
HAL Id: hal-01780158
https://hal.archives-ouvertes.fr/hal-01780158

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of the aeroelastic behavior of a possibly
detached flow airfoil by a discrete vortex method
Thierry Faure, Laurent Dumas, Bertrand Kirsch, Olivier Montagnier

To cite this version:
Thierry Faure, Laurent Dumas, Bertrand Kirsch, Olivier Montagnier. Simulation of the aeroelastic
behavior of a possibly detached flow airfoil by a discrete vortex method. 53rd 3AF International
Conference on Applied Aerodynamics , Mar 2018, Salon-de-Provence, France. �hal-01780158�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/157850911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01780158
https://hal.archives-ouvertes.fr


 

1 

 
  

53rd 3AF International Conference                     FP09-AERO2018-faure 
     on Applied Aerodynamics 
     26 – 28 March 2018, Salon de Provence, France 

 
 
 
 
 
Simulation of the aeroelastic behavior of a possibly detached flow airfoil by 

a discrete vortex method 
 

Thierry M. FAURE(1), Laurent DUMAS(1), Bertrand KIRSCH(1) and Olivier MONTAGNIER(1) 
(1) Centre de Recherche de l’Armée de l’air, École de l’Air, B.A. 701, 13661 Salon-de-Provence, France, 

thierry.faure@defense.gouv.fr 
 
 
 

ABSTRACT 
 
The aeroelastic behavior of an airfoil results in a 
complex coupling between the elastic response of the 
structure and the dynamics of the flow. It can lead to the 
failure of a lifting surface which consequences could be 
catastrophic. Experiments and high-order computations 
contribute to the understanding of this phenomenon, but 
fast low-order methods are needed for engineering 
tasks. In the present work, we implement a loose fluid-
structure coupling between a discrete-time vortex 
method, using a leading edge shedding criterion, and the 
structure motion equations. For each time step, the 
aerodynamic coefficients are first calculated before the 
computation of the motion of the structure. Flutter 
velocity is obtained with the same precision as unsteady 
standard method. The advantage of the method 
proposed is the ability to catch the limit cycle for 
velocities larger than flutter speed due to dynamic stall 
of the airfoil. 
 
1. INTRODUCTION 
The vibration and instability of lifting surfaces have 
been detected from the very beginning of aeronautics, 
because of their destructive consequences on structures 
leading to breaking and crashes. The flutter have been 
identified in the 1920s on the first fast airplanes, 
resulting in the use of more stiffen materials. However, 
if the consequences of this instability were noticed, their 
physical understanding remained unknown at that time. 
The classical flutter is a dynamic instability resulting 
from the coupling between the first twisting mode and 
the first bending mode of the structure. The difficulty of 
its prediction lays in the estimate of the aerodynamic 
forces involved. 
The fluid structure interaction mechanisms can be 
classified on the reduced frequency fr = Tf/Ts [1] with Tf 
the period of fluid motion and Ts the period of structure 
motion. If fr is much larger than one, the structure is in a 
high frequency excitation regime (vibroacoustics) and 
acts as if it was moving in a steady fluid. If fr is much 

smaller than one, the structure frequencies are low, 
corresponding to quasi-static aeroelasticity. If fr is of the 
order of one, there is a tight fluid-structure coupling 
corresponding to present investigation. 
Theories have been developed for the prediction of 
aerodynamic forces on a steady attached airfoil such as 
the thin airfoil theory [2, 3, 4], with very limited 
application. Quasi-steady flows are considered when, 
for each time, the instantaneous position of the structure 
results in a steady flow [1]. The velocity induced by the 
vertical translation of the structure is considered [5], 
which can be added to the angle of attack of the airfoil. 
Unsteady theories were initiated by Wagner [6] who 
calculated the lift of a wing with a rapid change of the 
angle of attack. A potential flow solution for a flat plane 
with low amplitude harmonic oscillations was 
developed by Theodorsen [7]. Other potential methods 
were developed [8, 9] but remained limited to attached 
flow configurations. Detached flow configurations were 
considered in the 1970s [10, 11, 12] introducing vortex 
shedding in the potential flow. The development of 
more powerful computers in this decade led flow 
simulations toward another way with the high-order 
resolution of Navier-Stokes equations with closure 
models. However, the potential methods remained used 
for a long time to solve aeroelastic issues, in particular 
the Doublet-Lattice Method [13] and the Vortex-Lattice 
Method [14]. 
On the other hand, for fluid dynamics prediction, 
discrete vortex methods came back in use recently as 
alternative low-order methods to classical high-order 
computational fluid dynamics (CFD), to address 
engineering issues with relevant accuracy. Discrete 
vortex methods where developed to model leading edge 
vortices in unsteady flows [15, 16, 17]. However, these 
methods are limited to start and stop criteria for the 
vortex shedding. This issue was addressed with the 
implementation of a leading edge suction parameter 
[18]. That criterion allows a wide range of applications 
for any airfoil geometry, with sharp or rounded leading 
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edges, and any arbitrary motion. Its robustness and its 
relative accuracy was demonstrated as long as a leading 
edge boundary layer separation occurs [19]. The 
Leading edge suction parameter Discrete Vortex 
Method (LDVM) algorithm is based, for each time step, 
on iterative schemes to obtain the circulation of the last 
generated vortices through a converging time 
consuming process. 
Aeroelasticity issues require rapid and efficient method 
for engineering problems. Different frequency methods, 
p, k, p-k [5, 20, 21] are suitable to address these 
problems. However, the present coupling between the 
aeroelastic issue and LDVM requires a time solving. 
The fluid and structure equations are solved in a single 
code with a direct loose coupling [22]. 
In the paper, the discrete vortex method used is 
presented first. The fluid-structure interaction coupling 
equations are then introduced with the resolution 
method of Newmark. Results for a light aircraft [5] are 
discussed versus the upstream flow velocity, exhibiting 
a threshold velocity between convergent and divergent 
cases. 
 
2. LEADING EDGE SUCTION 

PARAMETER DISCRETE VORTEX 
METHOD 

The Leading edge suction parameter Discrete Vortex 
Method (LDVM) is based on the potential thin airfoil 
theory in unsteady flows, applicable for large values of 
the angle of attack [18]. It is built on the time-stepping 
approach of [23] with the addition of a criterion for the 
leading edge detachment. 

 
 

Figure 1. Airfoil motion and frames of reference. 

In figure 1, the aerodynamic frame (X,Z) is fixed and the 
airfoil frame (x,z) sees an upstream velocity U∞ aligned 
on the X axis with a time-dependant angle of attack α(t). 
A vertical motion h(t) is considered along the Z axis. 
The fluid velocity components are respectively U and W 
in the aerodynamic frame and w is the velocity along z 
in the airfoil frame. The local circulation distribution 
over the airfoil is obtained from a Fourier series: 
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with A0(t), … , An(t) the time-dependant Fourier 
coefficients, c the airfoil chord and where: 
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The Kutta condition is enforced through the form of the 
Fourier series. The Fourier coefficients are determined 
from the instantaneous local downwash w(θ,t) by 
enforcing the potential flow boundary condition that the 
velocity is tangential to the airfoil surface: 
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where w(θ,t) is the velocity normal to the airfoil 
calculated from the motion kinematics: 
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with ΦTEV, ΦLEV the velocity potentials associated with 
the leading edge and trailing edge vortices, η the airfoil 
mean camber line and xp the pivot position. At each 
time step, if the flow around the airfoil is attached, a 
trailing edge vortex (TEV) is released and advected by 
the flow at the following time step. However, a 
separation model is needed for large values of the angle 
of attack. The separation on the airfoil is obtained with 
an inviscid parameter developed by [18]. The Leading 
Edge Suction Parameter (LESP) is a non-dimensional 
measure of the suction at the leading edge, and equates 
the first Fourier coefficient: 
                               ( ) ( )tAt 0LESP =                              (6) 
The critical value LESPcrit corresponds to the A0 value 
associated with the angle of attack for which spikes 
appear in the negative part of the friction coefficient, 
near the leading edge. It is a measure of the maximum 
suction that a given airfoil can bear before separation 
and is independent of the motion. Beyond that LESPcrit 
value, the airfoil suction side boundary layer separates 
from the leading edge, which corresponds to the release 
of a leading edge vortex (LEV). In that case, there is 
shedding of both a TEV and a LEV. These vortices, at 
every time step, must enforce Kelvin’s circulation 
theorem: 
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with the airfoil bound circulation: 
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The previous variables are written in a non-dimensional 
form for the fluid mechanics problem as: 
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The velocity induced by a given vortex is described 
with the model of Vatistas which incorporates a finite 
core radius rc [24]. 
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The non-dimensional time step is: 
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c
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The vortex core radius is taken to be 1.3 times the 
average spacing between the vortices [25]: 
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c
rr c
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The last shed vortex is placed at one third of the 
distance from the shedding edge to the previously shed 
vortex [15]: 
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For each time-step, the unknown parameters are the 
circulations corresponding to the newly shed vortices, 
advected by the velocity field. Firstly, if there is only a 
TEV shed at the iteration i, equation (5) is reduced to: 
                         ( ) 2,1, TTtw iTEVi

∗∗∗ += Γθ                        (14) 
where T1 and T2 are terms depending on the angle of 
attack, the vertical displacement and the summation of 
the influence of the previously shed vortices. The only 
unknown parameter is the circulation of the TEV shed 
at iteration i. The airfoil bound circulation is obtained 
from (8) substituting the Fourier coefficients: 
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where I1 and I2 are terms resulting of the integrals of T1 
and T2. Substituting (15) into Kelvin’s theorem (7): 
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Secondly, if both a TEV and LEV are shed at iteration i, 
then equation (5) is reduced to: 
                 ( ) 3,2,1, TTTtw iLEViTEVi

∗∗∗∗ ++= ΓΓθ                 (17) 
where T1, T2 and T3 are terms depending on the angle of 
attack, the vertical displacement and the summation of 
the influence of the previously shed vortices. There is 
two unknown parameters which are the circulations of 
the TEV and LEV shed at iteration i, requiring two 
equations. The airfoil bound circulation is obtained from 
(8) substituting the Fourier coefficients: 
                     ∗∗∗ ++= iLEViTEVB III ,3,21 ΓΓΓ                     (18) 
where I1, I2 and I3 are terms resulting of the integrals of 
T1, T2 and T3. Kelvin’s theorem (7) and the criterion on 
the critical LESP provide: 
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Substituting the bound circulation and the value of A0, 
equation (19) is: 
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Note that this is a linear system, and no iteration scheme 
is required as previously mentioned in [18] and [23]. 
Therefore, a significant gain in calculation time is 
expected [26]. As only the shed LEV and TEV are 
computed with the method, it is worth noticing that the 
simulation time is increasing with the number of 
vortices. In order to reduce that number, the vortices 
located four chords downstream of the leading edge can 
be amalgamated into larger structures [27]. That 
clustering can be realized with a multidimensional 
binary search tree or k-d tree [28], for all the vortices 
downstream of four chord of the airfoil. 
The unsteady form of the Bernoulli theorem is used to 
calculate the pressure distribution along the airfoil: 
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with the indices ps and ss respectively for the pressure 
side and suction side and Vt the tangential velocity. As 
the flow potential function is the sum of the potential 
functions of the bound circulation, TEV and LEV: 
                        LEVTEVB ΦΦΦΦ ++=                          (22) 
the tangential velocity is: 
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From the thin airfoil theory: 

     ( ) ( )
2
,

2
, tx

x
tx

x ps

B

ss

B γΦγΦ
−=







∂
∂

=






∂
∂       (25) 

Then: 

         
[

( )tx
x

x
hUVV

LEV

TEV
pstsst

,

sincos22
,

2
,

γΦ

Φαα




∂
∂

+

∂
∂

++=− ∞


         (26) 

The potential functions time derivatives are: 
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Hence (21) becomes: 
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The normal force on the airfoil is obtained: 
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Using the Fourier coefficients, it is reduced to: 
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The axial force is given by the Blasius formula [23]: 
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0
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Similarly, the moment about the position xref on the 
airfoil is: 

     

( )[

( ) 











∂
∂

+
∂

∂
−









−+++


−+



+−=

∫

∞∞

c
LEVTEV

Nref

xdxtx
xx

AAAAcAA

AhUcUFxM

0

321021

02

,

641616
3

16
7

84

4
sincos

γΦΦρ

ααπρ





     (32) 

The method can also be adapted to study the 
aerodynamic interaction between two airfoils [29]. 
 

3. FLUID-STRUCTURE INTERACTION 

3.1. Structural model 
As the classical flutter consists in a twisting mode and a 
bending mode, it is a three-dimensional instability. 
However, a two-dimensional modeling is often used to 
understand complex phenomena as limit cycle 
oscillations (LCO) [1, 5, 20, 30]. Figure 2 shows the 
two-dimensional airfoil and the relevant points: the 
aerodynamic center (AC), the elastic center (EC) and 
the center of gravity (CG). The distance  is the distance 
between EC and AC, h the displacement in the direction 
orthogonal to the upstream velocity and α the angle of 
attack. The dynamic behavior of the airfoil is then 
reduced to its first twisting and bending mode, modeled 
respectively by a translation degree of freedom along Z 
and a rotation degree of freedom around the elastic axis 
passing through EC. In an airfoil, CG and EC are not 
generally superimposed. The eccentricity d of the center 
of gravity from the elastic center makes the coupling 
between twisting and bending motions. 

 
 

Figure 2. Structural model of the airfoil. 

 
3.2.  Coupling equations 
The governing equations of the airfoil presented in 
figure 2 are [5, 20, 21]: 
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with 
                ACEC MDLM ++= αα sincos                (34) 
and m the airfoil mass, JEC the moment of inertia at the 
elastic center, kh the equivalent flexural stiffness, kα the 
equivalent twisting stiffness, L the lift and MEC the 
elastic center pitching moment (Figure 2). Note that the 
structural problem is dimensional. A structural damping 
ξ can be considered [5] using the coupled eigenvalues 
(w1,c, w2,c) for null velocity of both modes: 
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where the uncoupled eigenfrequencies for both modes 
are: 

   
EC

d
d

zd
d J

kw
f

m
kw

f α

ππππ 2
1

22
1

2
,2

,2
,1

,1 ====   (36) 



 

5 

Equation (35) can be rewritten in matrix form: 
                     [ ] [ ] [ ] FUKUCUM =++                       (37) 
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3.3.  Coupling method 
The fluid and structure equations are solved in a single 
code with a direct loose coupling, whose flow chart is 
presented in Figure 3. As previously mentioned, the 
non-dimensional time step δt* is set to 0.015 for fluid 
LDVM computation, while the dimensional time step 
δt = δt∗c / U∞ is adjusted for each upstream velocity. For 
each simulation, 3000 LDVM time steps are computed 
to establish the flow around the airfoil and to advect the 
starting vortex downstream. The coupling is performed 
on the following 12000 time steps, computing for each 
time step, the lift and moment, which are input data for 
equations (33) solved by the method of Newmark [31]. 
Hereafter, the scheme is chosen implicit with standard 
values β = 1/4 and γ = 1/2. The resulting values of 
vector U are the new input values of the LDVM for the 
next time step. At that time, the method does not used 
internal iterations for solving the structural governing 
equations which necessitate to verify that δt is 
sufficiently small to converge towards the proper 
solution. 

 
 

Figure 3. Flow chart of the fluid structure coupling. 

 
3.4. Standard aeroelastic solutions 
In order to compare the present method with classical 
aeroelastic solutions, several analytical methods are 
implemented. The aeroelastic equations (37) can be 
solved with various analytical expressions of lift and 

moment. The simplest model is the quasi-steady lift and 
pitching moment model: 
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Due to the small angle of attack approximation, the drag 
is generally assumed to be null. More sophisticated 
expressions can be found in [32]. Theodorsen [7] 
showed that for unsteady aerodynamics and for small 
harmonic oscillations, the lift and pitching moment are: 
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where C(fr) is the Theodorsen function. The resolution 
of (37) with this model cannot be directly computed 
because the value of the C(fr) function is dependant 
from the reduced frequency fr of the solution. A way to 
work around this issue is, for example, to compute 
iteratively the solution with the so-called p-k method or 
k-method. Another way to solve this problem is to 
replace the C(fr) function with an approximation of the 
induced flow velocity. This method introduced by 
Peters [33] is based on the following equation for lift, 
the moment equation (42) being unchanged: 
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where λ0 is the induced flow velocity. This new 
parameter is approximated using Ns induced flow states 
by: 
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Each induced flow state can be determined using 
complementary first order ordinary differential 
equations [21]: 
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The ordinary differential equations (37) and (46) are 
then rewritten in the form of a new matrix form: 
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with: 
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T hU ,1 λλαλ =
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                   (52) 
The problem can be solved classically as a generalized 
eigenvalue problem. 
 
4. RESULTS 
Hereafter, a SD7003 is considered because the 
development of LESPcrit with Reynolds number is 
available for this airfoil. In the present work, the 
structural linear data correspond to a light aircraft wing 
[5] with m = 140 kg·m-1, d = 0.5 m, JEC = 45 kg·m, 
kz = 22000 N·m-2, kα = 30000 N·rad-1 and a structural 
damping ξ = 0.01. The airfoil initial angle of attack is 
1°. The different cases discussed hereafter depend on 
the upstream flow velocity U∞. which is varied between 
50 and 80 m·s-1. 
Figure 4-a presents the time evolution of the airfoil 
displacement h along axis Z and of its angle of attack α 
for an upstream velocity of 50 m·s-1. The 3000 initial 
time steps, corresponding to LDVM computations 
without structural coupling, are not plotted. The 
converging behavior is clearly observed with a 
stabilization around a position h = 0.05 m and an angle 
of attack α = 1.5°. For a larger velocity U∞ = 65 m·s-1 
(figure 4-b), the airfoil is diverging and a limit cycle 
oscillation (LCO) is observed beyond the airfoil stall. 
Figure 5-a presents the lift, drag and moment coefficient 
at the elastic center for an upstream velocity of 50 m·s-1. 
From the establishment of the coupling, large 
modulations of the aerodynamic coefficients are 
observed, but they are rapidly converging toward a 
steady state. The wing behavior is completely different 
for U∞ = 65 m·s-1 (figure 5-b), with an increase of the 
amplitude of the coefficients up to a saturation, 
corresponding to a LCO in the phase portrait. 
 

 
 

Figure 4. Time evolution of the airfoil displacement and 
angle of attack corresponding to a) U∞ = 50 m·s-1 and b) 

U∞ = 65 m·s-1. 

 
 

Figure 5. Time evolution of the aerodynamic 
coefficients corresponding to a) U∞ = 50 m·s-1 and b) 

U∞ = 65 m·s-1. 

a) 

b) 

a) 

b) 
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Figure 6. Airfoil position for U∞ = 50 m·s–1 (left, converging motion) and for U∞ = 65 m·s–1 
(right, diverging motion) and vortex shedding circulation (negative in blue, around zero in green 
and positive in red) for different times: a) t = 5 s, b) t = 5.25 s, c) t = 5.5 s, d) t = 5.75 s, e) t = 6 s. 

a) 

d) 

b) 

c) 

e) 
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Figure 7. Phase portrait of the vertical airfoil motion h (left) and of the angle of attack α (right) for cases corresponding 
to upstream velocity: a) U∞ = 58.1 m·s–1, b) U∞ = 58.3 m·s–1, c) U∞ = 58.5 m·s–1, d) U∞ = 58.7 m·s–1, e) U∞ = 58.9 m·s–1. 

The time development of the airfoil motion and flow vortices is presented in figure 6, for the velocities 

a) 

d) 

b) 

c) 

e) 



 

9 

previously discussed U∞ = 50 m·s-1 and  U∞ = 65 m·s-1. 
These times are taken after the initiation of fluid-
structure coupling. For U∞ = 50 m·s-1 (figure 6, left), the 
flow is completely attached,  no TEV is created and the 
airfoil is stable. On the contrary, for U∞ = 65 m·s-1 
(figure 6, right), the airfoil presents large modulations in 
its position and angle of attack, associated with changes 
in its global circulation and resulting in the emission of 
a trailing vortex (figure 6-b). A possible detached flow 
on the suction side (figure 6-d) or on the pressure side 
(figure 6-e) is also able to occur. 
Figure 7 presents the phase portrait of the vertical airfoil 
motion h and of the angle of attack α for cases 
corresponding to upstream velocities between 58 and 
59 m·s-1, in order to track the critical speed of the 
system. Figures 7-a,b show converging paths in the 
phase plane toward a point, corresponding to stable 
cases. Figures 7-c,d,e present diverging paths associated 
to unstable airfoil coupling. The velocity threshold 
between these two behaviors is found around 58.4 m·s-1. 
An aeroelastic computation of the critical speed with 
quasi-steady aerodynamics (eqs. 41-42) provides a 
value of 57.5 m·s-1. The computation of the critical 
speed with the model of Peters [33] in eq. (51) provides 
a value of 60.5 m·s-1. That value is to compared to the 
critical speed of 58.4 m·s-1 obtained by the present fluid-
structure coupling method. These estimates of the 
critical speed lead to reduced frequencies of the order of 
one using equation (36), which is the case of a strong 
fluid-structure interaction in the actual configuration. 
Figure 8 presents the phase portrait of the vertical airfoil 
motion h and of the angle of attack α for an upstream 
velocity of 80 m·s-1, with the associated LCO. 
 
5. CONCLUSION 
The LDVM is a reduced order method that has been 
successfully implemented previously to predict flow 
detachment and aerodynamic forces on an airfoil. In this 
paper, a loose coupling with a structural model is 
implemented. The coupling equations are solved by the 
method of Newmark. The LDVM is first computed to 
advect the starting vortex far away from the airfoil. 
Then, for each time step, LDVM provides the 
aerodynamic coefficients and pitching moment which 
are input data for the structural equations, leading to a 
change in the airfoil position and angle of attack. The 
coupling method is applied to a straight wing build on a 
SD7003 airfoil with structural linear data corresponding 
to a light aircraft configuration. Asymptotically stable or 
unstable behaviors are found depending on the control 
parameter which is the upstream flow velocity. In order 
to track the critical speed, phase portraits of the vertical 
airfoil displacement and of the angle of attack are built. 
A change from a converging path in the phase portrait 
toward a point to a diverging path is found for velocities 
larger than the flutter speed of 58.4 m·s-1. This result is 

close to the value of 57.5 m·s-1 obtained with a purely 
quasi-steady model or 60.5 m·s-1 obtained by the model 
of Peters. These results are validating the present 
coupling method. Above this flutter speed, LCO are 
highlighted due to the ability of the method to predict 
the detached flow on the suction side and on the 
pressure side. It is one of the main interests of the 
proposed method. In the future, it will be compared to 
experimental case of LCO. 
 

 
 
Figure 8. Phase portrait of the vertical airfoil motion h 

(left) and of the angle of attack α (right) for cases 
corresponding to upstream velocity: a) U∞ = 80 m·s–1. 
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