9, this
implies that Ωs̃

+.[[c(Z1,j), Z2,q−j+1], Z2,s−q+1]= 0, and hence [[c(Z1,j), Z2,q−j+1], Z2,s−q+1] ∈
⊕s̃

q=1 Eq
0 ⊕

Eq
+. The other three terms follow very similarly. □

Proposition 12. Let W0 be regular. Then if Ω+ ∈
∑

α∈Σλ

Reα, E+ =
∑

α∈Σλ

Reα.

This is sufficient to establish that

T2(eα)=
∑
β∈Σ

ωα〈α, β〉ωβ , (105)
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which in our basis becomes

T2(eα)=
∑
β∈Σ

ωαCαβωβeβ , (106)

which ties in with (83).

3. Proof of local existence at the origin (r = 0)

In this section, we use Theorem 3 and the results of Sec. IV A 2 to prove the existence of solutions,
unique and analytic with respect to their boundary parameters, in some neighbourhood of the origin.
To do this, we find it necessary first to rewrite the electric gauge equation (66b) in a new form. We
introduce

Ω± ≡W±(0)=
L∑

j=1

w1/2
j e±αj . (107)

Then, we define

Ê± ≡−i[A,Ω±]. (108)

From this and using c(A) = A and c(Ω+) = �Ω
�

, we may easily derive that c(Ê+) = Ê
�

. By repeated
use of the Jacobi identity and noting that commutators between combinations of W±, Ω± are either
zero or lie in h, we may see that

[[W+, [A, W−]],Ω+]≡ [[W+, [A,Ω+]], W−], (109)

and thus taking the commutator of (35b) with Ω+, the electric gauge equation may be rewritten as

µS

(
r2Ê ′+

S

) ′
= [W+, [Ê+, W−]]. (110)

It is worthwhile noting a few things. First, that if we write Ê± in our familiar basis (51), e.g.,
Ê± =

∑
α∈Σ Êαe±α, then these are related to the earlier functions Eα from (52) by Êα = Eαw1/2

α so that
we have overall gained at most a constant factor on each electric gauge function, and this will in
any case be removed again later. Second, using [(94) and (108)] and the Jacobi identity, it is clear
that

T2(Ê+)=−[Ω+, [Ê+,Ω−]]. (111)

Finally, using Proposition 12, from previous results,17 and noting that the proof of Proposition 4
carries over to show that Ê+(r) ∈ E+, we see that the solutions W+(r), Ê+(r) of Eqs. (35c) and (110)
are completely characterised by the condition

W+(r), Ê+(r) ∈ E+ (∀r). (112)

Before embarking upon our proof, we also state some definitions. First, we define the set of integers
defining the eigenvalues of T2 as E,

E≡ {κj | j = 1, . . . , I }, (113)

for κj given in (96). Given (112), we introduce new functions ui(r), ψi(r) with

W+(r)=Ω+ +
∑
s∈E

us+1(r)rs+1, Ê+(r)=
∑
s∈E

ψs(r)rs (114)

and withΩ± = W±(0) and ψs(r), us+1(r) ∈ E s̃
+, ∀r, ∀s ∈ E. Since E+ =

⊕I
q=1 Eq

+, these transformations
are clearly invertible. Finally we define a symbol χ which will pick out the required orders of
terms,
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χs+1 =



1 if s ∈ E,

0 otherwise.
(115)

Now we state the proposition.

Proposition 13. In a neighbourhood of the origin r = 0 for solitons only, there exist regular
solutions to the field equations, analytic and unique with respect to their initial values, of the
form

m(r)=m3r3 + O(r4),

S(r)= S0 + O(r2),

ωi(r)=ωi,0 +
L∑

j=1

Qijûj(r)rκj+1,

Ei(r)=
L∑

j=1

Qijψ̂j(r)rκj (i= 1, . . . ,L).

(116)

Above, Qij is a non-singular matrix for which the j-th column is the eigenvector of the matrix T (83)
with eigenvalue κj(κj + 1), and ûj(r), ψ̂j(r) are some functions of r. Each solution is entirely and
uniquely determined by the initial values ûj(0) ≡ ũj and ψ̂j(0)≡ ψ̃j, for ũj, ψ̃j arbitrary. Once these
are determined, the metric functions m(r) and S(r) are entirely determined.

Proof. Using the above definitions, we may write (114) as

W+(r)≡Ω+ + U+ =Ω+ +
∞∑

i=1

χiui(r)ri, Ê+(r)=
∞∑

i=1

χi+1ψi(r)ri. (117)

It is also sometimes more convenient to represent the electric field in a basis more like the original
basis,

A=
∑
s∈S

âsr
s =

∞∑
i=1

χi+1âir
i ∈ E0. (118)

It is clear from this definition that âp ∈ Ep̃
0 for all p ∈ S; and since E0 =

⊕I
q=1 Eq

0 , this transform
of A is invertible. Substituting (117) into the Yang-Mills equations (110) and (35c) and using
T2(us+1) = s(s + 1)us+1 and T2(ψs) = s(s + 1)ψs, we find that

F=−
∑
s∈E

s(s + 1)rs+1 +
N1∑
s=2

fsr
s, Z=

∑
s∈E

s(s + 1)rs +
N2∑
s=3

gsr
s (119)

for some N1, N2 ∈Z and with

fs =
1
2

s−2∑
j=2

{ [ [
Ω+, c(χjuj)

]
+

[
Ω−, χjuj

]
, χs−jus−j

]

+
[ [
χjuj, c(χs−jus−j)

]
,Ω+

]
+

j−2∑
m=2

[ [
χmum, c(χj−muj−m)

]
, χs−jus−j

]}
,

gs =−
1
2

s−2∑
j=1

{ [
Ω+,

[
c(χs−jus−j), χj+1ψj

] ]
+

[
Ω−,

[
χs−jus−j, χj+1ψj

] ]}

−

s−3∑
j=1

j−2∑
m=2

[
χs−m−1us−m−1,

[
χm−j+1um−j+1, c(χj+1ψj)

] ]
.

(120)
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We define new variables vs+1 ≡ u′s+1, qs =ψ
′
s, ∀s ∈ E, and we introduce an analytic map Ĉ: E0 × E+

→ E+ by Ĉ(A, W+) = [A, [A, W + ]], which in our bases (117) and (118) becomes

Ĉ =−
∑
k∈E

*.
,

∞∑
i=1

*.
,
[χi+1âi,ψk +

i−1∑
j=1

[χi−j+1âi−j, uk+1]]+/
-
ri−1+/

-
rk+1

≡
∑
k∈E

Ĉkrk+1.

(121)

Then the Yang-Mills equations can be written as

r
∑
k∈E

v ′k+1rk+1 =−2
∑
k∈E

(k + 1)vk+1rk+1 +
∑
k∈E

k(k + 1)
r

(
1
µ
− 1

)
uk+1rk+1

−
2

rµ

(
m −

P
r

+
r3

`2
−

r3η

µS2

) ∑
k∈E

(
vk+1rk+1 + (k + 1)uk+1rk+1

)
−

r2

µS2

∑
k∈E

Ĉkrk+1 −
1
µ

N1∑
k=2

fkrk−1,

r
∑
k∈E

q′krk =−2
∑
k∈E

(k + 1)qkrk +

(
1
µ
− 1

) ∑
k∈E

k(k + 1)rk−1ψk

−
2
r

(
G +

ζ

µ2S2

) ∑
k∈E

(
qkrk+1 + kψkrk

)
+

1
µ

N2∑
j=3

gjr
j−1.

(122)

Now we must define a set of projection operators

pq
+ : E+→Eq

+ (q= 1, . . . , I), (123)

between the spaces defined in (98) and (99), which effectively separate out each rq term in the
equations, and apply pk̃

+ (123) to Eqs. (122) for each k ∈ E. This gives

rv ′k+1 =−2(k + 1)vk+1 −
2

rµ

(
m −

P
r

+
r3

`2
−

r3η

µS2

)
vk+1 +

k(k + 1)
r

(
1
µ
− 1

)
uk+1

−
2

r2µ

(
m −

P
r

+
r3

`2
−

r3η

µS2

)
(k + 1)uk+1 −

r2

µS2
pk̃

+Ĉk

−
1

rk+1µ

N1−2∑
s=0

pk̃
+(fs+2)rs+1,

rq′k =−2(k + 1)qk +

(
1
µ
− 1

)
k(k + 1)

r
ψk −

2
r

(
G +

ζ

µ2S2

)
(rqk + kψk)

+
1

rk µ

N2−2∑
s=1

pk̃
+(gs+2)rs+1, (124)

for all k ∈ E.
The main hurdle in rewriting this equation in a form to which Theorem 3 may be applied is the

final term in each of (124), as was the case for su(N).15,34 As written here, it contains terms of much
larger negative order than we want, i.e., terms of order r�s, where s > 0. Happily we may rewrite
the final term using the following equalities. The first, concerning the magnetic gauge equations, is
proven true in Ref. 17,

1

rk+1µ

N1−2∑
s=0

pk̃
+(fs+2)rs+1 =

1
µ

N1−2∑
s=k

pk̃
+(fs+2)rs−k . (125)
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The second is very similar and makes use of Theorem 11,

1

rk µ

N2−2∑
s=1

pk̃
+(gs+2)rs+1 =

r
µ

N2−2∑
s=k

pk̃
+(gs+2)rs−k . (126)

The derivation of both (125) and (126) are very similar, so we shall describe how to derive them
simultaneously by using the results from Sec. IV A 2. Using Proposition 12 and Eq. (120), we
may show that f k , gk ∈ E+, ∀k. From our definitions of the functions us+1(r) and ψs(r), we may
see that χs+1us+1, χs+1ψs ∈

⊕s̃
q=1 Eq

+ for 0 ≤ s ≤ κI . Now we employ Theorem 10, taking Z1,0 = 0,

Z2,0 = Ω+, Z1,k = χk+1ψk , and Z2,k+1 = χk+1uk+1 for k ≥ 0, and it is clear that fs+2, gs+2 ∈
⊕s̃

q=1 Eq
+.

Thus,

pk̃
+(fs+2)= pk̃

+(gs+2)= 0 if s < k, ∀k ∈ E, (127)

because if k ∈ E, then k = κk̃ and so if s < k = κk̃ , then s̃ < k̃, proving (125) and (126).
Using (125) and (126) in (124) and rearranging gives

rv ′k+1 =−2(k + 1)vk+1 −
2

rµ

(
m −

P
r

+
r3

`2
−

r3η

µS2

)
vk+1 +

k(k + 1)
r

(
1
µ
− 1

)
uk+1

−
2

r2µ

(
m −

P
r

+
r3

`2
−

r3η

µS2

)
(k + 1)uk+1 −

r
µ

N1−2∑
s=k

pk̃
+(fs+2)rs−k

−
r2

µS2
pk̃

+Ĉk +

(
1 −

1
µ

)
pk̃

+(fk+2) − pk̃
+(fk+2),

rq′k =−2(k + 1)qk +

(
1
µ
− 1

)
k(k + 1)

r
ψk −

2
r

(
G +

ζ

µ2S2

)
(rqk + kψk)

+
r
µ

N2−2∑
s=k

pk̃
+(gs+2)rs−k ,

(128)

for all k ∈ E. It is helpful to note that in this regime, 1
µ − 1=O(r2) and that the boundary condi-

tions (85) imply that Ĉ = O(r2). Using the properties of 〈〈|〉〉 and noting that T2(u2) = 2u2 and
T2(ψ1) = 2ψ1, we can show that there exist analytic functions

η̂ : E0 × R→R, ζ̂ : E0 × E+ × R→R,

P̂ : E+ × R→R, Ĝ : E+ × E+ × R→R,
(129)

with

η =−2‖â1‖
2 + rη̂(ψ, q, r), ζ = 2r2‖ψ1‖

2 + r3 ζ̂(u,ψ, r),

P= r4‖u2‖
2 + r5P̂(u, r), G= 2r2‖u2‖

2 + r3Ĝ(u, v , r),
(130)

where u=
∑

s∈E us+1 and similarly for v; ψ =
∑

s∈E ψs and similarly for q; and ‖X ‖2 = 〈〈X |X〉〉. In
writing η we used the basis (118)—using (117) in (108) we may see that ψ1 and â1 are related by the
linear transform,

ψ1 = [â1,Ω+]. (131)

The important point here is that η ∼ O(1) near r = 0, as suggested by the lower order terms of the
expansion (116). We also introduce a few more analytic maps for convenience,

µ−1 = 1 + r µ̂A, µ−2 = 1 + r µ̂B,
S−1 = 1 + rŜA, S−2 = 1 + rŜB.

(132)

Now we rewrite the Einstein equations (34). We introduce a new mass variable
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M= 1

r3

(
m − r3

(
‖u2‖

2 +
2
3

(
‖ψ1‖

2 − ‖â1‖
2
)))

. (133)

We know that ‖u2‖ and ‖ψ1‖ (and hence ‖â1‖) are well defined since for all Lie groups, min E= 1
and hence κ1 = 1 always. Equations (34) then become

rM′ =−3M + r
[
P̂(u, r) + Ĝ(u, v , r) + η̂(ψ, q, r) + ζ̂(u,ψ, r) − 2‖â1‖

2ŜB

+ 2‖ψ1‖
2
(
ŜB + µ̂A

)
− 2〈〈u2 |v2〉〉 +

4
3

(
〈〈â1 |â

′
1〉〉 − 〈〈ψ1 |q1〉〉

)]

+ r2
[(

1

`2
− 2M − 2‖u2‖

2 +
4
3

(
‖â1‖

2 − ‖ψ1‖
2
)) (

2‖u2‖
2 + rĜ

)
+ 2‖ψ1‖

2 µ̂AŜB + ζ̂
(
µ̂A + ŜB

)
+

2‖u2‖
2

`2

]
+ r3 µ̂AŜB ζ̂ ,

rS′ = r2S
{
4‖u2‖

2 + 4‖ψ1‖
2 + 2r

(
ζ̂(u,ψ, r) + Ĝ(u, v , r) + 2‖ψ1‖

2
(
µ̂B + ŜA

))
+ r2

(
2‖ψ1‖

2 µ̂BŜA + ζ̂
(
µ̂B + ŜA

))
+ r3 µ̂BŜA ζ̂

}
. (134)

We make one last variable change,

v̂k+1 = vk+1 +
1

2(k + 1)
pk̃

+(fk+2). (135)

To continue, we define Iε (0) as an open interval of size |2ε | on the real line about the point 0 ∈R,

Iε (0)≡ (−ε , ε), (136)

where for our purposes, ε > 0 is small. We proceed by fixing vectors X1, X2 ∈ E+ and define
v̂ =

∑
s∈E v̂s+1. Then from [(128), (133), and (135)], we can show there exist neighbourhoods Ni of

X i ∈ E+ with i ∈ {1, 2}, some ε > 0, and a sequence of analytic maps,

Qk :N1 × E+ × Iε (0) × Iε (0)→E k̃
+,

Gk :N2 × E+ × Iε (0) × Iε (0)→E k̃
+,

(137)

for which

rq′k =−2(k + 1)qk + rQk(u,ψ, S,M, q),

r v̂ ′k+1 =−2(k + 1)v̂k+1 + rGk(u, v̂ ,M, r),
(138)

for all k ∈ E. Also, with [(134) and (135)] and using vs+1 = u′s+1 and qs = ψ ′s, there exist analytic maps

Hk :E0 × E+ × R→E k̃
+,

Ik :E+ × E+ × R→E k̃
+,

J :E+ × E+ × R × R→R,

K :E+ × E+ × R × R→R,

(139)

for all k ∈ E such that

rψ ′k = rHk(u, S,ψ, q),

ru′k+1 = rIk(u, v̂),

rM′ =−3M + rJ(u, v̂ ,M, r),

rS′ = r2K(u, v̂ , S, r).

(140)

Now Eqs. (138) and (140) are in a form appropriate to Theorem 3. For fixed X1, X2 ∈ E+, there exists
a unique solution
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{ψk(r, Y1), qk(r, Y1), uk+1(r, Y2), v̂k+1(r, Y2),M(r, Y1, Y2), S(r, Y1, Y2)}, (141)

analytic in a neighbourhood of (r, Y1, Y2) = (0, X1, X2), satisfying

ψs(r, Y1)= rY1,s + O(r2),

qs(r, Y1)=O(r),

us+1(r, Y2)=Y2,s + O(r),

v̂s+1(r, Y2)=O(r),

M(r, Y1, Y2)=O(r),

S(r, Y1, Y2)= S0 + O(r2),

(142)

for all s ∈ E, where Yi,s = ps̃
+(Yi) for i ∈ {1, 2}. From the definition of M (133), we can show that

m(r) = O(r3). We note that S0 is fixed by scaling such that S∞ = 1. Also, it is easy to see from [(129),
(135), and (142)] that

η =O(1), ζ =O(r2), P=O(r4), G=O(r2). (143)

From Lemma 5, there exists an orthonormal basis{zj |j = 1, . . .,Σ} for E+ consisting of the eigenvectors
of T2, i.e., T2(zj) = kj(kj + 1)zj. We introduce new variables in this basis,

∑
s∈E

us+1(r)rs+1 =

Σ∑
j=1

ûj+1(r)rkj+1zj,
∑
s∈E

ψs(r)rs =

Σ∑
j=1

ψ̂j(r)rkj zj. (144)

From Proposition 4, we know that Σ = |Σw |, so we can write Σw = {αj |j = 1, . . ., Σ}; and from
Proposition 12, we find that {eαj |j = 1, . . . ,Σ} is also a basis for E+. Therefore we can write

zj =

Σ∑
k=1

Qkjeαk . (145)

With this definition of the matrix Qij, it is clear that the columns of Qij are the eigenvectors of T2.
Now we expand Ω+, W+(r), and Ê+(r) in the same basis,

Ω+ =

Σ∑
j=1

ωj,0eαj , W+(r)=
Σ∑

j=1

ωj(r)eαj , Ê+(r)=
Σ∑

j=1

w
1
2
j Ej(r)eαj . (146)

Then Eqs. (114) and (144)–(146) imply that

ωi(r)=ωi,0 +
Σ∑

j=1

Qijûj(r)rkj+1, Ei(r)=
Σ∑

j=1

Qijψ̂(r)rkj , (147)

for i = 1, . . ., Σ and with ω2
i,0 = wi. Finally, from (142) and (144) we find that

ψ̂j(r, Y1)= r βj(Y1) + O(r2), ûj(r, Y2)= βj(Y2) + O(r), j = 1, . . . ,Σ, (148)

with βj(Y i) ≡ 〈〈zj |Y i〉〉, i ∈ {1, 2}. Therefore, we obtain the expansions (116). □

B. Local existence at the event horizon r = rh

1. Boundary conditions at r = rh

We use the notation f h ≡ f (rh). For a regular non-extremal event horizon, we require µh = 0
and µ′h finite and positive. This severely restricts the solution parameters and reduces the degrees of
freedom of solutions, which makes boundary conditions easier to determine.

Transforming to a new variable ρ = r � rh, we find that for regularity,
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µ(ρ)= µ′hρ + O(ρ2),

S(r)= Sh + O(ρ),

ωj(ρ)=ωj,h + O(ρ),

aj(ρ)= a′j,hρ + O(ρ2).

(149)

The constraint µh = 0 implies that

mh =
rh

2
+

r3
h

2`2
, ω′j,h =−

Fh

2
(
mh − r−1

h Ph + r3
h`
−2 − r3

hηhS−2
h

) , (150)

with

Fh =
1
2

L∑
i,j=1

ωi,hCij(kwj − ω
2
j,h). (151)

We find that µ′h is given by

µ′h =
k
rh

+
3rh

`2
−

2Ph

r3
h

−
2rhηh

S2
h

. (152)

The condition µ′h > 0 places an upper bound on m′h,

m′h =
Ph

r2
h

+
r2

hηh

S2
h

<
k
2

+
3r2

h

2`2
, (153)

with

Ph =
1
8

L∑
i,j=1

(kwi − ω
2
i,h)Cij(kwj − ω

2
j,h), ηh =

1
2

L∑
i,j=1

a′i,hhija
′
j,h, (154)

and therefore with (153) m′h also places a weak bound on the possible values of ωj,h and a′j,h. We
also notice that for k = �1, (153) implies we have a minimum event horizon radius

r2
h >

`2

3
(2m′h + 1)> 0, (155)

and a minimum value for |Λ|,

|Λ| >
1

r2
h

*
,
1 + 2Ph +

2r2
hηh

S2
h

+
-
. (156)

Fixing rh and ` and regarding Sh as fixed by the requirement that the solution is asymptotically adS,
the solution parameters are {E′j,h,ωj,h}. Therefore, as at the origin, we have 2L solution degrees of
freedom at the event horizon.

2. Proof of local existence at r = rh

We begin by defining the new variable

ρ= r − rh (157)

so that for r → rh we are considering the limit ρ→ 0. We note that as in the asymptotically flat17

and the purely magnetic adS cases,36 we do not need the results of Sec. IV A 2 and use the notation
E+ out of convenience—we could equally replace E+ everywhere in the following with

∑
α∈Σλ Reα,

without using E+ =
∑
α∈Σλ Reα.

Proposition 14. In a neighbourhood of the event horizon r = rh (i.e., ρ = 0), with rh , 0, there
exist regular black hole solutions to the field equations (34) and (66), analytic and unique with respect
to their initial values, of the form

µ(ρ)= µ′hρ + O(ρ2),

S(ρ)= Sh + O(ρ),

ωj(ρ)=ωj,h + O(ρ),

Ej(ρ)= E′i,hρ + O(ρ2)

(158)
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with ωj,h, E′j,h arbitrary and µ′h given by (152).

Proof. We transform the field variables thus

λ̄(ρ)=
µ(ρ)
ρ
− ν, (159a)

V+(ρ)=
µW ′

+

ρ
, (159b)

Υ(ρ)=
A
ρ

, (159c)

Ψ(ρ)=
r2

S
A′, (159d)

where ν is some constant we have yet to determine. Immediately we have

ρ
dW+

dρ
= ρ

(
V+

λ̄ + ν

)
, ρ

dΥ
dρ
=−Υ +

SΨ

ρ2
, (160)

and it is clear that there exist analytic maps F̂ : E+→E+, P̂ : E+→R, with

F̂(W+)=F, P̂(W+)=P. (161)

We also notice that

η =−
S2

r4
(Ψ′,Ψ′), ζ =−ρ2([Υ, W+], [Υ, W−]). (162)

So we define some more analytic maps, η̂ : E0→R, ζ̂ : E0 ×E+→R, Ĝ : E+ × I |ν |(0)→R, Ĉ : E0 ×E+

→E+, and D̂ : E0 × E+→E+ by

η̂(Ψ)≡−‖Ψ′‖2,

ζ̂(Υ, W+)≡−([Υ, W+], [Υ, W−]),

Ĝ(X, a)≡
1

2(a + ν)2
‖X ‖2,

Ĉ(Υ, W+)≡ [Υ, [Υ, W+]],

D̂(Υ, W+)≡ [W+, [Υ, W−]].

(163)

Then we can see that G= Ĝ(V+, λ̄). Using these we can rewrite the EYM equations (66) as

ρ
d λ̄
dρ
= −(λ̄ + ν) +

k
rh

+
3rh

`2
−

2

r3
h

P̂(W+) +
2‖Ψ‖2

r3
h

(164a)

+ ρ



3

`2
+

k
ρ

(
1

ρ + rh
−

1
rh

)
−

2
ρ

*
,

1

(ρ + rh)3
−

1

r3
h

+
-
P̂(W+)

+

(
λ̄ + ν
ρ + rh

) (
1 + 2Ĝ(V+, λ̄)

)
+

2η̂(Ψ)
ρ + rh

+
2ζ̂(Υ, W+)

S2
(
λ̄ + ν

)
(ρ + rh)


,

ρ
dV+

dρ
= −V+ −

1

(ρ + rh)3
F̂(W+)

+ ρ


−

2V+Ĝ(V+, λ̄)
ρ + rh

−
2V+ ζ̂(Υ, W+)

S2
(
λ̄ + ν

)
(ρ + rh)

+
Ĉ(Υ, W+)

S2
(
λ̄ + ν

) 
, (164b)

ρ
dS
dρ
= ρ

[
2SĜ(V+, λ̄)
ρ + rh

+
2ζ̂(Υ, W+)

S(ρ + rh)(λ̄ + ν)2

]
, (164c)

ρ
dΨ
dρ
= ρ



D̂(Υ, W+)

S
(
λ̄ + ν

) 
. (164d)
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In order to cast the equations in the form necessary for Theorem 3, we introduce some final new
variables,

λ̃ = λ̄ + ν −
k
rh

+
2

r3
h

P̂(W+) −
3rh

`2
+

2

r3
h

η̂(Ψ), (165a)

Ṽ+ =V+ +
1

r2
h

F̂(W+), (165b)

Υ̃=Υ −
SΨ

x2
. (165c)

We continue by defining an analytic map γ : E0 × E+ × R→R with

γ(X1, X2, a)= a − ν +
k
rh
−

2

r3
h

P̂(X2) +
3rh

`2
−

2

r3
h

η̂(X1). (166)

Fix vectors Y1 ∈ E0, Y2 ∈ E+, satisfying

‖kr−1
h − 2r−3

h P̂(Y2) + 3rh`
−2 − 2r−3

h η̂(Y1)‖ > 0. (167)

Then if we set

ν =
k
rh

+
3rh

`2
−

2

r3
h

P̂(Y2) −
2

r3
h

η̂(Y1), (168)

it is obvious that γ(Y1, Y2, 0) = 0. Therefore, define an open neighbourhood D of (Y1, Y2, 0)
∈ E0 × E+ × R by

D= {(X1, X2, a) | ‖γ(X1, X2, a)‖ < ‖ν‖}. (169)

Then from (160), (164), and (165) we can show there must exist some ε > 0 and analytic maps

G : E+ × D→R with ρ
dW+

dρ
= ρG(Ṽ+, W+, λ̃),

H : E0 × E+ × D × Iε (0)→R with ρ
dṼ+

dρ
=−Ṽ+ + ρH(Υ̃, Ṽ+, W+, λ̃, ρ),

K : E+ × D × Iε (0)→R with ρ
d λ̃
dρ
=−λ̃ + ρK(Ṽ+, W+, λ̃, ρ),

L : E0 × E+ × R × Iε (0)→R with ρ
dS
dρ
= ρL(Υ̃, Ṽ+, S, ρ),

M : E0 × R × Iε (0)→R with ρ
dΥ̃
dρ
=−Υ̃ + ρM(Ψ, S, ρ),

N : E0 × E+ × D × R × Iε (0)→R with ρ
dΨ
dρ
= ρN(Υ̃, W+, λ̃, S, ρ). (170)

It can be seen that (170) are in the form applicable to Theorem 3. Hence there is a unique solution

{Υ̃(ρ, U1, U2),Ψ(ρ, U1, U2), W+(ρ, U1, U2), Ṽ+(ρ, U1, U2), λ̃(ρ, U1, U2), S(ρ, U1, U2)},

analytic in a neighbourhood of (ρ, U1, U2) = (0, Y1, Y2), which satisfies

Υ̃(ρ, U1, U2)=Y1ρ + O(ρ2), Ψ(ρ, U1, U2)=O(ρ),

W+(ρ, U1, U2)=Y2 + O(ρ), Ṽ+(ρ, U1, U2)=O(ρ),

λ̃(ρ, U1, U2)=O(ρ), S(ρ, U1, U2)= Sh + O(ρ).

(171)

To gain a more explicit solution, we expand Y1, Y2, A, W+ in the basis {hi, eα |i ∈{1, . . ., Σ}, α ∈Σw},
as follows:
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Y1 =

L∑
i=1

a′i,hhi, A(ρ)=
L∑

i=1

ai(ρ)hi,

Y2 =
∑
α∈Σw

ωα,heα, W+(ρ)=
∑
α∈Σw

ωα(ρ)eα.
(172)

Noting (171), this yields

ai(ρ, Y1)=Y1ρ + O(ρ2), ωα(ρ, Y2)=Y2 + O(ρ), (173)

for all α ∈ Σ, i ∈ {1, . . . ,L}, or using the basis (52), we can express the electric equation as

Ei(ρ, Y1)=
∑
α∈Σw

[Y1, eα]ρ + O(ρ2). (174)

Finally, it is easy to show from (159a), (165a), and (168) that

µ(ρ, Y1, Y2)= νρ + O(ρ2), where µh = 0, µ′h = ν. (175)

□

C. Local existence as r→∞

1. Boundary conditions as r→∞

We assume power series for all field variables of the form f (r)= f∞ +
∑∞

i=1 fir−i and for clarity
use the base (39) and (52). Examining (34) and (66), we find that the expansions near infinity must
be

m(r)=m∞ + m1r−1 + O(r−2),

S(r)= S∞ + S4r−4 + O(r−5),

ωj(r)=ωj,∞ + ωj,1r−1 + ωj,2r−2 + O(r−3),

Ej(r)= Ej,∞ + Ej,1r−1 + Ej,2r−2 + O(r−3).

(176)

The asymptotic power series expansions are as expected: no constraints are placed on S∞, m∞, so
we set m∞ = M [the constant Arnowitt-Deser-Misner (ADM) mass] and rescale S to S∞ = 1 to agree
with the asymptotic limit for SadS (or pure adS space if M = 0). There are also no constraints placed
on ωj,∞, ωj,1, Ej,∞, or Ej,1—this is in accord with the discussion in Sec. II D and will be investigated
further in Sec. V. Furthermore we find that all higher order terms we calculate in the expansion are
determined by lower order terms. The lowest order terms are

m1 =−
1

`2

L∑
j=1

ω2
j,1

|αj |
2
−

1
8

L∑
j,l=1

(kwj − ω
2
j,∞)hjk(kwl − ω

2
l,∞)

−

L∑
i,j=1

Ei,1(h−1)ijEj,1

|αi |
2

− `2
L∑

i=1

ω2
i,∞E

2
i,∞

|αi |
2

,

S4 =−
`4

2

L∑
i=1

ω2
i,∞E

2
i,∞

|αi |
2
−

1
2

L∑
i=1

ω2
i,1

|αi |
2

,

ωj,2 = `
2ωj,∞

L∑
l=1

Cjl(kwl − ω
2
l,∞).

(177)

So our solution parameters asymptotically are {M,ωj,∞,ωj,1, Ej,∞, Ej,1} and we have therefore 4L+ 1
degrees of freedom in total.

2. Proof of local existence as r→∞

In Sec. IV C 1, we thus confirmed there are no constraints on the asymptotic boundary for the
gauge fields as there was for asymptotically flat solutions: this was the case in su(N)33,36 and is to be
expected. (We will come back to this point in Sec. V.) Hence, as in Sec. IV B, we do not need any
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of the results of Sec. IV A 2 here, but we still use the notation E+ for convenience. To deal sensibly
with the limit r →∞, we transform to the variable

z= r−1, (178)

whence we are now dealing with the limit z→ 0.

Proposition 15. There exist regular solutions of the field equations in some neighbourhood
of z = 0, analytic and unique with respect to their initial values, of the form

m(z)=M + O(z),

S(z)= 1 + O(z4),

ωi(z)=ωi,∞ + ωi,1z + O(z2),

Ei(z)= Ei,∞ + Ei,1z + O(z2),

(179)

where ωi,∞, Ei,∞, ωi,1, and Ei,1 are arbitrary, and in order to agree with the asymptotic limit of adS
space, we have let m∞ = M, the ADM mass of the solution, and S∞ = 1.

Proof. As well as (178), we introduce also the following new variables:

λ(z)= 2m(r), v0(z)= r2A′(r), v+(z)= r2W ′
+(r). (180)

We immediately find that

z
dW+

dz
=−zv+, z

dA
dz
=−zv0 (181)

and it is clear that there exist analytic maps

F̂ : E+→E+ with F̂(W+)=F,

Ẑ : E0 × E+→E+ with Ẑ(A, W+)=Z,

ζ̂ : E0 × E+→R with ζ̂(A, W+)= ζ ,

P̂ : E+→R with P̂(W+)=P,

Ŷ : E0 × E+→E+ with Ŷ(A, W+)= [A, [A, W+]].

(182)

Also we find that in this limit,

G=
z4

2
(v+, v−), ζ̂ ∼O(1), Ŷ∼O(1) µ∼ k +

1

z2`2
, (183)

which in particular implies that

1

µz2`2
− 1=O(z2) and

1
µz
=O(z). (184)

Then using (183) and (184), we may see that

z
dS
dz
= z4

(
‖v+‖

2S +
2ζ̂(A, W+)

S2

)
,

z
dλ
dz
=−2z

(
−
‖v0‖

2

s2
+
ζ̂(A, W+)

µzS2
+ P̂(W+) +

(
kz2 − λz3 +

1

`2

)
‖v+‖

2

2

)
,

z
dv+

dz
= 2v+

(
1

µz2`2
− 1

)
+

1
µz

{
F̂(W+) + v+

(
λz2 − 2P̂(W+)z3 +

2z3

S2
‖v0‖

2
)

+
1

µS2z2
Ŷ(A, W+)

}
,

z
dv0

dz
= v0

(
−z4‖v+‖

2 −
ζ̂(A, W+)

2µ2S2

)
−

1
µz

Ŷ(A, W+).

(185)
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Then we fix four vectors X1, C1 ∈ E0, X2, and C2 ∈ E+. From (180)–(185) it is clear that there exists
an ε > 0 and analytic maps

G∞ : E+→R with z
dW+

dz
= zG∞(v+),

H∞ : E0→R with z
dA
dz
= zH∞(v0),

I∞ : E+ × R→R with z
dS
dz
= z4I∞(A, W+, v+, S),

J∞ : (E0)2 × (E+)2 × R × Iε (0)→R with z
dλ
dz
= zJ∞(A, W+, v0, v+, λ, z),

K∞ : (E0)2 × (E+)2 × R × Iε (0)→R with z
dv+

dz
= zK∞(A, W+, v0, v+, λ, z),

M∞ : (E0)2 × (E+)2 × R × Iε (0)→R with z
dv0

dz
= zM∞(A, W+, v0, v+, λ, z) (186)

[where we abbreviate E0 × E0 to (E0)2 and similar for E+]. Finally, Theorem 3 says that these
equations possess a unique solution analytic in some neighbourhood of (z, Y i, Z i) = (0, X i, Ci) (with
i ∈ {1, 2}) with behaviour

S(z, Yi, Zi)= S∞ + O(z4),

λ(z, Yi, Zi)= λ∞ + O(z),

A(z, Yi, Zi)=X1 + O(z),

W+(z, Yi, Zi)=X2 + O(z),

v0(z, Yi, Zi)=C1 + O(z),

v+(z, Yi, Zi)=C2 + O(z),

(187)

and using the definitions (180),

ai(z, X1, X2, C1, C2)=X1 + C1z + O(z2),

ωα(z, X1, X2, C1, C2)=X2 + C2z + O(z2),
(188)

for all α ∈ Σw , i ∈ {i, . . . ,L}. We expand the relevant vectors in (187) explicitly in the bases

X1 =

L∑
i=1

ai,∞hi, C1 =

L∑
i=1

ai,1hi, A=
L∑

i=1

ai(z)hi,

X2 =
∑
α∈Σw

ωα,∞eα, C2 =
∑
α∈Σw

ωα,1eα, W+ =
∑
α∈Σw

ωα(z)eα,
(189)

to gain the familiar expansions

ai(z)= ai,∞ + ai,1z + O(z2),

ωi(z)=ωi,∞ + ωi,1z + O(z2)
(190)

for all i ∈ {i, . . . ,L}. Once again, we may rewrite the electric gauge function in our basis (52) as

Ei(z)= Ei,∞ + Ei,1z + O(z2), (191)

where Ei,∞ ≡
∑
α∈Σw [X1, eα] and Ei,1 ≡

∑
α∈Σw [C1, eα]. Finally, we set m∞ = M, S∞ = 1 for the asymp-

totically adS limit, and therefore we end up with the expansions (179), having 4L + 1 degrees of
freedom. □

V. ASYMPTOTIC BEHAVIOUR OF THE FIELD EQUATIONS

As we saw in Sec. II D and further confirmed in Sec. IV C, the asymptotic boundary condi-
tions (176) imply that any regular solutions in the limit r → ∞ will have gauge functions which
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are characterised entirely by ωj,∞, ωj,1 ≡ ω
′
j,∞, Ej,∞, and Ej,1 ≡ E′j,∞, with all higher order terms in

the expansions determined by these parameters. The reason for examining this is that the Λ = 0
case is not so simple: there, the asymptotic values of the gauge field must approach a particular
discrete set of values, and the higher order terms are intricately interdependent. Therefore we briefly
digress to demonstrate the difference for Λ < 0, which is highly similar to what we found in simpler
cases.15,26,33

So what we wish to do here is take the asymptotic limit of the field equations by transforming
the system into autonomous form and examining the phase plane of the system. The form of the
parameter to which we must transform dictates the asymptotic behaviour of the field variables, and
this gives us an infinitely richer solution space.

First, we note that as r → ∞, µ∼ r2

`2 . Noting also (176), the Yang-Mills field equations (66)
become asymptotically

r2
(

r2

`2ω
′
i

) ′
=−Fi −

`2

4 ωiE2
i , r2

`2

(
r2E′i

) ′
=Zi. (192)

Using the parameter τ = `r�1, these are equivalent to

d2ωi

dτ2
=− 1

2

L∑
j=1
ωiCij(kwj − ω

2
j ) − `2

4 ωiE2
i ,

d2Ei

dτ2
=

L∑
j=1

Cijω
2
j Ej. (193)

It is clear that the critical points of this autonomous system, pairs (ω∗i , E∗i ), satisfy

ω∗i
*.
,

L∑
j=1

Cij(kwj − ω
∗2
j ) +

`2

2
E∗2i

+/
-
= 0,

L∑
j=1

Cijω
∗2
j E∗j = 0. (194)

This gives us only two sets of critical points in the 4D phase plane
(
ωi, Ei,

dωi
dτ , dEi

dτ

)
: the point

(0, E∗i , 0, 0), where E∗i is arbitrary, and (±
√

kwi, 0, 0, 0), ∀i (i ∈ {1, . . . ,L}), though it is obvious that
for k = �1 the latter point does not exist, and for k = 0 it coincides with the former if E∗i = 0. However,
we point out that we have used a parameter τ = `/r which compactifies our range of integration
from (rh, ∞) to (0, `τ−1

h ). Thus as we integrate out further and further, solution trajectories will in
general not end at the critical points of the phase plane, but at some other more arbitrary value.
In the asymptotically flat purely magnetic case, the parameter used was proportional to ln r, so the
integration domain is [ln(rh),∞] and thence every solution must end at a critical point.

This is why the analysis of the asymptotic boundary conditions (176) for Λ < 0 imply no
constraints on the asymptotic values of ωi(r) or Ei(r). In the purely magnetic spherical36 and
topological dyonic su(N)33 cases, it was this that was responsible for the existence of plentiful
global solutions, and only local existence could be established for Λ = 0.17 To summarise, we
have shown that as long as we can integrate a solution arbitrarily far into the asymptotic regime,
it remains regular as r→∞, reaching arbitrary asymptotic boundary values. We return to this point in
Sec. VI C.

VI. GLOBAL EXISTENCE PROOFS

Here we prove some results concerning the global behaviour of the solutions, which will culmi-
nate in the main results of this work, which is the proof of the global existence of non-trivial solutions
to the field equations (34) and (66): first in some neighbourhood of the known trivial solutions from
Sec. III C (Theorem 17) and then in the limit |Λ|→∞ (Theorem 19). First though, we prove a couple
of necessary results concerning global behaviour.

A. Proof that Ei(r) is monotonic, ∀i

Here we prove that the functions Ei are monotonically increasing in r for all i. This proof is very
similar to an analogous proof in Ref. 33, but we will give the main points.

We can write the electric gauge equation (66b) as
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µS*
,

r2E′i
S

+
-

′

=

L∑
j=1

Cijω
2
j Ej. (195)

Now Cij is a Cartan matrix, and so it has full rank and therefore L linearly independent eigenvectors,
which we shall call vi = {v1, . . . , vL}. Furthermore, the eigenvalues are κj(κj + 1) for a series of integers
κj > 0 which depend on the Lie algebra g in question (see Table I). Multiplying (195) through by
vi, summing over i, and noticing that the eigenvectors are linearly independent, we find the system
decouples into the L equations

*
,

r2E′i
S

+
-

′

= κi(κi + 1)
ω2

i Ei

µS
, (196)

and integrating,



r2E′i
S



r1

r0

= κi(κi + 1)

r1∫
r0

ω2
i Ei

µS
dr. (197)

We know that µ, S, r2,ω2
i , and κi(κi + 1) are non-negative, so the integrand is non-negative, and hence

so is the integral. Therefore Ei(r) and E′i (r) have the same sign. Coupled to the fact that Ei(r)= 0 at
the event horizon or origin, it is clear that each Ei(r) is always positive (negative) and monotonically
increasing (decreasing) for all i, r. A corollary of this is that also, each Ei(r) must be non-zero for all
r > rh (or r > 0 for solitons).

B. Global regularity of solutions

We prove here that any solution may be integrated out from the boundary r = r0, where r0 = rh for
black holes and r0 = 0 for solitons, and will remain regular for r arbitrarily large. This is conditional
upon our metric function µ(r) being positive for all r > r0. Thus we have

Proposition 16. If µ(r) > 0, ∀r > rh, for black holes (or ∀r > 0 for solitons), then all field
variables may be integrated out from the boundary conditions at the event horizon (or the origin)
into the asymptotic regime and will remain regular throughout.

Proof. Define Q≡ [r0, r1) and Q̄≡ [r0, r1]. The results of Sec. IV show that the field variables
are regular at r = r0. Our aim is therefore to use the fact that all field variables are regular on Q,
i.e., in a neighbourhood of r = r0, and then show using the field equations that as long as the metric
function µ(r) > 0, ∀r ∈ (r0, ∞), then they will remain regular on Q̄ also, i.e., at r = r1; and thus we
can integrate the field equations out arbitrarily far and the field variables will remain regular. We note
that this proof is completely independent of which basis we use and so does not depend on our model
being a regular model in the sense of Refs. 17 and 35.

First we recall that η, ζ , G, P ≥ 0 so that m′(r) ≥ 0,∀r, and thus m(r) is monotonically increasing,
as expected. The same applies to (ln |S(r)|)′, showing that ln |S(r)| and hence S(r) is monotonically
increasing too. This means that (if the limits exist)

mmax ≡ sup{m(r) | r ∈ Q̄} =m(r1), Smax ≡ sup{S(r) | r ∈ Q̄} = S(r1). (198)

The condition µ(r) ≥ 0, ∀r ∈ [r0,∞), gives us our starting point since with (149) this implies that

mmax ≤
kr1

2
+

r3
1

2`2
, (199)

giving us an absolute upper bound to work with—for k = �1, the minimum event horizon radius (155)
means that the right-hand side of (199) is non-negative. Therefore, both m(r) and µ(r) are bounded
on Q̄. This means that mmax exists, and for later use we define µmin ≡ inf {µ(r) | r ∈ Q̄}.

Next we examine (34a). It is clear that
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2m′(r) ≥ 2µG +
2ζ

µS2
, (200)

and integrating, we can show that

2[m(r1) − m(r0)]
µmin

≥

r1∫
r0

(
2G +

2ζ

µ2S2

)
dr, (201)

which implies that ln |S| and hence S is bounded on Q̄ so that Smax also exists. It also implies that G
is bounded on Q̄, and since

2G= ‖W ′
+‖

2 (202)

then again by integrating and using the Cauchy-Schwartz inequality, we obtain

r1∫
r0

2Gdr =

r1∫
r0

‖W ′
+‖

2dr ≥
*..
,

r1∫
r0

‖W ′
+‖dr

+//
-

2

=

(
‖W+‖

���r=r1
− ‖W+‖

���r=r0

)2
. (203)

The left-hand side of (203) is bounded and the right-hand side is a sum of positive terms, and so
‖W+‖ and hence W+, F, and P are all bounded on Q̄.

In the same fashion,

m′(r) ≥
r2η

S2
(204)

so that
S2

max[m(r1) − m(r0)]

r2
0

≥ −
(
‖A‖r=r1 − ‖A‖r=r0

)2 (205)

[where we recall that the right-hand side of (205) is positive because A is purely imaginary] so that

it is obvious that A is bounded on Q̄.
Finally, we take the gauge equations. We may rewrite (35) as(

µSW ′
+
) ′
=−

SF
r2

+
1

µS2
[A, [A, W+]],(

r2

S
A′

) ′
=

1
µS

[W+, [A, W−]].

(206)

Integrating and rearranging gives

(
µSW ′

+
) ���r=r1

=
(
µSW ′

+
) ���r=r0

+

r1∫
r0

(
1
µS

[A, [A, W+]] −
SF
r2

)
dr,

r2
1

S1
A′ |r=r1 =

r2
0

S0
A′ |r=r0 +

r1∫
r0

1
µS

[W+, [A, W−]]dr.

(207)

The right-hand sides of both equations in (207) contain only bounded functions, so we can finally
conclude that W ′

+ and A′ are bounded on Q̄. Hence, all field variables are bounded on Q̄, and if we
choose r1 arbitrarily large, we may consider ourselves in the asymptotic regime. □

C. Global existence of solutions in a neighbourhood of embedded solutions

One of the major results of this paper is the following theorem. The gist of it is that global
solutions to the field equations (34) and (66), which we have proven are uniquely characterised
by the appropriate boundary values and analytic in those values, exist in open sets of the initial
parameter space; and thus that solutions which begin sufficiently close to existing solutions to the
field equations will remain close to them as they are integrated out arbitrarily far into the asymptotic
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regime, remaining regular throughout the range. It can be noted that this argument is extremely similar
to those we have crafted for su(N) cases,15,33 but we give the full proof anyway.

Theorem 17. Let us fix rh (for black holes only) and ` and define r0 = rh for black holes and
r0 = 0 for solitons. Assume we have an existing solution of the field equations (34) and (66), with each
gauge field function ωj(r) possessing nj nodes each and with gauge field values R≡ {E′j,h,ωj,h} for

black holes or R≡ {ψ̃j, ũj} for solitons, with j = 1, ...,L, at r = r0. Then all initial gauge field values
in a neighbourhood R will also give a solution to the field equations in which all the gauge field
functions ωj(r) also have nj nodes.

Proof. Assume we have an existing solution to the field equations (34) and (66), where eachωj(r)
has nj nodes. This solution will have µ(r) > 0 for all r ∈ [r0,∞). From its set R of initial conditions,
Proposition 16 shows that as long as µ(r) > 0 we may integrate this solution out arbitrarily far into the
asymptotic regime, which according to Sec. V will remain regular and satisfy the boundary conditions
as r →∞.

From the local existence results (Propositions 13 and 14), we know that for any set of initial
values R, there is a solution locally near r = r0 and that all such solutions are analytic in R. By
analyticity, all sufficiently nearby solutions will have µ(r) > 0 for all r ∈ Q̄≡ [r0, r1] for some r = r1

with r0 < r1 < ∞. By Proposition 16, this nearby solution will also be regular on Q̄.
Now, we let r1 � r0 so we are in the asymptotic regime. If r1 is large enough, then m(r1)/r1 �

1 for the existing solution. Let R̃ be a different set of initial conditions in some neighbourhood of R
for gauge fields ω̃j, Ẽj, and let m̌(r) be the mass function of that solution. By analyticity, µ̃(r)> 0 for
all r ∈ Q̄, so the nearby solution will also be regular on Q̄.

Also m̃(r1)/r1 � 1 again due to analyticity, and since r1 � r0 we are in the asymptotic regime.
If r1 is large enough (and hence τ1 is very small), the solution will not move very far along its phase
plane trajectory as we take r1→∞. Hence, m̃(r)/r remains small, and the asymptotic regime remains
valid. According to Proposition 15 and Sec. V, the solution will reach one of the existing sets of
arbitrary asymptotic boundary conditions. Therefore the solution evolved from R̃ will be globally
regular, exist locally as r →∞, and the gauge functions ω̃j will still each have nj nodes. □

Corollary 18. Nodeless non-trivial solutions to the field equations, i.e., for which ωj(r) , 0, ∀r,
exist in some neighbourhood of existing trivial SadS solutions, and embedded su(2) solutions (76),
described in Sec. III C 1. We emphasise that the functions Ej are guaranteed by Sec. VI A to have
only one zero, at r = r0.

D. Existence of solutions in the large |Λ| limit (`→0)

We have concentrated on finding nodeless solutions largely because in the case of su(N), it is
known22,24 that nodelessness is necessary (but not sufficient) for stability. However it is also seen that
another necessary condition was that the absolute value of the cosmological constant |Λ|→∞ so that
the gravitational sector was stable. Also, numerical results show that as N gets larger, the initial value
space for regular solutions shrinks, but for |Λ|→∞, all solutions are nodeless.15,46,47 Therefore, we
finish this work by proving that nodeless black hole and soliton solutions can be found in the limit
|Λ|→∞, i.e., as `→ 0.

The strategy is this: We transform to new field variables to find a unique solution to the equations
for ` = 0, being careful to take this limit correctly. We note that we only need to transform the results
of Proposition 15 into our new variables and show that the arguments used in Sec. VI C may be
easily adapted to serve in a neighbourhood of `→ 0. We finally emphasise that we cannot prove the
existence of global non-trivial solutions for ` = 0 since in that case the asymptotic variable we used
in Sec. V (and here) becomes singular.

Theorem 19. For fixed rh, there exist non-trivial solutions to the field equations (34) and (66),
analytic in some neighbourhood of ` = 0, for any choice of boundary gauge field values given by
{W+(rh), E

′

+(rh)} [or alternatively, in the base (172), {ωj,h, Ej,h}, j = 1, . . . ,L] for a black hole or for

a soliton, {W+(0), E
′

+(0)} (i.e., {ũj, ψ̃j}, j = 1, . . . ,L).
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Proof. In the purely magnetic case, we let m̄=m`2 and W ′
± = √̀2

X±. In that case, we found

the unique solution to the field equations m(r)= r3
h/2, ωj(r) = ωj,h, S = 1. In this case, we may

note that the purely magnetic solution will satisfy the dyonic system if and only if we also have
Eα = 0 (∀α ∈ Σ); so we merely append Eα = 0 to the purely magnetic solution and it is clear that we
have a (trivially) dyonic solution. Using the usual basis for W+(r) (51) and E+ (52), the solution is
therefore

m(r)=
r3

h

2
, S(r)= 1, ωα(r)=ωα,h, Eα(r)= 0, (208)

for all r and for all α ∈ Σ. We note that this is identical to the su(N) case, and we treat it similarly.
We reprise Proposition (15) with a change of variables,

λ̃ ≡ λ`2, m̃≡m`2, µ̃≡ µ`2. (209)

Then Eqs. (185) are altered to

z
dS
dz
= 2z4

(
‖v+‖

2S +
`4

µ̃2S2
ζ̂(A, W+)

)
,

z
d λ̃
dz
=−2z

(
−
`2‖v0‖

2

s2
+
`4 ζ̂(A, W+)

µzS2
+ `2P̂(W+) +

(
k`2z2 − λ̃z3 + 1

) ‖v+‖
2

2

)
,

z
dv+

dz
= 2v+

(
1
µ̃z
− 1

)
+

1
µ̃z

(
F`2 + v+

(
λ̃z2 − 2P̂(W+)`2z3 +

2`2z3

S2
‖v0‖

2
))

,

z
dv0

dz
= v0

(
−z4‖v+‖

2 −
`4 ζ̂(A, W+)

2 µ̃2S2

)
−
`2

µ̃z
Ŷ(A, W+). (210)

The terms involving ` are O(z) or higher so that the argument given in Sec. IV C carries across
unchanged. Thus for arbitrarily small `, we may find solutions that exist locally in the limit
r →∞.

The argument that proves that non-trivial black hole solutions exist globally in this regime is very
similar to Proposition 17. We fix rh, take the existing trivial solution (208) (with initial conditions
{ωj,h} non-zero in general), and consider varying {ωj,h} and varying both ` and {E′j,h} away from zero.
Note that for the embedded solution (208), all magnetic gauge fields will be nodeless. We choose
some r1 � rh so that we can consider r1 in the asymptotic regime. Propositions 14 and 16 imply
that for ` sufficiently small we may find new solutions near the trivial solution, which will begin
regularly near r = rh and remain regular throughout (rh, r1]. Once we are in the asymptotic regime,
we can use Sec. V to prove that the solution will remain regular as r → ∞, that all ωj(r) will be
nodeless, and given that Ej(r) are all positive and monotonic, all the Ej(r) will likewise be nodeless
for r > rh.

The corresponding argument for solitons is similar in form to that for black holes, and as in the
purely magnetic case, we must be careful about how we take the limit ` → 0 due to the unbound-
edness here of the parameter τ = `r�1 that we used for black holes—hence we take the co-ordinate
x = `�1r. Again we use the unique solution obtained in Ref. 36 and append Ej ≡ 0, i.e., ψ̂j = 0,
giving

m(x)≡ 0, S(x)≡ 1, ψ̂j(x)≡ 0, ûj(x)= ũj

{
2F1

(
κj + 1

2
,
κj

2
;

2κj + 1

2
;−x2

)}
, (211)

for all x and for all j ∈ {1, . . . ,L} and {κj} being the sequence of integers defined in Sec. IV A 2,
which integers depend on the group G.

We proceed in a very similar fashion to the black hole case. We fix rh, take the existing solution
(211) with arbitrary ũj, ∀j, and consider varying {ũj,}, varying ` away from 0, and varying {ψ̃j} away
from 0. Note again that for the embedded solution (208), all magnetic gauge fields will be nodeless.
Following identical logic to the black hole case, we choose r1 � 0 so that Propositions 13 and 16
confirm that for ` and {ψ̃j} sufficiently small we can find solutions near the existing unique solution
which will begin regularly near r = 0, remain regular until the asymptotic regime (by Sec. V), and
meet up with regular boundary conditions at infinity. Furthermore, these neighbouring solutions will
once again have ωj(r) , 0, ∀r, and Ej(r), 0, ∀r > 0. □
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It is finally worth noting that in varying Ej away from 0, we are requiring that these solutions
have a small electric field; the magnetic field, as in the purely magnetic case, is more arbitrary.

VII. CONCLUSIONS

The purpose of this work was to investigate global solutions to 4D static adS EYM equations,
for topologically symmetric black holes and solitons, with non-trivial electric and magnetic sectors.
We began by deriving the correct form for the connection and metric in our case (Sec. II). Then,
we used these to derive the field equations in a very general case, before reducing them down to the
regular case (Sec. III). We saw that the equations reduced once more to look similar to the su(N)
equations studied in Ref. 33. In Sec. III C, we found some trivial embedded solutions corresponding
to previously proven solutions from Ref. 7. After that in Sec. IV, for each of the boundaries r = 0,
r = rh, and r→∞ in turn, we analysed the boundary conditions and then used a well-known theorem
of differential equations (Theorem 3) to establish the existence of solutions close to each boundary
which are analytic in their boundary values.

We proceeded by “stitching” the solutions together, using a series of proofs which showed that
if we begin a solution with some arbitrary boundary values at the event horizon (or the origin for
solitons), then we may continue to integrate the solution into the asymptotic regime, and it will
remain regular (Sec. VI B). Proposition 15 implied that solutions will exist near infinity that the
evolved solution will match up to, confirming results from 4 concerning the lack of constraints on the
boundary conditions here. To finish the proof of global solutions, we argued in Sec. VI C that given the
analyticity of the boundary values, any solution which starts sufficiently nearby a trivial/embedded
solution will stay nearby it into the asymptotic regime, where it will remain regular and represent a
new non-trivial solution. Importantly for later work, this nearby solution will have all ωj(r) nodeless
for all r, and all Ej(r) nodeless for all r > rh (or r > 0 for solitons). Finally, using appropriate variable
changes, we gave a similar argument which establishes the existence of nodeless solutions in the
regime |Λ|→∞ (Sec. VI D).

The main result in this paper is the proof of the existence of non-trivial global nodeless
solutions to 4D dyonic adS EYM theories for semi-simple, compact, and simply connected Lie
gauge groups, both in neighbourhoods of existing (embedded) solutions and in the regime where
|Λ| → ∞. This is not an unexpected result, but it is a nice one since the author believes this rep-
resents the most general model of 4D static adS EYM systematically studied to date. The fact
that this regular case bears similarity to the su(N) model is handy; the main difference between
the regular su(N) and general cases is the Cartan matrix used. This means that while numerical
results for other Lie groups will in general be different from those discovered for su(N),15,16,46,47

they should bear some structural similarities to the su(N) case—certainly we expect solutions to
be found in continuous bands in the initial value space (possibly given some bounds on the values
of Λ and rh), also giving hope that some of these solutions will be stable since perturbed solu-
tions may be able to find nearby regular boundary values. This may form the subject of a future
investigation.

There are a few more natural extensions this work suggests. Bizon’s “no-hair” theorem1

states that “In any given matter model, a stable black hole is characterised by a finite number
of unique charges.” In addition, the solutions we found were nodeless, which in the purely mag-
netic su(N) case24 and the dyonic su(2) case,22 were a necessary requirement for stability, as was
|Λ| → ∞. In light of the “No-hair” theorem and these facts, this suggest a stability analysis is
necessary–however, in su(2) the lack of an obvious simplifying global gauge meant the system
was extremely intricate22 and proving stability will be exceptionally difficult, so an investigation
of the linear stability of the su(N) dyonic system might be a better, if almost equally difficult, first
step.

Also, it is known that topological dyonic su(N) models are a good model for holographic semi-
conductors via the adS/CFT correspondence, which states that gravitational results in adS can be
translated into QFT results on the (Minkowski) boundary. It is interesting to wonder whether this
larger class of models also has applications to condensed matter physics. Finally, it would be of great
interest to know if this work could be used at all in the investigation of the black hole information
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paradox, in light of some of Hawking’s recent comments32 on how black hole hair may be used
to resolve the problem of information loss in black hole spacetimes. Such questions provide ample
possibilities for future research.
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