
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Robust optimization over time by learning problem
space characteristics

Danial Yazdani, Trung Thanh Nguyen, and Jürgen Branke

Abstract—Robust optimization over time is a new way to tackle
dynamic optimization problems where the goal is to find solutions
that remain acceptable over an extended period of time. The
state-of-the-art methods in this domain try to identify robust
solutions based on their future predicted fitness values. However,
predicting future fitness values is difficult and error prone. In this
paper, we propose a new framework based on a multi-population
method in which sub-populations are responsible for tracking
peaks and also gathering characteristic information about them.
When the quality of the current robust solution falls below
the acceptance threshold, the algorithm chooses the next robust
solution based on the collected information. We propose four
different strategies to select the next solution. The experimental
results on benchmark problems show that our newly proposed
methods perform significantly better than existing algorithms.

Index Terms—Dynamic optimization problems, Robust opti-
mization over time, Tracking moving optima, Particle Swarm
Optimization

I. INTRODUCTION

MANY real-world optimization problems are dynamic
and changing over time. Most previous studies in this

domain focus on tracking the moving optimum (TMO) [1].
However, this is not practical in many real-world cases since
changing solutions may be very costly, and changing the so-
lution frequently is not desirable. For example, in scheduling,
changing the schedule may have significant impact on sup-
pliers and customers, or, in the design of telephone networks,
sending out engineers to change the physical infrastructure can
be very expensive. In taking-off/landing scheduling problem, it
is desirable to keep the current implemented solution/schedule
after an environmental change [2], [3] to avoid unfavorable
disruptions in airport operations. To address such a problem,
[4] proposed a new approach for solving dynamic optimization
problems (DOP): finding solutions that are robust over the
course of time. A robust solution is one that is not necessarily
the best in the current environment, but that remains acceptable

This work was supported in part by a Deans Scholarship by Faculty of
Engineering and Technology, LJMU, a Newton Institutional Links grant no.
172734213, funded by the UK BEIS and delivered by the British Council,
and a NRCP grant no. NRCP1617-6-125 delivered by Royal Academy of
Engineering.

D. Yazdani is with the Liverpool Logistics, Offshore and Marine Re-
search Institute, Department of Maritime and Mechanical Engineering,
Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
(Email:danial.yazdani@gmail.com, d.yazdani@2016.ljmu.ac.uk).

T. T. Nguyen is with the Department of Maritime and Mechanical Engineer-
ing, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
(Email:T.T.Nguyen@ljmu.ac.uk).

J. Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom (Email:Juergen.Branke@wbs.ac.uk).

over several environments. A found robust solution can be
utilized until its quality degrades to an unacceptable level.

In case the current robust solution becomes unsatisfactory,
a new robust solution must be chosen. The process of finding
a sequence of robust solutions is referred to as robust opti-
mization over time (ROOT) [4], [5]. A DOP can be defined
as:

F (x) = f(x, θ(t)), (1)

where f is the objective function, x is a design vector, θ(t) is
environmental parameters which change over time and t is the
time index with t ∈ [0, T] where T is the problem life cycle
or number of environments. In this paper, like most previous
studies in the DOP domain, we investigate DOPs with θ(t)

that changes discretely. In this type of DOP, the environmental
parameters change over time with stationary periods between
changes. As a result, for a DOP with T environmental changes,
we have a sequence of T static environments that can be
described as:

F (x) =
[
f(x, θ(1)), f(x, θ(2)), . . . , f(x, θ(T))

]
, (2)

where θ(i) represents the environmental parameters in the
ith environment. For ROOT, the main goal is to minimize
the number of times the chosen solution has to be changed
because its performance drops below an acceptable level,
or to maximize the average number of environments that a
robust solution remains acceptable. Thus, the best case is
that the first robust solution remains acceptable for all of
the T environments and the worst case is that the number
of robust solutions is equal to the number of environments
(none of the solutions remained acceptable after even a single
environmental change).

In this paper, we propose a new framework for ROOT. Its
novelty and contribution are as follows. First, this framework
uses multi-population methods to track and monitor each
peak and learn about their characteristics. Second, in contrast
to previous state-of-the-art frameworks which are based on
predicting future fitness values of solutions, the proposed
framework tries to predict future behaviors of peaks and then
selects the next robust solution based on this information.
Third, we propose four new strategies to select the next robust
solution. Finally, we empirically evaluate our framework on a
wide range of problem settings (different dimensions, change
frequencies, shift severities and number of peaks), providing
a detailed analysis on the performance of our new framework
and demonstrating that it achieves better results than current
state-of-the-art ROOT algorithms.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

The rest of this paper is structured as follows. In Section II,
related works are reviewed. In Section III, the proposed
framework is presented. Section IV explains the experimental
setup including benchmarks, performance indicators, compar-
ison algorithms and parameter settings of all tested methods.
Experimental results, analyses and comparisons with previous
works are reported in Section V. In the final section, we
summarize the main findings and suggest directions for future
work.

II. RELATED WORKS

The proposed framework uses multi-population or multi-
swarm methods for ROOT. Therefore, in this section, we
provide a more detailed literature review on ROOT as the
main topic of this paper, as well as a brief review on multi-
population/multi-swarm methods.

A. Robust optimization over time

In [4], ROOT was proposed as a new perspective on
DOPs. A new framework for ROOT was proposed in [6]
with the algorithm searching for robust solutions by means
of local fitness approximation and prediction. This method
consists of a population-based optimization algorithm, a fitness
approximator (to estimate fitness at any point in the search
space), a fitness predictor (to predict future fitness values) and
a database. In [6], an adapted radial-basis-function network
(RBFN) is the local approximator and an autoregressive (AR)
is the predictor. A database was used for storing, in each
iteration, all of the individuals’ positions alongside their fitness
values and the associated time of storage. This database was
then used for approximating fitness values of solutions in
previous environments which in turn was used for training
the predictor.

It is important to have sufficient samples across the search
space in this database to maintain the accuracy of the ap-
proximation. Since optimization algorithms quickly converge
to the most promising region in the search space, there would
be regions that they would not visit (such as regions with bad
fitness) which still are necessary for having a good training
data. On the one hand, in [6], the algorithm needs to have
enough information to be able to predict any solution in
the search space which is depended on the approximator.
On the other hand, for having an appropriate approximation
model, the training data needs to be properly distributed in
the search space. For achieving this, in [6], authors generate
half of the population using a specific hypercube design after
each environmental change. Therefore, for each environment,
the database can contain at least one solution from each
hypercube. However, in larger environments such as ones with
bigger search range and higher dimensions, the number of
these hypercubes increases exponentially and becomes larger
than the population size. As a result, the algorithm needs
to evaluate a solution for each hypercube for adding to
the database. These additional fitness evaluations become a
challenge in larger problems.

To select a robust solution, [6] uses the sum of the solutions’
current fitness value, its p previous fitness values (provided by

the approximator) and its q future fitness values (provided by
the predictor):

F (x) =

t+q∑
l=t−p

f(x, θ(l)), (3)

where F is the sum of fitness values of x at time t. The perfor-
mance of the proposed method in [6] depends on the accuracy
of the approximation and prediction methods. In [6], a particle
swarm optimization (PSO) [7] was used as the optimizer. In
addition, several performance indicators were proposed, of
which one of the most important ones is Eavg, the average
error of the robust solution sequence S = (r1, r2, · · · , rk),

Eavg =
1

k

k∑
i=1

ei, (4)

where

ei =
1

ni

ti+ni−1∑
j=ti

∣∣∣opt(j) − f(ri, θ(j))∣∣∣ , (5)

opt(j) is the optimum fitness value at the jth environment, ri is
the ith robust solution, ni is number of environments for which
ri remained acceptable, and ti is the time that ri was chosen.
In other words, Eavg is the average error of robust solutions
over all environments. Another performance indicator is ρ, the
robustness rate of the robust solution sequence,

ρ = 1− k − 1

T − 1
, (6)

where k is the number of robust solutions. In (6), a smaller k
causes ρ to increase and the ideal situation happens when the
first robust solution can remain acceptable in all environments
i.e. k = 1. In addition, a new condition for checking whether
a robust solution may be kept in a new environment was
introduced. According to this condition, given a user defined
threshold δdrop, a robust solution ri may be kept in the jth

environment if: ∣∣∣∣f(ri, θ(j))− opt(j)

opt(j)

∣∣∣∣ ≤ δdrop. (7)

In [8], authors proposed two new robustness definitions
and metrics, namely survival time and average fitness. The
survival time is the maximum time interval starting from time
t during which the fitness value of the robust solution remains
acceptable:

S
(
x, θ(t), V

)
=

0 if f(x, θ(t)) < V

1 + max{l | ∀i ∈ {t, . . . , t+ l} : f
(
x, θ(i)

)
≥ V } otherwise

(8)

where V is a user defined threshold. In (8), for each environ-
ment, S shows for how many environments the fitness value of
the current solution has remained above V . Note the threshold
V in [8] is easier to use than δdrop in (7) from [6] which
requires to know the optimum.

The robust solution is selected based on the predicted
average fitness over a pre-defined time window ω as follows:

A
(
x, θ(t), ω

)
=

1

ω

ω−1∑
i=0

f
(
x, θ(t+i)

)
. (9)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

When (8) and (9) are used as metrics, f(x, θ(i)) for i > t
is predicted fitness value of x in tth environment instead of
its actual fitness value. In the experiments in [8], the authors
assumed that the algorithm benefited from an ideal approx-
imator so they used true previous fitness values instead of
approximated fitness values. Consequently, the reported results
in [8] were not subject to approximation errors. Additionally,
a ROOT performance indicator was proposed in this paper
based on (8) and (9) as follows:

P =
1

T

T∑
i=1

F(i), (10)

where P is performance of ROOT algorithm, F(i) is either
S in (8) or A in (9). In [9], two definitions of ROOT in [8]
i.e. survival time and average fitness were analyzed. Also, two
different benchmark problems were proposed.

In [10], a new two-layer multi-objective method was
proposed to find robust solutions that can maximize both
survival time and average fitness. In [11], another multi-
objective method was proposed to minimize switching cost
and maximize survival time. A PSO algorithm was used as
the optimizer. Additionally, the algorithm used the acceptance
threshold for robust solutions similar to [8]. Euclidean distance
between two solutions was used as the switching cost, and
three different performance indicators were used:

F =
1

T

T∑
i=1

Fi, (11)

R =
1

T

T∑
i=1

Ri, (12)

C = 1

T

T∑
i=1

Ci, (13)

where T is number of environments, Fi is fitness value of
robust solutions, Ri is robustness (calculated by (8)) and Ci is
switching cost in ith environment. Switching cost is Euclidean
distance between robust solutions in successive environments.

All of the proposed methods in [6], [8], [9] and [11]
used predicted future fitness values of solutions for selecting
robust solutions. In [6], an RBFN was used for approximating
previous fitness values of solutions and an AR was used
for predicting future values. In [8], the authors removed the
approximation part and used true fitness values in previous
environments for training the AR in order to remove the
negative effect of approximation errors on the performance
of the algorithms. In [9], the authors used the same methods
as in [6] for approximation and prediction to investigate
the performance of the proposed algorithms in [6] and [8].
In [11], the authors assumed that algorithms benefited from
an ideal predictor without any error, so in their experiments
the true future fitness values were used instead of the predicted
values. However, removing the approximator and predictor
from algorithms that work based on future fitness values
of solutions clearly is a substantial simplification and the

performance on a real-world problem where future fitness
values are not available may be very different. Overall, for
solving real-world problems, almost all the current ROOT
methods [6], [8]–[10] and [11] need to use approximation and
prediction methods based on time series [12].

B. Tracking Moving Optimum

Multi-population/multi-swarm methods are popular among
researchers in the DOP domain [1], [13]. They consist of at
least two sub-populations/swarms handling different tasks or
separate regions in the problem space.

In [14], Self Organizing Scouts (SOS) was proposed which
utilized a big sub-population for global search and a number
of small sub-populations for tracking changes of identified
peaks. This strategy has also been proposed with other meta-
heuristics such as PSO [15]–[18] and artificial fish swarm
optimization [19]–[21].

In [22], a speciation method was used to split the population
into sub-populations. In [23], a regression-based approach
(RSPSO) was presented to enhance the convergence rate using
speciation-based methods. Every subpopulation was confined
to a hypersphere around the best solution.

In [24], a method based on clustering was proposed for
developing sub-populations, which was simplified and further
improved in [25]. In [26], a method called MEPSO was
proposed in which the population was divided into two parts.
The first part was responsible for exploitation and the second
one for exploration. Gaussian local search and differential
mutation were used to improve diversity in the environment.

In [27], two multi-population methods, called MQSO and
MCPSO, were proposed. In MQSO, quantum particles appear
at random positions, uniformly distributed around the swarm’s
global best. In MCPSO, some or all of the particles in each
swarm have a ‘charge’, and charged particles repel each other,
leading to larger diversity. The population size is equal for
every sub-swarm, and the number of sub-swarms is fixed and
pre-determined. An anti-convergence method ensures contin-
ued search for possible better peaks. In addition, a mechanism
called exclusion is used to avoid several swarms converging
to the same peak.

A version of MQSO with an adaptive number of sub-
populations, called AMQSO, was proposed in [28]. AMQSO
starts with one sub-population and a new sub-population is
created if all previous sub-populations have converged. This
method has significantly improved the performance.

Li et al [29] proposed a method to adapt the number of
populations based on statistical data on how many popula-
tions have found new peaks. If this number is large, more
populations will be introduced and vice versa. Additionally, a
new heuristic clustering, a population hibernation scheme, a
population exclusion scheme, a peak hiding method and two
movement methods (to track peaks and avoid stagnation) were
proposed.

A PSO with two types of sub-swarms called finder-tracker
multi-swarm PSO (FTmPSO) was proposed in [30]. The finder
swarm finds new uncovered peaks. When it converges to
a peak, it creates a new tracker swarm to track the peak.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

An exclusion mechanism re-initializes the finder swarm if
it converges to a peak that already has a tracker swarm
on it. In addition, a mechanism to schedule tracker swarms
called sleeping-awakening was proposed. It allocates more
computational power to more promising swarms. Furthermore,
a new method for re-diversification of tracker swarms (after
a change) was proposed. The method re-initializes all parti-
cles randomly around Gbest [7] and their velocity vector is
randomly set based on the peak’s shift severity. In [31], a
hybrid method based on FTmPSO was proposed for DOPs
with previous-solution displacement restriction (PSDR).

III. THE PROPOSED FRAMEWORK

The literature review above shows that almost all current
methods on ROOT need to use approximation and prediction
methods based on time series [12]. The accuracy of this
approach depends on the amount of data available, i.e. past and
current fitness values covering the representative regions of the
search space. In problems with a large number of dimensions
and/or large search space and/or high change frequency, a
very large amount of data is required to obtain an accurate
approximation. This may be impossible to achieve. In this
section, we propose a new framework for ROOT that does
not rely on predicted future values of solutions. Consequently,
the proposed framework does not require complicated approx-
imation and prediction methods for predicting solution fitness
values. Instead, a multi-population algorithm is responsible to
find peaks, track them after environmental changes and gather
information about their behavior. This information will be used
to predict the future behavior of peaks. When the current
solution becomes unacceptable, the next robust solution will
be selected by a decision rule based on information collected
by sub-populations such as shift severity or height severity. In
this paper, we propose four such decision rules.

A. The multi-population/multi-swarm method

In this section, we describe the necessary characteristics
of multi-population (or multi-swarm) methods that can be
used inside the proposed ROOT framework. We assume a
multi-population algorithm would continuously try to identify
new peaks and track them after an environmental change.
Knowledge about the problem such as number of peaks and
their shift severities should not be necessary. Additionally, the
algorithm should be able to adapt the number of populations as
needed. For example, the proposed multi-population methods
in [28], [30] have such characteristics.

The other requirement is preventing overcrowding, i.e.,
each peak should be covered by at most one sub-population.
Typically, algorithms use an exclusion mechanism [27] for this
purpose. If the distance between the best found positions of
two populations drops below some exclusion radius rexcl, the
population with the worse best found position is re-initialized.
A good formula for calculating rexcl without a need to know
the number of peaks was proposed in [28] as follows:

rexcl = exclfactor ×
SR

TSN
1
D

, (14)

where exclfactor is a positive constant less than 1, SR is
the search domain, TSN is the current number of sub-
populations and D is the number of dimensions. It is worth
mentioning that the original formula in [27] used number of
peaks instead of TSN which usually is unknown in real-
world problems. This was changed to TSN in [28]. Note that,
in the proposed framework, each sub-population separately
records some information about its covered peak. Therefore,
the exclusion mechanism for the proposed framework should
allow such a record to be transferred from one population to
another before the population is re-initialized. If the surviving
population is younger (according to the environment number
that it was created), then before the algorithm re-initializes the
older one, its database will be transferred to the surviving one.

Another characteristic that a compatible multi-population
method should have is being able to track peaks. Therefore, the
populations that are responsible to cover and track peaks need
to be able to deal with diversity loss [1]. In [1], methods that
deal with diversity were grouped into two categories: methods
that maintain diversity during the search and the methods that
introduce diversity when changes occur. Additionally, to track
peaks, populations need to deal with the outdated memory
issue that happens after environmental changes. In fact, after
changes, the stored fitness values by the algorithm may have
changed. This issue can be addressed by re-evaluating all
individuals after environmental changes.

Finally, since the algorithms need to be able to react to an
environmental change, e.g. by updating memory and calcu-
lating and storing some information such as shift severity of
peaks, they need to know when a change has occurred. Since
detecting a change is a separate issue and in many real-world
dynamic environments the occurrence of a change is obvious
(e.g., arrival of new order, change in temperature) [32], in this
paper, as in all previous algorithms of ROOT [6], [8]–[11], we
assume the information about environmental change events is
known and does not need to be detected.

B. New decision maker process for choosing robust solutions

The proposed framework acts based on information gath-
ered by sub-populations tracking peaks. Note that at the tth

environment, only sub-populations which were created at the
(t − 2)th environment and before that are considered. There
are three types of information stored in each sub-population’s
database:

1. The Euclidean distance between best found positions
(such as Gbest in PSO) at the end of each successive pair of
environments. The average of these distances indicates peaks
Shift Severity.

Si =
1

t− bi − 1
×

t−1∑
k=bi+1

∥∥∥g(k),end
i − g

(k−1),end
i

∥∥∥ , (15)

where Si is the estimated shift severity of the peak covered by
the ith sub-population, bi is the environment in which the ith

sub-population has been created, t is the current environment
number, and g

(k),end
i is the best found position of the ith sub-

population at the end of the kth environment.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

2. The differences between fitness values of its best found
positions before and after each environmental change. The
average of these values indicates the variance of fitness values
of the best found position after environmental changes.

FVi =
1

t− bi
×

t−1∑
k=bi

∣∣∣f (g(k),end
i , θ(k)

)
− f

(
g
(k+1),beginning
i , θ(k+1)

)∣∣∣ ,
(16)

where FVi is the fitness variance of the peak covered by the
ith sub-population, f(g(k),end

i , θ(k)) is the fitness value of the
best found position by the ith sub-population at the end of
the kth environment and f(g(k+1),beginning

i , θ(k+1)) is the re-
evaluated fitness value of this position at the beginning of the
next environment.

3. The fitness difference between best found positions at
the end of each successive pair of environments. The average
of these (called height variance) indicates a peak’s height
variability.

HVi =
1

t− bi − 1
×

t−1∑
k=bi+1

∣∣∣f (g(k),end
i , θ(k)

)
− f

(
g
(k−1),end
i , θ(k−1)

)∣∣∣ ,
(17)

where HVi is the calculated height variance of the peak
covered by the ith sub-population. The database of each sub-
population will be updated after each environmental change.

If at tth environment, the fitness value of the current robust
solution r is greater than the threshold V , then it will be
kept for at least another environment. Otherwise, after the
computational budget [9] η which is usually until the end
of the current environment, the following procedure will be
executed:

Step 1: Pre-selection: Remove from consideration each sub-
population i if the current f(gi, θ

(t)) < (FVi + V). FVi
shows how much the fitness value of a position on peak i
(covered by ith sub-population) is expected to change after
an environmental change. Thus, if f(gi, θ

(t)) < (FVi + V),
in the next environment f(gi, θ

(t+1)) will likely be below the
threshold so this position is not considered a robust solution.

For the remaining candidates g, the proposed framework
executes the second step for choosing one of the candidates’
g as the next robust solution. If there is no candidate peak,
then the algorithm chooses the g with the highest fitness value.

Step 2: Four different strategies for choosing the next robust
solution (NRS) are proposed as follows:

• The g with the highest fitness value minus its FV is
chosen.

NRS = argmaxei=1

(
f(gi, θ

(t))− FVi
)
, (18)

where e is the number of candidate g remaining from the
first step.

• The g with the lowest calculated shift severity S (15) is
chosen.

NRS = argminei=1(Si), (19)

• The g with the lowest height variance calculated by (17)
is chosen.

NRS = argminei=1(HVi), (20)

Algorithm 1: ROOT framework equipped with a

multi-population method

1 Initialize multi-population method;
2 repeat
3 if an environmental change is happened then
4 forall sub-population do
5 Update Database;
6 Calculate S, FV and HV by (15), (16) and (17);
7 Update Memory;
8 Other actions for the embedded multi-population

method based on its procedure (such as
introducing diversity);

9 if computational budget η is finished then
10 if the robust solution is not acceptable then
11 Identify candidate g by Step 1 in Section III-B;
12 Choose one of the candidates g based on a

strategy in Section III-B;

13 Execute an iteration of the multi-population method
including finding and tracking peaks;

14 Create or remove sub-populations if needed (based on the
procedure of the multi-population method);

15 forall pair of sub-populations i and j do
16 if ‖gi − gj‖ < rexcl then
17 if f(g, θ(t)) value of the younger one is better

then
18 Copy the older ones database to the newer one;

19 Keep the sub-population with better f(g, θ(t)) and
remove or the other one;

20 Update rexcl by (14);
21 until stopping criterion is met;

• The g with the lowest value obtained by (21) is chosen.

NRS = argminei=1

(
Si

Smax
+

HVi
HVmax

)
, (21)

In the 4th strategy, both height variance HV and shift
severity S are used. The values of HV and S of each candidate
peak are divided by their maximum values (Smax and HVmax)
to be normalized in the range (0, 1). The proposed framework
checks the acceptability of the current robust solution. If it is
not acceptable, it will execute steps 1 and 2 above to choose
the next robust solution. If there is no option, the best g is
chosen as NRS. The pseudo code of the proposed framework
is shown in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Performance indicators

We focus on the most important goal of ROOT, survival
time. We will use the performance indicator in (10) for the
survival time definition in (8). Furthermore, the performance
indicator in (11) is used to show the average fitness value
of robust solutions when we compare our methods with the
state-of-the-art ROOT algorithms.

B. Benchmark functions

Moving peaks benchmark (MPB) [33] is the most popular
benchmark function in the DOP field. In its standard form,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

all peaks are behaving identical, so no solution is more robust
than another. This is why in ROOT researchers used various
modified versions [6], [8]–[11], [34].

In [6] the authors used three different benchmark gener-
ators, namely the modified MPB with different height and
width severities for each peak; the modified dynamic rotation
generator [35] with different height and width severities for
each peak; and finally the modified dynamic composition
benchmark generator [35] with only different height severity
for each peak. Each of these three benchmark generators
was used with three different numbers of dimensions which
resulted in nine test instances in total. In [8] and [34], authors
used a modified version of MPB with different height and
width severities. One problem instance of this version was
used for testing the algorithm on a 2-dimensional search space.
In [9], two different benchmark problems were proposed, one
specifically designed for maximizing survival time and another
for maximizing average fitness. These two benchmarks used
two different modified versions of the baseline fitness function
of MPB. Furthermore, rotation rather than translation was
used to move peaks after environmental changes. The authors
used six different dynamics [35] on their two benchmarks.
In [11], authors used a modified MPB with different height and
width severities for peaks. For changing heights and widths
of peaks, the benchmark used three different dynamics: small
step, random and recurrent [35], but they used the standard
peak center relocation also used in the standard MPB [33].

In this paper, and similar to ROOT papers in [6], [8], [10],
[11], [34], we use the standard baseline function of MPB as
follows:

f (t)(x) = maxmi=1

{
h
(t)
i −

(
w

(t)
i ·

∥∥∥x− c
(t)
i

∥∥∥)} , (22)

where m is the number of peaks, x is a solution in the problem
space, h(t)i , w(t)

i and c
(t)
i are the height, width and center of the

ith peak in the tth environment, respectively. In the modified
version of MPB for ROOT (mMPBR) used in this paper, each
peak has its own height and width severity. This is similar to
the benchmarks in previous ROOT papers [6], [8], [10], [11],
[34]. Additionally, we use different shift severities for different
peaks, although in the experiments we also investigate the
effect of having the same shift severity for all peaks. The
reason for having different height, width and shift severities
for each peak is to have different level of robustness among
them. The height, width and center of a peak change from one
environment to the next as follows:

h
(t+1)
i = h

(t)
i + αi · N (0, 1), (23)

w
(t+1)
i = w

(t)
i + βi · N (0, 1), (24)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (25)

where

v
(t+1)
i = si ·

(1− λ) · R+ λ · v(t)
i∥∥∥(1− λ) · R+ λ · v(t)
i

∥∥∥ , (26)

where N (0, 1) represents a random number drawn from a
Gaussian distribution with mean 0 and variance 1, αi is

the height severity, βi is the width severity, si is the shift
severity of the ith peak, R is a uniformly generated random
vector ∈ [−0.5, 0.5] and λ is the correlation coefficient.

The parameter settings of the mMPBR are shown in Table I.
The highlighted values in Table I are default parameter values
of mMPBR which build the default scenario of the benchmark
in this paper. In the experiments, different number of peaks,
change frequencies, dimensions and shift severities are used
in order to test the sensitivity of the proposed algorithm.
For investigating the impact of different parameter settings
of mMPBR on the algorithms’ performance, we keep most of
the default parameter settings and change 1 or 2 parameters
to build each experiment.

TABLE I
PARAMETER SETTINGS OF MMPBR (DEFAULT VALUES ARE

HIGHLIGHTED)

Parameter Value(s)

Number of peaks, m 2,5,10,20 ,30,50,100,200
Evaluations between changes, f 1000, 2500 ,5000
Shift severity, s 1,5,randomized in [0.5,1], [0.5,3] ,[0.5,5]
Height severity, α Randomized in [1,15]
Width severity, β Randomized in [0.1,1.5]
Peaks shape Cone
Correlation coefficient, λ 0
Number of dimensions, D 2,5,10
Peak location range, SR [-50,50]
Peak height range [30,70]
Peak width range [1,12]
Initial height value 50
Initial width value 6
Number of environments 100

C. Algorithms and parameter settings

In the experiments, we use FTmPSO [30] inside the pro-
posed framework as the multi-swarm method. There are three
major reasons for this choice. First, it is very simple, which
makes it easy to analyze the impact of the framework on per-
formance. Second, it is a competitive TMO algorithm. Third,
with minimal modifications, this method is compatible with
the framework according to Section III-A: (a) it uses (14) for
determining the exclusion radius rexcl; (b) its exclusion mech-
anism allows the transfer of peak information from one swarm
to another; (c) it uses the learned shift severity (15) instead of
the true shift that was used in the original paper. Additionally,
we do not use the exploiter particle and awakening-sleeping
mechanisms proposed in its original paper. The reason is that
these two mechanisms improve the exploitation on the best
peak which is not useful in ROOT. Readers are referred to [30]
for more details of this multi-swarm algorithm. Integrated in
the framework, the algorithm has four versions depending on
the chosen strategies (Section III-B). The four versions are
RFTmPSO-s1 to RFTmPSO-s4, based on strategies 1 to 4,
respectively.

The parameter setting of FTmPSO inside the proposed
framework is shown in Table II. Since the task of the multi-
population methods in the proposed framework is similar to
their original purpose (TMO), parameter settings suggested in
the original paper can be used here as well. A sensitivity anal-
ysis on RFTmPSO is provided in supplementary materials to

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

illustrate the effect of different FTmPSO parameter settings on
the ROOT performance. Based on this analysis, the parameter
settings in Table II have been chosen.

TABLE II
PARAMETER SETTINGS OF FTMPSO

Parameter Value(s)

C1, C2 2.05
χ 0.729843788
Tracker-swarm’s Population Size 5
exclfactor 0.1
rexcl calculated by (14)
Finder-swarm’s Population Size 10
P 1
Q 1
Conv − limit 1
k 10
Stop criterion Max fitness evaluation number

V. EXPERIMENTAL RESULTS

We report experimental results in two parts. In the first part,
we investigate the performance of the proposed framework
with four strategies from Section III-B on several problem
instances with different characteristics. The second part com-
pares our proposed methods embedded into different multi-
swarm methods with the state-of-the-art ROOT methods and
compares their behaviors on different problem instances.

All experimental results are obtained by performing 30
independent runs. To test the statistical significance of the
reported results, we perform a multiple comparison test and the
best results based on Wilcoxon signed-rank test with Holm-
Bonferroni p-value correction and α = 0.05 are highlighted
in each table. If there are more than one highlighted results,
it means they are not significantly different.

A. Analyzing the proposed framework on problems with dif-
ferent characteristics

Table III shows the average survival time of RFTmPSO with
four different strategies on mMPBR with different numbers
of peaks. All other mMPBR parameters are set to default
values. The worst results are obtained in mMPBR with 2
peaks. All versions of RFTmPSO perform identical on this
instance because the number of options for choosing the next
robust solution is limited. Also, when the number of peaks is
low, there are large areas of low fitness because there are few
peaks to cover these areas. As a result, the average solution
quality is lower, and robust solutions can lose their quality
more quickly. By increasing the number of peaks, the average
survival time increases because peaks are likely to overlap
and support robust solutions. Increasing the number of peaks
also increases the performance difference between different
versions of RFTmPSO because there are more peaks with
different characteristics and RFTmPSO has more options to
choose the best of them based on the robust solution selection
strategies. The best results are obtained on mMPBR with 50
peaks, but when the number of peaks is increased to 100 and
200, performance decreases. The reason is that the algorithm
can no longer cover all peaks because of their large number.

Furthermore, the algorithm cannot perform a good local search
to track peaks because the number of tracker swarms is large.

In problems with a higher number of peaks such as 100
and 200, the density of peaks is high. As a result, it is highly
likely that some peaks are covered by higher peaks. In such
case, the tracker swarm will lose its covered peak, and hence
their associated information, leading to a worse performance.
However, the multi-population algorithm would search for pos-
sible uncovered peaks all the time (Section III-A). Therefore,
when a peak hidden by another peak re-appears, the multi-
swarm algorithm would be able to find it and start gathering
information about it again. Although algorithm performances
are worse for 100 and 200 peaks in comparison with 50 peaks,
the average survival time values are still very good. This
demonstrates the ability of the proposed methods in dealing
with a higher number of peaks.

When increasing the threshold V , the performance of
RFTmPSO decreases because the survival time of solutions in
the problem space decreases. No algorithm can do anything
about this. Also, the performance of RFTmPSO versions are
closer when V is high because the number of options for
choosing the next robust solution decreases.

Table III shows that RFTmPSO-s2 performs better than
RFTmPSO-s3. This illustrates that the effect of shift severity
on the life cycle length of robust solutions is more important
than the effect of height variance. However, when we consider
both parameters (RFTmPSO-s4), as in (21), the performance
is improved. RFTmPSO-s4 performs best overall. RFTmPSO-
s1 could rarely outperform other versions of RFTmPSO which
means that considering fitness variance in (18) for choosing
the next robust solution is not the best way.

Table IV shows the obtained average survival time for
RFTmPSO for mMPBR with different numbers of peaks,
different numbers of dimensions and default values for other
parameters. The proposed RFTmPSO algorithms can find
robust solutions in high numbers of dimensions and peaks.
When the peak number increases to 50, the performance
improves regardless of the number of dimensions. Increasing
the number of peaks further to 100 or 200 leads to a slight
deterioration of results. The average survival time is also lower
because the problems become more complex for algorithms.
Overall, RFTmPSO-s4 maintains its superiority.

Table V shows the results of testing RFTmPSO on mMPBR
with different shift severities in 5 and 10 dimensions, with
default values for other parameters. As expected, when shift
severity increases, the average survival time decreases because
tracking peaks with higher shift severities is harder for tracker
swarms and their ability of gathering information decreases.
More importantly, the maximal possible survival time de-
creases due to the increased shift severities. Also, robust
solutions become unacceptable more quickly because peaks
move with larger steps. The worst results are observed when
all peaks have the same high shift severity of 5. When all peaks
have the same severity, information on a peaks shift severity is
not useful. Thus, RFTmPSO-s4 does not perform better than
other algorithms because it relies on learning the difference
of peak shift severities. On the other hand, RFTmPSO-s3,
which does not use information about shift severity, has the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

TABLE III
AVERAGE SURVIVAL TIME (AND STANDARD ERROR) ON MMPBR WITH DIFFERENT PEAK NUMBER m, f = 2500, s RANDOMIZED ∈ [0.5, 3] AND D = 5.

V Algorithm Peak Number, m

2 5 10 20 30 50 100 200

40

RFTmPSO-s1 3.08(0.65) 3.98(0.39) 4.80(0.62) 5.48(0.60) 6.46(0.75) 7.41(0.83) 6.19(0.47) 6.26(0.55)
RFTmPSO-s2 3.41(0.80) 4.13(0.46) 4.53(0.67) 5.60(0.82) 8.11(1.18) 7.84(0.99) 5.73(0.47) 6.11(0.60)
RFTmPSO-s3 3.36(0.80) 3.81(0.45) 4.21(0.61) 4.89(0.81) 6.65(1.08) 7.01(0.96) 5.87(0.71) 5.80(0.61)
RFTmPSO-s4 3.36(0.81) 3.86(0.45) 4.67(0.68) 6.14(0.85) 8.21(1.16) 8.23(0.98) 6.51(0.46) 6.89(0.62)

40

RFTmPSO-s1 2.19(0.52) 2.55(0.31) 3.34(0.40) 3.90(0.34) 4.31(0.39) 5.20(0.47) 4.98(0.60) 4.90(0.43)
RFTmPSO-s2 2.30(0.58) 2.59(0.30) 3.16(0.38) 3.63(0.33) 5.23(0.73) 5.73(0.63) 5.05(0.55) 5.07(0.34)
RFTmPSO-s3 2.29(0.58) 2.40(0.29) 3.00(0.37) 3.44(0.34) 4.77(0.57) 5.95(0.76) 4.36(0.55) 4.50(0.39)
RFTmPSO-s4 2.30(0.55) 2.48(0.28) 3.23(0.38) 4.22(0.41) 5.31(0.61) 6.16(0.62) 5.43(0.58) 5.44(0.37)

40

RFTmPSO-s1 1.33(0.39) 1.51(0.19) 2.40(0.35) 2.55(0.21) 3.26(0.46) 3.65(0.40) 3.17(0.25) 3.31(0. 33)
RFTmPSO-s2 1.35(0.39) 1.51(0.18) 2.10(0.25) 2.43(0.26) 3.19(0.34) 3.94(0.46) 3.27(0.40) 3.33(0.30)
RFTmPSO-s3 1.34(0.39) 1.46(0.17) 2.02(0.24) 2.51(0.28) 2.90(0.32) 3.93(0.55) 3.22(0.31) 3.20(0.32)
RFTmPSO-s4 1.34(0.39) 1.51(0.18) 2.18(0.27) 2.77(0.31) 3.67(0.56) 4.10(0.51) 3.39(0.37) 3.57(0.29)

TABLE IV
AVERAGE SURVIVAL TIME (AND STANDARD ERROR) ON MMPBR WITH DIFFERENT m, DIFFERENT D, f = 2500 AND s RANDOMIZED IN [0.5,3].

V Algorithm m = 5 m = 10 m = 20 m = 50 m = 100

D=2 D=5 D=10 D=2 D=5 D=10 D=2 D=5 D=10 D=2 D=5 D=10 D=2 D=5 D=10

40

RFTmPSO-s1 4.83 3.98 3.91 6.14 4.80 4.33 7.42 5.48 4.35 7.87 7.41 5.37 7.41 6.19 4.97
(0.87) (0.39) (0.75) (0.92) (0.62) (0.47) (1.09) (0.60) (0.35) (1.04) (0.83) (0.44) (2.00) (0.47) (0.43)

RFTmPSO-s2 4.98 4.13 3.77 7.23 4.53 4.39 9.26 5.60 4.22 7.91 7.84 5.60 7.50 5.73 4.62
(0.86) (0.46) (0.89) (1.59) (0.67) (0.52) (1.32) (0.82) (0.34) (0.68) (0.99) (0.50) (1.44) (0.47) (0.44)

RFTmPSO-s3 4.08 3.81 3.76 6.82 4.21 4.42 7.48 4.89 4.05 8.15 7.01 5.46 6.91 5.87 5.21
(0.44) (0.45) (0.88) (1.41) (0.61) (0.57) (1.17) (0.81) (0.43) (0.98) (0.96) (0.78) (0.69) (0.71) (0.46)

RFTmPSO-s4 4.84 3.86 3.83 8.03 4.67 4.49 9.71 6.14 4.22 8.47 8.23 5.93 8.29 6.51 5.30
(0.86) (0.45) (0.88) (1.62) (0.68) (0.56) (1.40) (0.85) (0.38) (1.04) (0.98) (0.69) (1.34) (0.46) (0.39)

45

RFTmPSO-s1 3.15 2.55 2.45 4.66 3.34 3.23 5.11 3.90 3.29 6.52 5.20 4.50 6.42 4.98 3.29
(0.48) (0.31) (0.43) (0.87) (0.40) (0.41) (0.63) (0.34) (0.29) (1.02) (0.47) (0.48) (0.58) (0.60) (0.24)

RFTmPSO-s2 3.24 2.59 2.46 5.24 3.16 2.95 5.67 3.63 3.30 6.10 5.73 4.74 6.06 5.05 3.26
(0.49) (0.30) (0.43) (1.14) (0.38) (0.34) (0.68) (0.33) (0.29) (0.59) (0.63) (0.58) (0.48) (0.55) (0.25)

RFTmPSO-s3 3.31 2.40 2.36 5.17 3.00 3.02 5.03 3.44 3.25 6.27 5.95 4.81 5.72 4.36 3.68
(0.53) (0.29) (0.42) (1.15) (0.37) (0.38) (0.64) (0.34) (0.33) (0.62) (0.76) (0.57) (0.55) (0.55) (0.28)

RFTmPSO-s4 3.30 2.48 2.46 5.32 3.23 3.00 5.65 4.22 3.51 7.03 6.16 5.03 6.48 5.43 3.87
(0.51) (0.28) (0.42) (1.14) (0.38) (0.38) (0.68) (0.41) (0.33) (1.23) (0.62) (0.57) (0.52) (0.58) (0.27)

50

RFTmPSO-s1 1.99 1.51 1.48 2.40 2.40 1.85 3.32 2.55 2.26 4.52 3.65 2.99 4.27 3.17 2.34
(0.36) (0.19) (0.33) (0.37) (0.35) (0.26) (0.39) (0.21) (0.21) (0.86) (0.40) (0.35) (0.36) (0.25) (0.14)

RFTmPSO-s2 1.92 1.51 1.45 2.57 2.10 1.94 3.58 2.43 2.11 4.74 3.94 3.18 4.49 3.27 2.25
(0.30) (0.18) (0.32) (0.40) (0.25) (0.28) (0.45) (0.26) (0.21) (0.83) (0.46) (0.36) (0.40) (0.40) (0.16)

RFTmPSO-s3 1.87 1.46 1.48 2.46 2.02 1.94 3.49 2.51 2.23 4.62 3.93 3.06 3.75 3.22 2.51
(0.31) (0.17) (0.32) (0.40) (0.24) (0.28) (0.46) (0.28) (0.25) (0.65) (0.55) (0.36) (0.37) (0.31) (0.15)

RFTmPSO-s4 1.95 1.51 1.48 2.68 2.18 1.97 3.75 2.77 2.19 4.19 4.10 3.18 4.57 3.39 2.64
(0.33) (0.18) (0.33) (0.40) (0.27) (0.29) (0.45) (0.31) (0.23) (0.54) (0.51) (0.34) (0.39) (0.37) (0.17)

best results on these problems.
On instances in which each peak has its own randomly gen-

erated shift severity, RFTmPSO-s4 and RFTmPSO-s2 obtain
the best results. In these instances, some peaks have higher
values of shift severity which make them less reliable for
carrying robust solutions and vice versa. Therefore, algorithms
that learn about shift severities such as RFTmPSO-s4 and
RFTmPSO-s2 can find more robust solutions. RFTmPSO-s4
obtains the best results due to using both types of information
(shift severity and HeightVar). Similar to Table IV, in Table V
the average survival time values are lower in 10-dimensions
than in 5-dimensions.

Table VI shows the average survival time by RFTmPSO
in mMPBR with different numbers of peaks and change
frequencies, with default values for other parameters. Like in
previous experiments, RFTmPSO-s4 has better performance
overall in environments with higher change frequencies. In

problem instances with fewer evaluations per change (lower f ,
higher change frequency), the average survival time decreases
because the accuracy of gathered information and the local
search in each peak decrease. This is due to a lack of time to
react to changes. For f = 500, the difference between methods
is small due to lower information accuracy. When f increases,
the difference between the methods becomes more noticeable.

The average survival time in problems with a small number
of peaks does not decrease significantly when f is small.
The reason is that a small number of peaks means a small
number of sub-swarms, so the algorithm has enough time
for exploitation before the next environmental change. On the
other hand, when the number of peaks is high, the algorithm
has many sub-swarms and so can perform fewer iterations of
exploiting before the next environmental change. This leads
to less accurate information and lower performance.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

TABLE V
AVERAGE SURVIVAL TIME (AND STANDARD ERROR) ON MMPBR WITH DIFFERENT SHIFT SEVERITIES s, D = 5, m = 10, 20 AND f = 2500.

V Algorithm 5 Dimensional 10 Dimensional

s=1 s=5 s=r(0.5,1) s=r(0.5,3) s=r(0.5,5) s=1 s=5 s=r(0.5,1) s=r(0.5,3) s=r(0.5,5)

40

RFTmPSO-s1 7.87(0.80) 1.21(0.10) 10.17(0.64) 5.48(0.60) 5.35(0.58) 5.26(0.37) 1.05(0.07) 9.19(1.11) 4.35(0.35) 3.94(0.46)
RFTmPSO-s2 7.47(0.61) 1.08(0.07) 11.64(1.17) 5.60(0.82) 5.98(0.88) 4.02(0.32) 1.02(0.08) 8.74(1.12) 4.22(0.34) 3.75(0.41)
RFTmPSO-s3 8.26(0.69) 1.20(0.12) 10.40(0.92) 4.89(0.81) 5.45(0.91) 5.68(0.57) 1.08(0.07) 9.63(1.26) 4.05(0.43) 3.70(0.50)
RFTmPSO-s4 8.10(0.81) 1.16(0.10) 11.96(1.14) 6.14(0.85) 5.94(1.00) 5.34(0.39) 1.08(0.07) 9.77(1.13) 4.22(0.38) 3.91(0.44)

40

RFTmPSO-s1 5.98(0.56) 0.78(0.07) 7.63(0.64) 3.90(0.34) 3.59(0.41) 4.02(0.34) 0.73(0.05) 6.65(0.95) 3.29(0.29) 2.68(0.28)
RFTmPSO-s2 5.76(0.56) 0.73(0.05) 6.87(0.60) 3.63(0.33) 3.51(0.46) 3.25(0.28) 0.70(0.06) 6.61(1.12) 3.30(0.29) 2.67(0.28)
RFTmPSO-s3 6.50(0.68) 0.79(0.06) 8.02(0.73) 3.44(0.34) 3.67(0.56) 4.17(0.39) 0.75(0.06) 7.22(1.03) 3.25(0.33) 2.65(0.31)
RFTmPSO-s4 6.42(0.71) 0.77(0.06) 8.38(0.72) 4.22(0.41) 3.85(0.50) 4.10(0.34) 0.74(0.06) 7.62(1.16) 3.51(0.33) 2.79(0.32)

40

RFTmPSO-s1 4.49(0.52) 0.43(0.05) 5.21(0.37) 2.55(0.21) 2.18(0.26) 2.56(0.22) 0.40(0.03) 4.86(1.00) 2.26(0.21) 1.80(0.25)
RFTmPSO-s2 3.82(0.37) 0.41(0.04) 4.72(0.51) 2.43(0.26) 2.43(0.36) 1.99(0.14) 0.40(0.03) 4.75(0.98) 2.11(0.21) 1.80(0.21)
RFTmPSO-s3 4.63(0.50) 0.45(0.04) 5.50(0.60) 2.51(0.28) 2.40(0.36) 2.63(0.22) 0.41(0.03) 5.36(1.09) 2.23(0.25) 1.74(0.27)
RFTmPSO-s4 4.32(0.45) 0.42(0.04) 5.61(0.62) 2.77(0.31) 2.45(0.35) 2.62(0.21) 0.41(0.03) 5.43(1.09) 2.19(0.23) 1.81(0.27)

TABLE VI
AVERAGE FITNESS VALUE (AND STANDARD ERROR) ON MMPBR WITH DIFFERENT m AND EVALUATION BETWEEN CHANGES f , s RANDOMIZED IN

[0.5,3] AND D=5.

V Algorithm m = 5 m = 10 m = 20 m = 50 m = 100

f =500 f =1000 f =2500 f =500 f =1000 f =2500 f =500 f =1000 f =2500 f =500 f =1000 f =2500 f =500 f =1000 f =2500

40

RFTmPSO-s1 2.80 3.54 3.98 4.03 4.13 4.80 4.37 4.89 5.48 5.35 5.61 7.41 5.00 5.27 6.19
(0.28) (0.73) (0.39) (0.34) (0.46) (0.62) (0.28) (0.38) (0.60) (0.38) (0.65) (0.83) (0.43) (0.60) (0.47)

RFTmPSO-s2 2.49 3.78 4.13 3.90 4.25 4.53 4.36 5.10 5.60 5.55 5.86 7.84 4.95 5.52 5.73
(0.29) (0.79) (0.46) (0.32) (0.49) (0.67) (0.30) (0.40) (0.82) (0.39) (0.70) (0.99) (0.51) (0.68) (0.47)

RFTmPSO-s3 2.77 3.32 3.81 3.92 4.03 4.21 4.25 4.44 4.89 5.46 5.63 7.01 4.98 4.75 5.87
(0.29) (0.65) (0.45) (0.42) (0.44) (0.61) (0.35) (0.33) (0.81) (0.40) (0.57) (0.96) (0.49) (0.71) (0.71)

RFTmPSO-s4 2.80 3.90 3.86 4.01 4.37 4.67 4.42 5.00 6.14 5.50 5.94 8.23 5.36 5.63 6.51
(0.28) (0.80) (0.45) (0.29) (0.48) (0.68) (0.27) (0.41) (0.85) (0.41) (0.70) (0.98) (0.56) (0.70) (0.46)

45

RFTmPSO-s1 2.04 2.06 2.55 2.80 3.05 3.34 3.28 3.51 3.90 3.87 4.27 5.20 3.60 3.68 4.98
(0.23) (0.44) (0.31) (0.29) (0.33) (0.40) (0.23) (0.30) (0.34) (0.30) (0.50) (0.47) (0.34) (0.40) (0.60)

RFTmPSO-s2 1.94 2.23 2.59 2.82 3.04 3.16 3.27 3.48 3.63 3.94 4.08 5.73 3.71 3.81 5.05
(0.18) (0.49) (0.30) (0.30) (0.35) (0.38) (0.21) (0.31) (0.33) (0.29) (0.67) (0.63) (0.36) (0.47) (0.55)

RFTmPSO-s3 2.05 2.13 2.40 2.77 3.08 3.00 3.23 3.35 3.44 3.92 4.33 5.95 3.59 4.07 4.36
(0.25) (0.48) (0.29) (0.28) (0.38) (0.37) (0.24) (0.29) (0.34) (0.30) (0.78) (0.76) (0.31) (0.49) (0.55)

RFTmPSO-s4 2.07 2.23 2.48 2.85 3.11 3.23 3.33 3.90 4.22 3.98 4.41 6.16 3.84 4.00 5.43
(0.22) (0.48) (0.28) (0.33) (0.38) (0.38) (0.24) (0.37) (0.41) (0.30) (0.69) (0.62) (0.37) (0.47) (0.58)

50

RFTmPSO-s1 1.14 1.37 1.51 1.87 1.95 2.40 2.04 2.30 2.55 2.42 2.88 3.65 2.31 2.48 3.17
(0.10) (0.24) (0.19) (0.22) (0.29) (0.35) (0.16) (0.23) (0.21) (0.14) (0.32) (0.40) (0.25) (0.33) (0.25)

RFTmPSO-s2 1.15 1.42 1.51 1.86 2.03 2.10 2.04 2.33 2.43 2.42 2.57 3.94 2.40 2.37 3.27
(0.10) (0.24) (0.18) (0.20) (0.29) (0.25) (0.17) (0.19) (0.26) (0.15) (0.25) (0.46) (0.26) (0.35) (0.40)

RFTmPSO-s3 1.13 1.33 1.46 1.83 1.96 2.02 2.02 2.31 2.51 2.42 3.15 3.93 2.29 2.56 3.22
(0.11) (0.24) (0.17) (0.20) (0.32) (0.24) (0.15) (0.20) (0.28) (0.15) (0.34) (0.55) (0.25) (0.41) (0.31)

RFTmPSO-s4 1.17 1.48 1.51 1.93 2.10 2.18 2.09 2.44 2.77 2.44 3.00 4.10 2.44 2.55 3.39
(0.10) (0.24) (0.18) (0.21) (0.32) (0.27) (0.17) (0.21) (0.31) (0.16) (0.28) (0.51) (0.26) (0.37) (0.37)

B. Comparison with other methods

According to the reported results in Tables III to VI
and based on the multiple comparison statistical analysis,
the fourth strategy outperforms other strategies of the pro-
posed framework. In this part, we use three different multi-
swarm methods including FTmPSO [30], AmQSO [28] and
mNAFSA [20] inside the proposed ROOT framework in
combination with Strategy 4 (s4) to investigate the effect of the
multi-swarm methods performance on the ROOT framework.
These three algorithms are called RFTmPSO-s4, RAmQSO-s4
and RmNAFSA-s4, and are compared against three existing
methods. The first method is a TMO algorithm based on
FTmPSO [30] in which, when the current robust solution is
not acceptable, the algorithm simply chooses the best found
position as the next robust solution. Parameter settings of
FTmPSO are the same as reported in Table II and parameter
settings of AmQSO and mNAFSA are as proposed in their
original references [20], [28]. As mentioned before, since the

task of the multi-swarm methods in the proposed framework
is the same as their original purpose, i.e, TMO, parameter
settings suggested in the original papers can be used here
as well. For RAmQSO-s4 and RmNAFSA-s4, we use the
same exclusion mechanism as RFTmPSO-s4 with the same
exclfactor value. Additionally, both of them use the obtained
value for shift severities in (15) instead of the actual value as
an initial knowledge.

The other two methods are two reproduced versions of the
method proposed in [8], which are considered the state-of-
the-art in the field of ROOT at the moment [8]–[11]. The first
version is exactly what was implemented in [8], utilizing the
true values of previous environments instead of approximated
values for training predictors, i.e., it assumes it does not need
to use an approximator because it has access to the true values
of previous environments. We will call it ROOT with predicted
values (ROOT-PV) and the parameter settings of PSO and
AR are the same as those used in [8]. The second version
is reproduced from [11], in which the ROOT algorithm even

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE VII
AVERAGE SURVIVAL TIME AND FITNESS VALUES (AND STD. ERR) ON TEST INSTANCES WITH DIFFERENT DIMENSION D AND PEAK NUMBER m, F=2500

AND s RANDOMIZED IN [0.5,3]. BEST RESULTS BASED ON WILCOXON SIGNED-RANK TEST WITH HOLM-BONFERRONI p-VALUE CORRECTION, α = 0.05
ARE HIGHLIGHTED, IGNORING ROOT-TFV DUE TO ITS UNREALISTIC ASSUMPTION OF KNOWING THE TRUE FUTURE FITNESS.

V Algorithm Survival time Fitness value of robust solutions

D=2,P=5 D=2,P=20 D=5,P=5 D=5,P=20 D=2,P=5 D=2,P=20 D=5,P=5 D=5,P=20

40

ROOT-PV 3.10(0.39) 5.64(0.80) 0.83(0.16) 2.26(0.61) 48.35(0.32) 50.79(0.33) -53.99(15.53) 20.49(3.04)
ROOT-TFV 5.74(0.47) 8.06(0.89) 1.26(0.19) 3.29(0.33) 49.82(0.18) 51.64(0.21) -54.37(13.45) 32.22(1.46)
FTmPSO(TMO) 4.34(0.79) 6.18(1.00) 3.49(0.34) 4.22(0.33) 53.94(0.26) 55.53(0.20) 53.04(0.25) 54.68(0.16)
RAmQSO-s4 5.40(0.91) 6.20(0.56) 4.15(0.87) 5.58(0.63) 52.19(0.32) 52.57(0.28) 51.45(0.32) 50.88(0.36)
RmNAFSA-s4 4.72(0.83) 7.45(1.09) 3.71(0.52) 5.70(0.49) 52.60(0.35) 52.46(0.27) 51.48(0.29) 51.09(0.32)
RFTmPSO-s4 4.84(0.86) 9.71(1.40) 3.86(0.45) 6.14(0.85) 52.52(0.36) 52.40(0.29) 51.02(0.31) 51.26(0.41)

45

ROOT-PV 2.71(0.26) 4.91(1.15) 0.13(0.05) 1.11(0.23) 50.70(0.39) 53.51(0.20) -124.90(17.06) 2.92 (6.80)
ROOT-TFV 3.93(0.36) 6.87(0.60) 0.29(0.08) 1.58(0.20) 51.22(0.24) 54.24(0.23) -133.3(16.58) 16.19(3.92)
FTmPSO(TMO) 2.97(0.57) 3.71(0.42) 2.22(0.26) 3.26(0.22) 56.47(0.18) 58.24(0.16) 56.02(0.21) 57.22(0.15)
RAmQSO-s4 3.39(0.67) 4.79(0.56) 2.64(0.59) 4.16(0.55) 55.00(0.27) 55.93(0.23) 54.90(0.21) 54.23(0.27)
RmNAFSA-s4 3.28(0.59) 4.96(0.60) 2.40(0.33) 4.15(0.38) 54.95(0.26) 55.52(0.25) 54.91(0.23) 54.44(0.29)
RFTmPSO-s4 3.30(0.51) 5.65(0.68) 2.48(0.28) 4.22(0.41) 55.34(0.26) 55.14(0.23) 54.55(0.21) 54.53(0.26)

50

ROOT-PV 1.68(0.22) 2.83(0.37) 0.04(0.06) 0.37(0.23) 51.40(0.60) 56.45(0.12) -190.50(19.76) -37.01(7.55)
ROOT-TFV 2.48(0.34) 4.36(0.26) 0.19(0.05) 0.63(0.11) 51.49(0.61) 56.66(0.09) -116.73(14.48) -11.98(6.18)
FTmPSO(TMO) 1.79(0.31) 2.41(0.19) 1.29(0.16) 2.09(0.18) 58.79(0.19) 61.02(0.13) 58.56(0.23) 60.04(0.14)
RAmQSO-s4 2.16(0.38) 3.21(0.50) 1.63(0.46) 2.55(0.28) 57.47(0.30) 59.15(0.13) 57.73(0.18) 57.94(0.16)
RmNAFSA-s4 1.95(0.35) 3.44(0.48) 1.52(0.19) 2.51(0.22) 57.88(0.24) 58.47(0.17) 57.51(0.22) 57.81(0.19)
RFTmPSO-s4 1.95(0.33) 3.75(0.45) 1.51(0.18) 2.77(0.31) 58.09(0.22) 58.36(0.19) 57.68(0.21) 58.14(0.18)

had access to the future true values instead of having to
approximate past fitness functions and predict future values.
We will call this version ROOT with true future values (ROOT-
TFV). Note that ROOT-TFV is the ROOT method proposed
in [8] using the true future values, and was used in [11].

The reason behind choosing ROOT-TFV in our comparisons
is to investigate the effect of prediction error on the perfor-
mance of the ROOT algorithm. For PSO in ROOT-TFV, we
used the same parameter setting as ROOT-PV. We will not
consider the obtained results of ROOT-PV in environments for
which the training datasets are not complete. Note that ROOT-
PV and even more so ROOT-TFV have access to information
that is not available in real-world optimization, and thus results
can only be taken as an upper bound of what these methods are
able to achieve in practice. As mentioned before, we assume
that the algorithms are informed when environmental changes
happen.

The experiments in this section are done on four different
test instances of mMPBR on 2 and 5 dimensions with 5
and 20 peaks (all other parameters have default values).
This combination shows how tested methods perform across
different dimensions and numbers of peaks. The results of
ROOT-PV, ROOT-TFV, FTmPSO, RFTmPSO-s4, RAmQSO-
s4 and RmNAFSA-s4 are summarized in Table VII.

Not surprisingly, the average survival time of ROOT-TFV
is better than that of ROOT-PV in all tests since ROOT-TFV
eliminates predictor errors by assuming perfect knowledge
of peak movements. Also, the autoregressive model, used
by ROOT-PV as predictor [8], uses true values of solutions
fitness values in previous environments for training. In a
practical application where such information is not available,
the performance of both algorithms will likely be worse.

Figure 1 compares the true and predicted landscapes in
D=2. Each environment is produced by 2500 points, and the

parameter setting of mMPBR is based on default values in
Table I with m=5. The first 15 environments are used to train
the predictor [6], [8]. Figure 1 shows that the error of the
predictor is noticeable even though the true fitness values in
previous environments are used to train it.

As can be seen in Table VII, ROOT-TFV has the highest
average survival time in test instances with D=2 but loses
its superiority in problems with D=5 and its performance,
as well as that of ROOT-PV, experience a dramatic drop.
To understand why these two methods struggle with even
moderately dimensional problems, one has to note that they
use (8) as fitness instead of the true fitness function (22).
Figure 2 visualizes an example of the search space according
to (8) in D=2. Figure 2(a) shows the true fitness landscape
according to (22) and Fig. 2(b) shows the corresponding
environment based on (8) with V =40 and its true five future
environments. As can be seen, most of the problem landscapes
defined by (8) are flat with a few narrow peaks. This is really
challenging for the optimizer, especially in higher dimensions.

To investigate the performance of PSO in this type of
environments, we use PSO for optimizing the mMPBR with 5
peaks and 100 environmental changes. This experiment is done
50 times and at the end of each environment, the Gbest value
of PSO based on the environment made by (8) is saved. The
average Gbest values are reported in Table VIII. Experiments
for Table VIII are done on mMPBR in 2, 5 and 10 dimensions
and with the number of evaluations per change f of 2500 and
10000 and V = 40.

For f=2500 we used PSO with 50 particles and for f=10000
we increased the population size to 100. With D=2, although
the second PSO benefits from a larger population size and
more time to do exploration and exploitation in each envi-
ronment, its performance is not so much better than the first
PSO. With D=5, the performance of both PSOs decreases

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

(a) 16th true environment (b) 17th true environment (c) 18th true environment

(d) 16th predicted environment (e) 17th predicted environment (f) 18th predicted environment

Fig. 1. An example of mMPBR in dimension D=2 to show the error of the predictor.

(a) True problem space

(b) Problem space based on survival time
metric

Fig. 2. The search space made by (8) with a threshold V =40, dimension
D=2 and peak number m=5 versus the true problem space.

TABLE VIII
AVERAGE GBEST VALUE (STANDARD ERROR IN PARENTHESIS) OF PSO IN

SEARCH SPACE MADE BY (8) WITH DIFFERENT DIMENSION D.

Parameter settings D=2 D=5 D=10

Population size=50, f =2500 5.02(0.17) 2.78(0.32) 0(0)
Population size=100, f =10000 5.31(0.16) 3.42(0.27) 0(0)

significantly and the results show that they are not able to
find the best peak. Furthermore, the difference between the
first and the second PSO increases relatively to their results
in D = 2. This shows that the PSO needs more particles and

time to deal with this type of environment. PSO fails to find
peaks in D = 10.

Given the results in Table VIII and the fact that the search
environment is shaped by the survival time metric (8) (an
example is shown in Fig. 2(b)), we conclude that with increas-
ing dimension, the search space becomes very challenging
for optimizers using the survival time metric (8). This was
confirmed in [11] where ROOT methods based on (8) have
poor performance in higher dimensions. Our analysis provides
an explanation for this behavior.

Table VII shows that the performance of FTmPSO, designed
for TMO but used as ROOT algorithm, is better than ROOT-
PV in most test instances and works surprisingly well at find-
ing robust solutions. The only other paper that has investigated
the performance of population-based algorithms designed for
TMO in the context of ROOT is [6], and according to
the reported results and analysis in this paper, some TMO
algorithms also succeeded in finding robust solutions in ROOT.
The reason behind the acceptable performance of some TMO
based algorithms in ROOT is that in most research in the
DOP domain, researchers have been working on DOPs with
small changes, where the obtained knowledge from the current
environment is useful for improving the optimization process
in the next environment. In this type of environments which
were also used in most ROOT papers, solutions around the
peak centers can be robust solutions. Indeed, when comparing
Fig. 2(a) and Fig. 2(b), it can be seen that robust solutions are
around peak centers.

As can be seen in Table VII, the methods based on the
proposed ROOT framework with strategy four can perform
really well in maximizing the average survival time of robust
solutions. All of RFTmPSO-s4, RAmQSO-s4 and RmNAFSA-
s4 outperform ROOT-PV in all test instances in this section
and only ROOT-TFV [8] (which, as mentioned before, is an
unrealistic version of the ROOT algorithm due to its assumed
knowledge of future environments) has better results in test

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

problems with D=2. The average fitness value (11) of robust
solutions obtained by the TMO algorithm is the best in all
test instances because this algorithm chooses the best found
solution in terms of fitness value.

For all three methods based on the proposed ROOT frame-
work, the average fitness value of robust solutions in all test
instances are better than that of ROOT-PV and ROOT-TFV
because the proposed methods search the problem space with
actual fitness values and choose one of the peaks as robust
solution. On the other hand, ROOT-PV and ROOT-TFV use
the survival time metric and thus can get stuck in flat areas
(Fig. 2(b)). For the same reason, their average fitness value
can be very poor in problems with higher D and V (e.g. these
two algorithms achieve negative average fitness values in D=5,
m=5).

In this section, we embedded three different multi-swarm
methods in the proposed ROOT framework. The reported
results in Table VII show that the proposed algorithms are
able to perform better than previous state-of-the-art survival
time metric (8) based methods especially on the environments
with higher number of dimensions.

Comparing results of RFTmPSO-s4, RAmQSO-s4 and
RmNAFSA-s4, we realize that the quality of swarms in finding
and tracking peaks can improve the proposed frameworks
performance noticeably. Specifically, better peak finding and
tracking performance corresponds to more accurate informa-
tion (gathered by (15), (16) and (17)) leading to more reliable
decision making by (18), (19), (20) and (21).

VI. CONCLUSION

A new framework for robust optimization over time
(ROOT) was proposed. In the proposed framework, a multi-
swarm/multi-population method is responsible for finding,
tracking and monitoring peaks. Each sub-swarm gathers in-
formation about its covered peak. This information is used
to predict the future behavior of the peak and pick the
next robust solution in case the current solution becomes
unacceptable. We used three types of information based on
shift severity, height variance and fitness variance of peaks
and designed four different solution selection strategies based
on this information. The experimental results show that the
fourth strategy that uses the information about shift severity
as well as height variance of peaks had the best performance
overall and can be used for other problem instances.

We used a wide range of problem settings to investigate
the performance of the proposed framework based algorithms
versus the existing state-of-the-art framework based on a sur-
vival time metric. We showed that the performance of previous
methods that use the survival time metric is substantially
worse in problems with higher dimensions. All previous state-
of-the-art methods attempt to predict future fitness values
of solutions based on previous fitness values of solutions.
However, this is a difficult task and can become almost
impossible for problems with higher dimensions, larger search
space and higher change frequencies. In our experiments, we
thus investigate the considerable effect of predictor errors
and approximation errors on the performance of previous

methods. On the other hand, our proposed framework does not
have to deal with the challenges of predicting future fitness
values. The experimental results show that the performance
of the proposed framework is significantly better than that
of state-of-the-art methods especially in problems with higher
dimensions.

We tested the proposed framework based algorithms on
problem instances with different combinations of parameter
settings of mMPBR and provided performance analysis based
on them. The results showed that the problem becomes more
challenging when shift severities of peaks, dimension of
problem space, and change frequency are higher. However,
the reported results showed that the proposed methods were
able to perform very well even in more challenging problems.

Future work will include a study of other peaks behavioral
information and design of new strategies for choosing robust
solutions. Additionally, other objectives of robust optimization
over time such as minimizing solution change cost will be
investigated. Another interesting area is ROOT for DOPs with
undetectable changes [36]. Finally, we will investigate the
performance of the proposed framework on other types of
problems including real-world applications.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Mohammad Nabi
Omidvar for the valuable discussions and his constructive
feedback.

REFERENCES

[1] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[2] D. E.Wilkins, S. F.Smith, L. A.Kramer, T. J.Lee, and T. W.Rauenbusch,
“Airlift mission monitoring and dynamic rescheduling,” Engineering
Applications of Artificial Intelligence, vol. 21, no. 2, pp. 141–155, 2008.

[3] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, “On-
line decision support for take-off runway scheduling with uncertain taxi
times at london heathrow airport,” Journal of Scheduling, vol. 11, no. 5,
pp. 323–346, 2008.

[4] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time - a
new perspective on dynamic optimization problems,” in IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2010, pp. 1–6.

[5] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Characterizing environmen-
tal changes in robust optimization over time,” in IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2012, pp. 1–8.

[6] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A framework for
finding robust optimal solutions over time,” Memetic Computing, vol. 5,
no. 01, pp. 3–18, 2013.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Inter-
national Conference on Neural Networks, vol. 04. IEEE, 1995, pp.
1942–1948.

[8] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust solutions
to dynamic optimization problems,” in Applications of Evolutionary
Computation, vol. 7835. Lecture Notes in Computer Science, 2013,
pp. 616–625.

[9] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Robust optimization over
time: problem difficulties and benchmark problems,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 5, pp. 731–745, 2015.

[10] Y. nan Guo, M. Chen, H. Fu, and Y. Liu, “Find robust solutions over time
by two-layer multi-objective optimization method,” in IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2014, pp. 1528–1535.

[11] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective approach to
robust optimization over time considering switching cost,” Information
Sciences, vol. 394-395, pp. 183–197, 2017.

[12] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
series analysis: forecasting and control. Wiley, 2015.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

[13] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1–17, 2017.

[14] J. Branke, T. Kaussler, C. Smidt, and H. Schmeck, “A multipopulation
approach to dynamic optimization problems,” in Evolutionary Design
and Manufacture, 2000, pp. 299–307.

[15] D. Yazdani, B. Nasiri, R. Azizi, A. Sepas-Moghaddam, and M. R.
Meybodi, “Optimization in dynamic environments utilizing a novel
method based on particle swarm optimization,” International Journal
of Artificial Intelligence, vol. 11, pp. 170–192, 2013.

[16] C. Li and S. Yang, “Optimization in dynamic environments utilizing a
novel method based on particle swarm optimization,” in 4th International
Conference on Natural Computation. IEEE, 2008, pp. 624–628.

[17] A. Sepas-Moghaddam, A. Arabshahi, D. Yazdani, and M. M. Dehshibi,
“A novel hybrid algorithm for optimization in multimodal dynamic en-
vironments,” in International Conference on Hybrid Intelligent Systems
(HIS). IEEE, 2012, pp. 143–148.

[18] B. Nasiri, M. R. Meybodi, and M. M. Ebadzadeh, “History-driven
particle swarm optimization in dynamic and uncertain environments,”
Neurocomputing, vol. 172, pp. 356–370, 2016.

[19] D. Yazdani, A. Sepas-Moghaddam, A. Dehban, and N. Horta, “A novel
approach for optimization in dynamic environments based on modified
artificial fish swarm algorithm,” International Journal of Computational
Intelligence and Applications, vol. 15, no. 02, pp. 1 650 010–1 650 034,
2016.

[20] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. R. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: A novel approach for optimiza-
tion in dynamic environments with global changes,” Swarm and Evolu-
tionary Computation, vol. 18, pp. 38–53, 2014.

[21] D. Yazdani, M. R. Akbarzadeh-Totonchi, B. Nasiri, and M. R. Meybodi,
“A new artificial fish swarm algorithm for dynamic optimization prob-
lems,” in IEEE Congress on Evolutionary Computation (CEC). IEEE,
2012, pp. 1–8.

[22] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 04, pp. 440–458, 2006.

[23] S. Bird and X. Li, “Using regression to improve local convergence,” in
IEEE Congress on Evolutionary Computation. IEEE, 2007, pp. 592–
599.

[24] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic
optimization,” in IEEE Congress on Evolutionary Computation. IEEE,
2009, pp. 439–446.

[25] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 06, pp. 959–974, 2010.

[26] W. Du and B. Li, “Multi-strategy ensemble particle swarm optimization
for dynamic optimization,” Information Sciences, vol. 178, no. 15, pp.
3096–3109, 2008.

[27] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[28] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Ap-
plications, C. Blum and D. Merkle, Eds. Springer, 2008, pp. 193–217.

[29] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multi-population framework for locating and tracking multiple
optima,” IEEE Transactions on Evolutionary Computation, vol. 20,
no. 05, pp. 590–605, 2016.

[30] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 04, pp. 2144–2158, 2013.

[31] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A multi-
objective time-linkage approach for dynamic optimization problems with
previous-solution displacement restriction,” in European Conference on
the Applications of Evolutionary Computation, K. Sim and P. Kaufmann,
Eds. Lecture Notes in Computer Science, 2018, vol. 10784, pp. 864–
878.

[32] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, Birmingham,
UK, 2011.

[33] J. Branke, “Memory enhanced evolutionary algorithms for changing op-
timization problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 1999, pp. 1875–1882.

[34] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-
swarm particle swarm optimization for robust optimization over time,”
in Applications of Evolutionary Computation, G. Squillero and K. Sim,

Eds. Springer Lecture Notes in Computer Science, 2017, vol. 10200,
pp. 99–109.

[35] C. Li, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, and H. G. Beyer, “Bench-
mark generator for cec 2009 competition on dynamic optimization,”
Department of Computer Science, University of Leicester, UK, Tech.
Rep., 2009.

[36] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 556–577, 2012.

Danial Yazdani received his BSc in 2007 from
Shirvan Azad University, and his MSc in 2011 from
Qazvin Azad University in computer science. Cur-
rently, he is a PhD student at Liverpool John Moores
University. His main research interests include dif-
ferent types of dynamic optimization problems such
as constrained, time-linkage, multi-objective, large-
scale, and combinatorial. He has published more
than 20 papers in peer-reviewed journals and con-
ferences.

Trung Thanh Nguyen received his BSc in 2000
from Vietnam National University, and his MPhil
and PhD in Computing Science from University of
Birmingham in 2007 and 2011, respectively. He has
been a Reader in Operational Research at Liverpool
John Moores University (LJMU) since 2015. Prior
to that, he was a Senior Lecturer in Optimisation
and Simulation Modelling at LJMU since 2013,
and a Research Fellow at LJMU and University of
Birmingham in 2011. His current research interests
include operational research/dynamic optimisation

with a particular application to logistics/transport problems.
He is currently the principal investigator of four research grants in transport

and logistics. He has published more than 40 peer-reviewed papers. He is/was
the chair of three leading conference tracks, member of TPCs of over 30
leading conferences, editor of five books, two journals and invited speaker of
various conferences and events.

Jürgen Branke (M’02) received the Ph.D. degree
from University of Karlsruhe, Karlsruhe, Germany,
in 2000. He is a Professor of Operational Research
and Systems with the Warwick Business School,
University of Warwick, Coventry, U.K. He has been
an active researcher in the area of evolutionary
optimization since 1994 and has published more
than 170 papers in international peer-reviewed jour-
nals and conferences. His research interests include
multiobjective optimization, handling of uncertainty
in optimization, dynamically changing optimization

problems, simulation-based optimisation and the design of complex systems.
He is area editor of the Journal of Heuristics and the Journal on Multi-
Criteria Decision Analysis, as well as associate editor of IEEE Transactions
in Evolutionary Computation and the Evolutionary Computation Journal.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Supplementary Document of ‘Robust optimization
over time by learning problem space characteristics’

Danial Yazdani, Trung Thanh Nguyen, and Jürgen Branke

CONTENTS

S-I Sensitivity Analysis 1
S-I-A Effect of FTmPSO parameter settings

on RFTmPSO performance 1
S-I-B Effect of different parameter settings of

ROOT-PV on its performance 3

References 3

S-I. SENSITIVITY ANALYSIS

In this document, we investigate the effect of different
parameter settings of FTmPSO [1] as a multi-swarm method
embedded in the proposed ROOT framework on the average
survival time. To test the sensitivity to a particular parameter,
we change this parameter while keeping all other parameters
as specified in Table II. Moreover, we investigate the effect of
different population sizes on the performance of the ROOT-
PV method. Experiments are done on mMPBR with its default
parameter setting reported in Table I. All experimental results
are obtained by performing 30 independent runs. Best results
based on Wilcoxon signed-rank test with Holm-Bonferroni p-
value correction, α = 0.05 are highlighted in each table.

A. Effect of FTmPSO parameter settings on RFTmPSO per-
formance

The first set of experiments examines the effect of the
tracker-swarms population size on the obtained survival time
by all four versions of RFTmPSO which is reported in Ta-
ble S-I. Overall, results demonstrate that five-particle tracker-
swarms are best. According to Section III-A, the multi-swarm
algorithm in the proposed ROOT framework needs to track
multiple optima (TMO), which is similar to its original pur-
pose. If the multi-swarm method tracks peaks properly, more
accurate information can be provided for the phase of selecting
more robust solutions.

Table S-II illustrates the obtained results from algorithms
with different number of particles in the finder-swarm (a sub-
swarm in FTmPSO that is responsible for finding uncovered
peaks). As it can be observed, the best performance overall
is obtained when the finder-swarms population size is 10.
Lower values result in decreasing ability of this sub-swarm to
find uncovered peaks. On the other hand, a higher population
size of the finder-swarm results in a waste of computational
resources (fitness evaluations). Our deeper analysis using
visual plots indicated that a larger finder-swarm leads to a
convergence to better peaks, due to an increase in exploration

TABLE S-I
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM

THE RFTMPSO ALGORITHMS WITH DIFFERENT SUB-SWARM’S
POPULATION SIZE (TPS) ON THE DEFAULT SCENARIO OF MMPBR.

V TPS RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

3 5.12(0.49) 5.25(0.61) 4.54(0.42) 5.82(0.47)
4 5.53(0.35) 5.56(0.62) 4.53(0.36) 6.16(0.68)
5 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
7 5.17(0.73) 5.54(0.86) 4.76(0.76) 6.19(0.88)

10 4.95(0.37) 5.02(0.67) 4.52(0.62) 5.16(1.28)

50

3 3.61(0.43) 3.65(0.46) 3.33(0.39) 3.84(0.33)
4 3.90(0.32) 3.59(0.31) 3.52(0.31) 4.05(0.39)
5 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
7 3.81(0.40) 3.66(0.50) 3.36(0.60) 4.23(0.49)

10 3.34(0.32) 3.41(0.40) 3.26(0.42) 4.17(0.78)

50

3 2.33(0.24) 2.26(0.24) 2.29(0.20) 2.71(0.20)
4 2.36(0.20) 2.12(0.15) 2.36(0.23) 2.77(0.26)
5 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
7 2.62(0.40) 2.21(0.41) 2.50(0.44) 2.83(0.24)

10 2.19(0.27) 2.42(0.26) 2.14(0.28) 2.66(0.30)

ability. Consequently, smaller peaks may not be detected until
they become larger which leads to a decrease in the accuracy
of the gathered information by FTmPSO.

TABLE S-II
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM

THE RFTMPSO ALGORITHMS WITH DIFFERENT FINDER-SWARMS
POPULATION SIZE (FPS) ON THE DEFAULT SCENARIO OF MMPBR.

V FPS RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

5 4.83(0.44) 4.95(0.36) 4.21(0.33) 5.28(0.36)
7 5.01(0.50) 5.35(0.55) 4.71(0.49) 5.90(0.48)
10 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
12 5.39(0.44) 5.30(0.39) 4.59(0.35) 5.82(0.55)
15 5.26(0.60) 5.18(0.59) 4.47(0.42) 5.45(0.47)

45

5 3.08(0.28) 3.16(0.24) 3.13(0.31) 3.64(0.85)
7 3.52(0.40) 3.49(0.40) 3.40(0.35) 4.29(0.37)
10 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
12 3.89(0.30) 3.62(0.27) 3.34(0.31) 4.04(0.30)
15 3.34(0.56) 3.40(0.35) 3.29(0.31) 3.90(0.37)

50

5 2.01(0.19) 1.97(0.18) 2.08(0.19) 2.16(0.41)
7 2.63(0.34) 2.33(0.32) 2.65(0.30) 2.56(0.28)
10 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
12 2.45(0.15) 2.47(0.20) 2.46(0.18) 2.59(0.24)
15 2.25(0.47) 3.10(0.47) 2.58(0.32) 2.57(0.28)

Table S-III shows the effect of different values of the Conv-
limit, parameter which is used for determining finder-swarms
convergence. According to the results presented in Table S-
III, decreasing the values of Conv-limit leads to decreasing
the performance of algorithms because the finder-swarms
convergence condition will not be met in an appropriate time.
Therefore, it will take more time for the finder-swarm to
create a tracker-swarm on the peak and continue its search
for finding other possible uncovered peaks. By increasing

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

the value of Conv-limit up to 1, the algorithms’ efficiency
increases. However, increasing its value beyond 1 will dete-
riorate performance, probably because a high value of Conv-
limit results the finder-swarm being considered converged very
early, which leads to the creation of unnecessary tracker-
swarms, wasting computational resources.

TABLE S-III
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM
THE RFTMPSO ALGORITHMS WITH DIFFERENT Conv-limit (CL) ON THE

DEFAULT SCENARIO OF MMPBR.

V CL RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.1 4.28(0.51) 4.84(0.63) 4.47(0.72) 4.88(0.71)
0.5 4.53(0.45) 5.19(0.47) 4.90(0.44) 5.38(0.47)
1 4.89(0.81) 5.60(0.82) 5.48(0.60) 6.14(0.85)
2 4.85(0.52) 5.63(0.71) 5.42(0.53) 5.80(0.69)
5 4.51(0.54) 5.23(0.50) 5.06(0.77) 5.27(0.57)

45

0.1 3.18(0.29) 3.13(0.37) 3.25(0.42) 3.80(0.43)
0.5 3.23(0.32) 3.39(0.26) 3.51(0.31) 4.04(0.30)
1 3.44(0.34) 3.63(0.33) 3.90(0.34) 4.22(0.41)
2 3.24(0.41) 3.66(0.46) 3.55(0.38) 3.98(0.53)
5 3.01(0.46) 3.06 (0.48) 3.23(0.61) 3.78(0.52)

50

0.1 2.24(0.24) 2.21(0.26) 2.09(0.27) 2.32(0.29)
0.5 2.38(0.21) 2.43(0.20) 2.40(0.27) 2.81(0.24)
1 2.51(0.28) 2.43(0.26) 2.55(0.21) 2.77(0.31)
2 2.32(0.26) 2.40(0.30) 2.51(0.30) 2.75(0.30)
5 2.26(0.33) 2.15(0.32) 1.98(0.40) 2.21(0.43)

Another parameter involved in finder-swarm convergence
determination is K. The effect of its different values on the
algorithms’ performance is shown in Table S-IV. Similar to
Conv-limit, lower values of K result in creating more unnec-
essary tracker-swarms whereas higher values delay the finder-
swarm convergence determination. According to Table S-IV,
best performance is generally obtained with K = 10.

TABLE S-IV
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM

THE RFTMPSO ALGORITHMS WITH DIFFERENT K ON THE DEFAULT
SCENARIO OF MMPBR.

V K RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

5 4.71(4.06) 5.24(0.68) 5.29(0.84) 6.00(0.69)
7 4.83(0.37) 5.40(0.45) 5.32(0.41) 6.07(0.50)
10 4.89(0.81) 5.60(0.82) 5.48(0.60) 6.14(0.85)
12 4.90(0.47) 5.31(0.47) 5.53(0.54) 5.90(0.54)
15 4.71(0.45) 5.28(0.52) 5.04(0.40) 5.58(0.66)

45

5 3.06(0.50) 3.35(0.55) 3.31(0.34) 3.95(0.60)
7 3.16(0.27) 3.65(0.29) 3.52(0.27) 3.90(0.41)
10 3.44(0.34) 3.63(0.33) 3.90(0.34) 4.22(0.41)
12 3.26(0.44) 3.45(0.43) 4.05(0.48) 4.03(0.40)
15 3.40(0.32) 3.34(0.27) 3.62(0.23) 3.84(0.51)

50

5 2.32(0.36) 2.33(0.36) 2.37(0.34) 2.75(0.32)
7 2.20(0.20) 2.54(0.21) 2.42(0.21) 2.81(0.20)
10 2.51(0.28) 2.43(0.26) 2.55(0.21) 2.77(0.31)
12 2.29(0.20) 2.59(0.22) 2.51(0.22) 2.75(0.27)
15 1.95(0.14) 2.12(0.16) 1.99(0.17) 2.66(0.30)

P and Q control the diversity introducing of tracker-swarms
after environmental changes. On the one hand, lower values
of P and Q result in a lower initial diversity of tracker-
swarms at the beginning of each environment which leads
to a decrease in their tracking ability. On the other hand,
higher values of these parameters cause over-diversification
of tracker-swarms which leads to increasing the possibility of
migrating tracker-swarms to other peaks when peaks are very

close to each other. Additionally, over-diversification decreases
the exploitation ability. The results of using different values
of P and Q are reported in Tables S-V and S-VI. Note that,
although in [1] P and Q work based on the shift severity of
peaks that was available for FTmPSO as an initial knowledge,
here algorithms have to learn about peaks shift severities by
themselves using (15).

TABLE S-V
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM

THE RFTMPSO ALGORITHMS WITH DIFFERENT Q ON THE DEFAULT
SCENARIO OF MMPBR.

V Q RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.5 5.20(0.37) 5.55(0.46) 5.15(0.56) 6.00(0.69)
0.75 5.39(0.51) 5.30(0.60) 5.10(0.74) 6.17(0.68)

1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
1.5 5.15(0.40) 5.22(0.52) 4.93(0.70) 5.67(0.75)
2 5.02(0.53) 4.97(0.83) 4.59(0.73) 5.14(0.81)

45

0.5 3.65(0.32) 3.48(0.34) 3.21(0.33) 4.14(0.34)
0.75 3.71(0.40) 3.60(0.39) 3.36(0.41) 4.27(0.40)

1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
1.5 3.91(0.25) 3.68(0.45) 3.18(0.39) 4.31(0.46)
2 3.45(0.44) 3.25(0.44) 3.19(0.53) 4.12(0.48)

50

0.5 2.36(0.26) 2.29(0.24) 2.25(0.27) 2.38(0.25)
0.75 2.56(0.21) 2.35(0.22) 2.56(0.22) 2.72(0.23)

1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
1.5 2.58(0.26) 2.39(0.20) 2.49(0.26) 2.63(0.26)
2 2.28(0.26) 2.23(0.27) 2.20(0.28) 2.26(0.26)

TABLE S-VI
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM

THE RFTMPSO ALGORITHMS WITH DIFFERENT P ON THE DEFAULT
SCENARIO OF MMPBR.

V P RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.5 5.24(0.35) 5.62(0.51) 4.58(0.56) 5.91(0.48)
0.75 5.40(0.55) 5.46(0.56) 4.70(0.60) 5.61(0.57)

1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
2 5.49(0.46) 5.42(0.60) 5.14(0.66) 6.08(0.92)
5 5.28(0.70) 5.18(0.86) 4.64(0.78) 5.87(0.54)

45

0.5 3.68(0.30) 3.68(0.37) 3.22(0.35) 3.85(0.39)
0.75 3.71(0.36) 3.53(0.37) 3.29(0.28) 4.15(0.34)

1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
2 3.88(0.38) 3.69(0.38) 3.31(0.55) 4.14(0.34)
5 3.71(0.41) 3.61(0.45) 3.20(0.67) 3.79(0.54)

50

0.5 2.33(0.29) 2.34(0.31) 2.56(0.26) 2.78(0.24)
0.75 2.36(0.22) 2.49(0.27) 2.19(0.22) 2.39(0.26)

1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
2 2.38(0.19) 2.44(0.31) 2.50(0.35) 2.82(0.26)
5 2.25(0.27) 2.32(0.33) 2.40(0.33) 2.75(0.28)

The last investigated parameter is exclfactor which is used
in (14). According to Table S-VII, for embedded multi-swarm
methods in the proposed framework, this threshold needs to
be lower (i.e. 0.1) in comparison with its value in the original
references [2], [3] (i.e. 0.5), because we want to avoid losing
information about a peak only because it moves close to
another peak. Therefore, sub-swarms need to be closer to
be involved in exclusion. In fact, higher values of exclfactor
increase the possibility of involving sub-swarms whose under
covered peaks are close to each other in exclusion condition.
Consequently, the algorithm may lose valuable information
about a peak by removing a sub-swarm by exclusion mecha-
nism.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

TABLE S-VII
THE OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) FROM
THE RFTMPSO ALGORITHMS WITH DIFFERENT exclfactor (EF) ON THE

DEFAULT SCENARIO OF MMPBR.

V EF RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.05 5.13(0.55) 5.21(0.68) 4.32(0.71) 5.52(0.72)
0.1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
0.25 5.23(0.48) 5.26(0.65) 4.58(0.60) 5.70(0.54)
0.5 5.47(0.54) 5.35(0.79) 4.83(0.68) 5.86(0.79)
1 4.86(1.11) 5.08(0.71) 4.39(1.07) 4.47(1.07)

45

0.05 3.63(0.40) 3.67(0.51) 3.31(0.57) 4.27(0.51)
0.1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
0.25 3.52(0.31) 3.67(0.36) 3.28(0.38) 3.91(0.39)
0.5 3.55(0.42) 3.70(0.51) 3.62(0.46) 4.07(0.47)
1 3.31(0.69) 3.35(0.71) 3.13(0.60) 3.05(0.60)

50

0.05 2.34(0.28) 2.47(0.29) 2.24(0.37) 2.20(0.31)
0.1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
0.25 2.23(0.29) 2.31(0.30) 2.54(0.23) 2.32(0.27)
0.5 2.55(0.24) 2.43(0.32) 2.37(0.20) 2.00(0.32)
1 2.02(0.51) 2.04(0.55) 1.92(0.54) 1.93(0.54)

B. Effect of different parameter settings of ROOT-PV on its
performance

In this part, we investigate the effect of the population
size on the performance of ROOT-PV, which is the more
realistic version of Fu’s method [4]. Since Fu’s method [4] is a
single-swarm method based on the survival time metric in (8),
population size of the PSO is the most important parameter.
Table S-VIII shows the effect of different population sizes
(PS) on the obtained average survival time by ROOT-PV. As
suggested in [4], best results are obtained when population
size is 50.

TABLE S-VIII
OBTAINED AVERAGE SURVIVAL TIME (AND STANDARD ERROR) BY

ROOT-PV WITH DIFFERENT POPULATION SIZE ON MMPBR WITH ITS
DEFAULT PARAMETER SETTINGS REPORTED IN TABLE I.

PS V = 40 V = 45 V = 50

10 1.47(0.28) 0.80(0.18) 0.24(0.10)
20 1.10(0.17) 1.00(0.24) 0.27(0.07)
30 1.85(0.22) 0.62(0.10) 0.32(0.08)
40 2.11(0.37) 0.80(0.16) 0.30(0.07)
50 2.26(0.61) 1.11(0.23) 0.37(0.23)
60 1.84(0.20) 1.10(0.34) 0.31(0.19)
75 1.83(0.47) 0.94(0.19) 0.29(0.10)
100 1.67(0.24) 0.69(0.15) 0.22(0.07)

REFERENCES

[1] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 04, pp. 2144–2158, 2013.

[2] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolution-
ary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[3] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Appli-
cations, C. Blum and D. Merkle, Eds. Springer, 2008, pp. 193–217.

[4] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust solutions
to dynamic optimization problems,” in Applications of Evolutionary
Computation, vol. 7835. Lecture Notes in Computer Science, 2013,
pp. 616–625.

	ROOT_Final version
	Supplementary Document

