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ABSTRACT

Protein aggregation underlies an increasing number
of disorders and constitutes a major bottleneck in
the development of therapeutic proteins. Our present
understanding on the molecular determinants of pro-
tein aggregation has crystalized in a series of predic-
tive algorithms to identify aggregation-prone sites. A
majority of these methods rely only on sequence.
Therefore, they find difficulties to predict the aggre-
gation properties of folded globular proteins, where
aggregation-prone sites are often not contiguous in
sequence or buried inside the native structure. The
AGGRESCAN3D (A3D) server overcomes these lim-
itations by taking into account the protein structure
and the experimental aggregation propensity scale
from the well-established AGGRESCAN method. Us-
ing the A3D server, the identified aggregation-prone
residues can be virtually mutated to design vari-
ants with increased solubility, or to test the impact
of pathogenic mutations. Additionally, A3D server
enables to take into account the dynamic fluctua-
tions of protein structure in solution, which may in-
fluence aggregation propensity. This is possible in
A3D Dynamic Mode that exploits the CABS-flex ap-
proach for the fast simulations of flexibility of glob-
ular proteins. The A3D server can be accessed at
http://biocomp.chem.uw.edu.pl/A3D/.

INTRODUCTION

Protein aggregation has moved beyond being a mostly ig-
nored area of protein chemistry to become a key topic in
biomedicine and biotechnology. Two main reasons account
for this interest. First, protein misfolding and subsequent
aggregation is the hallmark of an increasing number of hu-

man disorders, including, but not limited to, neurodegen-
erative diseases such as Alzheimer’s or Parkinson’s (1,2).
A second reason is the large interest that protein-based
therapeutics––like monoclonal antibodies, growth factors
or replacement enzymes––are receiving in the market, due
to their high specificity toward their targets (3). There are,
however, many barriers that difficult the development and
manufacture of these protein-based drugs. Among them,
perhaps the most common and one of the most difficult to
prevent is protein aggregation.

Protein aggregation seems to be a generic property of
polypeptide chains, likely because the non-covalent con-
tacts that stabilize native structures resemble those leading
to the formation of aggregates (4). Because the formation of
compact globular proteins comes at the expense of an inher-
ent aggregation propensity, there is a strong need of in-silico
methods that can both anticipate the aggregative proper-
ties of disease-linked proteins and guide the design of sol-
uble protein-based drugs. In this context, a number of pre-
dictive bioinformatic tools have been developed in the past
ten years (5,6). Among them, AGGRESCAN, developed in
our group, was the first to rely on experimental aggrega-
tion propensities in a cellular context (7). The algorithm is
based on the results obtained from the study of the aggrega-
tion in the E. coli cytoplasm of a complete set of mutants of
the amyloid �-peptide (A�) (7). The differential impact of
the mutations on the aggregation of the peptide permitted
to derive a scale of intrinsic aggregation propensity for the
natural amino acids (8). AGGRESCAN exploits this scale
to evaluate the aggregation propensity of each single protein
residue according to its relative position in the sequence (9).
Since its publication, the algorithm has become widely used,
displaying very good accuracy to predict in vivo aggregation
(6).

A large majority of protein aggregation predictive meth-
ods, including AGGRESCAN, rely on the analysis of lin-
ear sequences and therefore on the assumption that the pro-
tein of interest is at least partially unstructured. Hence, they
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should be used with caution in the case of natively folded
globular proteins, where many predicted aggregation-prone
regions are blocked, either because they are buried inside
the hydrophobic core or engaged in the series of cooper-
ative non-covalent interactions that sustain the secondary
and tertiary protein structure. Shielded in this way, they will
have a negligible impact on aggregation.

Here we introduce the AGGRESCAN3D (A3D) server,
an evolution of AGGRESCAN method, which overcomes
the limitations of sequence-based algorithms. Using a
structure-based approach, A3D allows the specific detec-
tion of those spatially-adjacent aggregation-prone amino
acids that are relevant to protein aggregation from folded
states. The algorithm exhibits significantly higher accuracy
than first generation sequence-based programs when fore-
casting the aggregation properties of globular proteins. Im-
portantly, A3D incorporates a mutation module that allows
the easy modeling of pathogenic mutations or the design of
proteins with increased solubility by mutating the detected
aggregation-prone residues or their surroundings. In addi-
tion, A3D features an optional ‘Dynamic Mode’ taking into
account the flexibility of the input structure in aggregation
predictions. This permits to model aggregation features at-
tributable to structure fluctuations of wild type structures,
or caused by the occurrence of destabilizing pathogenic mu-
tations. We illustrate the approach through its application to
a range of proteins whose aggregation properties have been
experimentally characterized.

MATERIALS AND METHODS

A3D server can be run in Static Mode (default) or Dynamic
Mode (see in Supplementary Figure S1 the A3D server
pipeline).

Static mode calculations

A3D uses as input protein 3D-structures (derived from X-
ray diffraction, solution NMR or modeling approaches)
in PDB format. As a default, A3D runs on ‘Static Mode’
meaning that subsequent calculations are performed di-
rectly using a single input structure. Prior to A3D analy-
sis, the input structure is energetically minimized using the
FoldX force-field (10).

The A3D aggregation analysis exploits an experimen-
tally derived intrinsic aggregation propensity scale for nat-
ural amino acids (8) and projects this scale in the protein
3D structure. In the A3D method the intrinsic aggregation
propensity of each particular amino acid in the protein is
modulated by its specific structural context. Aggregation
propensity is calculated for spherical regions centered on ev-
ery residue C� carbon. This provides a unique structurally
corrected aggregation value (A3D score) for each amino
acid in the structure, which is formulated as

A3D score = Aggi × (α × eβ×RSAi)+∑
[Agge × (α × eβ×RSAe) × (γ × e−δ×dist)]

where Aggi is the instrinsic aggregation propensity of the
residue in the center of the sphere as calculated in (8) and
RSAi its relative surface area exposed to solvent. Agge is the
instrinsic aggregation propensity of each additional residue

included in the sphere, RSAe its relative surface area ex-
posed to solvent and dist its distance to the central residue
i.

A3D uses as default sphere radius 10 Å for identifying
the residues involved in the formation of aggregation-prone
patches. A radius of 5 Å can be selected to dissect the contri-
bution of individual residues to these patches. The residues
exposition to the solvent is calculated using the Lee and
Richards method (11) as implemented in Naccess (http://
www.bioinf.manchester.ac.uk/naccess/nac intro.html) with
a default probe size of 1.40 Å and a z-slice parameter of 0.05
Å. Heteroatoms are ignored. The higher contribution of ex-
posed residues to the aggregation of folded proteins than
those buried in the structure was modeled as an exponen-
tial function of RSA with � = 0.0599 and � = 0.512. Only
residues displaying an RSA ≥ 10% for all of their atoms
are taken into account. According to this function, residues
with RSA = 10% have a weight of 0.1 and residues with an
RSA = 55%, which are considered already fully exposed,
a weight of 1, as any residue with RSA > 55%. In a simi-
lar manner, the exponential function that corrects the dis-
tance parameter, with � = 1.291 and � = −0.256, makes
that residues close to the center of the considered sphere
contribute more to the local structural aggregation propen-
sity than distant ones, with residues at ≤ 1 Å of the center
having a weight of 1 and those at the sphere limit a weight
of 0.1. Individual residues displaying positive and negative
A3D scores correspond to aggregation and solubility pro-
moting residues, respectively.

Protein structures can be mutated previously to A3D pre-
dictions or after running the analysis over the wild type
(WT) protein. The selected mutations are modeled on top
of the structure using FoldX (10) and a new A3D predic-
tion is subsequently generated on top of this energetically
minimized structural model.

Dynamic mode calculations

A3D can be run in ‘Dynamic Mode’ to analyze the im-
pact of structural fluctuations on the aggregation propen-
sity of folded proteins. An input (WT or mutated) structure
is minimized with FoldX (10) and used as a starting point
for the CABS-flex simulations of protein structure flexibility
(12) (the CABS-flex protocol has been shown to be an effi-
cient alternative to classical all-atom Molecular Dynamics
(13,14)). The resulting trajectory is automatically processed
to provide a set of protein models (in an all-atom resolution)
reflecting the most dominant structural fluctuations in the
near-native ensemble (the procedure details are provided in
ref. (12)). Next, for each CABS-flex-predicted model, A3D
aggregation analysis is performed in the same way as de-
scribed in the ‘Static Mode calculations’ paragraph. Finally,
the model with the highest A3D score is selected, and pre-
sented in the output, as a proxy of the most aggregation-
prone structure variant available in solution.

http://www.bioinf.manchester.ac.uk/naccess/nac_intro.html
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PERFORMANCE

Discarding the impact of buried aggregation-prone residues
on aggregation propensity

Most well-established protein aggregation predictors, in-
cluding AGGRESCAN (9), PASTA (15), WALTZ (16),
FoldAmyloid (17), TANGO (18) and Zyggregator (19) use
the linear sequence as an input. Therefore, these methods
assume that the detected aggregation-prone regions are ex-
posed to solvent. However, in native globular proteins these
regions may be buried, and as a result, the algorithms dis-
play a large set of false positive predictions when analyz-
ing folded states. To circumvent this limitation, Zyggrega-
tor was previously adapted to predict aggregation-prone re-
gions in structured proteins by including prediction of pro-
tection factors from hydrogen exchange (20). A3D over-
comes this problem by correcting the intrinsic aggregation
of each single residue in a globular protein according to
its specific structural context. In Figure 1A we compare
the predictions of sequence-based algorithms and A3D for
myoglobin, a highly soluble protein (PDB: 4MBN). It can
be seen that sequence-based algorithms coincide to indi-
cate that myoglobin contains a significant number of ag-
gregating residues; however an inspection of the structure
indicates that most of them are not exposed to solvent in
the folded state. A3D catches correctly this feature reduc-
ing the number of predicted aggregation-prone residues by
at least one order of magnitude relative to sequence-based
algorithms. An inspection of the A3D structural prediction
for myoglobin (Figure 1B) indicates that indeed it exhibits
a highly soluble surface, in good agreement with its high
solubility in physiological conditions. The structurally cor-
rected Zyggregator approach provides similar predictions
for myoglobin (20), highlighting the importance of con-
sidering structural properties when predicting aggregation
in folded proteins. Similar results are obtained for other
archetypical soluble proteins like maltose binding protein
and ubiquitin (Supplementary Figure S2).

Identifying aggregation-prone regions in folded structures

A point mutation in position 6 from Glu in hemoglobin
A to Val in hemoglobin S promotes its aggregation and
leads to sickle cell disease (21). The A3D analysis of the
crystal structure of hemoglobin S (PDB: 2HBS) spots Val6
as the residue with the highest aggregating propensity in
the protein folded structure, creating a strong and unique
aggregating-prone region on its surrounding, which is ab-
sent in hemoglobin A (Figure 2). This cluster consists of
four residues that are not consecutive in sequence (residues
5, 6, 9 and 10). In this context, it appears that Glu6 may play
a role as a structural gatekeeper thanks to its charge, pro-
viding this region with a significant solubility in hemoglobin
A (Figure 2). Despite most sequence-based algorithms pre-
dict an increase in aggregation propensity upon Glu6 to
Val6 mutation, the sequence stretch flanking Val6 still dis-
plays very low aggregation potency when compared with
other detected aggregation prone regions in hemoglobin S
sequence, being in all cases below their detection limit (Sup-
plementary Figure S3).

Prediction of the impact of mutations on protein aggregation

One of the limitations in the development of protein-
based therapeutics is their aggregation during recombinant
production. The use of structural corrections on top of
sequence-based approaches has been shown to provide ac-
curate predictions on protein solubility upon overexpres-
sion (22). We tested whether A3D can also undertake this
task, and compared its performance with that of two gold
standard methods: SOLpro and PROSO II (23,24). We col-
lected from the literature a set of 29 different WT proteins
for which 3D-structures are available and changes in sol-
ubility upon mutation and expression have been character-
ized, accounting a total of 129 variants (Supplementary Ta-
ble S1). We classified the mutants in the different studies as
positives (87 variants) or negatives (42 variants) according
if they increased or decreased solubility relative to their re-
spective WT proteins. As shown in Table 1, A3D displays a
high sensitivity, specificity and precision being thus highly
accurate in predicting the effects of mutations on protein
solubility upon overexpression, clearly outperforming these
two sequence-based approaches.

Prediction of the aggregation propensity of protein oligomers
and their subunits in disease-linked proteins

A number of amyloidogenic globular proteins display qua-
ternary structure. This is the case of transthyretin (TTR)
a tetrameric protein whose aggregation results in polyneu-
ropathy and/or cardiomyopathy (25) and copper-zinc su-
peroxide dismutase (SOD1), a dimer that forms aggregates
in the spinal cord of patients suffering familial amyotrophic
lateral sclerosis (26). In these proteins, familial mutations
affecting the complex stability favor dissociation into their
constituent monomers, which afterward aggregate. It has
been suggested that the interfaces sustaining the quater-
nary structure of these proteins are aggregation-prone due,
at least in part, to their inherent hydrophobicity, in such a
way that they are protected in the oligomer but drive fast ag-
gregation once it dissociates (27). A3D can analyze the ag-
gregation propensity of both the native oligomer and their
individual subunits, when they are loaded as single chains.
We used A3D to analyze the aggregation propensity of TTR
(PDB: 1TTA) and SOD1 (PDB: 2C9V) quaternary native
states and their monomeric constituents. As shown in Sup-
plementary Figure S4, the data confirm that in both cases
the interfaces possess a high aggregation propensity, which
are protected in the native state.

Prediction of the impact of protein dynamics on aggregation
propensity

The dynamic structural fluctuations of proteins in solu-
tion are known to influence their aggregation propensity
and might be linked to disease (28). In fact, pathogenic
mutations occurring in globular proteins can increase ag-
gregation propensity in two different ways. They can in-
crease the intrinsic aggregation propensity of an exposed
region or can destabilize the native state, increasing struc-
tural fluctuations and the exposition of previously protected
aggregation-prone residues. These effects are not exclusive
and a mutation can induce both situations. As shown above,
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Figure 1. (a) The aggregation propensity of myoglobin (PDB: 4MBN) is analyzed using both sequence-based predictors and A3D. Amino acids with
positive scores are indicated in different colors for each predictor: AGGRESCAN (green), Zyggregator (blue), FoldAmyloid (red), Tango (orange) and
A3D (purple). Black bars indicate buried residues exposing < 15 Å2 (upper row) and < 30 Å2 (lower row) to solvent. (b) A3D analysis of myoglobin
structure. The protein surface is colored according to A3D score in gradient from red (high-predicted aggregation propensity) to white (negligible impact
on protein aggregation) to blue (high-predicted solubility).

Table 1. Performance of SOLpro, PROSO II and A3D in the prediction of the effects of mutations on protein solubility upon overexpression (protein data
set in Supplementary Table S1)

SOLpro PROSO II A3D

True positives 61 59 81
False positives 25 15 2
True negatives 17 27 40
False negatives 26 28 6
Sensitivity 0.701 0.678 0.931
Specificity 0.405 0.643 0.952
Precision 0.709 0.797 0.975

Figure 2. A3D analysis of the �-chains of deoxyhemoglobin S (PDB:
2HBS:D) (left) and deoxyhemoglobin A (right). Color code is as in Fig-
ure 1b. The detected aggregation-prone area in deoxyhemoglobin S in-
cludes Val6.

the first effect can be accurately modeled using A3D in static
mode, but modeling the second effect requires consideration
of the destabilizing impact of the mutation; for example,
the predicted impact of mutations on TTR �-sheet stabil-
ity has been shown to correlate with the variants amyloido-
genicity (29). Toward this aim A3D can be run in Dynamic
Mode (see Methods), where it exploits the CABS-flex ap-
proach to model protein dynamic structural fluctuations. As

a proof of principle, we selected �2-microglobulin (�2m),
an amyloid forming protein which aggregation causes se-
rious complication in patients on long-term hemodialysis
(30), and analyzed different variants previously shown to
differ in their aggregation potential: namely I7A, V37A,
P32G and �N6 (31). WT and V37A variants cannot nu-
cleate amyloid formation in vitro at pH 7.0, despite the mu-
tant is substantially destabilized. The P32G mutation en-
hances the ability of �2m to elongate fibril seeds, but this
protein cannot nucleate fibril assembly at neutral pH. In
contrast, I7A and specially �N6 are able to nucleate fib-
ril formation at pH 7.0. When WT �2m (PDB: 2D4F) and
its mutants were analyzed with A3D in Dynamic Mode, the
algorithm was able to rank the different variants according
to their observed experimental amyloid propensity, yield-
ing total scores values of −52.32, −59.95, −65.64, −67.29
and −73.54 for �N6, I7A, P32G, V37A and WT variants,
respectively. Thus, variants able to nucleate amyloid fib-
ril formation at neutral pH displayed significantly higher
scores than non-amyloidogenic variants. An inspection of
the A3D generated structures allows identifying the under-
lying reason for this increased aggregation propensity (Fig-
ure 3). �N6 and I7A conformers display much higher ag-
gregation surface than WT �2m as a result of the expo-
sition of aggregation-prone residues, previously hidden in



W310 Nucleic Acids Research, 2015, Vol. 43, Web Server issue

Figure 3. WT �2-m (PDB: 2D4F) and variants �N6, I7A were modeled and analyzed A3D in Dynamic Mode. Color codes as in Figure 1.In agreement
with experimental data, the mutations result in conformers exposing aggregation-prone regions that are protected from solvent in the WT form.

the native structure. The predictions for the I7A mutant il-
lustrate the potency of the A3D Dynamic Mode. The mu-
tation I7A truncates an aliphatic side chain, thus reducing
hydrophobicity, accordingly all sequence-based algorithms
predict wrongly this mutant to be more soluble. The same
applies for A3D in static mode.

Despite, the native state free energy landscape limits the
exposure of aggregation-prone residues, wild type proteins
can aggregate from native-like states (N* states) without
a need for extensive unfolding (28). This is the case of
acylphosphatase from Drosophila melanogaster (AcPDro2).
For this protein, combining NMR measurements with re-
strained molecular dynamics simulations it has been shown
that there are two aggregation-prone regions comprising
strand S2 and specially S5 and the preceding loop which
are less protected in the N* state, populated in the presence
of 5% of 2,2,2-trifluoroethanol, that in the native state (32).
We compared the A3D predictions for AcPDro2 in static
and dynamic modes. Interestingly enough, the analysis in-
dicates that these two regions, especially S5 and the loop,
are significantly more exposed and therefore more suscepti-
ble to aggregation in the most aggregation-prone conformer
in the dynamics than in the static structure (Supplementary
Figure S5). These data suggest that A3D might be useful
to identify aggregation susceptible regions in N* states for
their subsequent experimental characterization.

SERVER DESCRIPTION

The A3D web interface is suited for easy to handle process-
ing and analysis of protein structures. The main features
of the web interface include possibility of introducing any
mutations in the input structures and convenient analysis
and visualization of the computed predictions. In addition,
a web user can modify operational modes of the method.

Input interface and requirements

The only data required as an input are a protein structure
file (given as a PDB code or uploaded by user). The input
structure file must be provided in PDB format (http://www.

wwpdb.org/docs.html). Different requirements apply to the
input structure depending whether the A3D is operated in
static or dynamic mode.

In the ‘Static mode’, single and multimeric protein chains
are accepted (PDB files can have up to 20.000 atoms). For
users convenience, proteins with missing atoms, or missing
residues, are accepted. However, careful attention should be
paid if missing protein elements can be important for analy-
sis of aggregation tendencies. If yes, missing structure frag-
ments should be reconstructed before providing it as an in-
put.

In the ‘Dynamic mode’, only single and continuous (with-
out breaks) protein chains (up to 400 standard amino acids
in length) are accepted. Non-standard amino acids are not
accepted. Each residue must have a complete set of back-
bone atoms (N, C�, C and O); side chain atoms may be
missing.

Note that in the both modes, heteroatoms (e.g. water or
ligands) are not considered in the analysis. It is possible to
upload PDB files containing alternative protein structures
(such as determined by nuclear magnetic resonance meth-
ods), but then only the first model in the PDB file is used as
an input.

Optional inputs include: project name (recommended for
better organization of users work: project names appears in
the queue page and may be inherited, when mutations are
done from the ‘A3D score’ output tab) and email address
(the server uses the address only for email notification about
the job status). Additionally, user has the following options
to decide: (i) whether the server will operate in static (de-
fault) or dynamic mode; (ii) whether the mutational anal-
ysis is about to be performed. Default is ‘No’. If changed
to ‘Yes’ mutational options will be provided after clicking
‘Submit’ button; (iii) whether distance of aggregation anal-
ysis (radius of the sphere––R, see Methods section) will be
10 Å (default) or 5 Å (useful to dissect the contributions of
specific side chains to a given aggregation patch).

http://www.wwpdb.org/docs.html
http://www.wwpdb.org/docs.html
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Output interface

The output interface is organized under the following tabs:
‘Project details’, ‘A3D plot’, ‘A3D score’, ‘Structure’ and
‘Dynamic mode details’ (this tab is present only if the job
was submitted in the ‘Dynamic mode’). The content of these
tabs is presented in Figure 4 and briefly described in the fol-
lowing paragraphs.

Under ‘A3D plot’ the results are accessible as an inter-
active online plot: vertical axis corresponds to A3D score
values, while horizontal axis correspond to residue numbers
(drag cursor over the plot to display residue labels). The plot
can be downloaded in SVG and PNG file format.

Under ‘A3D score’ tab the following data are provided:

� Minimal score––value of the A3D score for the most sol-
uble residue.

� Maximal score––value of the A3D score for the most
aggregation-prone residue.

� Average score––normalized indicator of the aggregation
propensity/solubility of the protein structure. Allows
comparing the solubility of different protein structures.
It also allows assessing changes in solubility promoted by
amino acid substitutions in a particular protein structure.
The more negative the value, the highest the normalized
solubility.

� Total score––a global indicator of the aggregation
propensity/solubility of the protein structure. It depends
on the protein size. It allows assessing changes in solubil-
ity promoted by amino acid substitutions in a particular
protein structure. The more negative the value, the high-
est the global solubility.

Moreover, the ‘A3D score’ tab includes a scrolling list
table with the following columns: residue index, residue
name, chain and A3D score for all exposed residues in the
structure. Residues with exposure to solvent < 10% are
considered buried and not influencing aggregation in the
folded state and accordingly they are not shown in the list.
Residues with positive scores, i.e. aggregation-prone, are
highlighted in the table. The list can be downloaded (Down-
load table button) as CSV or TXT tabular data. Impor-
tantly, each row of the online table contains ‘Mutate’ but-
ton. Once selected, it enables to run new prediction job with
the mutated (according to user choice) residue.

Under the ‘Structure’ tab a movie is presented. The movie
shows rotating input protein structure with residues colored
according to their A3D score. Additionally, website inter-
face allows to visualize protein solvent accessible area using
JSmol online plugin (33). In the movie, as well as in JSmol
plugin, proteins are colored according the similar coloring
scheme. Aggregation-prone residues are colored in gradi-
ents of red: the higher the score––the higher aggregation
propensity––the darker the red. Soluble residues are col-
ored in gradients of blue: the lower the score––the higher
solubility––the darker the blue. Residues predicted to not
influence aggregation (A3D score equal or close to zero)
are colored in white. A user can also simply create own vi-
sualization of the A3D score onto the protein structure by
downloading the PDB file (that have A3D score values in

the temperature factor column) and using molecular graph-
ics software of user’s choice.

Under the ‘Dynamic mode’ tab (available only if A3D
server was run in ‘Dynamic mode’) the following graphics
are provided: molecular picture showing structural align-
ment of the input structure and the most aggregation-prone
model (generated in simulations of protein dynamics) and a
plot displaying RMSD profile (distances between residues
of the two superimposed structures). The most aggregation-
prone model and RMSD values per residue can be also
downloaded as a PDB file and visualized with graphics soft-
ware of user’s choice.

Online documentation

The documentation of the A3D is available online, and it
can be accessed using the links in the menu at the top of
every server page. the description of the method and the
tutorial explaining how to access and interpret the results
data. Additionally, the web interface provides short help
notes––available for input options, as well as on the out-
put pages. The online documentation is updated on a regu-
lar basis according to users’ needs or the method improve-
ments.

Server and output data availability

The A3D server is free and open to all users, and there is
no login requirement. After clicking submit button, a web
link to the results is provided, which should be bookmarked
and accessed at a later time. Web links to the submitted jobs
are also displayed on a queue page (available from the main
page), unless the option ‘Do not show my job on the re-
sults page’ (available from the options panel in the main
page) is marked. Note that the results will be available for a
limited period of time (currently, the storage period is 360
days). The A3D server interface has been optimized for sev-
eral web browsers (mostly in their latest versions: Mozilla
Firefox v35, Google Chrome v41, Internet Explorer v11,
Safari v6.0), however, for optimal performance we recom-
mend Mozilla Firefox.

Command-line availability

Apart from the web interface, the A3D server may be also
operated from the command line using RESTful web ser-
vices. The instructions for using the RESTful service are
available from the online tutorial (available from the main
menu). Utilizing A3D RESTful interface may be very con-
venient way of implementing the A3D server in other auto-
matical pipelines.

Server architecture and run-time

A3D website interface and parsers were developed in the
Python scripting language, using WSGI, Flask framework
and Jinja2 template engine. The online interactive plots are
generated using D3.js library. Molecular visualization pre-
sented in the movies is done using Open Source PyMOL.
A3D website runs on Apache2 and MySQL database for
user queue storage. A3D queue is checked every 5 min by
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Figure 4. Example output interfaces for WT �2m (PDB: 2D4F). The output is organized under the following tabs: (a) ‘A3D plot’, (b) ‘A3D score’, (c)
‘Structure’ and (d) ‘Dynamic mode details’. For the description of the tabs content see ‘Output interface’ subparagraph.

computational servers and any new jobs are added to the
SGE queue. As soon as job is started on the computational
server, job status changes on the A3D website (from ‘pend-
ing’ to ‘running’, or from ‘pending’ to ‘in queue’).

Typical A3D run in ‘static mode’ takes about 20 min,
while ‘dynamic mode’ predictions (utilizing CABS-flex sim-
ulation method (12) take up to 3 h. After computing, job
results are sent back to the website and job status changes
from ‘running’ to ‘done’ (or ‘error’). Currently, A3D server
computations are performed on the linux cluster having
about 100 CPU threads.

CONCLUSION

We have described A3D, a novel web server for the predic-
tion of the aggregation propensity of globular proteins. The
algorithm should find application in the prediction of the
pathogenic effect of familial mutations in conformational
disorders and may become a useful tool for the design of
soluble protein-based therapeutics. Overall, we find out that
properties not taken in account by sequence-based algo-
rithms, like protein dynamic fluctuations and spatial clus-
tering of residues distant in the protein sequence, are im-
portant for accurate prediction of protein aggregation from
initially folded states. A3D can be applied to any protein for
which a structure is known, or can be generated by homol-
ogy modeling.
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