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ABSTRACT
We contrast two approaches to optimizing the Common Lisp typecase
macro expansion. The first approach is based on heuristics intended
to estimate run time performance of certain type checks involving
Common Lisp type specifiers. The technique may, depending on
code size, exhaustively search the space of permutations of the
type checks, intent on finding the optimal order. With the second
technique, we represent a typecase form as a type specifier, en-
capsulating the side-effecting non-Boolean parts so as to appear
compatible with the Common Lisp type algebra operators. The en-
capsulated expressions are specially handled so that the Common
Lisp type algebra functions preserve them, and we can unwrap
them after a process of Boolean reduction into efficient Common
Lisp code, maintaining the appropriate side effects but eliminating
unnecessary type checks. Both approaches allow us to identify un-
reachable code, test for exhaustiveness of the clauses and eliminate
type checks which are calculated to be redundant.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Type theory; • Computing methodologies→ Representa-
tion of Boolean functions; • Mathematics of computing →
Graph algorithms;
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1 INTRODUCTION
The typecase macro is specified in Common Lisp [4] as is a run-
time mechanism for selectively branching as a function of the type
of a given expression. Figure 1 summarizes the usage. The type
specifiers used may be simple type names such as fixnum, string, or
my-class, but may also specify more expressive types such as range
checks (float -3.0 3.5), membership checks such as (member 1 3

5), arbitrary Boolean predicate checks such as (satisfies oddp),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ELS’18, April 16–17 2018, Marbella, Spain
© 2018 Association for Computing Machinery.
ACM ISBN 978-2-9557474-2-1. . . $15.00

(typecase keyform

(Type.1 body-forms-1 ...)

(Type.2 body-forms-2 ...)

(Type.3 body-forms-3 ...)

...

(Type.n body-forms-n ...))

Figure 1: Synopsis of typecase syntax.

or logical combinations of other valid type specifiers such as (or
string (and fixnum (not (eql 0))) (cons bignum)).

In this article we consider several issues concerning the compi-
lation of such a typecase usage.

• Redundant checks1 — The set of type specifiers used in a
particular invocation of typecasemay have subtype or inter-
section relations among them. Consequently, it is possible
(perhaps likely in the case of auto-generated code) that the
same type checks be performed multiple times, when evalu-
ating the typecase at run-time.

• Unreachable code — The specification suggests but does not
require that the compiler issue a warning if a clause is not
reachable, being completely shadowed by earlier clauses.
We consider such compiler warnings desirable, especially in
manually written code.

• Exhaustiveness — The user is allowed to specify a set of
clauses which is non-exhaustive. If it can be determined at
compile time that the clauses are indeed exhaustive, even in
the absence of a t/otherwise clause, then in such a case, the
final type check may be safely replaced with otherwise, thus
eliminating the need for that final type check at run-time.

The etypecase macro (exhaustive type case) promises to signal a
run-time error if the object is not an element of any of the specified
types. The question of whether the clauses are exhaustive is a
different question, namely whether it can be determined at compile
time that all possible values are covered by at least one of the
clauses.

Assuming we are allowed to change the typecase evaluation
order, we wish to exploit evaluation orders which are more likely to
be faster at run-time. We assume that most type checks are fast, but
some are slower than others. In particular, a satisfies check may
be arbitrarily slow. Under certain conditions, as will be seen, there
are techniques to protect certain type checks to allow reordering
without effecting semantics. Such reordering may consequently
enable particular optimizations such as elimination of redundant
1Don’t confuse redundant check with redundancy check. In this article we address the
former, not the latter. A type check is viewed as redundant, and can be eliminated, if
its Boolean result can determined by static code analysis.
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checks or the exhaustiveness optimization explained above. Elimi-
nation of redundant type checks has an additional advantage apart
from potentially speeding up certain code paths, it also allows the
discovery of unreachable code.

In this article we consider different techniques for evaluating the
type checks in different orders than that which is specified in the
code, so as to maintain the semantics but to eliminate redundant
checks.

In the article we examine two very different approaches for per-
forming certain optimizations of typecase. First, we use a natural
approach using s-expression based type specifiers (Section 2), op-
erating on them as symbolic expressions. In the second approach
(Section 3) we employ Reduced Ordered Binary Decision Diagrams
(ROBDDs). We finish the article with an overview of related work
(Section 4) and a summary of future work (Section 5).

2 TYPE SPECIFIER APPROACH
We would like to automatically remove redundant checks such as
(eql 42), (member 40 41 42), and fixnum in Example 1.

Example 1 (typecase with redundant type checks).
(typecase OBJ

((eql 42)

body-forms-1 ...)

((and (member 40 41 42) (not (eql 42)))

body-forms-2 ...)

((and fixnum (not (member 40 41 42)))

body-forms-3 ...)

((and number (not fixnum ))

body-forms-4 ...))

The code in Example 2 is semantically identical to that in Ex-
ample 1, because a type check is only reached if all preceding type
checks have failed.

Example 2 (typecase after removing redundant checks).
(typecase OBJ

((eql 42) body-forms-1 ...)

(( member 40 41 42) body-forms-2 ...)

(fixnum body-forms-3 ...)

(number body-forms-4 ...))

In the following sections, we initially show that certain dupli-
cate checks may be removed through a technique called forward-
substitution and reduction (Section 2.2). A weakness of this tech-
nique is that it sometimes fails to remove particular redundant type
checks. Because of this weakness, a more elaborate technique is
applied, in which we augment the type tests to make themmutually
disjoint (Section 2.4). With these more complex type specifiers in
place, the typecase has the property that its clauses are reorderable,
which allows the forward-substitution and reduction algorithm to
search for an ordering permitting more thorough reduction (Sec-
tion 2.6). This process allows us to identify unreachable code paths
and to identify exhaustive case analyses, but there are still situations
in which redundant checks cannot be eliminated.

2.1 Semantics of type specifiers
There is some disagreement among experts of how to interpret
certain semantics of type specifiers in Common Lisp. To avoid
confusion, we state explicitly our interpretation.

There is a statement in the typecase specification that each
normal-clause be considered in turn. We interpret this requirement
not to mean that the type checks must be evaluated in order, but
rather than each type test must assume that type tests appearing
earlier in the typecase are not satisfied. Moreover, we interpret this
specified requirement so as not to impose a run-time evaluation
order, and that as long as evaluation semantics are preserved, then
the type checks may be done in any order at run-time, and in partic-
ular, that any type check which is redundant or unnecessary need
not be preformed.

The situation that the user may specify a type such as (and

fixnum (satisfies evenp)) is particularly problematic, because the
Common Lisp specification contains a dubious, non-conforming
example in the specification of satisfies. The problematic example
in the specification says that (and integer (satisfies evenp)) is
a type specifier and denotes the set of all even integers. This claim
contradicts the specification of the AND type specifier which claims
that (and A B) is the intersection of types A and B and is thus the
same as (and B A). This presents a problem, because (typep 1.0

’(and fixnum (satisfies evenp))) evaluates to nil while (typep

1.0 ’(and (satisfies evenp) fixnum)) raises an error.We implicitly
assume, for optimization purposes, that (and A B) is the same as
(and B A).

Specifically, if the AND and OR types are commutative with respect
to their operands, and if type checks have side effects (errors, con-
ditions, changing of global state, IO, interaction with the debugger),
then the side effects cannot be guaranteed when evaluating the
optimized code. Therefore, in our treatment of types we consider
that type checking with typep is side-effect free, and in particular
that it never raises an error. This assumption allows us to reorder
the checks as long as we do not change the semantics of the Boolean
algebra of the AND, OR, and NOT specifiers.

Admittedly, that typep never raise an error is an assumption
we make knowing that it may limit the usefulness of our results,
especially since some non-conforming Common Lisp programsmay
happen to perform correctly absent our optimizations. That is to
say, our optimizations may result in errors in some non-conforming
Common Lisp programs. The specification clearly states that certain
run-time calls to typep even with well-formed type specifiers must
raise an error, such as if the type specifier is a list whose first element
is values or function. Also, as mentioned above, an evaluation of
(typep obj ’(satisfies F)) will raise an error if (F obj) raises an
error. One might be tempted to interpret (typep obj ’(satisfies

F)) as (ignore-errors (if (F obj) t nil)), but that would be a
violation of the specification which is explicit that the form (typep

x ’(satisfies p)) is equivalent to (if (p x) t nil).
There is some wiggle room, however. The specification of

satisfies states that its operand be the name of a predicate, which
is elsewhere defined as a function which returns. Thus one might be
safe to conclude that (satisfies evenp) is not a valid type specifier,
because evenp is specified to signal an error if its argument is not
an integer.

We assume, for this article, that no such problematic type speci-
fier is used in the context of typecase.
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2.2 Reduction of type specifiers
There are legitimate cases in which the programmer has specifi-
cally ordered the clauses to optimize performance. A production
worthy typecase optimization system should take that into account.
However, for the sake of simplicity, the remainder of this article
ignores this concern.

We introduce a macro, reduced-typecase, which expands to a
call to typecase but with cases reduced where possible. Latter cases
assuming previous type checks fail. This transformation preserves
clause order, but may simplify the executable logic of some clauses.
In the expansion, in Example 3 the second float check is eliminated,
and consequently, the associated AND and NOT.

Example 3 (Simple invocation and expansion of reduced-typecase).

(reduced-typecase obj

(float body-forms-1 ...)

((and number (not float)) body-forms-2 ...))

(typecase obj

(float body-forms-1 ...)

(number body-forms-2 ...))

How does this reduction work? To illustrate we provide a sightly
more elaborate example. In Example 4 the first type check is (not
(and number (not float))). In order that the second clause be
reached at run-time the first type check must have already failed.
This means that the second type check, (or float string (not

number)), may assume that obj is not of type (not (and number

(not float))).

Example 4 (Invocation and expansion reduced-typecase with un-
reachable code path).
(reduced-typecase obj

((not (and number (not float ))) body-forms-1 ...)

((or float string (not number )) body-forms-2 ...)

(string body-forms-3 ...))

(typecase obj

((not (and number (not float ))) body-forms-1 ...)

(string body-forms-2 ...)

(nil body-forms-3 ...))

The reduced-typecase macro rewrites the second type test (or
float string (not number)) by a technique called forward-substitution.
At each step, it substitutes implied values into the next type speci-
fier, and performs Boolean logic reduction. Abelson et al. [1] discuss
lisp2 algorithms for performing algebraic reduction; however, in
addition to the Abelson algorithm reducing Boolean expressions
representing Common Lisp types involves additional reductions
representing the subtype relations of terms in question. For exam-
ple (and number fixnum ...) reduces to (and fixnum ...) because
fixnum is a subtype of number. Similarly, (or number fixnum ...)

reduces to (or number ...). Newton et al. [21] discuss techniques
of Common Lisp type reduction in the presence of subtypes.

2In this article we use lisp (in lower case) to denote the family of languages or the
concept rather than a particular language implementation, and we use Common Lisp
to denote the language.

(not (and number (not float))) = nil

=⇒ (and number (not float)) = t

=⇒ number = t

and (not float) = t

=⇒ float = nil

(or float string

(not number)) = (or nil string (not t))

= (or nil string nil)

= string

With this forward substitution, reduced-typecase is able to rewrite
the second clause ((or float string (not number)) body-forms-2...)

simply as (string body-forms-2...). Thereafter, a similar forward
substitution is made to transform the third clause from (string

body-forms-3...) to (nil body-forms-3...).
Example 4 illustrates a situation in which a type specifier in one

of the clauses reduces completely to nil. In such a case we would
like the compiler to issue warnings about finding unreachable code,
and in fact it does (at least when tested with SBCL3) because the
compiler finds nil as the type specifier. The clauses in Example 5 are
identical to those in Example 4, and consequently the expressions
body-forms-3... in the third clause cannot be reached. Yet contrary
to Example 4, SBCL, AllegroCL4, and CLISP5 issue no warning at
all that body-forms-3... is unreachable code.

Example 5 (Invocation of typecase with unreachable code).
(typecase obj

((not (and number (not float ))) body-forms-1 ...)

((or float string (not number )) body-forms-2 ...)

(string body-forms-3 ...))

2.3 Order dependency
We now reconsider Examples 1 and 2. While the semantics are
the same, there is an important distinction in practice. The first
typecase contains mutually exclusive clauses, whereas the second
one does not. E.g., if the (member 40 41 42) check is moved before the
(eql 42) check, then (eql 42)will never match, and the consequent
code, body-forms-2... will be unreachable.

For the order of the type specifiers given Example 1, the types
can be simplified, having no redundant type checks, as shown in
Example 2. This phenomenon is both a consequence of the partic-
ular types in question and also the order in which they occur. As
a contrasting example, consider the situation in Example 6 where
the first two clauses of the typecase are reversed with respect to
Example 1. In this case knowing that OBJ is not of type (and (member

40 41 42) (not (eql 42))) tells us nothing about whether OBJ is
of type (eql 42) so no reduction can be inferred.

Example 6 (Re-ordering clauses sometimes enable reduction).
(typecase OBJ

((and (member 40 41 42) (not (eql 42)))

body-forms-2 ...)

3We tested with SBCL 1.3.14. SBCL is an implementation of ANSI Common Lisp.
http://www.sbcl.org/
4We tested with the International Allegro CL Free Express Edition, version 10.1 [32-bit
Mac OS X (Intel)] (Sep 18, 2017 13:53). http://franz.com
5We tested with GNU CLISP 2.49, (2010-07-07). http://clisp.cons.org/
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((eql 42)

body-forms-1 ...)

((and fixnum (not (member 40 41 42)))

body-forms-3 ...)

((and number (not fixnum ))

body-forms-4 ...))

Programmatic reductions in the typecase are dependent on the
order of the specified types. There are many possible approaches
to reducing types despite the order in which they are specified.
We consider two such approaches. Section 2.6 discusses automatic
reordering of disjoint clauses, and Section 3 uses decision diagrams.

As already suggested, a situation as shown in Example 6 can be
solved to avoid the redundant type check, (eql 42), by reordering
the disjoint clauses as in Example 1. However, there are situations
for which no reordering alleviates the problem. Consider the code
shown in Example 7. We see that some sets of types are reorderable,
allowing reduction, but for some sets of types such ordering is
impossible. We consider in Section 3 typecase optimization where
reordering is futile. For now we concentrate on efficient reordering
where possible.

Example 7 (Re-ordering cannot always enable reduction).
(typecase OBJ

((and unsigned-byte (not bignum ))

body-forms-1 ...)

((and bignum (not unsigned-byte ))

body-forms-2 ...))

2.4 Mutually disjoint clauses
As suggested in Section 2.3, to arbitrarily reorder the clauses, the
typesmust be disjoint. It is straightforward to transform any typecase
into another which preserves the semantics but for which the
clauses are reorderable. Consider a typecase in a general form.

Example 8 shows a set of type checks equivalent to those in
Figure 1 but with redundant checks, making the clauses mutually
exclusive, and thus reorderable.

Example 8 (typecase with mutually exclusive type checks).
(typecase OBJ

(Type.1

body-forms-1 ...)

((and Type.2

(not Type .1))

body-forms-2 ...)

((and Type.3

(not (or Type.1 Type .2)))

body-forms-3 ...))

...

((and Type.n

(not (or Type.1 Type.2 ... Type.n-1)))

body-forms-n ...))

In order to make the clauses reorderable, we make them more
complex which might seem to defeat the purpose of optimization.
However, as we see in Section 2.6, the complexity can sometimes
be removed after reordering, thus resulting in a set of type checks
which is better than the original. We discuss what we mean by
better in Section 2.5.

We proceed by first describing a way to judge which of two
orders is better, and with that comparison function, we can visit
every permutation and choose the best.

One might also wonder why we suffer the pain of establishing
heuristics and visiting all permutations of the mutually disjoint

types in order to find the best order. One might ask, why not just put
the clauses in the best order to begin with. The reason is because
in the general case, it is not possible to predict what the best order
is. As is discussed in Section 4, ordering the Boolean variables
to produce the smallest binary decision diagram is an NP-hard
problem. The only solution in general is to visit every permutation.
The problem of ordering a set of type tests for optimal reduction
must also be NP-hard because if we had a better solution, we would
be able to solve the BDD NP-hard problem as a consequence.

2.5 Comparing heuristically
Given a set of disjoint and thus reorderable clauses, we can now
consider finding a good order. We can examine a type specifier,
typically after having been reduced, and heuristically assign a cost.
A high cost is assigned to a satisfies type, a medium cost to AND,
OR, and NOT types which takes into account the cost of the types
specified therein, and a low cost to atomic names.

To estimate the relative goodness of two given semantically iden-
tical typecase invocations, we can heuristically estimate the com-
plexity of each by using aweighted sum of the costs of the individual
clauses. The weight of the first clause is higher because the type
specified therein will be always checked. Each type specifier there-
after will only be checked if all the preceding checks fail. Thus the
heuristic weights assigned to subsequent checks is chosen succes-
sively smaller as each subsequent check has a smaller probability
of being reached at run-time.

2.6 Reduction with automatic reordering
Now that we have a way to heuristically measure the complexity
of a given invocation of typecase we can therewith compare two
semantically equivalent invocations and choose the better one. If
the number of clauses is small enough, we can visit all possible
permutations. If the number of clauses is large, we can sample the
space randomly for some specified amount of time or specified
number of samples, and choose the best ordering we find.

We introduce the macro, auto-permute-typecase. It accepts the
same arguments as typecase and expands to a typecase form. It
does so by transforming the specified types into mutually disjoint
types as explained in Section 2.4, then iterating through all per-
mutations of the clauses. For each permutation of the clauses, it
reduces the types, eliminating redundant checks where possible
using forward-substitution as explained in Section 2.2, and assigns
a cost heuristic to each permutation as explained in Section 2.5. The
auto-permute-typecase macro then expands to the typecase form
with the clauses in the order which minimizes the heuristic cost.

Example 9 shows an invocation and expansion of
auto-permute-typecase. In this example auto-permute-typecase does
a good job of eliminating redundant type checks.

Example 9 (Invocation and expansion of auto-permute-typecase).

(auto-permute-typecase obj

((and unsigned-byte (not (eql 42)))

body-forms-1 ...)

((eql 42)

body-forms-2 ...)

((and number (not (eql 42)) (not fixnum ))

body-forms-3 ...)

(fixnum
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body-forms-4 ...))

(typecase obj

((eql 42) body-forms-2 ...)

(unsigned-byte body-forms-1 ...)

(fixnum body-forms-4 ...)

(number body-forms-3 ...))

As mentioned in Section 1, a particular optimization can be
made in the situation where the type checks in the typecase are
exhaustive; in particular the final type check may be replaced with
t/otherwise. Example 10 illustrates such an expansion in the case
that the types are exhaustive. Notice that the final type test in the
expansion is t.

Example 10 (Invocation and expansion of auto-permute-typecase
with exhaustive type checks).
(auto-permute-typecase obj

((or bignum unsigned-byte) body-forms-1 ...)

(string body-forms-2 ...)

(fixnum body-forms-3 ...)

((or (not string) (not number )) body-forms-4 ...))

(typecase obj

(string body-forms-2 ...)

((or bignum unsigned-byte) body-forms-1 ...)

(fixnum body-forms-3 ...)

(t body-forms-4 ...))

3 DECISION DIAGRAM APPROACH
In Section 2.6 we looked at a technique for reducing typecase based
solely on programmatic manipulation of type specifiers. Now we
explore a different technique based on a data structure known as
Reduced Ordered Binary Decision Diagram (ROBDD).

Example 7 illustrates that redundant type checks cannot always
be reduced via reordering. Example 11 is, however, semantically
equivalent to Example 7. Successfully mapping the code from of a
typecase to an ROBDD will guarantee that redundant type checks
are eliminated. In the following sections we automate this code
transformation.

Example 11 (Suggested expansion of Example 7).
(if (typep OBJ 'unsigned-byte)

(if (typep obj 'bignum)

nil

(progn body-forms-1 ...))

(if (typep obj 'bignum)

(progn body-forms-2 ...)

nil))

The code in Example 11 also illustrates a concern of code size
explosion. With the two type checks (typep OBJ ’unsigned-byte)

and (typep obj ’bignum), the code expands to 7 lines of code. If
this code transform be done naïvely, the risk is that each if/then/-
else effectively doubles the code size. In such an undesirable case,
a typecase having N unique type tests among its clauses, would
expand to 2N+1 − 1 lines of code, even if such code has many
congruent code paths. The use of ROBDD related techniques allows
us to limit the code size to something much more manageable. Some
discussion of this is presented in Section 4.

ROBDDs (Section 3.1) represent the semantics of Boolean equa-
tions but do not maintain the original evaluation order encoded
in the actual code. In this sense the reordering of the type checks,

which is explicit and of combinatorical complexity in the previ-
ous approach, is automatic in this approach. A complication is
that normally ROBDDs express Boolean functions, so the mapping
from typecase to ROBDD is not immediate, as a typecase may con-
tain arbitrary side-effecting expressions which are not restricted to
Boolean expressions. We employ an encapsulation technique which
allows the ROBDDs to operate opaquely on these problematic ex-
pressions (Section 3.1). Finally, we are able to serialize an arbitrary
typecase invocation into an efficient if/then/else tree (Section 3.3).

ROBDDs inherently eliminate duplicate checks. However, ROB-
DDs cannot easily guarantee removing all unnecessary checks as
that would involve visiting every possible ordering of the leaf level
types involved.

3.1 An ROBDD compatible type specifier
An ROBDD is a data structure used for performing many types
of operations related to Boolean algebra. When we use the term
ROBDD we mean, as the name implies, a decision diagram (di-
rected cyclic graph, DAG) whose vertices represent Boolean tests
and whose branches represent the consequence and alternative
actions. An ROBDD has its variablesOrdered, meaning that there is
some ordering of the variables {v1,v2, ...,vN } such that whenever
there is an arrow from vi to vj then i < j. An ROBDD is determin-
istically Reduced so that all common sub-graphs are shared rather
than duplicated. The reader is advised to read the lecture nodes of
Andersen [3] for a detailed understanding of the reduction rules.
It is worth noting that there is variation in the terminology used
by different authors. For example, Knuth [18] uses the unadorned
term BDD for what we are calling an ROBDD.

A unique ROBDD is associated with a canonical form represent-
ing a Boolean function, or otherwise stated, with an equivalence
class of expressions within the Boolean algebra. In particular, inter-
section, union, and complement operations as well as subset and
equivalence calculations on elements from the underlying space of
sets or types can be computed by straightforward algorithms. We
omit detailed explanations of those algorithms here, but instead we
refer the reader to work by Andersen [3] and Castagna [13].

We employ ROBDDs to convert a typecase into an if/then/else
diagram as shown in Figure 2. In the figure, we see a decision
diagram which is similar to an ROBDD, at least in all the internal
nodes of the diagram. Green arrows lead to the consequent if a
specified type check succeeds. Red arrows lead to the alternative.
However, the leaf nodes are not Boolean values as we expect for an
ROBDD.

We want to transform the clauses of a typecase as shown in
Figure 1 into a binary decision diagram. To do so, we associate a
distinct satisfies type with each clause of the typecase. Each such
satisfies type has a unique function associated with it, such as P1,
P2, etc, allowing us to represent the diagram shown in Figure 2 as
an actual ROBDD as shown in Figure 3.

In order for certain Common Lisp functions to behave properly
(such as subtypep) the functions P1, P2, etc. must be real functions,
as opposed to place-holder functions types as Baker[7] suggests,
so that (satisfies P1) etc, have type specifier semantics. P1, P2,
etc, must be defined in a way which preserves the semantics of the
typecase.
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unsigned-byte

bignum bignum

⊥(progn body-forms-2...) (progn body-forms-1...)

Figure 2: Decision Diagram representing irreducible
typecase. This is similar to an ROBDD, but does not fulfill
the definition thereof, because the leaf nodes are not simple
Boolean values.

unsigned-byte

bignum bignum

⊥

(satisfies P2) (satisfies P1)

T

Figure 3: ROBDD with temporary valid satisfies types

Ideally we would like to create type specifiers such as the fol-
lowing:
(satisfies (lambda (obj)

(typep obj '(and (not unsigned-byte)

bignum ))))

Unfortunately, the specification of satisfies explicitly forbids
this, and requires that the operand of satisfies be a symbol rep-
resenting a globally callable function, even if the type specifier is
only used in a particular dynamic extent. Because of this limitation
in Common Lisp, we create the type specifiers as follows. Given
a type specifier, we create such a functions at run-time using the
technique shown in the function define-type-predicate defined in
Implementation 1, which programmatically defines function with
semantics similar to those shown in Example 12.

Implementation 1 (define-type-predicate).
(defun define-type-predicate (type-specifier)

(let (( function-name (gensym "P")))

(setf (symbol-function function-name)

#'(lambda (obj)

(typep obj type-specifier )))

function-name ))

Example 12 (Semantics of satisfies predicates).
(defun P1 (obj)

(typep obj '(and (not unsigned-byte) bignum )))

(defun P2 (obj)

(typep obj '(and (not bignum) unsigned-byte )))

The define-type-predicate function returns the name of a named
closure which the calling function can use to construct a type spec-
ifier. The name and function binding are generated in a way which
has dynamic extent and is thus friendly with the garbage collector.

To generate the ROBDD shown in Figure 3 we must construct a
type specifier equivalent to the entire invocation of typecase. From
the code in Figure 1 we have to assemble a type specifier such as
in Example 13. This example is provided simply to illustrate the
pattern of such a type specifier.

Example 13 (Type specifier equivalent to Figure 1).
(let ((P1 (define-type-predicate 'Type .1))

(P2 (define-type-predicate

'(and Type.2 (not Type .1))))

(P3 (define-type-predicate

'(and Type.3 (not (or Type.1 Type .2)))))

...

(Pn (define-type-predicate

'(and Type.n (not (or Type.1 Type.2

... Type.n-1 ))))))

`(or (and Type.1

(satisfies ,P1))

(and Type.2

(not Type .1)

(satisfies ,P2))

(and Type.3

(not (or Type.1 Type .2))

(satisfies ,P3))

...

(and Type.n

(not (or Type.1 Type.2

... Type.n-1))

(satisfies ,Pn))))

3.2 BDD construction from type specifier
Functions which construct an ROBDD need to understand a com-
plete, deterministic ordering of the set of type specifiers via a com-
pare function. To maintain semantic correctness the corresponding
compare function must be deterministic. It would be ideal if the
function were able to give high priority to type specifiers which
are likely to be seen at run time. We might consider, for example,
taking clues from the order specified in the typecase clauses. We do
not attempt to implement such decision making. Rather we choose
to give high priority to type specifiers which are easy to check at
run-time, even if they are less likely to occur.

We use a heuristic similar to that mentioned in Section 2.5 except
that type specifiers involving AND, OR, and NOT never occur, rather
such types correspond to algebraic operations among the ROB-
DDs themselves such that only non-algebraic types remain. More
precisely, the heuristic we use is that atomic types such as number
are considered fast to check, and satisfies types are considered
slow. We recognize the limitation that the user might have used
deftype to define a type whose name is an atom, but which is slow
to type check. Ideally, we should fully expand user defined types
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fixnum

unsigned-byte

number

(eql 42)

(satisfies P4)

unsigned-byte

nil

(satisfies P2)(satisfies P1)

T

(satisfies P3)

Figure 4: ROBDD generated from typecase clauses in Exam-
ple 14

into Common Lisp types. Unfortunately this is not possible in a
portable way, and we make no attempts to implement such expan-
sion in implementation specific ways. It is not even clear whether
the various Common Lisp implementations have public APIs for
the operations necessary.

A crucial exception in our heuristic estimation algorithm is that
to maintain the correctness of our technique, we must assure that
the satisfies predicates emanating from define-type-predicate

have the lowest possible priority. I.e., as is shown in Figure 3, we
must avoid that any type check appear below such a satisfies type
in the ROBDD.

There are well known techniques for converting an ROBDD
which represents a pure Boolean expression into an if/then/else
expression which evaluates to true or false. However, in our case
we are interested in more than simply the Boolean value. In partic-
ular, we require that the resulting expression evaluate to the same
value as corresponding typecase. In Figure 1, these are the values re-
turned from body-forms-1..., body-forms-2..., ... body-forms-n....
In addition we want to assure that any side effects of those ex-
pressions are realized as well when appropriate, and never realized
more than once.

We introduce themacro bdd-typecasewhich expands to a typecase
form using the ROBDD technique. When the macro invocation in
Example 14 is expanded, the list of typecase clauses is converted
to a type specifier similar to what is illustrated in Example 13. That
type specifier is used to create an ROBDD as illustrated in Figure 4.
As shown in the figure, temporary satisfies type predicates are
created corresponding to the potentially side-effecting expressions
body-forms-1, body-forms-2, body-forms-3, and body-forms-4. In re-
ality these temporary predicates are named by machine generated
symbols; however, in Figure 4 they are denoted P1, P2, P3, and P4.

Example 14 (Invocation of bdd-typecase with intersecting types).

(bdd-typecase obj

((and unsigned-byte (not (eql 42)))

body-forms-1 ...)

((eql 42)

body-forms-2 ...)

((and number (not (eql 42)) (not fixnum ))

body-forms-3 ...)

(fixnum

body-forms-4 ...))

3.3 Serializing the BDD into code
The macro bdd-typecase emits code as in Example 15, but just
as easily may output code as in Example 16 based on tagbody/go.
In both example expansions we have substituted more readable
labels such as L1 and block-1 rather than the more cryptic machine
generated uninterned symbols #:l1070 and #:|block1066|.

Example 15 (Macro expansion of Example 14 using labels).
(( lambda (obj-1)

(labels ((L1 () (if (typep obj-1 'fixnum)

(L2)

(L7)))

(L2 () (if (typep obj-1 'unsigned-byte)

(L3)

(L6)))

(L3 () (if (typep obj-1 '(eql 42))

(L4)

(L5)))

(L4 () body-forms-2 ...)

(L5 () body-forms-1 ...)

(L6 () body-forms-4 ...)

(L7 () (if (typep obj-1 'number)

(L8)

nil))

(L8 () (if (typep obj-1 'unsigned-byte)

(L5)

(L9)))

(L9 () body-forms-3 ...))

(L1)))

obj)

The bdd-typecase macro walks the ROBDD, such as the one il-
lustrated in Figure 4, visiting each non-leaf node therein. Each node
corresponding to a named closure type predicate is serialized as a
tail call to the clauses from the typecase. Each node correspond-
ing to a normal type test is serialized as left and right branches,
either as a label and two calls to go as in Example 16, or a local
function definition with two tail calls to other local functions as in
Example 15.

Example 16 (Alternate expansion of Example 14 using tagbody/go).

(( lambda (obj-1)

(block block-1

(tagbody

L1 (if (typep obj-1 'fixnum)

(go L2)

(go L7))

L2 (if (typep obj-1 'unsigned-byte)

(go L3)

(go L6))

L3 (if (typep obj-1 '(eql 42))

(go L4)

(go L5))

L4 (return-from block-1

(progn body-forms-2 ...))

L5 (return-from block-1

(progn body-forms-1 ...))

L6 (return-from block-1

(progn body-forms-4 ...))

L7 (if (typep obj-1 'number)
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(go L8)

(return-from block-1 nil))

L8 (if (typep obj-1 'unsigned-byte)

(go L5)

(go L9))

L9 (return-from block-1

(progn body-forms-3 ...)))))

obj)

3.4 Emitting compiler warnings
The ROBDD, as shown in Figure 4, can be used to generate the
Common Lisp code semantically equivalent to the correspond-
ing typecase as already explained in Section 3.3, but we can do
even better. There are two situations where we might wish to emit
warnings: (1) if certain code is unreachable, and (2) if the clauses
are not exhaustive. Unfortunately, there is no standard way to in-
corporate these warnings into the standard compiler output. One
might tempted to simply emit a warning of type style-warning as
is suggested by the typecase specification. However, this would be
undesirable since there is no guarantee that the corresponding code
was human-generated—ideally we would only like to see such style
warnings corresponding to human generated code.

The list of unreachable clauses can be easily calculated as a func-
tion of which of the P1, P2 ... predicates are missing from the serial-
ized output. As seen in Figure 4, each of body-forms-1, body-forms-2,
body-forms-3, and body-forms-4 is represented as P1, P2, P3, and P4,
so no such code is unreachable in this case.

We also see in Figure 4 that there is a path from the root node to
the nil leaf node which does not pass through P1, P2, P3, or P4. This
means that the original typecase is not exhaustive. The type of any
such value can be calculated as the particular path leading to nil.
In the case of Figure 4, (and (not fixnum) (not number)), which
corresponds simply to (not number), is such a type. I.e., the original
bdd-typecase, shown in Example 14, does not have a clause for non
numbers.

4 RELATEDWORK
This article references the functions make-bdd and bdd-cmp whose
implementation is not shown herein. The code is available via Git-
Lab from the EPITA/LRDE public web page:
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git. That
repository contains several things. Most interesting for the context
of BDDs is the Common Lisp package, LISP-TYPES.

As there are many individual styles of programming, and each
programmer of Common Lisp adopts his own style, it is unknown
howwidespread the use of typecase is in practice, and consequently
whether optimizing it is effort well spent. A casual look at the code
in the current public Quicklisp6 repository reveals a rule of thumb.
1 out of 100 files, and 1 out of 1000 lines of code use or make refer-
ence to typecase. When looking at the Common Lisp code of SBCL
itself, we found about 1.6 uses of typecase per 1000 lines of code.
We have made no attempt to determine which of the occurrences
are comments, trivial uses, or test cases, and which ones are used
in critical execution paths; however, we do loosely interpret these
results to suggest that an optimized typecase either built into the
cl:typecase or as an auxiliary macro may be of little use to most

6https://www.quicklisp.org/

currently maintained projects. On the contrary, we suggest that
having such an optimized typecase implementation, may serve
as motivation to some programmers to make use of it, at least in
machine generated code such as Newton et al. [20] explain. Since
generic function dispatch conceptually bases branching choices
on Boolean combinations of type checks, one naturally wonders
whether our optimizations might be of useful within the implemen-
tation of CLOS[17].

Newton et al. [20] present a mechanism to characterize the type
of an arbitrary sequence in Common Lisp in terms of a rational
language of the types of the sequence elements. The article explains
how to build a finite statemachine and from that construct Common
Lisp code for recognizing such a sequence. The code associates the
set of transitions existing from each state as a typecase. The article
notes that such a machine generated typecase could greatly benefit
from an optimizing typecase.

The map-permutations function (Section 2.6) works well for small
lists, but requires a large amount of stack space to visit all the per-
mutations of large lists. Knuth[18] explores several iterative (not
recursive) algorithms using various techniques, in particular by
plain changes[18, Algorithm P, page 42], by cyclic shifts[18, Algo-
rithm C, page 56], and by Erlich swaps[18, Algorithm E, page 57]. A
survey of these three algorithms can also be found in the Cadence
SKILL Blog7 which discussions an implementation in SKILL[8],
another lisp dialect.

There is a large amount of literature about Binary Decision
Diagrams of many varieties [2, 3, 9, 10, 14]. In particular Knuth
[18, Section 7.1.4] discusses worst-case and average sizes, which
we alluded to in Section 3. Newton et al. [21] discuss how the
Reduced Ordered Binary Decision Diagram (ROBDD) can be used
to manipulate type specifiers, especially in the presence of subtypes.
Castagna [13] discusses the use of ROBDDs (he calls them BDDs
in that article) to perform type algebra in type systems which treat
types as sets [4, 12, 16].

BDDs have been used in electronic circuit generation[15], verifi-
cation, symbolic model checking[11], and type system models such
as in XDuce [16]. None of these sources discusses how to extend
the BDD representation to support subtypes.

Common Lisp does not provide explicit pattern matching [5]
capabilities, although several systems have been proposed such as
Optima8 and Trivia9. Pierce [23, p. 341] explains that the addition
of a typecase-like facility (which he calls typecase) to a typed λ-
calculus permits arbitrary run-time pattern matching.

Decision tree techniques are useful in the efficient compilation
of pattern matching constructs in functional languages[19]. An im-
portant concern in pattern matching compilation is finding the best
ordering of the variables which is known to be NP-hard. However,
when using BDDs to represent type specifiers, we obtain repre-
sentation (pointer) equality, simply by using a consistent ordering;
finding the best ordering is not necessary for our application.

In Section 2.2 we mentioned the problem of symbolic algebraic
manipulation and simplification. Ableson et al. [1, Section 2.4.3] dis-
cuss this with an implementation of rational polynomials. Norvig

7https://community.cadence.com/tags/Team-SKILL, SKILL for the Skilled, Visit-
ing all Permutations
8https://github.com/m2ym/optima
9https://github.com/guicho271828/trivia
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[22, Chapter 8] discusses this in a use case of a symbolic mathemat-
ics simplification program. Both the Ableson and Norvig studies
explicitly target a lisp-literate audience.

5 CONCLUSION AND FUTUREWORK
As illustrated in Example 9, the exhaustive search approach used
in the auto-permute-typecase (Section 2.6) can often do a good
job removing redundant type checks occurring in a typecase in-
vocation. Unfortunately, as shown in Example 7, sometimes such
optimization is algebraically impossible because the particular type
interdependencies. In addition, an exhaustive search becomes un-
reasonable when the number of clauses is large. In particular there
are N ! ways to order N clauses. This means there are 7! = 5040
orderings of 7 clauses and 10! = 3, 628, 800 orderings of 10 clauses.

On the other hand, the bdd-typecase macro, using the ROBDD
approach (Section 3.2), is always able to remove duplicate checks,
guaranteeing that no type check is performed twice. Nevertheless,
it may fail to eliminate some unnecessary checks which need not
be performed at all.

It is known that the size and shape of a reduced BDD depends
on the ordering chosen for the variables [9]. Furthermore, it is
known that finding the best ordering is NP-hard, and in this article
we do not address questions of choosing or improving variable
orderings. It would be feasible, at least in some cases, to apply the
exhaustive search approach with ROBDDs. I.e., we could visit all
orders of the type checks to find which gives the smallest ROBDD.
In situations where the number of different type tests is large, the
development described in Section 3.1 might very well be improved
employing some known techniques for improving BDD size though
variable ordering choices[6]. In particular, we might attempt to use
the order specified in the typecase as input to the sorting function,
attempting in at least the simple cases to respect the user given
order as much as possible.

In Section 2.4, we presented an approach to approximating the
cost a set of type tests and commented that the heuristics are sim-
plistic. We leave it as a matter for future research as to how to
construct good heuristics, which take into account how compute
intensive certain type specifiers are to manipulate.

We believe this research may be useful for two target audiences:
application programmers and compiler developers. Even though
the currently observed use frequency of typecase seems low in the
majority of currently supported applications, programmers may
find the macros explained in this article (auto-permute-typecase
and bdd-typecase) to be useful in rare optimization cases, but more
often for their ability to detect certain dubious code paths. There
are, however, limitations to the portable implementation, namely
the lack of a portable expander for user defined types, and an ability
to distinguish between machine generated and human generated
code. These shortcomings may not be significant limitations to
the compiler implementer, in which case the compiler may be able
to better optimize user types, implement better heuristics regard-
ing costs of certain type checks, and emit useful warnings about
unreachable code.
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