
HAL Id: hal-01781204
https://hal.archives-ouvertes.fr/hal-01781204

Submitted on 29 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Contact Postures Computation on Manifolds
Stanislas Brossette, Adrien Escande, Abderrahmane Kheddar

To cite this version:
Stanislas Brossette, Adrien Escande, Abderrahmane Kheddar. Multi-Contact Postures Com-
putation on Manifolds. IEEE Transactions on Robotics, IEEE, 2018, 34 (5), pp.1252-1265.
�10.1109/TRO.2018.2830390�. �hal-01781204�

https://hal.archives-ouvertes.fr/hal-01781204
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 1

Multi-Contact Postures Computation on Manifolds
Stanislas Brossette, Adrien Escande, and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—We propose a framework to generate static robot
configurations satisfying a set of physical and geometrical con-
straints. This is done by formulating nonlinear constrained
optimization problems over non-Euclidean manifolds and solving
them. To do so, we present a new sequential quadratic pro-
gramming (SQP) solver working natively on general manifolds,
and propose an interface to easily formulate the problems, with
the tedious and error-prone work automated for the user. We
also introduce several new types of constraints for having more
complex contacts or working on forces/torques. Our approach
allows an elegant mathematical description of the constraints and
we exemplify it through formulation and computation examples
in complex scenarios with humanoid robots.

Index Terms—Robotics, Posture Computation, Contacts, Op-
timization on Manifolds.

I. INTRODUCTION

COMPUTING static robot configuration that fulfills a set
of objectives is needed in many aspects of robotics. This

is crucial in humanoid robotics, where it has been used to
find feasible multi-contact postures in planning e.g. [1], [2],
[3], to provide low-priority reference postures in control [4],
to explore feasible head position for object reconstruction [5]
or to discover the surroundings [6].

For a given robotic system, we consider the problem of
finding a single configuration to achieve a set of objectives Ti.
We denote q the joint configuration (n joints plus a reference
base) of the robot, ξ =

(
ξT1 , . . . , ξ

T
m

)T
represents the m

contact forces applied on the robot, and y denotes additional
variables. Each objective Ti can be represented by a set of
equality and inequality equations:{

gi(q, ξ,y) = 0

hi(q, ξ,y) ≥ 0
(1)

The extra variable y is useful to express many constraints [7]
as explained later (section V). In addition to satisfying the
tasks Ti, the configuration we seek for –we call it posture–

Manuscript received Xxxxxxx, 2017; revised Xxxxx XX, 2017; accepted
Xxxxxx XX, 2018. Date of publication Xxxxxxxx X, 2018; date of current
version Xxxxxxxxx X, 2018. This paper was recommended for publication
by Associate Editor X. Xxxxxxxx and Editor T. Murphey upon evaluation of
the reviewer’s comments.

This work was partially supported by the EU H2020 COMANOID project
and the CNRS-AIST-Airbus Joint Research Program.

S. Brossette is with Wandercraft, Paris, France
A. Kheddar and A. Escande are, S. Brossette was, with the CNRS-AIST

Joint Robotics Laboratory (JRL), UMI3218/RL, Japan
A. Kheddar is, S. Brossette was, also with the CNRS-University of

Montpellier LIRMM Interactive Digital Humans team, France
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 00.0000/TRO.201X.0000000

Fig. 1. Illustration of the different constraints involved in the Posture
Generation problem.

must represent a feasible state of the robotic system. This
translates into the following feasibility problem:

Q :

q−i ≤ qi ≤ q
+
i ∀i ∈ [1, n]

τ−i ≤ τi(q, ξ) ≤ τ
+
i ∀i ∈ [1, n]

εij ≤ d(ri(q), rj(q)), ∀(i, j) ∈ Iauto

εik ≤ d(ri(q), Ok), ∀(i, k) ∈ Icoll

s(q, ξ) = 0

c(ξi) ≥ 0 i ∈ [1,m]

gi(q, ξ,y) = 0

hi(q, ξ,y) ≥ 0

(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)

where equations (2) and (3) are the joint and torque limits
respectively; eq. (4) disallows auto-collision between a pair of
robot bodies {ri, rj} given by a set Iauto and where d is the
distance function; eq. (5) forbids collisions between a robot
body ri and an object of the environment Ok defined in a set
Icoll; εij and εik are the acceptable distance thresholds. Eq. (6)
ensures the stability of the robot, by requiring the balance of
external forces and torques applied to the robot. Finally, the
contact forces must lie within the Coulomb friction cones,
which is enforced by eq. (7). We illustrate these constraints
in Fig. 1.

The set Q, if not empty, usually contains infinitely many
feasible postures and we may want to pick-up one according to

0000–0000/00$00.00 c© 201X IEEE

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 2

a cost function f . This yield a nonlinear optimization problem
that we name Posture Generation (PG) problem:

min.
q,ξ,y

f(q, ξ,y)

s.t. (q, ξ,y) ∈ Q
(10)

Usually, the PG problem is formulated over a Euclidean
space. However, robot variables may be more appropriately
expressed in non-Euclidean manifolds. An example of a typ-
ical manifold is the rotation space SO(3), which is used to
represent the orientation of the robot root, or to parametrize a
ball joint. Another example is the 3D unit sphere on S2 which
is used to express the contact with a parametric surface in [8];
in [9] a human shoulder is parametrized on S2 × R.

Formulating a non-Euclidean manifold optimization prob-
lem over Rn leads either to singularities or to the addition
of constraints and variables to this problem, as detailed in
the next section. Since manifolds are locally Euclidean, the
properties of distance, derivatives, and more generally all the
Euclidean geometry can be used locally. Usual unconstrained
optimization methods have been adapted to work on non-
Euclidean manifolds (e.g. [10], [11], [12], [13]). However,
posture generation requires using constrained optimization
together with manifolds. To the best of our knowledge, there
is no method to solve such class of problems with generic
manifolds (for specific ones, [14] proposes an extension of a
classical approach to the special case SE(3)).

Our primary contribution consists in a Sequential Quadratic
Programming (SQP) solver working directly on manifolds. We
were largely inspired by the seminal work of Absil [13] for
unconstrained optimization, that we adapt to the constrained
case by borrowing from the existing literature, and in particular
from the work of Fletcher [15]. A background motivation is
to have our own optimization solver, that we can customize at
will for robotic problems, leveraging modeling properties and
approximations for a gain in time and robustness. The theo-
retical development and the sketch of our SQP on manifolds
are given in Sec. II, while the different refinements needed to
have a fully working solver are explained in Sec. III.

The definition of a PG problem as an optimization problem
is often a cumbersome task. Our second contribution is a
framework simplifying and automating part of this task so
that the user can focus on the mathematical formulation of the
constraints (Sec. IV). It makes it as convenient as possible to
write custom PG problems and to develop custom constraints
and cost functions. We take advantage of it to introduce
new constraints for having contact on parametric surfaces and
formulating force-based tasks (Sec. V). We also provide an
efficient algorithm to compute the derivative of the torques
with respect to the problem’s variables. Finally, we present
some evaluations of both the solver alone and the posture
generator, as well as some scenarios illustrating their combined
capabilities (Sec. VI).

Part of this paper was presented in [16]. The material of
secs. II and IV are extended version of the previous work
with more details and a few corrections. The rest of the paper
is almost completely new. The example of Fig. 10 is borrowed
from [16], the one from Fig. 11 is reworked from [8], with
the addition of collision avoidance.

II. CONSTRAINED OPTIMIZATION ON MANIFOLDS

We consider the generic problem

min.
x∈M

f(x) (11)

subject to l ≤ c(x)≤ u

where M is a n-dimensional smooth manifold and f and c
are 1- and m-dimensional real-valued C1 functions. Equality
constraints are formulated by taking li = ui.

Except for specific cases, the numerical approach to solve
problem (11) for M = Rn is iterative: it starts from an initial
guess x0 and performs successive steps x(k+1) = x(k) +p(k),
until convergence. The strategy to compute p(k) at each
iteration depends on the solver. This scheme cannot be readily
applied to optimization over non-Euclidean manifolds. In what
follows we explain why, and give an adaptation of the SQP
approach to tackle general manifolds.

A. Representation problem

To manipulate elements of M we need a way to represent
them in memory. We choose a representation space E = Rr
(with r ≥ n) and a map, that is

ψ :
x 7→ x
M → E

According to the Whitney embedding theorem [17], one can
take ψ as a diffeomorphism onto ψ(M) provided that r is
large enough. In the following, we identify abusively M with
ψ(M) ⊆ E. Once the choice is made, we can also define a
projection π from E to ψ(M).

With this representation, it is tempting to simply transform
the problem (11) as an optimization over Rr with the objective
f ◦ψ−1 and the constraint c◦ψ−1, to be resolved with a usual
solver. But depending on the representation choice, one of the
two following problems arises:
(i) r = n, then it is not possible in the general non-Euclidean
case to find ψ without derivative discontinuities, which can
lead to critical convergence problems;
(ii) r > n, then most elements of E do not represent an element
of M and ψ cannot be surjective. To force the solution on
M, we need to add constraints equivalent to π(x) = x. As a
result, the problem has more variables and constraints w.r.t (i).
Moreover, the additional constraints are unlikely to be met
along the iteration process (even if x(k) is an element of M,
x(k) + p(k) is likely not, as nothing enforces it). This means
that in order to evaluate f ◦ψ−1 and c ◦ψ−1 at a given x(k),
one has to project it on ψ(M) first, effectively computing
f ◦ ψ−1 ◦ π and c ◦ ψ−1 ◦ π. The composition by π is an
additional burden in programming (see e.g. in [18]).

As an example, the set of 3D-rotations SO(3) is a manifold
of dimension 3. The following usual choices can be made:
• Rotation matrix R ∈ R3×3 ≈ R9, additional constraints:
{RTR = I , det(R) = 1}, projection by orthogonaliza-
tion,

• Quaternion q ∈ R4, additional constraints: {‖q‖ = 1},
projection π(x) = x/ ‖x‖,

• Euler angles (E = R3), singularities when reaching
gimbal lock.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 3

• Spatial twist or angle-axis (E = R3), singularities when
the rotation is 2kπ, k 6= 0.

For the last two cases, the convergence in the vicinity of a
singularity can be disturbed because two infinitesimally close
rotations can have very different representations (see example
in Appendix A).

B. Local parametrization

Given x ∈ M, we note TxM the tangent space of M at
x. It is a linear space, identifiable with Rn. By definition of a
smooth manifold, there exists a map ϕx from an open set U of
TxM to an open set of M such that ϕx(0) = x. ϕx provides
a local parametrization forM. Should the solution of (11) lies
in ϕx(U) for a given x, we could transform the objective and
constraints into f◦ϕx and l ≤ c◦ϕx(z) ≤ b and simply solve a
problem over Rn with an off-the-shelf solver. However, finding
a point x close enough to the solution is a problem in itself. A
more systematic approach, and the driving idea of optimization
on manifold, is to change the parametrization at each iteration:
for each iterate x(k), we reformulate the problem as

min.
z∈T

x(k)M
f ◦ ϕx(k)(z) (12)

subject to l ≤ c ◦ ϕx(k)(z)≤ b

which is a classical optimization problem over Rn. Starting
from z = 0 (recall that ϕx(k)(0) = x(k)), we can perform
one iteration to get z(1), set xk+1 = ϕx(k)(z(1)) and re-
parametrize. The process is repeated until convergence is
achieved. In the computation of the step z(1), one needs to be
careful about the local validity of the map: if ϕx(k) is defined
on Uk ⊂ Tx(k)M, then z(1) must be restricted to Uk.

Fig. 2. There are many possible choices for ϕx but not all yield to a curve
ϕx(tz) which is going in the same direction as z: ϕ1 and ϕ2 are correct
choices, ϕ3 is not.

At any point x(k), there is an infinite number of possible
maps ϕx(k) (see Fig. 2), most of which are unsuitable to the
optimization process. A suitable map needs to translate the
direction and magnitude of z onto M: the tangent vector at
t = 0 of the curve t 7→ ϕxi(tz) must be z. This is known
as the local rigidity condition. This led to the concept of
retraction [13], a smooth mapping ϕ : (x, z) 7→ ϕx(z) such
that for every x

1) ϕx(0) = x

2) ∀z ∈ TxM,
dϕx(tz)

dt

∣∣∣∣
t=0

= z

Even when restricting to retractions, there are still many
choices of (family of) maps. The exponential map is an obvi-
ous candidate, but in the general case it is very expensive to
compute, because it amounts to solving a differential equation.
The literature offers cheaper alternatives for many classical
manifolds (see e.g. [13], [19]).

Using a retraction ϕ, the iterative process uses the minimum
number of variables and avoids additional constraints and
parametrization-related singularities. Yet, we need to keep
track of the iterates x(k) globally. Since the x(k) are guaranteed
to be on M, we can use a space E = Rr and a map ψ, with
r > n, without any drawback. The user can write the functions
f ′ = f ◦ψ−1 and c′ = c ◦ψ−1 as if they were functions from
E without using a projection π beforehand. When using a new
manifold, one needs to program once and for all ψ ◦ ϕ. The
Fig. 3 sums-up the different spaces and mappings.

Fig. 3. Given a manifold M, we use a global map ψ from an embedding
space E to track its elements. π projects a generic element of E on ψ(M).
Given x ∈M, we also define a local map ϕx with which we can perform the
computations. The functions actually implemented are f ′ and ψ ◦ ϕ, which
are functions between Euclidean spaces.

C. A basic SQP on manifold

There are several ways to compute a step z(1). We adopt
the SQP approach which consists in making a quadratic-linear
approximation of the problem (12) around the current iterate,
corresponding to z = 0, and solving it.

Let us first define the Lagrangian function

Lx = f ◦ ϕx − λT− (c ◦ ϕx − l) + λT+ (c ◦ ϕx − u) (13)

where λ−, λ+ ∈ Rm are the Lagrange multipliers associated
with the lower and upper bounds respectively1. Let H(k) be
the Hessian matrix ∇2

zzLxk
. Then the approximation writes

as a Quadratic Program (QP)

min.
z∈Rn

∂f ◦ ϕx(k)

∂z
(0)T z +

1

2
zTH(k)z (14)

subject to l ≤ c ◦ ϕx(k)(0) +
∂c◦ϕ

x(k)

∂z (0)z ≤ u

The basic SQP approach adapted to manifolds is as follows
1) set k = 0, and set x(k) to the initial value
2) solve the QP (14) for current x(k) to get z as well as

the QP’s Lagrange multipliers λQP
− and λQP

+

3) set x(k+1) = ϕx(k)(z), λ(k+1)
− = λQP

− , λ(k+1)
+ = λQP

+ and
k = k + 1

4) if the convergence is not yet achieved go to step 2

1In practice, we use only the derivatives of the Lagrange function, so that
λ− and λ+ are irrelevant, and we work with λ = λ+ − λ−. Since for
i = 1 · · ·m, (λ−)i = 0 or (λ+)i = 0 depending on whether the upper or
lower bound of the i-th constraint is active, λ− and λ+ are obtained from λ.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 4

Computations of function’s values and derivatives are based
on the fact that f ◦ ϕx = f ′ ◦ ψ ◦ ϕx (and same for c), and

f ′ : E → R
ψ ◦ ϕx : Rn → E

are functions between Euclidean spaces.
The gradient of f ◦ ϕx is

∂f ◦ ϕx
∂z

=
∂f ′

∂y
(ψ ◦ ϕx)× ∂(ψ ◦ ϕx)

∂z
(15)

Because the problem is reparametrized at each iteration, the
derivative of ψ ◦ ϕx is always computed at z = 0, which
usually allows for some fast specialized code.

The approach taken here is in theory applicable to any
smooth manifold (including products of such manifolds), and
is usable in practice whenever tractable retractions ϕ and
vector transports (see below) can be implemented.

III. PRACTICAL IMPLEMENTATION

The algorithm given in Sec. II-C is conceptual and works
correctly when the initial iterate is close enough to the solu-
tion. In practice, several refinements need to be implemented
to avoid divergence, deal with possible infeasibility in the QP
approximation, alleviate the computations and speed-up the
process. In this section, we detail these refinements. For each
of these issues, several solutions exist, sometimes interdepen-
dently. We mostly follow the approach of Fletcher [15], that
we adapt to work with manifolds, with some choices motivated
by experiments on robotics problems, such as those described
in Section VI. We provide a working and coherent set of
refinements, carefully chosen and adapted to the context of
non-Euclidean optimization from the wealth of the literature.

A. Convergence criterion

The convergence is considered to be achieved when the
KKT conditions are satisfied2 (see [20]). With the sign con-
vention taken in definition (13), the KKT conditions for (11)
are (with quantities taken at z = 0):

∇zLx = ∇zf ◦ ϕx + (∇zc ◦ ϕx)
T

(λ+ − λ−) = 0

l ≤ c ◦ ϕx ≤ u
λ− ≥ 0, λT− (c ◦ ϕx − l) = 0

λ+ ≥ 0, λT+ (c ◦ ϕx − u) = 0

In practice, we account for floating point computations using
tolerances that we scale to the problem. Given two user defined
tolerance parameters τP and τD, and following [21], we define
τx = τP (1 + ‖x‖∞) and τλ = τD(1 + ‖λ‖∞), where λ =
λ+ − λ−. Our stopping criterion is

‖∇zLx‖ ≤ τλ (16)

∀i

 |ci(x)− li| ≤ τx and λi ≤ −τλ
or li + τx ≤ ci(x) ≤ ui − τx and |λi| ≤ τλ
or |ci(x)− ui| ≤ τx and λi ≥ τλ

(17)

2These conditions only ensure that we reached a critical point, not neces-
sarily a minimum, much less the global minimum.

B. Globalization

The approximation (14) might be accurate only in a small
neighborhood of x(k), so that the step found is not correct.
The basic SQP algorithm might not converge, or even diverge
rapidly. Adapting the algorithm to enforce its convergence (at
least theoretically and not necessarily to the solution) is called
globalization. It consists of two components: (i) a criterion to
assess the correctness of the step, and (ii) a method to modify
it if needed. In constrained optimization, the most classical
criterion is to take a penalty function Φ(x, p) aggregating the
objective and the violation of the constraints, where p is a
penalty parameter balancing between objective and violation.
A step is correct if Φ(x(k+1), p) < Φ(x(k), p). For the method
to converge to the solution, the parameter p needs to be
adapted along the iterations and here lies the difficulty of
this approach. In our early tests, we had troubles obtaining
convergence on robotics problems. Instead, we opted for a
quite recent criterion (see [15]) based on filters.

Let vi(x
(k)), i = 1 · · ·m be defined as li − ci(x

(k))
if ci(x

(k)) < li, ci(x(k)) − ui if ci(x
(k)) > ui and 0

otherwise. It represents the violation of the i-th constraint.
Noting v =

∑
vi, the optimization process can be seen as

trying to satisfy two possibly conflicting objectives: decrease
f and decrease v. The idea of the filter approach is to accept
a step whenever the new iterate does not do worse than any
previous one on both objectives, and does marginally better for
one objective than at least one previous iterate. More precisely,
we say that xi dominates xj if f(xi) ≤ f(xj) − γv(xj) or
v(xi) ≤ (1 − γ)v(xj), where γ is a small number (typically
10−5) and the terms in γ translates the “marginally better”
concept. A filter is a set of values xi where no element
dominates another. A filter dominates an iterate x if any
of its elements dominates x. We start with an empty filter
F ; at iteration k the step z is accepted if the new iterate
x(k+1) = ϕx(k)(z) is not dominated by F . In this case, x(k+1)

is added to F , and all the elements of F it dominates are
removed from the filter. If x(k+1) is dominated by F , the step
is rejected and has to be modified.

There are two big classes of modifying methods: line-search
and trust-region. In our case, we already have a notion of
trust-region as we need the step z to remain within the set
Uk on which ϕx(k) is defined, so we chose this method.
The trust-region approach consists in restricting z to be in
a region where the QP approximation (14) is “good enough”.
To simplify the approach and retain a QP formulation, we
consider a rectangular trust region: given a user-defined vector
zt ∈ Rn with zt ≥ 0, we want −ρzt ≤ z ≤ ρzt, where
ρ is a scalar accounting for the confidence we have in the
QP approximation. When a step is rejected by the filter, we
modify the trust region by taking ρ = max(ρ/2, ρmin). If a
step is accepted, and it was constrained by the trust region (i.e.
zi = ±ρzt,i for some i), we take ρ = min(2ρ, ρmax). ρmin,
ρmax and the initial ρ are user-defined. Typical default value
are 10−8, 2 and 1. zt encodes the typical step size of each
variables. It allows to consider variables of different scales, by
having an anisotropic trust-region, without having to write the
functions f and c to take into account those scale differences.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 5

For example, on a 60kg humanoid robots with joint and force
variables, we typically take 0.1 for joints and 10 for forces.

The region Uk is also considered as rectangular: z−u ≤
z ≤ z+u . We then defined z− = max(z−u ,−ρzt) and z+ =
min(z+u , ρzt), and QP (14) with a trust-region is given by:

min.
z∈Rn

∂f ◦ ϕx(k)

∂z
(0)T z +

1

2
zTH(k)z (18)

subject to l ≤ c ◦ ϕx(k)(0) +
∂c ◦ ϕx(k)

∂z
(0)z ≤ u (19)

z− ≤ z ≤ z+

C. Restoration and second order correction

QP (18) can be infeasible because some constraints in (19)
are incompatible or, more often, because the feasible points
for (19) are outside of the trust region. When this is detected,
we trigger a restoration phase whose goal is to reduce the
violation of the constraints l ≤ c(x) ≤ u until QP (18)
becomes feasible again. We follow the approach in [15].

Infeasibility is detected by the QP solver when attempting
to solve QP (18). From the solver output, we can define 2 lists
of indexes Il and Iu corresponding to constraints whose lower
or upper bound cannot be satisfied, and a list F corresponding
to feasible constraints. The idea of the restoration phase is to
begin to solve the problem

min.
x∈M

∑
i∈Il

(li − ci(x)) +
∑
i∈Iu

(ci(x)− ui) (20)

subject to lrest ≤ c(x) ≤ urest (21)

with lrest
i = −∞ if i ∈ Il and li otherwise, and likewise

lrest
i = +∞ if i ∈ Iu and li otherwise. This corresponds to

minimizing the violation of the infeasible constraints while
enforcing the feasible ones.

The above problem is nonlinear, and we solve it with the
same SQP. The restoration phase has its own filter F rest and its
own Hessian approximation (see next subsection), but shares
the trust region parameter with the main phase. The difference
with the main phase is that we stop to iterate as soon as we
detect that QP (18) is feasible again. Also, at each iteration the
sets Il, Iu and F can be updated to account for (linearized)
constraints becoming feasible or infeasible in (18). For more
details, the interested reader can refer to [22].

In restoration, if a step z is rejected by the filter F rest, we
attempt first to solve a modified QP problem and reduce the
radius of the trust region only if the new step is rejected. In
this modified QP, a linear term is added to the constraints (19)
which approximates the second order in the Taylor develop-
ment of c ◦ ϕx. This is known as the second-order correction
(SOC) [15]. SOC can also be used in the main phase, but, in
our tests, we didn’t find a particular advantage to use it.

We exit the restoration with an iterate x(k), that we add to
the main filter F . In case x(k) is dominated by some elements
of F , we remove them, what we refer to as forcing the filter.

D. Hessian computation

The computation of the exact Hessian matrices H(k) or
H

(k)
j (for each constraint and the cost function) is costly. It

Fig. 4. The vector v1 ∈ Tx1M is transported along z. Tx1,z(v1) is an
element of Tx2M and can be compared to other elements of this tangent
space such as v2.

is common to only approximate them based on the previously
computed steps and gradients. This is known as the quasi-
Newton approach. In usual Euclidean settings, we define
s(k) = x(k+1) − x(k) and y(k) = ∇Lx(k+1) − ∇Lx(k) , and,
given an approximation Ĥ(k) of H(k), the approximation of
H(k+1) is given by Ĥ(k+1) = Ω(Ĥ(k), s(k), y(k)) where the
function Ω is light to compute (it is typically a rank-1 or rank-2
update of Ĥ(k)) and depends on the method.

With manifolds, both definitions of s(k) and y(k) are usually
not valid, the former because the subtraction might not be
defined, the latter because the gradients live in different tangent
spaces so that the subtraction is not meaningful. We extend
the idea in [13] to the case of constrained optimization: with
z ∈ Tx(k)M, the step from x(k) to x(k+1), we define

s(k) = Tzz (22)

y(k) = ∇zL(k+1)(0, λ(k+1))− Tz
(
∇zL(k)(0, λ(k))

)
(23)

where Tz is a vector transport along z, mapping a vector of
Tx(k)M to a vector of Tx(k+1)M (see Fig. 4), see [13] for more
details. This way, all quantities live in Tx(k+1)M and we can
perform meaningful operations. The resulting Ĥ(k+1) can be
viewed as the matrix of a quadratic form from Tx(k+1)M×
Tx(k+1)M to R.

We also use the usual damped update to account for the fact
that we have a constrained optimization, and define r(k) as a
modified y(k):

θ(k) =

{
1 if s(k)T y(k) ≥ 0.2s(k)T H̃(k)s(k)

0.8s(k)T H̃(k)s(k)

s(k)T H̃(k)s(k)−s(k)T y(k)
otherwise

r(k) = θ(k)y(k) +
(

1− θ(k)
)
H̃(k)s(k)

with H̃(k) such that for u ∈ Tx(k+1)M, H̃(k)u = Tz(H̃T −1z u).
We tried several update schemes: the BFGS formula

Ĥ(k+1) = τ (k)

(
H̃(k) − H̃(k)s(k)s(k)T H̃(k)

s(k)T H̃(k)s(k)

)
+
r(k)r(k)T

s(k)T r(k)

with τ (k) = 1 for the original formula [20], or τ (k) =

min
(

1, s(k)T r(k)

s(k)T H̃(k)s(k)

)
for the so-called self-scaled ver-

sion [23]; and the SR1 formula [20]

Ĥ(k+1) = H̃(k) − (y(k) − H̃(k)s(k))(y(k) − H̃(k)s(k))T

(y(k) − H̃(k)s(k))T s(k)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 6

Finally, we tried a mixed BFGS-SR1 scheme [24], but we
did not get good results with it.

The above formulas approximate directly the Hessian of
L. Another approach is to use them to approximate indi-
vidually the Hessian matrices of the cost function f and
of every constraints ci, before using the fact that ∇2

xxL =
∇2
xxf +

∑
i λi∇2

xxci, as proposed in [25]. We refer to this
as the individual update, and coin the first approach grouped
update. The different update options are evaluated on robotics
problems in Section VI.

For most of the update schemes, the Hessian approximation
Ĥ need not be positive definite. We regularize it as follows to
obtain a positive definite approximation Ĥ ′: we perform first
a Bunch-Kaufman factorization PĤPT = LBLT where P
is a permutation matrix, L is unit lower triangular and B is
block diagonal with blocks of size 1× 1 or 2× 23, see [26].
We can then compute (in O(n)) the eigenvalue decomposition
B = QDQT , with Q a block diagonal orthogonal matrix with
the same structure as B, and we define the diagonal matrix
D′ with diagonal elements d′ii = max (dii, µmin) where the
dii are diagonal elements of d and µmin > 0 is user-defined.
We then define L′ = LQD′

1
2 , and Ĥ ′ = PTL′L′TP . Ĥ ′ is

positive definite because it is similar to D′ whose eigenvalue
are all strictly positive (Sylvester’s law of inertia). Computing
L′ is cheap (O(n2)) given the sparsity of D′ and Q.

It is not uncommon for QP solvers to accept directly
the Cholesky factorization (P,L′), as they would otherwise
perform it internally. This is the case for the solver LSSOL [27]
we use in this work. As a consequence, the overhead cost of
the regularization is barely noticeable.

E. Overall algorithm
The full SQP algorithm is depicted in Fig. 5.
Proving formally the convergence of the algorithm is out

of the scope of this paper. Intuitively, it behaves locally like
an SQP. In particular, when close enough to the solution, the
algorithm will take steps equal or very close to those taken
by a classical SQP with a fixed local parametrization centered
at the solution (i.e. problem (12) formulated at the solution
x∗), because the effects of the change of local parametrization
become negligible. Thus the algorithm should have the same
convergence properties as a classical SQP.

IV. POSTURE GENERATOR

Writing a PG can easily become cumbersome without the
appropriate tools: many data and functions need to be specified
and there are many sources of errors. Common pitfalls are for
example writing the derivative of a function, managing how
the Jacobian matrices of the already implemented functions
are modified when a variable is added to the problem, adding
a new type of constraint, or correctly writing a function on
a sub-manifold of the problem’s manifold. A fair amount of
bookkeeping is always necessary, which should not be the
charge of the user. We propose a PG architecture automating
most of the problematic tasks so that the user can focus on
the mathematical formulation of the problem.

3obtaining B as a diagonal matrix is not numerically stable for Cholesky-
like decomposition of indefinite matrices

Init x and filter

Update c, ∇c, f , ∇f , H . . .

Is KKT satisfied?

Convergence
SuccessSolve QP

Is QP feasible?

Find feasible point
with Restoration Phase

Force add
{f(x), c(x)} in filter

Is {f(ϕx(z)), c(ϕx(z))}
accepted by filter?

Reduce trust region
ρ← ρ

2

Is ρ ≤ ρmin?

Too small step
Failure

x← ϕx(z)
Add to filter

Is step limited
by trust region?

ρ← 2ρ

no yes

no

x

yes

no yes

yes

yesno

no

Fig. 5. Main SQP Loop

A. Geometric Expressions

The description of a task (i.e. a robotic constraint) is a
mathematical object called expression. An expression is the
result of a series of elementary operations on or between
geometric and physical objects, called features, such as vec-
tors, points, wrenches or frames. Provided that the elementary
operations, features, and expressions are well-defined, and that
the structure of the series of operations is registered in a
system of expression graph, one can systematically compute
the resulting expressions’ values and derivatives by chain
rule. The main idea behind such a framework is to separate
the purely mathematical logic layer from the geometric one,
in order to automate the evaluations and differentiations of
complex operations between the geometric features.

The evaluation of a given feature in a given frame is
represented by a mathematical expression. We consider 5 types
of expressions which can be either variable or constant:
• Scalar, a 1-dimensional element of R
• Coordinate, a 3-dimensional element of R3

• Rotation, a 3× 3 matrix representing a 3D rotation
• Transformation, a 4 × 4 matrix representation of a 3D

isometry
• Array, a dynamic size array

These expressions can be combined with each other through
mathematical operations to create other expressions. Mean-
ingful unary (norm, inverse, opposite...) and binary (addi-
tion, subtraction, dot product, cross product...) operations are
implemented, along with their derivatives by chain rule. In
addition, we have a Function class for more complex and
custom expressions. In particular, we use a function operation

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 7

expressing q 7→ Ti(q) where Ti is the transformation between
the reference frame of the robot and the frame of its i-th body
to represent the location of each body of a robot4. We also
use the combinations of elementary operations to define the
computation graph used for evaluations.

The expressions and operations constitute the mathematical
layer, on top of which the geometric layer is built. The
geometric layer is composed of geometric and physical objects
used in PG problems, which can be represented by elementary
geometric quantities, or features. It aims at abstracting the
mathematical layer so that the user can focus on the physical
formulation of the problem. Any feature is defined in a
reference frame by a mathematical expression but otherwise
exists independently of its expression in a given frame.

The geometric layer of our framework in composed of 4
features, all defined in their respective reference frames:
• A Frame, defined by a Transformation expression;
• A Point, defined by a Coordinate expression;
• A Vector, defined by a Coordinate expression;
• A Wrench, defined by a pair of Coordinate expression.

A special World Frame object serves as the starting reference
frame. Since each frame is defined with respect to another
reference frame, the geometric layer intrinsically constructs a
tree of interconnected frames. This structure allows computing
the numerical evaluation of any geometric object in any
given frame. It allows the geometric layer to ensure that
all the features are expressed in the correct frames before
the mathematical layer performs the corresponding operations
on their associated expressions. Basic operations are defined
between those features (when applicable). For example, the
subtraction between two Points gives a Vector. The geometric
logic resides in the change of frame and those operations.

Let us consider a robot that has to look at a specific
point Pe of the environment with its camera, defined by
a point Pr and a vector Vr. Using the elementary opera-
tions of subtraction between points (returns a vector), and
the dot product between vectors (returns a scalar), the con-
straint writes as (Pe − Pr).Vr = 0. The user needs only
to create those geometric objects, attached to the frames
of the robot or of the environment, and write the code
(Pe-Pr).dot(Vr) to generate the function. Given any
variable object v, (Pe-Pr).dot(Vr).diff(v) returns
the differential of the expression w.r.t. v. This makes the
writing of constraints very easy.

B. Automatic mapping

The complete manifoldM on which the optimization takes
place is the Cartesian product of all the sub-manifolds involved
in all the functions describing the optimization problem, and
so is its representation space E and the optimization vector
x ∈ E:

M =M1 ×M2 ×M3 × . . .
E = E1 × E2 × E3 × . . .
xT = [xT1 , x

T
2 , x

T
3 . . .]

(24)

4The kinematics of rigid body systems is handled by the RBDyn library
(https://github.com/jorisv/RBDyn)

The solver does not ‘see’ the different sub-manifolds. It
considers all functions as defined on the complete manifold
M, represented by E. Conversely, for the developer, it is
quite inconvenient and a potential source of error to write
a function on the complete manifold because of the need
to manage indexes in order to feed the function with the
correct data from the complete optimization vector x, and also
because the complete manifold M can only be formed once
the PG problem has been completely defined. Thus, when the
function is implemented, the complete E is not known. A user-
written function f is usually defined on a subspace of E, say
EI = Ei × Ej × Ek . . . which is minimalist for that function,
and should not account for unrelated manifolds. Our automatic
mapping tool keeps track of all the necessary mappings for
each function added and upon the instantiation of the problem,
generates the correct projection functions πI : E → EI such
that the developer can write a function f on EI while the
solver receives it as a function f ◦ πI on E. This idea is
illustrated by the example in Fig. 6

Fig. 6. Automatic variable mapping: example of a function f taking values
from E5 × E2 and written as such, which is mapped into a function from
E1 × . . .× E6.

C. Problem Generator

The problem generator is in charge of building the optimiza-
tion problem for each PG problem to solve. It registers all the
variables and constraints of the problem as well as the cost
function. Each function is likely to bring additional variables
with it. For each contact contributing to the static equilibrium,
a variable defined on (a subspace of) R6 representing its
wrench is added to the problem. An additional function on
that variable can be added for the slippage avoidance con-
straint. Once the registration is finished, the complete manifold
on which the optimization takes place is generated as the
Cartesian product of all the unique sub-manifolds on which
the functions’ variables are defined. The information of the
automatic mapping is then used to ‘plug’ each function with
the correct sub-manifold. Hence, the optimization problem can
be generated and passed to the solver. The communication
between the solver and the generated problem is made through
the RobOptim framework5.

The previous tools simplify the development of PG prob-
lems and help to avoid implementation mistakes, greatly facili-
tating the implementation of new or more complex constraints.

5http://www.roboptim.net/

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 8

V. EXTENSIONS TO NEW CONSTRAINTS

In this section, we first leverage the variable management
capabilities of our PG and propose a constraint formulation
that let the the optimization solver chose the contact location
on a surface by using of additional variables. We also discuss
the formulation of constraints and cost functions involving
forces and torques and their implication: the need to compute
the derivative of the joint torques, for which we propose an
algorithm that does not rely on the computationally expensive
differentiation of point’s Jacobians.

A. Contact location parametrization

The most common type of contact constraint is between
two surfaces S1 and S2. Let Fi = {Oi, (xi, yi, zi)} be a
frame defined on each surface Si, with Oi on the surface and
zi its outbound normal. Writing relations between geometric
quantities defined in frames allows describing a large variety
of contacts, such as planar or fixed contacts. For example, a
planar contact between S1 and S2 can be expressed as:

−−−→
O1O2 · ~z1 = 0
~z2 · ~z1 ≤ 0
~z2 · ~x1 = 0
~z2 · ~y1 = 0

(25)

This formulation is valid if the physical entities in contact
are either a fixed point or a flat surface, because the quantities
in eq. 25 are invariant w.r.t the location of the contact points.
With non-flat surfaces, the locations of the frames used in the
formulation matter if the contact points are not fixed. Taking
advantage of our framework, we propose to parameterize the
location of the contact points with an additional variable
uS ∈ MS , whose manifold will automatically be added to
the optimization problem. This gives our solver the ability to
autonomously choose an optimal contact location on a non-
flat surface as part of its resolution process. Depending on its
shape, the manifoldMS on which the surface is parametrized
can be R, R2, S2. Then we can write the contact constraint
on a frame parametrized as follows:

F(uS ∈MS) = {O(uS), (x(uS), y(uS), z(uS))} (26)

This approach can readily formulate contacts with surfaces
represented by closed-form equations, such as spheres, su-
perellipsoids. . . as presented in [16] and in section VI-C1.

Additionally, in [8] we present a method using a Catmull-
Clark subdivision surfaces along with a custom raycasting al-
gorithm to systematically generate a smooth parameterization
of the surface of any object described by a star-convex mesh.
This opens the way to a large range of applications of contacts
in robotics. We illustrate it briefly in Section VI-C2.

B. Force Constraints

If we command an overall posture in which a robot link (e.g.
tool used) is asked to apply a threshold of force in a given
direction, it must be computed to meet such a requirement.
One may also want to limit a force on a given contact or
figuring if a robot is able to carry an object of a given weight

(see Section VI-D1). Forces can be defined by using a wrench
element in our expression framework. In many cases, satisfy-
ing the Newton-Euler equation is considered to be enough to
have a static equilibrium of a posture, but when constraints
on forces are involved, it becomes necessary to check the
torque limits. Indeed, without torque limits, if we consider
a robot pushing on two opposite walls, a configuration where
the forces applied on each wall are opposite and arbitrarily
large can be a solution, although not feasible in practice.

Having constraints on forces in our PG makes it necessary
to compute the joints’ torques, as well as their derivatives.

C. Joint Torque Jacobian Matrix Computation

The computation of the joint torque’s Jacobian matrices is
often approximated using finite differences, automatic differ-
entiation, or some complex algorithms computing the deriva-
tives of point’s Jacobian matrices explicitly. We propose an
algorithm that computes the exact torque Jacobian matrices.

For a given configuration q and a set of external wrenches
wext
i , the joint torques can be computed recursively by using

a modified version of the recursive Newton-Euler algorithm
presented in [28], where the time derivative terms are ignored.

Let us introduce some notations:

• nJ and nB : respectively the numbers of joints and bodies
• Bi and Ji: respectively the body and the joint of index i
• pred(i) and succ(i): respectively the index of the prede-

cessor and successor bodies of Ji
• jXi, jRi and jti: respectively the transformation from

the reference frame of Bi to body Bj , its rotation part,
and its translation part

• ∧: the cross-product operator
• For any 3D vector v: v̂, the 3×3 skew-symmetric matrix

such that ∀u ∈ R3, v̂u = v ∧ u
• Ii: the inertia matrix of Bi
• Si: the motion subspace of Ji

• ag =

[
ac
af

]
: the acceleration field, with ac its rotation

part, and af its translation part

• wext
i =

[
mext

i

ξext

]
: the external wrench applied on Bi, with

the moment part mext
i , and the resultant part ξext

• dim(.): the dimension of .

For any joint Ji, the transformation from Bpred(i) to Bsucc(i)

denoted XPtS
i = succ(i)Xpred(i) can be decomposed into a

static transformation Xx
i from the reference frame of the

predecessor body to the one of the joint, and a variable
transformation XJ

i (q), q being the joint parameter, such that
XPtS
i = XJ

i (q)Xx
i .

Let A and B be the Cartesian frames with origins OA and
OB respectively, t be the coordinate vector expressing

−−−−→
OAOB

in A, R be the rotation matrix that transforms 3D vectors from
A to B coordinates. The transformation from A to B for a
motion vector and its inverse are defined as follows:

BXA =

[
R 0

−Rt̂ R

]
; BX−1A = AXB =

[
RT 0

t̂RT RT

]
(27)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 9

The transformation from A to B for a force vector, and its
inverse are defined as follows:

BX∗A =

[
R −Rt̂
0 R

]
; BX−∗A =

[
RT t̂RT

0 RT

]
(28)

The torque computation is done in two steps: (i) the gener-
alized forces on all bodies are computed, then (ii) the effect
of each body on its parent is propagated through the joints
and the torques are computed by Alg. 1. We differentiate this

Algorithm 1 Inverse Static Algorithm
∀i ∈ [0, nB], ξGi = Ii

iX0ag − iX∗0w
ext
i

for i = nJ − 1 : 0 do
τi = ξGi

T
Si

ξGpred(i) = ξGpred(i) +XPtS
i (q)

−∗
ξGi

end for

algorithm w.r.t. q and any other variables of the problem that
we denote generically y (e.g. force variables, parametrization
of non-flat surfaces, configuration of another robot, etc). We
assume that the derivatives of mext

i and ξext
i : ∂m

ext
i

∂q , ∂m
ext
i

∂y , ∂ξ
ext
i

∂q ,

and ∂ξext
i

∂y are given. Besides mext
i and ξext

i , all the quantities of
the algorithm depend only on q.

The column j of the Jacobian matrix of a body i represents
the derivative of its rotation iRW and translation itW w.r.t
qj , that we denote respectively ωi,j and vi,j .

JacWi =

[
ωi,0 · · · ωi,j · · · ωi,dof
vi,0 · · · vi,j · · · vi,dof

]
(29)

To differentiate the Inverse Static algorithm, we first expand
all the matrix products of its equations, and then differentiate
each term. The following relations (30) are useful when
differentiating Alg. 1, into Alg. 2.

∂iRWu

∂qj
= iRWu ∧ ωi,j = iRW ûωi,j

∂iRW
itW ∧ u

∂qj
= iRWvi,j ∧ u + iRW

(
itW ∧ u

)
∧ ωi,j

= −iRW ûvi,j + iRW
̂(
îtWu

)
ωi,j

(30)
Alg. 2 allows to compute the exact Jacobian of the torques

in a robot without having to compute the derivatives of the
forces application points.

VI. EVALUATION AND EXPERIMENTATION

A. Solver’s evaluation: the cubes stacking problem

In a typical robotics PG problem, the only non-Euclidean
manifold encountered is the instance of SO(3) representing
the 3D rotation of each robot’s free-flyer. The other variables
(joint angles and contact forces) can be represented in real-
spaces. Because of the predominance of Euclidean manifold,
and the complexity of the problem’s equations, it is unlikely
for a formulation on manifolds to converge to the same local
minimum as a formulation on real-spaces, and if they do, the
influence of the formulation should be minor. Thus, in order to
compare those two formulations, we consider a toy problem in-
volving many non-Euclidean manifolds and simple equations:

Algorithm 2 Torque Jacobian Matrix Computation
Compute the Jacobian matrix of generalized forces
for i = 0 : nB do

ξGi = Ii
iX0ag − iX∗0w

ext
i

M =

 iRW âc 0

−iRW
̂(
îtWac

)
+ iRW âf

iRW âc

N =

−iRW
̂(
îtW ξ

ext
i

)
+ iRW m̂ext

i
iRW ξ̂

ext
i

iRW ξ̂
ext
i 0

fJacWi =

[
JacWi 06×dim(y)

]
∂ξGi
∂x

= (IWM −N)fJacWi + iX∗0
∂wext

i

∂x
end for

Compute the Jacobian of torques
for i = nJ − 1 : 0 do

fSi =
[
Si 06×dim(y)

]
∂τi
∂x = fSTi

∂ξGi
∂x

hi =
(
RJ
i
T
ξGi

)
K =

 ̂
(RJ

i
T
mG
i) + hi · tJi

T −
(
hi
T · tJi

)
I3 −ĥi

ĥi 0

ξGpred(i) ← ξGpred(i) +XPtS

i (q)
−∗
ξGi

∂ξGpred(i)

∂x ← ∂ξGpred(i)

∂x −Xx
i K fSi

end for

stacking a set of unit cubes in a box defined by a set of planes,
with no interpenetration. Each cube is defined on R3×SO(3).
For any cube Ci, we denote Vi = {v0, v1, . . . , v7} the set of all
its vertices, ~ti ∈ R3 its translation and Ri ∈ SO(3) its rotation
w.r.t the world frame. A plane Pj = {dj , ~nj} is described by
its normal ~nj ∈ S2, and by dj ∈ R, its signed distance to the
origin along ~nj . The constraint for a cube Ci to be ‘above’ a
plane Pj is of dimension 8 and can be written as:

∀v ∈ Vi, (~ti +Riv) · ~nj ≥ dj (31)

For the cubes to be inside a box defined by a set of planes P ,
we constrain each cube’s vertex to be above each plane of P .

To avoid interpenetration, we could use classical collision
avoidance constraints, but the use of the exact mesh of the
cubes would generate gradient discontinuities of these con-
straints. Approximating the mesh with STP-BV [29] would al-
low avoiding those discontinuities. Yet, the closer to the exact
mesh is the STP-BV approximation, the closer to discontinuity
is the gradient. Instead, we propose another approach that uses
non-Euclidean manifolds: for each pair of cubes (Ci, Cj), we
require a plane Pij = {dij , ~nij} to separate them. To do
so, we constrain Ci to be above Pij , and Cj to be above
P−ij = {−dij ,−~nij}, both using constraint (31).

To simulate gravity, we minimize the potential energy of all
the cubes (simplified by a factor mass times gravity):

f =
∑
i

~ti · ~z (32)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 10

We consider the problem of stacking n cubes in an open-top
box composed of 5 planes (the ground and 4 walls). In Fig. 7,
we illustrate the case where n = 3 cubes.

Fig. 7. Stacking 3 cubes in a box, separating each pair of cubes by a virtual
plane. Initial (left) and final (right) configurations.

There is n(n−1)/2 separating planes, one per pair of cubes.
Thus the search manifold is:

M =
(
R3 × SO(3)

)n × (R× S2
)n(n−1)

2

The problem contains 5 constraints of dimension 8 per cube to
fit them in the box and n(n−1)/2 constraints of dimension 16
to avoid interpenetrations. We have a problem of dimension
4.5n+ 1.5n2 with 32n+ 8n2 constraints.

We also formulate this problem over Rn to compare the
resolution with and without the use of manifolds. Each variable
on SO(3) is replaced by a variable on R4, while each variable
on S2 is replaced by one on R3. In both cases, a norm-1
constraint on the variable is added to the problem to force
those variables on the manifolds. This results in a problem on

M =
(
R3 × R4

)n × (R× R3
)n(n−1)

2 = R5n+2n2

that is a problem of dimension 5n+ 2n2 with 32.5n+ 8.5n2

constraints, which is n(n+1)
2 more variables and constraints

relatively to the manifold formulation.
We solve these two problems for different numbers of cubes

and compare the results in terms of number of iterations
before convergence, convergence time, and time spent per
iterations. In each resolution, both problems (Real space and
Manifold formulations) start with the same initial guess. The
resolutions are carried out with our solver, PGSolver, for
both formulations with the same set of parameters, and with
an off-the-shelf SQP solver, CFSQP [30], for the Real-space
formulation only, using CFSQP default parameters. The initial
positions of the cubes are chosen randomly, and each plane is
initialized at a position between the two cubes it separates.

The results of these tests are plotted in Fig. 8. With
300 resolutions per case, about 98% converged when using
manifolds versus 99.5% for non-manifold using PGSolver.
The success rates of CFSQP drop incrementally from 100% for
2 cubes to 70% for 7 cubes. Concerning the resolutions with
our PGSolver, we observe that the numbers of iterations
are sensibly similar for the two types of resolutions. Yet, the
time spent per iteration is consistently smaller in the case

2 4 6

20

40

60

80

number of cubes

Iterations

2 4 6
0

0.5

1

1.5

·10−2

number of cubes

Time per iteration (s)

2 4 6
0

0.2

0.4

0.6

number of cubes

Total time (s)

Fig. 8. Comparison of resolutions with and without using manifolds: red
curves are the results with PGSolver on manifolds; blue dashed curves are
those of the Real space; the green thick curves are with CFSQP on Real space.

of manifolds, which is in agreement with our expectations.
Subsequently, the convergence time is consistently shorter for
the formulation with manifolds. The resolutions with CFSQP
take 4 times more iterations and each iteration is on average
3 times longer than with our PGSolver. Resolutions with
PGSolver on manifolds are on average 7 times faster than
with CFSQP on Real-space for this specific type of problem.

This study shows that on a toy example, optimization on
manifolds with our PGSolver not only allows the user to
benefit from a simple and more intuitive formulation of the
problem, but it also outperforms the classical approach (using
CFSQP) in terms of success rates and convergence speed.

B. Posture Generator’s evaluation

We tested our PG in different types of feasible problems,
and compare the success rates and computation times of
different resolution approaches. To generate feasible problems,
we compute locations reached by the robot’s end effectors
(feet and grippers) for a random configuration qrand within its
joint limits. We then compute different PG problems to find
configurations with 2 (feet), 3 (feet and right gripper) and 4
(feet and grippers) contacts at the aforementioned locations.
In particular, the contacts on the foot are fixed, unilateral, and
with friction constraints (i.e. contact forces must be within
friction cones), whereas the contacts on the grippers are fixed
bilateral contacts (i.e. forces can be applied in any direction).
Those contact constraints are formulated with the equations
(25), whose quantities are all functions of the robot’s variables
q ∈ M. If we were using a framework with optimization on
Euclidean spaces, those functions would need to be composed
with a projection on ψ(M) and additional constraints would
need to be added to the problem, as explained in II-A. We
attempt a resolution for each PG problem, using the qrand
as initial guesses. If a solution q∗ is found (the problem is
feasible), it is saved to be used in the test.

Yet, using qrand to generate the problem results in very
twisted configurations of the robot that do not reflect ‘useful’
postures. We computed another set of feasible problems in
which the value of qrand is taken closer to the half-sitting
posture: qrand ← 1

2 (qrand + qhalf-sitting). This resulted in better
success rates and postures, which implies that the initial guess
and its distance from the solution, that we name the initial
distance, impact the resolution of PG problems. We define the

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 11

Fig. 9. Comparison of success rates and convergence times of the PG resolution w.r.t the distance between the initial guess and the solution for sets of
feasible problems with 2, 3 and 4 contact constraints and for different choices of Hessian update methods in our solver, and also with the IPOPT solver [31].

initial distance for a problem as d = ‖q0 − q∗‖2, where q0 is
the initial guess and q∗ is a solution.

In order to highlight the effect of the initial distance on the
success rate and convergence time of our PG, we solve the
feasible problems several times, with an initial guess iteratively
closer to a solution. For a random initial guess q0, we initialize
the problem with qn%0 = nq0 + (1 − n)q∗, with n taking
successively the values 1.0, 0.8, 0.6, 0.4, and 0.2.

We compare the results obtained with three types of Hessian
updates, namely BFGS, BFGS with self-scaling and SR1; for
each, we use grouped and individual updates in restoration.
In addition, we solved those problems with the framework
proposed in [32], that formulates the same problems on real-
spaces and uses the IPOPT solver [31]. We gather the results
after solving 250 different PG problems, 5 times each, starting
increasingly close to the solution. We sample the range of
initial distances into 20 segments of same length and report
the average results on each segment as a data point in Fig. 9.

Although no Hessian update method clearly dominates the
others, we can observe that for the most constrained problems,
with 3 and 4 contacts, the BFGS with self-scaling methods
present the best success rates but are slower than other
methods, whereas for problems with only 2, the BFGS method
outperforms the others. Running such experiments allows the
user to devise strategies to tune the solver optimally for a
given family of problems. Here, it suggests that for solving
PG problems in which only the feet of the robot are used
for contact, an update of type BFGS should be used, while
for problems in wich hands also play a role in contacts, a
BFGS with self-scaling is preferable. In no cases did the rank-
1 update SR1 provide the best results.

Our framework arguably performs better in all cases w.r.t the
framework of [32] that we denote IPOPT. With 2 contacts, the
success rates are similar, but the convergence times of IPOPT
are much longer. With 3 and 4 contacts, the convergence times
are similar, but the success rates of IPOPT are much lower,
averaging around 25%. This shows that our PG framework is

more efficient and robust w.r.t the state-of-the-art.
These results also show that with our solver, the closer the

initial guess is to the solution, the more likely a solution is
to be found, and it gives us a quantitative estimate of the
expected success rate and convergence times with respect to
the initial distance. Interestingly, this observation cannot be
made for resolution with the IPOPT framework.

Although all those computation times are long, and make
it inconvenient to compute large numbers of postures, as is
often done in contact planning, they remain of the same
order of magnitude as the ones reported in [33] (3-4 seconds
per posture), [1] (0.2 seconds per posture with only inverse
kinematics). The most relevant comparison is with [32] that
we presented earlier. Previous approaches are based on off-the-
shelf solvers, while we use an open solver that we developed
and that can be further customized to become faster and more
robust with further developments.

In order to have a better understanding of its most common
failure cases, we compiled the termination status of our solver
that we report in Table I. This allows us to evaluate the
weaknesses of our solver and will guide our future devel-
opments toward improving its robustness. Having most of
the failure cases related to reaching the maximum number of
iteration is not abnormal, but some cases are linked to a slow
convergence due to poor Hessian approximation. The failure
of the SOC phase should not happen so often, thus we will
need to investigate that aspect of the solver first.

TABLE I
FREQUENCY OF FAILURE REASONS FOR UNSUCCESSFUL OPTIMIZATIONS

max iteration in main SQP 39%
max iteration in restoration 30%

SOC failure 22%
Restoration failure 7%

QP failure 2%

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 12

C. Postures with contacts on parametrized surfaces

We present some use cases for parameterizing the location
of a contact point on a given surface by adding variables to
the PG optimization problem, Section V-A.

1) Contact with an object defined by a parametric equation:
We want the HRP-4 robot to carry a cube in its two hands.
Instead of running combinatorial cases of hands/faces contacts,
we approximate the cube with a superellipsoid parametrized
on S2. Its implicit equation is S(x, y, z) = 0, with

S(x, y, z) =
(∣∣∣ x
A

∣∣∣r +
∣∣∣ y
B

∣∣∣r) t
r

+
∣∣∣ z
C

∣∣∣t − 1 (33)

A point in S2 is represented by a vector v = (x, y, z) in
E = R3. To a given unit v we associate a point αv on the
surface of the superellipsoid by solving S(αv) = 0 for α.
At this point, the normal is given by ∇S(v)

‖∇S(v)‖ . Given this
parametrization, we can write a contact constraint between
given robot hand’s frames and the point and normal on the
parametrized superellipsoid’s surface.

Fig. 10. HRP-4 carrying a 2kg cube. Left: feet on a sphere, objective function
is to maintain the cube at a given position. Right: right foot free to move on
the floor, objective is to put the cube as far as possible in a given direction.

The Fig. 10 presents some results for PG problems where
the HRP-4 robot is required to grasp a cube modeled as a
superellipsoid. On the left side, the feet are free to move on a
sphere, on the right side, the left foot’s position is fixed and
the right foot is free to move on the ground. In both cases,
contacts must occur between predefined points on the hands of
the HRP-4 and points free to move on the surface of the cube.
The cube is free to move (parametrized on R3×SO(3)) and all
the contact forces must ensure grasp and posture equilibrium.

This approach extends to any other 3D shapes that can be
represented by parametric or implicit equations.

2) Contact with an object defined by a mesh: We now show
an example of a PG using the 3D modeling technique proposed
in [8] to generate contacts with complex objects described by a
3D mesh. The Fig. 11 illustrates the HRP-4 robot climbing on
a stack of cubes using both its hands and feet under constraints
of static equilibrium, torque limits, etc.

The stack of cubes is modeled as a single object and the
location of the 4 contact points are predefined on the robot
but are free to be anywhere on the surface: the optimization
algorithm determines the contact location as part of the so-
lution. This is a very attractive feature of our approach as it
allows to include discrete choices directly into our PG. This
can be used to alleviate the work to be done by the user,

Fig. 11. HRP-4 climbing a stack of cubes modeled as a single object with a
single surface (left). The convex shapes used for collision avoidance (right).

be it a human or a planning algorithm: the user still has to
specify the bodies in contact, but part of the combinatorics
relative to the matching of a body with a particular surface
or object is handled directly by the PG. Since the stack is a
non-convex object, it cannot be used ‘as is’ in our collision
detection algorithms. Thus, for collision constraints, we model
it with a set of 21 slightly smaller cubes, see Fig. 11 (Right).
The optimization takes around 115 iteration to converge to a
solution.

D. Postures with force constraints

Tasks where the robot needs to apply a given set of forces
or torques on the environment are necessary for many appli-
cations. Therefore, we need to complete our PG with ‘force-
based’ constraints to compute subsequent robot configurations.

1) Applying a desired force: To illustrate this feature, let’s
consider the example of a humanoid robot asked to apply a
desired force on a given point of an airplane structure (printing
or gluing a bracket, preparation for drilling, etc.). We denote ξd
the desired value of the force in direction d, and ξc the actual
force at the contact point. We can implement the following
function ftarget(ξc) to minimize (hence a cost):

ftarget(ξc) = (ξc · d− ξd)2 (34)

In addition to that cost function, the robot needs to keep its
foot on the ground, its left hand is used to lean on a beam
of the structure to allow a wider reach with the right hand.
Those constraints must be fulfilled under the joint and torque
limits of the robot, maintaining balance and avoiding auto-
collisions. The result generated by our PGSolver is depicted
in Fig. 12, where the robot applies a force of 100N in the
desired direction on the airplane structure6.

We assessed the validity of postures generated this way by
solving a similar problem with an HRP-2 robot, and executing
it on the real robot in a mockup of the airplane structure. The
robot had to apply 100N and 200N on the environment. The
posture and contact locations computed by our PG are not
enough to generate the desired effort on the right hand of

6www.comanoid.eu

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 13

Fig. 12. HRP-4 / TORO applying a 100N desired force on a contact point
with its right hand.

the robot. Indeed, for a given posture, an infinite number of
contact forces can be generated by modifying the joint torques,
so a specific control strategy needs to be implemented: we
controlled the right gripper in admittance, while the other
contacts were simply controlled in position. The robot was
able to reach those forces (100N and 200N) without falling
or slipping and while maintaining a posture very close to the
one computed by our PG (less than 2% difference per joint
w.r.t the joint range).

2) Applying a desired torque: We can also compute a
posture where a desired torque is applied, for example in
a torquing scenario pulling a lever by applying a minimum
torque on its revolute joint. We consider a situation where a
lever is attached to a wall of the environment by a revolute
joint, the system {wall + lever} is considered as a robot with
a single degree of freedom. We write constraints allowing the
hands of the robot to be in contact with the lever, rotating and
translating freely along it (the translations being limited by
the length of the lever). Additionally, those constraints allow
the generation of contact forces in the plane orthogonal to the
lever’s axis passing through the contact point.

Fig. 13. HRP-4 applying a 20N.m desired torque on a lever.

To enforce the value of the torque to generate on the revolute
joint of the lever, the torque limits of the lever robot can simply
be overwritten. This formulation, augmented by the usual
constraints on this system, allows computing postures where
a desired torque is applied on the lever. The Fig. 13 depicts a
PG solution to such a case; the location of the hands and the
contact forces are autonomously chosen by the PG to generate
a torque of 20N.m on the revolute joint at the lever basis.

Note that inequalities can also apply to contact forces or
torques to limit or threshold them if necessary.

VII. CONCLUSION

Computing feasible postures using nonlinear optimization
on manifolds proved to be elegant in terms of problems spec-
ifications while keeping good performances w.r.t Real-space
formulation of the same problem. We devised our own SQP
solver on manifolds to deal more efficiently with robotic prob-
lems. Our posture generator software includes many features
not found in existing inverse kinematics (even generalized)
ones. For example, we added the force dimensionality (spec-
ifying task desired force/torque thresholds, directions, limits,
etc.) and static equilibrium constraints (grasp and whole-body
positioning). We also show that we treat surfaces defined by
closed-form equations or star-meshes to leave the decision of
the contacts localization to the solver on manifolds. We also
conducted assessment test on toy examples and illustrate the
scalability and applicability to humanoid robots7.

There are still things to improve, most of which are rather
technical and require engineering efforts in software develop-
ment (e.g. a user-friendly interactive API). On the research
part, we will work on deeper specialization of the solver
to the PG problems. It would be interesting to run more
tests to study the influence of different solver options and
find optimal strategies to set the solver’s option to solve PG
problems, maybe using learning techniques. Perhaps choosing
automatically the update method and other options based on
the structure of the problem at hand would allow increasing
the general performance.

APPENDIX
SO(3) EXAMPLE OF NON-CONVERGENCE

Given x the angle-axis representation of a rotation (rotation
of angle ‖x‖ and axis x), let R(x) be the corresponding
rotation matrix. Given a rotation Rt, let us consider

min.
x
−trace(RTt R(x))

whose solution is attained for x such that R(x) = Rt.
Taking the starting point x(0) =

[
2π − ε 0 0

]T
and Rt =

R(
[
0 0 ε

]T
) state-of-the-art solvers do not converge for ε

small enough (e.g ε = 0.01 with Matlab’s fminunc). This
is because R(x(0)) is very close to Rt so that the gradient of
the objective is small but x(0) is far from

[
0 0 ε

]T
.

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” in IEEE/RSJ
International Conference on Robots and Intelligent Systems, Beijing,
China, 9-15 October 2006, pp. 2974–2979.

[2] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford, 2008.

[3] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428 – 442, 2013.

[4] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing with
an HRP-2 humanoid,” Autonomous Robots, vol. 40, no. 3, pp. 561–580,
2016.

7Software available at https://github.com/stanislas-brossette/manifolds
and https://gite.lirmm.fr/posture generator/problem-generator

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018 14

[5] O. Stasse, D. Larlus, B. Lagarde, A. Escande, F. Saidi, A. Kheddar,
K. Yokoi, and F. Jurie, “Towards autonomous object reconstruction for
visual search by the humanoid robot HRP-2,” in IEEE-RAS Conference
on Humanoids Robots, Pittsburg, USA, 30 Nov. - 2 Dec. 2007.

[6] T. Foissotte, O. Stasse, P.-B. Wieber, A. Escande, and A. Kheddar,
“Autonomous 3d object modeling by a humanoid using an optimization-
driven next-best-view formulation,” International Journal on Humanoid
Robotics, vol. 7, no. 3, pp. 407–428, 2010.

[7] S. Brossette, A. Escande, J. Vaillant, F. Keith, T. Moulard, and A. Khed-
dar, “Integration of non-inclusive contacts in posture generation,” in
IEEE/RSJ International Conference on Robots and Intelligent Systems,
Chicago, USA, Sep. 2014.

[8] A. Escande, S. Brossette, and A. Kheddar, “Parametrization of catmull-
clark subdivision surfaces for posture generation,” in IEEE International
Conference on Robotics and Automation, Stockholm, Sweden, Feb.
2016.

[9] P. Baerlocher and R. Boulic, “Parametrization and range of motion of
the ball-and-socket joint,” in Deform. Avatars, 2001, pp. 180–190.

[10] D. G. Luenberger, “The gradient projection method along geodesics,”
Management Science, vol. 18, no. 11, pp. 620–631, 1972.

[11] A. Stuart and A. R. Humphries, Dynamical systems and numerical
analysis. Cambridge University Press, 1998, vol. 2.

[12] D. Gabay, “Minimizing a differentiable function over a differential
manifold,” Journal of Optimization Theory and Applications, vol. 37,
no. 2, pp. 177–219, 1982.

[13] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008.

[14] J. Schulman, Y. Duan, J. Ho, a. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequen-
tial convex optimization and convex collision checking,” International
Journal of Robotic Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[15] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty
function,” Mathematical Programming, vol. 91, pp. 239–269, 2000.

[16] S. Brossette, A. Escande, G. Duchemin, B. Chretien, and A. Kheddar,
“Humanoid posture generation on non-Euclidean manifolds,” in IEEE-
RAS International Conference on Humanoid Robots, 2015, pp. 352–358.

[17] J. M. Lee, Introduction to smooth manifolds, 2nd ed. Springer New
York, 2012.

[18] K. Bouyarmane and A. Kheddar, “On the dynamics modeling of
free-floating-base articulated mechanisms and applications to humanoid
whole-body dynamics and control,” in IEEE-RAS Int. Conf. Humanoid
Robot., Osaka, Japan, Nov. 29 - Dec. 1 2012, pp. 36–42.

[19] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a matlab
toolbox for optimization on manifolds,” Journal of Machine Learning
Research, vol. 15, pp. 1455–1459, 2014.

[20] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
[21] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm

for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[22] R. Fletcher, “The sequential quadratic programming method,” in Non-
linear optimization. Springer, 2010, pp. 165–214.

[23] J. Nocedal and Y.-x. Yuan, “Analysis of a self-scaling quasi-newton
method,” Mathematical Programming, vol. 61, no. 1-3, pp. 19–37, 1993.

[24] R. Fletcher, A new low rank quasi-Newton update scheme for nonlinear
programming. IFIP, 2006, no. August.

[25] M. J. Goldsmith, “Sequential quadratic programming methods based on
indefinite hessian approximations,” Ph.D. dissertation, Stanford Univer-
sity, March 1999.

[26] G. Golub and C. Van Loan, Matrix computations, 3rd ed. John Hopkins
University Press, 1996.

[27] P. E. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright, “User’s guide for lssol (version 1.0): a fortran package for
constrained linear least-squares and convex quadratic programming,”
Standford University, Standord, California 94305, Tech. Rep. 86-1,
January 1986.

[28] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2007.
[29] A. Escande, S. Miossec, M. Benallegue, and A. Kheddar, “A strictly con-

vex hull for computing proximity distances with continuous gradients,”
IEEE Transactions on Robotics, vol. 30, no. 3, pp. 666–678, 2014.

[31] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57,
2006.

[30] C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for CFSQP
version 2.5: A C code for solving (large scale) constrained nonlinear
(minimax) optimization problems, generating iterates satisfying all in-
equality constraints,” 1997.

[32] K. Bouyarmane, “On autonomous humanoid robots: Contact planning
for locomotion and manipulation,” Ph.D. dissertation, Université Mont-
pellier II-Sciences et Techniques du Languedoc, 2011.

[33] S. Brossette, J. Vaillant, F. Keith, A. Escande, and A. Kheddar, “Point-
Cloud Multi-Contact Planning for Humanoids: Preliminary Results,” in
IEEE Cybernetics and Intelligent Systems Robotics, Automation and
Mechatronics, Manila, Philippines, Nov. 2013.

Stanislas Brossette Stanislas Brossette received
the BS degree of Mechanical Engineering from
the University of Pierre and Marie Curie, Paris
6, in 2009, and the MS degree of Computational
Mechanics from the École Normale Supérieure de
Cachan, France in 2011. He then obtained the Ph.D.
degree in Robotics in 2016 from the Université
de Montpellier, France after spending four years
with the Laboratory of Informatics, Robotics, and
Microelectronics, Montpellier, France (LIRMM) and
the CNRS-AIST Joint Robotics Laboratory (JRL),

UMI3218/RL, Tsukuba, Japan. He then spent one year working as a post-
doctoral fellow on the topic of bipedal walking at INRIA Grenoble, France.
He currently works at Wandercraft in Paris as a Control-Command R&D
Engineer where he develops walking algorithm for the Atalante autonomous
exosqueleton. His research interests include multi-contact whole-body posture
generation, numerical optimization and perception for robotics.

Adrien Escande Adrien Escande received the MS
degree in 2005 from École des Mines de Paris,
France, and the Ph.D. degree in 2008 in robotics
from Université d’Évry Val-d’Essonne, France af-
ter spending three years in the CNRS-AIST Joint
Robotics Laboratory (JRL), UMI3218/RL, Tsukuba,
Japan. He then worked as a research scientist in
CEA-LIST at Fontenay-aux-Roses, France, until the
end of 2012 and is now back at JRL. His current
research interests include whole-body planning and
control for humanoid robots and mathematical opti-

mization for robotics.

Abderrahmane Kheddar (M’04, SM’12) received
the BS in Computer Science degree from the Institut
National d’Informatique (ESI), Algiers, the MSc and
PhD degree in robotics, both from the University
of Pierre et Marie Curie, Paris. He is presently
Directeur de Recherche at CNRS. His research
interests include haptics, humanoids and thought-
based control using brain machine interfaces. He
is a founding member of the IEEE/RAS chapter
on haptics, the co-chair and founding member of
the IEEE/RAS Technical committee on model-based

optimization. He is a member of the steering committee of the IEEE Brain
Initiative, Editor of the IEEE Transactions on Robotics and within the editorial
board of some other robotics journals. He is member of the National Academy
of Technology of France, and knight in the National Order of the Merit.

