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Abstract. We consider a class of dynamical systems generated by finite sets of

Möbius transformations acting on the unit disc. Compositions of such Möbius

transformations give rise to sequences of transformations that are used in the theory

of continued fractions. In that theory, the distinction between sequences of limit-

point type and sequences of limit-disc type is of central importance. We prove that

sequences of limit-disc type only arise in exceptional circumstances, and we give

necessary and sufficient conditions for a sequence to be of limit-disc type. We also

calculate the Hausdorff dimension of the set of sequences of limit-disc type in some

significant cases. Finally, we obtain strong and complete results on the convergence

of these dynamical systems.

1. Introduction

The object of this paper is to give a precise description of a class of nonautonomous

dynamical systems generated by Möbius transformations. The motivation for our

study comes from discrete dynamical systems, where one is concerned with the

iterates of a map f : X → X. In our more general context, given any collection

F of self maps of X, we define a composition sequence generated by F to be

a sequence (Fn), where Fn = f1f2 · · · fn and fi ∈ F . Composition sequences

generated by sets of analytic self maps of complex domains have received much

attention; see, for example, [2, 6, 13, 14]. There has been particular focus on

generating sets composed of Möbius transformations that map a disc within itself –

see [1, 4, 5, 12, 15, 16] – partly because of applications to the theory of continued

fractions. Here we give a detailed study of composition sequences generated by

finite sets of Möbius transformations, which goes far beyond the existing literature

in completeness and precision. Furthermore, the geometric approach we take

generalises easily to higher dimensions. (For simplicity, however, we present all

our results in two dimensions).
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2 M. Jacques and I. Short

We understand a Möbius transformation to be a transformation of the form

z 7→ (az + b)/(cz + d), where a, b, c and d are complex numbers that satisfy

ad−bc ̸= 0. These transformations act on the extended complex plane C = C∪{∞}
(with the usual conventions about the point ∞). Our focus is on composition

sequences generated by subsets of the class M(D) of those Möbius transformations

that map the unit disc D strictly inside itself. By conjugation, the results that

follow remain valid if we replace D with any other disc (by disc we mean a disc of

positive radius in C using the chordal metric, other than C itself). Let us say that

a composition sequence is finitely generated if the corresponding generating set is

finite.

If (Fn) is a composition sequence generated by a subset of M(D), then clearly

the discs

D ⊃ F1(D) ⊃ F2(D) ⊃ · · ·

are nested, and the intersection
∩
Fn(D) is either a single point or a closed disc.

In the first case we say that the composition sequence is of limit-point type, and

in the second case we say that it is of limit-disc type. The distinction between

limit-point type and limit-disc type is of central importance in continued fraction

theory because composition sequences of limit-point type have strong convergence

properties. We will see that for composition sequences generated by finite subsets of

M(D), limit-disc type really is quite special, and we supply necessary and sufficient

conditions for limit-disc type to occur.

To state our first result we introduce a new concept: a composition sequence

(Fn) generated by a subset of M(D) is said to be of limit-tangent type if all but a

finite number of discs from the sequence D ⊃ F1(D) ⊃ F2(D) ⊃ · · · share a single

common boundary point.

Theorem 1.1. Let F be a finite subcollection of M(D). Any composition sequence

generated by F of limit-disc type is of limit-tangent type.

That a composition sequence (Fn) is of limit-tangent type implies that there is

a point p and a sequence (zn) in ∂D such that p = Fn(zn) for sufficiently large

values of n. It follows that fn(zn) = zn−1 for large n. We know that fn(D) ⊂ D
and fn(D) ̸= D, so we deduce that fn(D) is internally tangent to D at the point

zn−1. Let us now choose any element f of M(D); the disc f(D) is either internally
tangent to D at a unique point, or else the boundaries of f(D) and D do not meet.

In the former case, we define αf and βf to be the unique points in ∂D such that

f(αf ) = βf , and in the latter case, we define αf = 0 and βf = ∞ (for reasons

of convenience to emerge shortly). The preceding theorem tells us that in order

for the sequence (Fn) to be of limit-disc type, we need αfn−1
= βfn for sufficiently

large values of n. How likely one is to find such a composition sequence is best

illustrated by means of a directed graph T (F), which we call the tangency graph

of F , and which is defined as follows. The vertices of T (F) are the elements of F .

There is a directed edge from vertex f to vertex g if αf = βg. Clearly, any vertex

f for which f(D) and D are not internally tangent is an isolated vertex.
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Repeated compositions of Möbius transformations 3

Let us consider an example. One can easily check that a Möbius transformation

f(z) = a/(b+ z), where a ̸= 0, has the property that f(D) is contained within and

is internally tangent to D if and only if |b| = 1 + |a|. Let

g(z) =
1
2

3
2 + z

, h(z) =
1
2

− 3
2 + z

, and k(z) =
− 1

2

− 3
2 + z

.

Each of these maps satisfies the condition |b| = 1 + |a|. Observe that g(−1) = 1,

h(1) = −1 and k(1) = 1, which implies that αg = −1, βg = 1, αh = 1, and so forth.

The tangency graph of {g, h, k} is shown in Figure 1.

Figure 1. Tangency graph of {g, h, k}

From the tangency graph we can see that a composition sequence Fn = f1 · · · fn
generated by {g, h, k} is not of limit-tangent type if and only if (fn, fn+1) is equal

to either (g, g), (h, h), (g, k), or (k, h) for infinitely many positive integers n.

We have shown that in order for a composition sequence (Fn) to be of limit-disc

type, the sequence of vertices (fn) in the tangency graph must eventually form

an infinite path. The converse fails though: not all infinite paths in the tangency

graph correspond to sequences of limit-disc type. To determine which paths arise

from composition sequences of limit-disc type, we need to look at the derivatives of

the maps fn at tangency points. Let γf = 1/|f ′(αf )|, where f ∈ M(D). The next

theorem gives necessary and sufficient conditions for a composition sequence to be

of limit-disc type.

Theorem 1.2. Let F be a finite subcollection of M(D). A composition sequence

Fn = f1 · · · fn generated by F is of limit-disc type if and only if

(i) αfn−1
= βfn for all but finitely many positive integers n, and

(ii)

∞∑
n=1

γf1 · · · γfn < +∞.

For the example illustrated in Figure 1, one can check that γg = γh = γk = 1
2 . It

follows that any composition sequence generated by {g, h, k} satisfies condition (ii)
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4 M. Jacques and I. Short

of Theorem 1.2, so such a sequence is of limit-disc type if and only if it is of limit-

tangent type.

Next we turn to the following question: given a finite subcollection F of

M(D), how many of the composition sequences generated by F are of limit-disc

type? Using the tangency graph we can formalise this question, and answer it, at

least in part, using known techniques. More precisely, we will define a metric

on the set Ω(F) of all infinite sequences (fn) with fn ∈ F , and evaluate the

Hausdorff dimension of the subset Λ(F) composed of sequences (fn) for which

the corresponding composition sequences Fn = f1 · · · fn are of limit-disc type. The

value of the Hausdorff dimension will depend on the metric we choose; a standard

choice for a metric on the set of sequences from a finite alphabet (which we adopt)

is as follows. Given sequences (fn) and (gn) in F , we define

d
(
(fn), (gn)

)
=

1

|F|k
, where k = min{i ∈ N : fi ̸= gi}.

Then (Ω(F), d) is a compact metric space.

A cycle in a directed graph is a sequence x0, . . . , xn of vertices in the graph such

that x0 = xn and there is a directed edge from xi−1 to xi, for i = 1, . . . , n. Let

ρ(F) denote the spectral radius of the adjacency matrix of T (F). We can now state

our first theorem on Hausdorff dimension.

Theorem 1.3. Let F be a finite subcollection of M(D), and suppose that γf < 1

for each f ∈ F . If F contains a cycle, then

dimΛ(F) =
log ρ(F)

log |F|
,

and otherwise dimΛ(F) = 0.

Returning again to the example illustrated in Figure 1, one can check that the

spectral radius of the adjacency matrix of the tangency graph of G = {g, h, k} is
1
2 (1 +

√
5). Also, γg, γh, γk < 1. Therefore dimΛ(G) = (log(1 +

√
5)− log 2)/ log 3.

As we will see, Theorem 1.3 is a corollary of Theorem 1.2 and a well-known result

on Hausdorff dimensions of paths in directed graphs. Also, because it assumes

that condition (ii) from Theorem 1.2 is always satisfied, it is effectively about the

Hausdorff dimension of the set of composition sequences of limit-tangent type.

In contrast, the next theorem determines dimΛ(F) under the assumption that

condition (i) from Theorem 1.2 is always satisfied. Condition (i) is always satisfied

precisely when T (F) is a complete directed graph, that is, when there is a directed

edge between every pair of (not necessarily distinct) vertices of T (F). (Notice

that, according to this definition, but in contrast to some definitions elsewhere, a

complete directed graph includes a directed edge from each vertex to itself.) It is

straightforward to show that T (F) is a complete directed graph if and only if all

elements of F share a common fixed point on ∂D.

Theorem 1.4. Let F be a nonempty finite subcollection of M(D) for which T (F)

is the complete directed graph on |F| vertices. Then dimΛ(F) = 0 if γf > 1 for all
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Repeated compositions of Möbius transformations 5

f ∈ F ; dimΛ(F) = 1 if γf < 1 for all f ∈ F ; and otherwise

dimΛ(F) = min
s>0

log
(∑

f∈F γ−s
f

)
log |F|

.

Given an arbitrary finite subset F of M(D), Theorems 1.3 and 1.4 provide upper

bounds for the Hausdorff dimension of Λ(F). The problem of determining dimΛ(F)

in general remains open.

So far we have focused on determining those composition sequences of limit-

disc type, and we have ignored other questions of convergence. In fact, it is

known already that any composition sequence generated by a finite subset of M(D)
converges locally uniformly in D to a constant (this follows, for example, from [15,

Theorems 3.8 and 3.10]). Here we will prove some stronger theorems on convergence

for finitely-generated composition sequences.

Before we can state our results on convergence, we must recall some three-

dimensional hyperbolic geometry. Refer to a text such as [3] for a detailed

introduction to hyperbolic geometry. Let H3 = {(x, y, t) ∈ R3 : t > 0}. When

equipped with the Riemannian metric |dz|/t, where z = (x, y, t), this set becomes

a model of three-dimensional hyperbolic space; we denote the hyperbolic distance

function by ρ. We identify the complex plane C with the plane t = 0 in R3 in

the obvious manner, so C can be thought of as the ideal boundary of (H3, ρ). The

compact set H3 = H3 ∪ C can be endowed with the chordal metric. We extend

the action of the Möbius group from C to H3 in the usual way, so each Möbius

transformation is an orientation-preserving hyperbolic isometry of (H3, ρ). Let j

denote the distinguished point (0, 0, 1) in H3. Notice that here, and throughout

the paper, we use the bar notation X to represent the closure with respect to the

chordal metric of a subset X of H3.

A sequence of Möbius transformations (Fn) is called an escaping sequence if

ρ(j, Fn(j)) → ∞ as n → ∞ (the choice of the particular point j from H3 is not

important here, or in any of the definitions to follow). The term ‘escaping sequence’

is taken from the theory of transcendental dynamics, where it has a somewhat

similar meaning. Escaping sequences also play an important role in the theory of

Kleinian groups; after all, any sequence of distinct elements from a Kleinian group is

an escaping sequence. Escaping sequences feature significantly in continued fraction

theory too; however, in that context they are usually called restrained sequences,

and are often defined differently (in terms of the action of the sequence on C rather

than on H3; see [16, Definition 2.6]). We say that an escaping sequence (Fn) is a

rapid-escape sequence if
∑

exp(−ρ(j, Fn(j))) < +∞. This type of sum is familiar

to Kleinian group theorists: it relates to the critical exponent of a Kleinian group,

a connection that has been explored before in [17].

We have one final definition: an escaping sequence (Fn) is said to converge ideally

to a point p in C if the sequence (Fn(j)) converges to p in the chordal metric. In

the continued fractions literature, sequences that converge ideally are usually said

to converge generally ; we have changed the terminology to fit our context.
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6 M. Jacques and I. Short

Our first theorem on convergence demonstrates that composition sequences

generated by finite subsets of M(D) are rapid-escape sequences. In fact, the

theorem is more general than this, as it does not assume that the generating set is

finite. Let rad(D) denote the Euclidean radius of a Euclidean disc D.

Theorem 1.5. Let (fn) be a sequence of Möbius transformations such that fn(D) ⊂
D and rad(fn(D)) < δ, for n = 1, 2, . . . , where 0 < δ < 1. Then Fn = f1 · · · fn is a

rapid-escape sequence.

The property of being a rapid-escape sequence has strong implications for

convergence. By placing further, relatively mild conditions on a rapid-escape

sequence (such as assuming that the sequence is a finitely-generated composition

sequence) one can prove that the sequence converges ideally. What is more, if

(Fn) is a rapid-escape sequence that converges ideally to a point p, then one can

show that the set of points z in C such that Fn(z) 9 p as n → ∞ has Hausdorff

dimension at most 1 (see [17, Corollary 3.5]). For finitely-generated composition

sequences of the type that interest us, we have the following precise result.

Theorem 1.6. Let Fn = f1 · · · fn be a composition sequence generated by a

finite subcollection F of M(D). Then (Fn) converges ideally to a point q in D.
Furthermore, (Fn) converges locally uniformly to q on D \X, where

X = {αf ∈ ∂D : fn = f for infinitely many integers n}.

For each x ∈ X, the sequence (Fn(x)) converges to q if and only if (Fn) is of

limit-point type.

In fact, it is relatively straightforward to prove that if (Fn) is of limit-disc type,

and |X| > 1, then the sequence (Fn(x)) diverges.

Theorem 1.6 gives us a complete understanding of the dynamical system (Fn).

The part about converging ideally is known from other more general results (again,

we refer the reader to [15, Theorems 3.8 and 3.10]).

Throughout the paper we adopt the convention that A ⊂ B and B ⊃ A both

mean that A is a subset of B, possibly equal to B.

2. Sequences of limit-tangent type

Let us say that a nested sequence of open discs D1 ⊃ D2 ⊃ · · · is eventually tangent

if all but finitely many of the discs Dn share a common boundary point. To prove

Theorem 1.1, we need the following elementary lemma, the proof of which, towards

the end, uses the even-more elementary observation that if two distinct open discs

D and E satisfy D ⊂ E, then they can have at most one point of tangency.

Lemma 2.1. Let D1 ⊃ D2 ⊃ · · · be a nested sequence of open discs in the plane,

no two of which are equal. The sequence is eventually tangent if and only if Dn is

tangent to Dn+2 for all but finitely many values of n.

Proof. Suppose that the sequence (Dn) is eventually tangent. Then there is a point

p in the plane and a positive integer m such that p ∈ ∂Dn when n > m. Therefore
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Repeated compositions of Möbius transformations 7

Dn and Dn+2 share a common boundary point, provided n > m, and because the

two discs are distinct and satisfy Dn+2 ⊂ Dn, they must be tangent to one another.

Conversely, suppose that there is a positive integer m such that Dn is tangent

to Dn+2 when n > m. For any particular integer k, with k > m, let p be the point

of tangency of Dk and Dk+2, and let c and r be the Euclidean centre and radius of

Dk+1, respectively. Now observe that, first, p ∈ ∂Dk and Dk ⊃ Dk+1, so |p−c| > r,

and second, p ∈ ∂Dk+2 and Dk+2 ⊂ Dk+1, so |p − c| 6 r. Therefore |p − c| = r,

which implies that Dk, Dk+1 and Dk+2 have a (unique) common point of tangency.

It follows that all the discs Dn, for n > m, have a common point of tangency. 2

We remark that the lemma remains true if we replace ‘Dn is tangent to Dn+2’

with ‘Dn is tangent to Dn+q’, for any positive integer q > 1.

We also use the following theorem, which is a simplified version of [14,

Theorem 1]. (Significantly more general versions of this result are known; see,

for example, [6]).

Theorem 2.2. Suppose that K is a compact subset of D and F is a collection

of analytic maps from D to K. Then any composition sequence generated by F
converges locally uniformly in D to a constant.

Let us now prove Theorem 1.1.

Proof of Theorem 1.1. We will prove the contrapositive to the assertion made in

the theorem; that is, we will prove that if (Fn) is not of limit-tangent type, then it

is of limit-point type.

Suppose then that (Fn) is not of limit-tangent type. By Lemma 2.1, there is

an infinite sequence of positive integers n1 < n2 < · · · , where ni+1 > ni + 1 for

all i, such that Fni+2(D) is not tangent to Fni
(D) for each integer ni. Therefore

fni+1fni+2(D) is not tangent to D for each integer ni. Let K be the union of all

the sets fg(D), where f, g ∈ F , such that fg(D) is not tangent to D. Since F is

finite, K is a compact subset of D.
Let g1 = f1 · · · fn1

and gi+1 = fni+1 · · · fni+1
for each positive integer i. Then

gi+1(D) = fni+1 · · · fni+1(D) ⊂ fni+1fni+2(D) ⊂ K.

Let Gn = g1 · · · gn. As gn(D) ⊂ K, we can apply Theorem 2.2 to see that (Gn)

converges uniformly on D to a constant. That is, (Gn) is of limit-point type. Since

(Gn) is a subsequence of (Fn), we conclude that (Fn) is also of limit-point type. 2

3. Necessary and sufficient conditions for limit-disc type

In this section we prove Theorem 1.2.

Let K denote the right half-plane. Suppose that h is a Möbius transformation

that satisfies h(K) ⊂ K and h(∞) = ∞. Then h(z) = az + b, where a > 0 and

Re(b) > 0, and h(K) = K if and only if Re(b) = 0.

The next lemma is about composition sequences generated by the collection of

those Möbius transformations that map K strictly inside itself. We say that a

composition sequence (Hn) of this sort is of limit-disc type if
∩

Hn(K) is a disc.
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8 M. Jacques and I. Short

Lemma 3.1. Consider the finitely-generated composition sequence Hn = h1 · · ·hn,

where hn(z) = anz + bn, with an > 0 and Re(bn) > 0. Then (Hn) is of limit-disc

type if and only if
∞∑

n=1

a1 · · · an < +∞.

Furthermore, if (Hn) is of limit-disc type and converges ideally to a point q, then

q ̸= ∞.

Proof. Observe that Hn(z) = a1 · · · anz +
∑n

k=1 a1 · · · ak−1bk (where a1 · · · a0 = 1).

Therefore

Hn(K) = tn +K, where tn =

n∑
k=1

a1 · · · ak−1Re(bk).

Hence (Hn) is of limit-disc type if and only if (tn) converges to a finite number.

As (Hn) is finitely generated, we see that the positive numbers Re(bk) take only

finitely many values. The first assertion of the theorem follows.

For the second assertion, we know that
∑

n a1 · · · an < +∞, so a1 · · · an → 0

as n → ∞. Therefore Hn(j) → q, where q =
∑

k a1 · · · ak−1bk, as n → ∞. In

particular, q ̸= ∞. 2

The chordal derivative f# of a Möbius transformation f is given by

f#(z) =
1 + |z|2

1 + |f(z)|2
|f ′(z)|,

with the usual conventions about ∞ values. Notice in particular that if |z| = 1 and

|f(z)| = 1, then f#(z) = |f ′(z)|.

Lemma 3.2. Let Fn = f1 · · · fn be a composition sequence generated by a finite

subset of M(D) such that fn(zn) = zn−1 for each n, where z0, z1, . . . are points on

the unit circle ∂D. Let γn = 1/|f ′(zn)|. Then (Fn) is of limit-disc type if and only

if
∞∑

n=1

γ1 · · · γn < +∞.

Furthermore, if (Fn) is of limit-disc type and converges ideally to a point q, then

q ̸= z0.

Proof. Let

ϕn(z) =
z + zn
−z + zn

,

for n = 0, 1, 2, . . . . One can check that ϕn(D) = K, ϕn(zn) = ∞ and ϕn(j) = j,

where, as usual, j = (0, 0, 1). Let hn = ϕn−1fnϕ
−1
n and Hn = h1 · · ·hn, so

Hn = ϕ0Fnϕ
−1
n . Observe that hn maps K strictly inside itself and hn(∞) = ∞.

Also, Hn(K) = ϕ0Fn(D), so (Fn) is of limit-disc type if and only if (Hn) is of limit-

disc type. Now, the maps ϕn are isometries of C with the chordal metric, so using

the chain rule for chordal derivatives we obtain

h#
n (∞) = (ϕn−1fnϕ

−1
n )#(∞) = f#

n (ϕ−1
n (∞)) = f#

n (zn) = |f ′
n(zn)|.
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Repeated compositions of Möbius transformations 9

Also, writing hn(z) = anz + bn, we have h#
n (∞) = 1/an. We can now apply the

first part of Lemma 3.1 to see that (Hn) (and (Fn)) are of limit-disc type if and

only if
∑

γ1 · · · γn < +∞.

To prove the second assertion, suppose that (Fn) is of limit-disc type and

converges ideally to a point q. Since Hn(j) = ϕ0Fn(j), we see that (Hn) converges

ideally to ϕ0(q). The second part of Lemma 3.1 tells us that ϕ0(q) ̸= ∞. Hence

q ̸= ϕ−1
0 (∞) = z0, as required. 2

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Statement (i) of Theorem 1.2 is equivalent to the assertion

that (Fn) is of limit-tangent type. Therefore Theorem 1.1 tells us that if (Fn) is

of limit-disc type, then statement (i) holds. Thus, we have only to show that, on

the assumption that statement (i) holds, (Fn) is of limit-disc type if and only if

statement (ii) holds.

Let zn = αfn , for n = 1, 2, . . . , and z0 = βf1 . There is a positive integer m such

that

fn(zn) = fn(αfn) = βfn = αfn−1 = zn−1,

for n > m. We can now apply the first assertion of Lemma 3.2 (ignoring the

first m terms of (fn)) to deduce that (Fn) is of limit-disc type if and only if∑
γf1 · · · γfn < +∞, as required. 2

4. Hausdorff dimension of sequences of limit-disc type

In this section we prove Theorems 1.3 and 1.4.

For each positive integer b, we define Ωb to be the set of all sequences x1, x2, . . .

with xi ∈ {0, . . . , b− 1}. Given sequences (xn) and (yn) in Ωb, we define

d
(
(xn), (yn)

)
=

1

bk
, where k = min{i ∈ N : xi ̸= yi}.

Then (Ωb, d) is a compact metric space; it is essentially the same as the metric

space (Ω(F), d) defined in the introduction, but with a different underlying set. We

denote by dimX the Hausdorff dimension of a subset X of Ωb with respect to the

metric d.

Let Γ be a directed graph with vertices {0, . . . , b − 1}. There is at most one

directed edge between each pair of vertices i and j, where possibly i = j. We

denote the spectral radius of the adjacency matrix of Γ by ρ(Γ). Let Γ∞ denote

the set of infinite paths in Γ; specifically, Γ∞ consists of sequences (xn) from Ωb

such that there is a directed edge in Γ from xn to xn+1, for each n. The following

result is well known (see, for example, [11, Corollary 2.9]).

Theorem 4.1. Suppose that Γ is a directed graph with vertices {0, 1, . . . , b − 1},
and suppose that Γ contains a cycle. Then

dimΓ∞ =
log ρ(Γ)

log b
.

Theorem 1.3 follows quickly from this result.
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10 M. Jacques and I. Short

Proof of Theorem 1.3. If T (F) does not contain a cycle, then there are no

infinite paths in T (F), so there are no composition sequences of limit-disc type.

Consequently, dimΛ(F) = 0. Suppose instead that T (F) does contain a cycle.

Let Fn = f1 · · · fn be any composition sequence generated by F . We are given

that γf < 1 for each f ∈ F , from which it follows that
∑

γf1 · · · γfn < +∞ (because

F is finite). We can now see from Theorem 1.2 that

Λ(F) =

∞∪
k=1

Yk,

where Yk comprises those sequences (fn) in F for which there is a directed edge in

T (F) from fn to fn+1 for n > k. Observe that Y1 is the set of all infinite paths in

T (F).

Define b = |F|, and choose any one-to-one map from F to {0, . . . , b − 1}. This

map induces an isometry of the metric spaces (Ω(F), d) and (Ωb, d). We can now

apply Theorem 4.1 to give dimY1 = (log ρ(F))/ log b. Furthermore, each set Y1 \Yk

is finite, so dimYk = dimY1. Finally, because Hausdorff dimension is countably

stable, we obtain

dimΛ(F) = dim

∞∪
k=1

Yk = sup
k∈N

dimYk =
log ρ(F)

log b
.

2

The remainder of this section is concerned with proving Theorem 1.4. For most

of this part we work with the unit interval [0, 1] and the Euclidean metric rather

than with the metric space (Ω(F), d). Only at the very end do we switch back to

the latter metric space. We denote the Hausdorff dimension of a subset X of [0, 1]

by dimX, as usual. Throughout, we let b be a fixed positive integer (which later

will be the order of F).

We make use of two well-known lemmas (see, for example, [10, Proposition 2.3]

and [7, equation 14.4]). The first lemma is part of a result known as Billingsley’s

lemma. In this lemma we use the notation In(x) to denote the nth generation, half-

open b-adic interval of the form
[
j−1
bn , j

bn

)
containing x, and we let |In(x)| denote

the width 1/bn of this interval.

Lemma 4.2. Suppose that µ is a finite Borel measure on [0, 1] and A is a Borel

subset of [0, 1] with µ(A) > 0. If

lim inf
n→∞

logµ(In(x))

log |In(x)|
6 λ,

for all x ∈ A, then dimA 6 λ.

Given x ∈ [0, 1], we define x(j) to be the jth digit in the b-ary expansion of x.

(To ensure that this definition is unambiguous, we forbid infinitely-recurring entries

b − 1 in the expansion.) For i = 0, . . . , b − 1, we let Ni(x, n) denote the number

of those digits x(1), . . . , x(n) that are equal to i. We also need the concept of a

probability vector, which is a vector (p0, . . . , pb−1) such that 0 6 pi 6 1 for each i

and p0 + · · ·+ pb−1 = 1.
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Repeated compositions of Möbius transformations 11

Lemma 4.3. Suppose that p = (p0, . . . , pb−1) is a probability vector. Let Xp be the

set of those numbers x in [0, 1] such that

lim
n→∞

Ni(x, n)

n
= pi,

for i = 0, . . . , b− 1. Then

dimXp = − 1

log b

b−1∑
i=0

pi log pi.

Given positive numbers γ0, . . . , γb−1, we define, for x ∈ [0, 1],

Qn(x) =
1

n

b−1∑
i=0

Ni(x, n) log γi.

Lemma 4.4. If lim supn→∞ Qn(x) < 0, then the series

∞∑
n=1

γx(1) · · · γx(n)

converges, and if lim supn→∞ Qn(x) > 0, then the series diverges.

Proof. Applying Cauchy’s root test, we see that the series converges if

lim sup an
1/n < 1 and diverges if lim sup an

1/n > 1, where an = γx(1) · · · γx(n). The
results follows by taking the logarithm of each side of each of these inequalities, as

log

(
lim sup
n→∞

an
1/n

)
= lim sup

n→∞

1

n

n∑
j=1

log γx(j) = lim sup
n→∞

Qn(x).

2

We can now state the principal result of this section.

Theorem 4.5. Suppose that at least one of the positive numbers γ0, . . . , γb−1 is

greater than 1, and at least one is less than 1. Let X denote the set of numbers x

in [0, 1] for which
∞∑

n=1

γx(1) · · · γx(n) < +∞.

Then

dimX = min
s>0

log
(∑b−1

i=0 γ
−s
i

)
log b

.

Before proving this theorem, we observe that the expression for dimX can be

written more concisely using the real function q(s) =
∑b−1

i=0 γ
−s
i . This function

satisfies the equation q′′(s) =
∑b−1

i=0 (log γi)
2γ−s

i > 0, so q is strictly convex. Since

q(s) → +∞ as s → −∞ and as s → +∞, we see that q has a unique local

minimum at a point s0, and s0 is a global minimum of q. Now let g(s) = log q(s).

Then dimX = g(s0)/ log b if s0 > 0, and dimX = g(0)/ log b = 1 if s0 < 0.

In the argument that follows, we also use the function g′(s), which is strictly

increasing on the real line and satisfies g′(s0) = 0.
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12 M. Jacques and I. Short

Proof of Theorem 4.5. We begin by establishing a lower bound for dimX. Let Xs

denote the set of those numbers x in [0, 1] such that

lim
n→∞

Ni(x, n)

n
=

γ−s
i∑
j γ

−s
j

,

for i = 0, . . . , b− 1. If x ∈ Xs, then

lim
n→∞

Qn(x) =

∑
i γ

−s
i log γi∑
j γ

−s
j

= −g′(s).

If s > s0, then g′(s) > 0, so Xs ⊂ X, by Lemma 4.4. Therefore, applying

Lemma 4.3, we obtain

dimX > dimXs =
g(s)

log b
− sg′(s)

log b
.

If s0 < 0, then dimX > g(0)/ log b = 1, so dimX = 1. Henceforth we assume that

s0 > 0. In this case, as g′(s0) = 0, we obtain dimX > g(s0)/ log b.

It remains to prove that dimX 6 g(s0)/ log b when s0 > 0. To this end, we

define µs to be the probability measure given by

µs(In(x)) = px(1) · · · px(n), where (p0, . . . , pb−1) =
1∑
i γ

−s
i

(γ−s
0 , . . . , γ−s

b−1)

is the probability vector used already, and In(x) is the nth generation b-adic interval

containing x.

Let Y be the set of those numbers x in [0, 1] such that lim supn→∞ Qn(x) 6 0.

Then X ⊂ Y , by Lemma 4.4. One can check that, given x ∈ Y ,

lim inf
n→∞

logµs(In(x))

log |In(x)|
=

g(s)

log b
+

s

log b
lim inf
n→∞

Qn(x)

6 g(s)

log b
+

s

log b
lim sup
n→∞

Qn(x)

6 g(s)

log b
,

for all s > s0. Lemma 4.2 now tells us that

dimX 6 dimY 6 g(s)

log b
.

Therefore dimX 6 g(s0)/ log b, as required. 2

Finally, we prove Theorem 1.4.

Proof of Theorem 1.4. If γf > 1 for all f ∈ F , then condition (ii) of Theorem 1.2

is not satisfied for any composition sequence generated by F , so Λ(F) = ∅. Hence

dimΛ(F) = 0. On the other hand, if γf < 1 for all f ∈ F , then conditions (i)

and (ii) of Theorem 1.2 are satisfied for every composition sequence generated by

F , so dimΛ(F) = 1.
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Suppose now that at least one of the numbers γf is greater than 1, and at least

one is less than 1. Let b = |F|. As before, we choose any one-to-one map ϕ from F
to {0, . . . , b − 1}. Let γ0, . . . , γb−1 be the positive numbers defined by γϕ(f) = γf ,

for f ∈ F . Now define π to be the projection from Ω(F) to [0, 1] that takes the

sequence (fn) to the number x with nth term ϕ(fn) in its b-ary expansion. The

map π is one-to-one outside a countable subset of Ω(F), and one can prove using

an elementary argument about Hausdorff dimension (see [9, Theorem 5.1]) that for

any subset A of Ω(F) we have dimA = dimπ(A).

Theorem 1.2 tells us that Λ(F) comprises those sequences (fn) for which∑
n γf1 · · · γfn < +∞. Let Λ′(F) denote the class Λ(F) minus any sequences (fn)

for which fn = ϕ−1(b−1) for all sufficiently large values of n. The classes Λ(F) and

Λ′(F) differ by a countable set, so they have the same Hausdorff dimension. The

set π(Λ′(F)) comprises those numbers x in [0, 1] for which
∑

n γx(1) · · · γx(n) < +∞.

We can now apply Theorem 4.5 to deduce that

dimΛ(F) = dimπ(Λ(F)) = min
s>0

log
(∑b−1

i=0 γ
−s
i

)
log b

= min
s>0

log
(∑

f∈F γ−s
f

)
log b

.

2

5. Convergence of composition sequences

In this section we prove Theorems 1.5 and 1.6. Our proofs use the action of Möbius

transformations on H3, with hyperbolic metric ρ. Given a point z = (x, y, t) in

H3, we define h(z) = t: the ‘height’ of z. Also, for a Euclidean disc D in the

complex plane with centre c and radius r, we denote by Π(D) the hyperbolic plane

{z ∈ H3 : |z − c| = r}. For brevity, we write Π for the hyperbolic plane Π(D).

Lemma 5.1. Let U and V be distinct Euclidean discs with centres u and v, and

radii r and s, in that order. Suppose that V ⊂ U and

r

s
< min

{
2, 1 + 1

8 sinh ρ(z,Π(V ))
}
, (1)

for some point z in Π(U). Then h(z) < s/2. Let w be the point in Π(V ) with

h(w) = h(z) that is closest in Euclidean distance to z. Then

|z − w| < 3(r − s).

Proof. Using a standard formula for the hyperbolic metric (see, for example, [3,

Section 7.20]) we have

sinh ρ(z,Π(V )) =
|z − v|2 − s2

2hs
,

where h = h(z). As V ⊂ U , we see that |u− v|+ s 6 r. Hence

|z − v|2 − s2 6 (|z − u|+ |u− v|)2 − s2 6 (2r − s)2 − s2 = 4r(r − s).

Therefore, using (1), we obtain

sinh ρ(z,Π(V )) 6 2r(r − s)

hs
=

2r

h

(r
s
− 1

)
<

r

4h
sinh ρ(z,Π(V )).
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14 M. Jacques and I. Short

It follows that h < r/4 < s/2.

Now, let Σ denote the Euclidean plane in H3 with height h, that is, Σ =

{(x, y, h) : x, y ∈ R}. Let U0 and V0 denote the Euclidean discs in Σ with centres

u + hj and v + hj (where j = (0, 0, 1)), and radii
√
r2 − h2 and

√
s2 − h2, in

that order. Observe that V0 ⊂ U0 and z ∈ ∂U0 and w ∈ ∂V0. Using elementary

Euclidean geometry, we can see that

|z − w| < 2
√
r2 − h2 − 2

√
s2 − h2.

But h < s/2 and h < r/2, so

2
√
r2 − h2 − 2

√
s2 − h2 =

2(r2 − s2)√
r2 − h2 +

√
s2 − h2

<
4√
3
(r − s).

Therefore |z − w| < 3(r − s), as required. 2

We now prove Theorem 1.5.

Proof of Theorem 1.5. Since rad(fn(D)) < δ for all n, it follows that each hyperbolic

plane fn(Π) lies inside the region t < δ in H3. Hence ρ(j, fn(Π)) > ρ(j, δj) =

− log δ. Let ε = − log δ, and define η = min
{
2, 1 + 1

8 sinh ε
}
. Let rn be the

Euclidean radius of Fn(D) (with r0 = 1). Define

A =

{
n ∈ N :

rn−1

rn
< η

}
and B =

{
n ∈ N :

rn−1

rn
> η

}
.

Suppose that n ∈ A. Observe that ρ(Fn−1(j), Fn(Π)) = ρ(j, fn(Π)) > ε, so

rn−1

rn
< η < min

{
2, 1 + 1

8 sinh ρ(Fn−1(j), Fn(Π))
}
.

By Lemma 5.1, we can choose a point wn in Fn(Π) with h(wn) = h(Fn−1(j)) that

is closest in Euclidean distance to Fn−1(j), and

|Fn−1(j)− wn| < 3(rn−1 − rn).

Now, using a basic estimate of hyperbolic distance, we find that

εh(Fn−1(j)) < ρ(Fn−1(j), Fn(Π))h(Fn−1(j)) 6 ρ(Fn−1(j), wn)h(Fn−1(j)) 6 |Fn−1(j)−wn|.

Hence εh(Fn−1(j)) < 3(rn−1 − rn), so∑
n∈A

h(Fn−1(j)) < +∞.

Next, let n1 < n2 < · · · be the elements of B. Define n0 = 0. As

rnk
/rnk−1

6 1/η, for k = 1, 2, . . . , we see that rnk
6 1/ηk. Therefore

h(Fnk−1(j)) 6 rnk−1 6 rnk−1
6 1

ηk−1
,

so ∑
n∈B

h(Fn−1(j)) < +∞.
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Repeated compositions of Möbius transformations 15

To finish, observe that − log h(Fn−1(j)) 6 ρ(j, Fn−1(j)), from which it follows

that

exp(−ρ(j, Fn−1(j))) 6 h(Fn−1(j)).

We have just seen that
∞∑

n=1

h(Fn−1(j)) < +∞,

and hence we conclude that (Fn) is a rapid-escape sequence. 2

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. Let us begin by proving that the sequence (Fn) converges

ideally. In this part of the proof (and nowhere else in the paper) it is convenient to

assume that the transformations Fn act on the unit ball model of hyperbolic space,

which we denote by B3. The ideal boundary of B3 is the unit sphere. We denote

the hyperbolic metric on B3 by ρ. In this model we use the distinguished point 0

(the origin) instead of the point j in H3. Two standard formulas for the hyperbolic

metric on B3 are

ρ(0, z) = log

(
1 + |z|
1− |z|

)
and sinh 1

2ρ(z, w) =
|z − w|√

(1− |z|2)(1− |w|2)
.

From the first standard formula we see that 1−|z| = (1+ |z|)e−ρ(0,z). Substituting

this equation into the second standard formula, and noting that 1 + |z| 6 2, we

obtain

|z − w| =
√
(1− |z|2)(1− |w|2) sinh 1

2ρ(z, w) 6 2(e−ρ(0,z) + e−ρ(0,w)) sinh 1
2ρ(z, w).

We apply this formula with z = Fn−1(0) and w = Fn(0). Let k > 0 be such

that ρ(0, fn(0)) < k for all n (the maps fn are chosen from a finite set). Then

ρ(Fn−1(0), Fn(0)) < k for all n. Therefore

|Fn−1(0)− Fn(0)| < 2(e−ρ(0,Fn−1(0)) + e−ρ(0,Fn(0))) sinh 1
2k.

Theorem 1.5 tells us that (Fn) is a rapid-escape sequence, so
∑

|Fn−1(0)−Fn(0)| <
+∞. It follows that (Fn(0)) converges in the Euclidean metric on B3, the closed unit

ball. This sequence cannot converge to a point in B3, because (Fn) is an escaping

sequence. Therefore (Fn) converges ideally to a point on the ideal boundary, the

unit sphere.

Let us now go back to thinking about Fn acting on C and H3. We have seen

that (Fn) converges ideally to a point q. This point q must belong to D because

each transformation fn maps the closed hyperbolic half-space with ideal boundary

D inside itself.

Next we show that (Fn) converges locally uniformly to q on D\X. To prove this,

we begin with the observation (see [1, Theorem 4.6]) that if (Gn) is a sequence of

Möbius transformations that converges ideally to a point u, then (Gn) converges

locally uniformly to u on the complement in C of its backward limit set (the

backward limit set of (Gn) is the set of accumulation points, in the chordal metric, of
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16 M. Jacques and I. Short

the sequence (G−1
n (j))). In our case, each transformation f−1

n maps the complement

of the unit disc, namely C \ D, inside itself, so it also maps the closed hyperbolic

half-space in H3 with ideal boundary C\D (which includes the point j) inside itself.

It follows that the backward limit set of (Fn) is contained in C \D. Therefore (Fn)

converges locally uniformly to q on D.
Now choose a point y in ∂D \X. Let

G = {f ∈ F : fn = f for infinitely many integers n}.

Let K be a compact disc in D whose interior contains the finite set {f(y) : f ∈ G}.
Let E be a closed Euclidean disc in the complement of X that contains the point

y in its interior and is such that f(E) ⊂ K for all f ∈ G. We can choose m to be a

sufficiently large positive integer that if n > m then fn ∈ G. Therefore fn(E) ⊂ K,

so the sequence (Fn) converges uniformly to q on E. Hence (Fn) converges locally

uniformly to q on D \X.

Let us finish by considering convergence of (Fn) on the set X itself. Choose

x ∈ X. If (Fn) is of limit-point type, then (Fn) converges uniformly to q on D,
so Fn(x) → q as n → ∞. Suppose now that (Fn) is of limit-disc type. We must

show that (Fn(x)) does not converge to q. By omitting the first m terms from the

sequence (fn), for some positive integer m, and by adjusting q accordingly, we can

assume that fn(zn) = zn−1, for n = 1, 2, . . . , where zn = αfn , for n > 1, and z0 is

a point common to the boundaries of all the discs Fn(D). Lemma 3.2 tells us that

z0 ̸= q. However, we know that zn = x for infinitely many positive integers n, and

Fn(zn) = z0; therefore (Fn(x)) does not converge to q. 2
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