
HAL Id: hal-01788036
https://hal.archives-ouvertes.fr/hal-01788036

Submitted on 10 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Data Lake Metadata with a Data Vault
Iuri Nogueira, Maram Romdhane, Jérôme Darmont

To cite this version:
Iuri Nogueira, Maram Romdhane, Jérôme Darmont. Modeling Data Lake Metadata with a Data Vault.
22nd International Database Engineering & Applications Symposium (IDEAS 2018), Jun 2018, Villa
San Giovanni, Italy. pp.253-261. �hal-01788036�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/157850192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01788036
https://hal.archives-ouvertes.fr

Modeling Data Lake Metadata with a Data Vault

Iuri D. Nogueira

Université de Lyon, Lyon 2

France

iuri.deolindonogueira@univ-lyon2.fr

Maram Romdhane

Université de Lyon, Lyon 2

France

maram.romdhane@univ-lyon2.fr

Jérôme Darmont

Université de Lyon, Lyon 2, ERIC EA 3083

5 avenue Pierre Mendès France, F69676 Bron Cedex, France

jerome.darmont@univ-lyon2.fr

Abstract

With the rise of big data, business intelligence had to find solutions for managing even

greater data volumes and variety than in data warehouses, which proved ill-adapted. Data

lakes answer these needs from a storage point of view, but require managing adequate meta-

data to guarantee an efficient access to data. Starting from a multidimensional metadata

model designed for an industrial heritage data lake presenting a lack of schema evolutivity,

we propose in this paper to use ensemble modeling, and more precisely a data vault, to

address this issue. To illustrate the feasibility of this approach, we instantiate our meta-

data conceptual model into relational and document-oriented logical and physical models,

respectively. We also compare the physical models in terms of metadata storage and query

response time.

Keywords: Big data, Data lake, Metadata management, Ensemble modeling, Data vault

Topics: Information systems, Information storage systems, Cloud based storage

1 Introduction

Born with big data in the 2010’s, data lakes propose a way to store in their native format

voluminous and diversely structured data, in an evolutionary storage place allowing later anal-

yses (reporting, visualization, data mining...) [3]. The concept of data lake opposes that

1

of data warehousing, which outputs an integrated, highly structured, decision-oriented and

subject-oriented database, but has the disadvantage of dividing data into silos [26].

Yet, everyone agrees that a data lake must be well designed. Otherwise, it is doomed to

quickly become an inoperable data swamp [1, 9]. That is, a data lake must allow querying

data (selection/restriction) with good response times, and not only storing data and handling

a “key-value” access. However, actual solutions are more or less non-existent in the literature

and pertain to undisclosed industrial practices.

This is why [21] proposed a conceptual metadata model that allows indexing and efficiently

querying an industrial heritage data lake constituted of XML data, texts, floorplans and pic-

tures. This multidimensional model is similar to snowflake models used in data warehouses or

datamarts, but only stores metadata, not the document corpus itself.

This metadata model has been instantiated physically in several NoSQL database manage-

ment systems (DBMSs) to enable scaling. However, such a data warehouse-like schema cannot

evolve easily when data sources evolve themselves, or when new sources pop up, whereas this

is a crucial point in the management of a data lake.

Consequently, we propose in this paper:

1. to replace the multidimensional model of [21] by an ensemble model, more precisely a

data vault [16, 8, 4, 18], which is a data model allowing easy schema evolutions and has,

to the best of our knowledge, never been used in the context of metadata management;

2. to evaluate, the feasibility, on one hand, and the effectiveness of this model in terms

of metadata query response (as an index), on the other hand, because it induces many

joints. For this sake, we translate our conceptual metadata vault into different logical

(i.e., relational and document-oriented) and physical (i.e., PostgreSQL1 and MongoDB2)

models, which also helps compare the respective efficiency of the two physical models.

The remainder of this paper is organized as follows. Section 2 is devoted to a state of the

art concerning data lakes and metadata management, on one hand, and ensemble modeling

and data vaults in particular, on the other hand. Section 3 presents our conceptual metadata

vault model, as well as its logical and physical translations. Section 4 details the experiments

we conducted to validate the feasibility of our approach and compare the PostgreSQL and

MongoDB physical models in terms of storage and metadata query response time. Finally,

Section 5 concludes this paper and hints at research perspectives.

1https://www.postgresql.org
2https://www.mongodb.com

2

2 Related Work

2.1 Data Lakes and Metadata

Data lakes aim at quickly integrate very large volumes of mixed types data, i.e., from struc-

tured to unstructured data [3, 20, 9]. However, they are not only a storage technology, i.e.,

mostly the Hadoop Distributed File System (HDFS), but offer a new data ecosystem that

allows cross-analyzing data on demand [6], without needing costly preprocessing tasks as in

data warehousing processes. Data are immediately accessible through the schema-on-read (or

late binding) approach [5], unlike, again, in data warehouses that are periodically refreshed

through an Extraction, Transformation and Loading (ETL) phase (schema-on-write) that may

be expensive [19].

In summary, data lakes manage data with variety for on-demand, ad-hoc analyses; while

data warehouses manage structured data for recurring, industrialized analyses.

Data lakes are typically subdivided into three components [26, 1]:

1. a storage system: very often HDFS, though NoSQL DBMSs are also an option [9, 14];

2. a metadata system, which we focus on below;

3. an access and analysis system generally relying on MapReduce or Spark [10].

By contrast, [9] proposes an architecture with respect to data types, made of so-called data

ponds for raw data, analog (stream) data, application data (i.e., a data warehouse), textual

data and archived data, respectively. In such a context, database research on querying multi-

store systems [2, 27] looks highly relevant.

Data lakes mostly bear a “flat” architecture, where each data element has a unique iden-

tifier and a set of characterizing tags [19]. Such tags are actually essential metadata to help

comprehend data and access data [1], not to mention query effectiveness.

The advantage of data tagging is that new data and new sources can be inserted on the

fly. Once data are tagged, they just need to be connected to already stored data. This feature

allows users to formulate queries directly, without needing the help of a business intelligence

expert. Yet, this feature requires that the metadata system can manage this evolutive data

structure.

2.2 Ensemble Modeling and Data Vaults

Ensemble modeling is an approach dating back from the early 2010’s, which aims to renormalize

data warehouses to bring them closer to the business concepts they model; and to allow better

evolutivity, both in terms of data and schema [24].

The two prominent approaches in ensemble modeling are data vaults [16, 8, 4, 18] and

anchor modeling [23, 25]. Both are actually very close [24], with a somewhat easier evolutivity

and a non-destructive schema evolution for anchor modeling, but a larger number of objects to

3

manage because of a sixth normal form (6NF) model, as well as non-automated maintenance

procedures for timestamps. Data vaults are closer to traditional multidimensional models (they

adopt the third normal form – 3NF) and are supported by a greater number of tools, which

made us select data vaults in this work. However, this choice is not definitively settled.

Data vaults were invented to meet industrial needs [16]. A data vault is defined at the

relational, logical level as a linked set of normalized, detail-oriented and history-tracking tables

that support one or more functional domains in an organization. It is a hybrid approach

encompassing 3NF and the star schema [16, 8, 4, 18].

This architecture allows incremental low-cost schema construction (making easy to modify

business rules), seamless integration of unstructured data and loading in near real time. Data

vaults also allow petabyte-scale big data management [18]. Finally, artificial intelligence and

data mining methods can easily and directly be applied to a data vault [17].

More concretely, a data vault consists of the following main elements [16, 8, 4, 18].

• A hub is a basic entity that represents a business concept (a dimension hierarchy level in

a classical data warehouse, e.g., customer or product). A hub mainly contains a business

key.

• A link materializes an association between two or more hubs. It would correspond to a

fact entity in a classical data warehouse.

• A satellite contains the various descriptive data related to a hub or link.

Finally, note that, although they are defined at the logical level by [16], these concepts can

easily be transposed to the conceptual [11] and physical [15] levels. An example of conceptual

data vault model is shown in Figure 1.

3 Metadata Vault Model

3.1 Data Corpus

To illustrate our proposal with a use case that can serve as a proof of concept, we exploit

the data corpus constituted by the TECTONIQ project, which aims to highlight the textile

industrial heritage of the Lille Metropolis in northern France [13, 12].

This corpus gathers heterogeneous data, supplied by different sources (Table 1) and must

allow various types of analyses. Thence, the corpus is stored in a data lake whose metadata are

multidimensionally modeled [21]. We propose in this paper to make these metadata evolutive

when new data sources pop up.

3.2 Conceptual Model

Although the multidimensional metadata model by [21] is too large to be reproduced here, let

us describe it briefly. It is designed around a set of dimensions with hierarchies: Date/Epoch,

4

Table 1: TECTONIQ corpus features
Source Inventory La Voix du Nord

Description Industrial building
descriptions

Press articles related to the
textile industry

Number of documents 49 1

Number of instances 49 30

Overall size 120 KB 92 KB

Format XML (data) XML (documents)

Source IHRIS Pictures Books

Description Photos and plans of buildings
and monuments related to the

textile industry

Public domain French history
books

Number of documents 30 165

Number of instances 30 165

Overall size 2.78 MB 1011.25 MB

Format JPEG PDF

Keyword, Location/District/City, Source, Reference/Author; on which “fact” entities (without

measures) that correspond to the data sources from Table 1 plug in.

Figure 1 illustrates our conceptual metadata vault model, which exploits the conceptual

modeling of data vaults’ logical, relational concepts [11]. Blue rounded rectangles represent

hubs, gray rectangles satellites and the green hexagon a link. Associations between hubs and

links are of cardinality “many to many” to ensure the greatest generality, while associations

betweens hubs or links and satellites are of cardinality “one to many”.

To identify hubs, which are the most important and most used entities in queries, we target

the metadata related to the characteristics of each input document, which are most susceptible

to constitute keys. Thus, we select title (Hub Title), location (Hub Location), date (Hub Date)

and document category (Hub Category).

Then, we associate with each of these hubs a satellite that contains the hub’s descriptive

attributes. For example, the satellite connected to Hub Title, Sat Title, contains the Title,

Authors, Description and Keywords attributes.

Hub Category is associated with four satellites that form a classification corresponding to

each of the data sources we have. The descriptive attributes of these satellites are specific to

each source.

Link Document allows to associate all hubs.

Finally, since our model concerns only metadata, each entity (hub, link, satellite) is de-

scribed by a direct reference (Source) to a document (physical file) in the data lake. All data

access are made through this reference.

Thanks to ensemble modeling, any new data source or schema evolution within the data

corpus can be supported by adding satellites, in the simplest cases, or even hubs and links.

In addition, entities that would become obsolete are simply identified by their timestamp

5

Figure 1: Metadata vault conceptual model

(Datetime).

3.3 Logical and Physical Models

To show that our conceptual model can adapt to different contexts, and to compare them, we

translate it into two types of logical and physical models: a relational model with PostgreSQL

and a document-oriented NoSQL model with MongoDB.

The relational metadata model (Table 2)3 is classically translated from the conceptual

model (Figure 1). Let us only note that, in Table 2, the elements of the attributes column that

are postfixed by id are foreign keys, and that satellite primary keys are also foreign keys that

reference the corresponding hub’s primary key. Eventually, the Datetime and Source attributes

featured in all tables are not repeated for clarity.

3We adopt this unusual table presentation to have a uniform representation with the document-oriented
model (Table 3) and facilitate the comparison of the two logical models.

6

Table 2: Metadata vault relational logical model
Table Primary key Attributes

Hubs

Hub Title Title id

Hub Date Date id

Hub Location Location id

Hub Category Category id

Link

Link Document Document id Title id, Location id, Date id, Category id

Satellites

Sat Title Title id, Datetime Title, Authors, Description, Keywords

Sat Date Date id, Datetime Epoch, DepositDate, UpdateDate

Sat Location Location id, Datetime Address, AdditionalInfo, Reference

Sat IRHIS Category id, Datetime CodePhoto, Provenance

Sat VoixDuNord Category id, Datetime Language, Note

Sat Inventory Category id, Datetime Property, Link

Sat Book Category id, Datetime Rights, Publisher

Table 3: Metadata vault document-oriented logical model
Collection ObjectID Fields

Hubs

Hub Title Title id

Hub Date Date id

Hub Location Location id

Hub Category Category id

Link

Link Document Document id

Satellites

Sat Title Title id Title, Authors, Description, Keywords

Sat Date Date id Epoch, DepositDate, UpdateDate

Sat Location Location id Address, AdditionalInfo, Reference

Sat IRHIS Category id CodePhoto, Provenance

Sat VoixDuNord Category id Language, Note

Sat Inventory Category id Property, Link

Sat Book Category id Rights, Publisher

The document-oriented metadata model (Table 3) exploits the notion of collection. Each

hub, link and satellite is translated into a collection comprising various documents, each having

an identifier (ObjectID). In the MongoDB physical model, this identifier is generated automat-

ically when the document is created. As in the relational case, the Datetime and Source fields

present in all collections are not repeated for clarity.

Each hub is associated with both Link Document and its satellite(s) through its ObjectID.

For example, Hub Title is associated with Link Document and Sat Title through Title id.

Finally, Figure 2 presents an example of translation from the document-oriented logical model

7

into the MongoDB physical model in JavaScript Object Notation (JSON) format.

{

"Sat_Book": {

"00000C842_001": {

"dc:relation": "http://www.sudoc.fr/122661389",

"dc:creator": [

"Petit, Jules",

"Chambre de commerce et d’industrie (Boulogne-sur-Mer, Pas-de-Calais).",

"Commission du projet de chemin de fer direct de Calais a Marseille"

],

"dc:subject": "Calais-Marseille, Chemin de fer (France).",

"dc:publisher": "Villeneuve d’Ascq : SCD Lille 3",

"dc:date": "[2008]",

"dc:format": "application/pdf",

"dc:language": "fre",

"dc:rights": "domaine public",

"dc:title": "Projet de chemin de fer de Calais a Marseille rapport

fait a la Chambre de commerce de Boulogne, le 25 novembre 1881",

"dc:type": "text",

"dc:source": "Bibliotheque Georges Lefebvre"

}

}

}

Figure 2: JSON excerpt from the Sat Book collection of the MongoDB physical model

At the physical level, metadata are extracted from source documents through a script-based

ETL process.

4 Experimental Validation

The objective of this section is to show the feasibility of our metadata vault model and to

compare the physical models of Section 3.3 in terms of storage space and query response time.

We conduct our experiments on an Intel Core i5-5300U 2.30 GHz PC with 8 GB of memory,

running Windows 64-bit. The DBMSs we use are PostgreSQL 9.6.2-1 and MongoDB ssl 3.4.3.

The data corpus in this test set is the one presented in Table 1.

4.1 Storage Volume

After inserting metadata in the chosen DBMSs’ native format, we measure the storage volume

required by PostgreSQL and MongoDB (Table 4). Our measurements take into account indexes

automatically created by the DBMSs (e.g., on primary keys in PostgreSQL; no other index is

created), unused memory space, and the space that is released when deleting or moving data.

8

Table 4: Metadata volume (KB)
PostgreSQL MongoDB

Hub Title 80 45
Hub Date 64 36
Hub Location 72 49
Hub Category 64 36

Link Document 48 36

Sat Title 168 69
Sat Date 48 36
Sat Location 56 49
Sat IHRIS 16 16
Sat VoixDuNord 16 7
Sat Inventory 88 45
Sat Book 56 37

Total 776 461

We first note that the volume of metadata generated for 245 files is small (less than 1 MB)

in both cases. In addition, MongoDB systematically requires less space than PostgreSQL. This

is explained by the use of the JSON format, which is very light, in MongoDB. In contrast, in

PostgreSQL, each table is stored as a page vector of predetermined size (8 KB), resulting in

pages that are not fully filled.

4.2 Response Time

To measure the performance of the proposed metadata model, we formulate five queries of

increasing complexity with respect to the number of hubs involved (and, therefore, to joins via

Link Document), which we apply on both physical models.

1. Retrieve all documents whose title contains the word “factory” (data sources: Hub Title,

Sat Title).

2. Retrieve all documents whose title contains the word “factory” and whose address is

“Tourcoing” (data sources: Hub Title, Sat Title, Hub Location, Sat Location, Link Doc-

ument).

3. Retrieve all documents whose title contains the word “factory”, whose address is “Tourco-

ing” and whose deposit date is in 2010 (data sources: Hub Title, Sat Title, Hub Location,

Sat Location, Hub Date, Sat Date, Link Document).

4. Retrieve all documents whose title contains the word “factory”, whose address is “Tourco-

ing”, whose deposit date is in 2010 and that belong to the “book” category (data sources:

Hub Title, Sat Title, Hub Location, Sat Location, Hub Date, Sat Date, Hub Category,

Sat Book, Link Document).

9

5. Retrieve all titles containing the word “factory”, and then the corresponding documents,

whatever their category (data sources: Hub Title, Sat Title, Hub Category, Sat IHRIS

and/or Sat VoixDuNord and/or Sat Inventory and/or Sat Book, Link Document).

The translation of all queries in SQL and MongoDB’s query language are provided in

Appendices A and B, respectively.

Figure 3 features the average execution time of queries #1 to #4 under PostgreSQL and

MongoDB, respectively. We execute each query 100 times (in the order indicated above) to

compensate for any variation in execution time. Figure 3 shows tremendously low response

times for MongoDB, while those obtained with PostgreSQL seem to evolve exponentially.

Figure 3: Average response times of queries #1 to #4

Figure 4 illustrates the average execution time of query #5, still for 100 executions of

the query. It is distinct from Figure 3 because query #5 is more complex than the previous

four. It is indeed not possible to dynamically determine the category satellite to use. It is

therefore necessary to execute query #5 in two steps (subqueries): the first to determine the

category and the second to retrieve the remaining information knowing the category. These

two operations induce much longer response times than those of queries #1 to #4.

MongoDB is once again more efficient (three times faster on average) than PostgreSQL.

This difference in query execution time can be explained by the internal query rewriting done

by PostgreSQL, which creates a subquery inducing an expensive join [7], while MongoDB uses

a search method that allows the rapid union of collections.

10

Figure 4: Average response time of query #5

5 Conclusion

From the modeling of data lake metadata as a multidimensional schema, noticing that schema

evolution is not guaranteed, we instead propose in this paper an ensemble model, more precisely

a metadata vault.

The translation of our conceptual metadata model into logical and physical models, as well

as experiments carried out on the TECTONIQ corpus, help demonstrate the feasibility of our

modeling choice in terms of metadata storage volume and response time to queries formulated

on the metadata.

The comparison of two physical models (PostgreSQL and MongoDB) also reveals the su-

periority of document-based models for storing this type of metadata.

The perspectives that this preliminary work is opening are numerous. In particular, it

would be necessary to test the robustness of the metadata model when source data scale up,

add data sources to verify the relevance of data vault modeling and test the model with queries

more complex than projections/restrictions.

Moreover, although the supporters of anchor modeling argue that 6NF modeling allows

good response times thanks to the join eliminating technique used in modern optimizers [22],

it is also important to compare query efficiency over data vault and anchor models vs. classical

star-like schemas, with a benchmark that allows significant database scale-up.

Finally, various alternative metadata models, independently from the modeling techniques

used, could be considered and compared. Schemas of the TECTONIQ documents could also

be automatically extracted to enrich the metadata.

11

Acknowledgments

The authors would like to thank Éric Kergosien, leader of the TECTONIQ project, for making

the data corpus available.

References

[1] H. H. Alrehamy and C. Walker. Personal Data Lake With Data Gravity Pull. In IEEE

5th International Conference on Big Data and Cloud Computing (BDCloud 2015), Dalian,

China, pages 160–167, Washington, DC, USA, 2015. IEEE Computer Society.

[2] C. Bondiombouy and P. Valduriez. Query Processing in Multistore Systems: an overview.

Technical Report RR-8890, INRIA Sophia Antipolis-Méditerranée, March 2010.

[3] J. Dixon. Pentaho, Hadoop and Data Lakes. https://jamesdixon.wordpress.com/

2010/10/14/pentaho-hadoop-and-data-lakes/, April 2010.

[4] F. A. Eshetu. Data Vault Modelling: An Introductory Guide. B.Sc. Thesis, Helsinki

Metropolia University of Applied Sciences, Finland, 2014.

[5] H. Fang. Managing Data Lakes in Big Data Era: What’s a data lake and why has it became

popular in data management ecosystem. In 5th Annual IEEE International Conference

on Cyber Technology in Automation, Control and Intelligent Systems (CYBER 2015),

Shenyang, China, pages 820–824, June 2015.

[6] P. Ganore. Introduction To The Concept Of Data

Lake And Its Benefits. https://www.esds.co.in/blog/

introduction-to-the-concept-of-data-lake-and-its-benefits/, February 2015.

[7] H. Giménez. PostgreSQL Performance Considerations. https://robots.thoughtbot.

com/postgresql-performance-considerations, January 2011.

[8] H. Hultgren. Data vault modelling guide – Introductory guide to data vault mod-

elling. Genesee Academy. https://hanshultgren.files.wordpress.com/2012/09/

data-vault-modeling-guide.pdf, 2012.

[9] B. Inmon. Data Lake Architecture: Designing the Data Lake and avoiding the garbage

dump. Technics Publications, 2016.

[10] T. John and P. Misra. Data Lake for Enterprises: Lambda Architecture for building

enterprise data systems. Packt Publishing, May 2017.

[11] V. Jovanovic and I. Bojicic. Conceptual Data Vault Model. In Southern Association

for Information Systems Conference, Atlanta, GA, USA, pages 131–136. Association for

Information Systems, 2012.

12

[12] E. Kergosien. TEchnologies de l’information et de la communication au Cœur du Ter-

ritOire NumérIQue pour la valorisation du patrimoine. https://tectoniq.meshs.fr/,

2017.

[13] E. Kergosien, B. Jacquemin, M. Severo, and S. Chaudron. Vers l’interopérabilité des

données hétérogènes liées au patrimoine industriel textile. In 18e colloque international

sur le document numérique (CIDE18), Montpellier, France, page 15, 2015.

[14] P. P. Khine and Z. S. Wang. Data Lake: A New Ideology in Big Data Era. In 4th

International Conference on Wireless Communication and Sensor Network (WCSN 2017),

Wuhan, China, volume 17 of ITM Web of Conferences, pages 1–6, December 2017.

[15] D. Krneta, V. Jovanovic, and Z. Marjanovic. A direct approach to physical Data Vault

design. Computer Science and Information Systems, 11(2):569–599, 2014.

[16] D. Linstedt. Super Charge your Data Warehouse: Invaluable Data Modeling Rules to

Implement Your Data Vault. CreateSpace Independent Publishing, 2011.

[17] D. Linstedt. Data Vault Basics. https://danlinstedt.com/solutions-2/

data-vault-basics/, 2015.

[18] D. Linstedt and M. Olschimke. Building a Scalable Data Warehouse with Data Vault 2.0.

Morgan Kaufmann, Cambridge, MA, USA, 2015.

[19] N. Miloslavskaya and A. Tolstoy. Big Data, Fast Data and Data Lake Concepts. Procedia

Computer Science, 88:300–305, 2016.

[20] D. E. O’Leary. Embedding AI and Crowdsourcing in the Big Data Lake. IEEE Intelligent

Systems, 29(5):70–73, November 2014.

[21] N. Pathirana. Modeling territorial knowledge from web data about natural and cultural

heritage. M.Sc. Thesis, Université Lumière Lyon 2, France, 2015.

[22] G. N. Paulley. Exploiting Functional Dependence in Query Optimization. PhD thesis,

University of Waterloo, Canada, 2000.

[23] O. Regardt, L. Rönnbäck, M. Bergholtz, P. Johannesson, and P. Wohed. Anchor Modeling.

In 28th International Conference on Conceptual Modeling (ER 2009), Gramado, Brazil,

volume 5829 of Lecture Notes in Computer Science, pages 234–250, Heidelberg, Germany,

2009. Springer.

[24] L. Rönnbäck and H. Hultgren. Comparing Anchor Modeling with Data Vault Mod-

eling. https://hanshultgren.files.wordpress.com/2013/06/modeling_compare_05_

larshans.pdf, June 2013.

13

[25] L. Rönnbäck, O. Regardt, M. Bergholtz, P. Johannesson, and P. Wohed. Anchor mod-

eling – Agile information modeling in evolving data environments. Data and Knowledge

Engineering, 69(12):1229–1253, 2010.

[26] B. Stein and A. Morrison. The enterprise data lake: Better integration and deeper analyt-

ics. Technology Forecast, 1. http://www.pwc.com/us/en/technology-forecast/2014/

cloud-computing/assets/pdf/pwc-technology-forecast-data-lakes.pdf, 2014.

[27] R. Tan, R. Chirkova, V. Gadepally, and T. G. Mattson. Enabling Query Processing across

Heterogeneous Data Models: A Survey. In 2017 IEEE International Conference on Big

Data (BIGDATA 2017), Boston, USA, pages 3211–3220, December 2017.

Appendices

A SQL Queries

-- 1

SELECT * FROM Hub_Title HT, Sat_Title ST

WHERE HT.Title_id = ST.Title_id

AND Title LIKE ’%factory%’

-- 2

SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST,

Hub_Location HL, Sat_Location SL

WHERE LD.Title_id = HT.Title_id AND LD.Location_id = HL.Location_id

AND HT.Title_id = ST.Title_id AND HL.Location_id = SL.Location_id

AND Title LIKE ’%factory%’ AND Address = ’Tourcoing’

-- 3

SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST,

Hub_Location HL, Sat_Location SL, Hub_Date HD, Sat_Date SD

WHERE LD.Title_id = HT.Title_id AND LD.Location_id = HL.Location_id

AND LD.Date_id = HD.Date_id AND HT.Title_id = ST.Title_id

AND HL.Location_id = SL.Location_id AND HD.Date_id = SD.Date_id

AND Title LIKE ’%factory%’ AND Address = ’Tourcoing’

AND DATE_TRUNC(’year’, DepositDate) = 2010

-- 4

SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST,

Hub_Location HL, Sat_Location SL, Hub_Date HD, Sat_Date SD,

14

Hub_Category HC, Sat_Book SB

WHERE LD.Title_id = HT.Title_id AND LD.Location_id = HL.Location_id

AND LD.Date_id = HD.Date_id AND LD.Category_id = HC.Category_id

AND HT.Title_id = ST.Title_id AND HL.Location_id = SL.Location_id

AND HD.Date_id = SD.Date_id AND HC.Category_id = SB.Category_id

AND Title LIKE ’%factory%’ AND Address = ’Tourcoing’

AND DATE_TRUNC(’year’, DepositDate) = 2010 AND SB.Category_id = ’book’

-- 5

-- PL/pgSQL is needed here.

DECLARE

doc RECORD;

cat RECORD;

BEGIN

FOR doc IN

SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST

WHERE LD.Title_id = HT.Title_id AND HT.Title_id = ST.Title_id

AND Title LIKE ’%factory%

LOOP

FOR cat IN EXECUTE

"SELECT * FROM Hub_Category HC, Sat_" || doc.category_id || " SL

WHERE HC.Category_id = SL.Category_id"

LOOP

-- Tuples doc and cat together provide full document info.

END LOOP;

END LOOP;

END;

B MongoDB Queries

1

db.hub_title.aggregate([

{ $match : { ’title’: /factory/ }},

{ $lookup : {

from : "sat_title",

localField : "id",

foreignField : "id",

as : "satellite" }}

]);

15

2

db.hub_title.aggregate([

{ $match : { ’title’: /factory/ }},

{ $lookup : {

from : "sat_title",

localField : "id",

foreignField : "id",

as : "satellite" }},

{ $lookup : {

from : "link_document",

localField : "id",

foreignField : "id",

as : "hub_location" }},

{$unwind : "$link_document"},

{ $lookup : {

from : "hub_location",

localField : "id",

foreignField : "id",

as : "hub_location" }},

{ $lookup : {

from : "sat_location",

localField : "id",

foreignField : "id",

as : "sat_location" }},

{$unwind : "$hub_location"},

{$match : {’hub_location.location’: /Tourcoing/}}

]);

3

db.hub_title.aggregate([

{ $match : { ’title’: /factory/ }},

{ $lookup : {

from : "sat_title",

localField : "id",

foreignField : "id",

as : "satellite" }},

{ $lookup : {

from : "link_document",

16

localField : "id",

foreignField : "id",

as : "hub_location" }},

{$unwind : "$link_document"},

{ $lookup : {

from : "hub_location",

localField : "id",

foreignField : "id",

as : "hub_location" }},

{ $lookup : {

from : "sat_location",

localField : "id",

foreignField : "id",

as : "sat_location" }},

{$unwind : "$hub_location"},

{$match : {’hub_location.location’: /Tourcoing/}},

{$lookup : {

from : "hub_date",

localField : "id",

foreignField : "id",

as : "hub_date" }},

{$lookup : {

from : "sat_date",

localField : "id",

foreignField : "id",

as : "sat_date" }},

{$unwind : "$hub_date"},

{$match : {’hub_date.depositdate’: /2010/}}

]);

4

db.hub_title.aggregate([

{ $match : { ’title’: /factory/ }},

{ $lookup : {

from : "sat_title",

localField : "id",

foreignField : "id",

as : "satellite" }},

{ $lookup : {

17

from : "link_document",

localField : "id",

foreignField : "id",

as : "hub_location" }},

{ $unwind : "$link_document"},

{ $lookup : {

from : "hub_location",

localField : "id",

foreignField : "id",

as : "hub_location" }},

{ $lookup : {

from : "sat_location",

localField : "id",

foreignField : "id",

as : "sat_location" }},

{$unwind : "$hub_location"},

{$match : {’hub_location.location’: /Tourcoing/}},

{$lookup : {

from : "hub_date",

localField : "id",

foreignField : "id",

as : "hub_date" }},

{$lookup : {

from : "sat_date",

localField : "id",

foreignField : "id",

as : "sat_date" }},

{$unwind : "$hub_date"},

{$match : {’hub_date.depositdate’: /2010/}},

{$lookup : {

from : "hub_category",

localField : "id",

foreignField : "id",

as : "hub_category" }},

{$unwind : "$hub_category"},

{$match : {’hub_category.category’: /book/}},

{$lookup : {

from : "sat_books",

localField : "id",

18

foreignField : "id",

as : "sat_books" }}

]);

5

Two steps and a function are needed here.

var docs = db.hub_title.aggregate([

{ $match : { ’title’: /factory/ }},

{ $lookup : {

from : "sat_title",

localField : "id",

foreignField : "id",

as : "satellite" }},

{ $lookup : {

from : "link_document",

localField : "id",

foreignField : "id",

as : "link_document" }},

{$unwind : "$link_document"},

{$project : { "cat" : "$link_document.category_id" }

]);

docs.forEach(function(cat){

db.hub_category.aggregate([

{$lookup : {

from : "sat_$cat",

localField : "id",

foreignField : "id",

as : "cat" }},

{$unwind : "cat"}

]);

});

19

