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Abstract 

Invasive sea lamprey (Petromyzon marinus) in the Great Lakes are controlled using the 

pesticide (lampricide) 3-trifluoromethyl-4-nitrophenol (TFM), which is applied to 

nursery streams containing larval lamprey. The toxicity of TFM to lamprey is affected by 

various environmental and physiological factors, which can lead to residual lamprey that 

survive TFM treatment. The goal of this study was to investigate how abiotic (season and 

temperature) factors interacted with physiological parameters (whole body and tissue 

energy reserves) to influence TFM sensitivity in sea lamprey. Toxicity tests were 

conducted at different times of the year (spring, early and late summer, fall) and 

temperatures (6, 12 and 21 °C) using larval sea lamprey collected from the same stream, 

the Au Sable River, Michigan, USA. Toxicity tests revealed that TFM tolerance was 

greatest in late summer, when the 12 h LC50 and 12 h LC99.9 were 2.0 to 2.5-fold greater 

than in the spring and fall, when water temperatures were cooler. Toxicity tests 

conducted the following year on larval sea lamprey collected from the same river, but 

acclimated and exposed to TFM at different temperatures, revealed that 12 h LC50 and 12 

h LC99.9 increased by 50 % as water temperature increased from 6 °C to 12 °C, and was 

2.5-fold greater at 21 °C than at 6 °C. In addition, body composition experiments were 

conducted on lamprey that were not exposed to TFM to quantify changes in energy stores 

with season and temperature. Seasonal variation in whole body and tissue energy stores 

including glycogen, lipid and protein had little influence on the differences in TFM 

sensitivity. No differences in TFM burden or the TFM metabolite, TFM-glucuronide, 

were detected in the carcasses of lamprey exposed to TFM during different seasons. Nor 

could any differences in body condition (condition factor, hepatosomatic index) explain 
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the differences in TFM sensitivity with season. I conclude that increased water 

temperature is the primary abiotic factor contributing to the larval sea lamprey’s greater 

ability to withstand TFM during the summer, possibly due to an increase in their capacity 

to detoxify TFM.  These data suggest that it may be prudent to consider seasonal 

variations in temperature when using current models to select and treat sea lamprey-

infested streams with TFM.  
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1.1 Introduction 

1.1.1 Invasive Species and the Great Lakes 

Invasive species are introduced species that become widespread and have adverse 

effects on the invaded habitat (Lee, 2002).  Species are often introduced for landscape 

restoration, biological pest control, entertainment, food processing and domestication. 

Introductions of flora and vertebrate fauna are usually intentional, whereas introductions 

of invertebrate fauna and microbes are often accidental (Pimentel et al. 2005). Most 

introductions of invasive species have occurred because of human activity (Vitousek et 

al. 1997).  

European exploration, settlement and commercial development around the Great 

Lakes (Ashworth, 1986) resulted in the opening of many waterways linking the Great 

Lakes to the Atlantic Ocean. With increased commercial trade on the Great Lakes, 

however, came increased introductions of invasive species. Over one hundred invasive 

species have been introduced to the Great Lakes in the last two centuries, and the 

invasion rate has increased in the last 40 years (Mills et al. 1993). Some highly 

publicized invasive species of the Great Lakes include zebra mussels (Dreissena 

polymorpha), Asian carps (Hypophthalmichthys nobilis, Hypophthalmichthys molitrix, 

Ctenopharyngodon idella and Mylopharyngodon piceus) and sea lamprey (Petromyzon 

marinus). Historically, the sea lamprey has been the most devastating invasive species 

(MDNR 2014).  

1.1.2 Invasion of the Great Lakes by Sea Lamprey   

The sea lamprey is a phylogenetically ancient jawless fish related to jawed 

vertebrates and native to the Atlantic Ocean and the Baltic, western Mediterranean and 
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Adriatic seas (Potter, 1980). Although it was unclear if sea lamprey are native to Lake 

Champlain, Lake Ontario and the Finger Lakes (Eshenroder 2009; Waldman et al. 2004; 

Waldman et al. 2009), it is widely accepted that they are not native (Eshenroder 2014). 

Sea lamprey likely gained access to Lake Champlain, Lake Ontario and the Finger Lakes 

through the Saint Lawrence River or through the Hudson River via the Erie Canal and 

other constructed waterways (Bryan et al. 2005; Eshenroder 2014) and were first 

documented in Lake Ontario in 1835 (Lark 1973). From Lake Ontario, sea lamprey 

circumvented Niagara Falls after modifications to the Welland Canal between Lake 

Ontario and Lake Erie in the late 1800s and early 1900s. Sea lamprey were documented 

in Lake Erie in 1921 (Dymond 1922), and then Lake Saint Clair in 1934 (Shetter 1949), 

Lake Huron in 1937 (Applegate, 1950), Lake Michigan in 1936 (Smith and Tibbles 1980) 

and Lake Superior in 1946 (Applegate, 1950); the interconnectivity of the Great Lakes 

waterways made possible the invasion and spread of the sea lamprey (Figure 1.1; Aron 

and Smith 1971; Morman et al. 1980). Currently, the St. Mary’s River (Michigan-

Ontario) linking Lake Superior to Lake Huron is the largest uncontrolled source of sea 

lamprey, due to its large volume and ideal spawning habitat for adults and rearing habitat 

for larvae (Schleen et al. 2003).  

1.1.3 Consequences of the Sea Lamprey Invasion  

Sea lamprey parasitism combined with water pollution and overfishing caused 

dramatic reductions of populations of large predatory fish, such as walleye (Sander 

vitreus), deepwater cisco (Coregonus johannae, Coregonus nigripinnis) and lake trout 

(Salvelinus namaycush) (Schneider et al. 1996; Smith and Tibbles 1980). Lake trout 

catch in Lake Huron declined from 1,545,454 kg in 1937 to a virtual collapse in 1947. 



4 
 

Catches in Lake Michigan declined from 2,500,000 kg in 1946 to 167,272 kg in 1953. In 

Lake Superior, catches declined from an average of 927,802  kg to 167,272 kg in 1961 

(Scott and Crossman 1973), and the effects cascaded through the food web, causing 

large-scale disruptions of the aquatic community and contributing to the collapse of 

regional commercial, aboriginal and recreational fisheries (Smith and Tibbles 1980). 

After millions of dollars in economic losses to fisheries and the tourism industry 

(Fetterolf 1980; Fuller et al. 1999; Hansen and Jones 2008), it became evident that sea 

lamprey control was required to protect Great Lakes fisheries from sea lamprey. 

 

1.2 Sea Lamprey Life History and Spawning 

Sea lamprey have a complex transformational life history (Figure 1.2). During the 

larval phase, sea lamprey typically spend three to seven years burrowed in the sediment 

of tributaries of the Great Lakes. This phase is characterized by a relatively sedentary life 

style (Beamish and Potter 1975), a low metabolic rate (Lewis and Potter 1976; Wilkie et 

al. 2002; Tessier et al. 2018) and a filter-feeding diet (Moore and Beamish 1973; Sutton 

and Bowen, 1994), consisting mostly of diatoms and detritus (Creaser & Hann, 1929; 

Moore & Beamish, 1973; Moore & Potter 1976). Larvae accumulate large amounts of 

lipid and glycogen reserves in preparation for metamorphosis (Youson 1980, 2003), 

which involves distinct morphological, anatomical and physiological changes. 

Metamorphosis takes place over 3-4 months in the summer and early fall, during which 

lamprey develop eyes, change external body colouration from brown to a darker silver-

black, and take on a more stream-lined shape with the development of more pronounced 

dorsal fins (transformers are metamorphosing lamprey; Youson 1980, 2003).  The largest 
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changes take place in the organization of the respiratory-feeding apparatus, in which the 

oral-hood is transformed into an oral disc, and a rasping tongue is formed, which allows 

the animal to attach to a fish and puncture its hide to draw blood for feeding. The gills 

switch from a uni-directionally to a tidally ventilated gill to facilitate breathing while 

attached to their host.  In the fall, juvenile sea lamprey migrate downstream to the Great 

Lakes or the Atlantic Ocean, where they parasitize and prey on other fish (B). Following 

a 12-20-month parasitic phase, adult sea lamprey migrate upstream in the spring (C); 

Applegate 1950; Beamish and Potter 1975; Sorensen and Vrieze 2003); they are 

semelparous (Hardisty and Potter 1971) and hence die after spawning (GLFC 2013). 

Anadromous populations migrate to sea (Potter and Beamish 1975; Youson 1980).  

Both landlocked and anadromous sea lamprey juveniles parasitize and prey on 

other fishes. Using their oral disk, sea lamprey attach onto fishes and feed on the blood of 

their hosts (Figure 1.3; hematophageous feeding; Beamish and Potter 1975), often 

resulting in death of the fish either directly from the loss of fluids, or indirectly from 

secondary infection of the wound (Farmer 1980; Phillips et al. 1982). Following a 12-20-

month parasitic phase (Swink 2003), increases in water temperature, photoperiod, river 

discharge rates and pheromones produced by larval lamprey prompt the upstream 

spawning migration of adults in the spring (Applegate 1950; Beamish and Potter 1975; Li 

et al. 2007; Siefkes 2017; Sorensen and Vrieze 2003). Sea lamprey do not home like 

some fish, but rather exhibit regional panmixia, selecting the most ‘suitable river’ in 

which to spawn through the detection of bile salts (petromyzolol sulfate and allocholic 

acid) secreted by resident larval sea lamprey (Li et al. 1995; Polkinghorne et al. 2001; 

Waldman et al. 2008).  
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Ideal spawning habitat includes suitable substrates of sand and gravel, moderate 

water velocities, shallow water depths and temperatures ranging from 10 to 26 °C 

(Applegate 1950). Breeding occurs at the end of June and early July; the male (and 

sometimes the female) builds a redd (nest) by depositing rocks to form a crescent-shaped 

mound. The monocyclic female lays tens of thousands of nonbuoyant and adhesive eggs, 

which the male fertilizes; an estimated 86 % of eggs are not deposited in the redd and are 

instead consumed by predators. For eggs deposited in the redd, fertilization and survival 

is approximately 90 % (Applegate 1950; Manion and Hanson 1980). Because sea 

lampreys are semelparous (Hardisty and Potter 1971), they die after spawning. There are 

other lamprey and non-parasitic lamprey species native to the Great Lakes, including 

silver lamprey (Ichthyomyzon unicuspis) and American brook lamprey (Lampetra 

appendix). However, the other parasitic species have not caused such devastating effects 

as sea lamprey. 

 

1.3 Integrated Sea Lamprey Control  

In 1955, the Canadian and United States governments formed the Great Lakes 

Fishery Commission (GLFC), to develop and coordinate research and sustainable 

management plans for native fishes and sea lamprey control in the Great Lakes (Sorensen 

and Hoye 2007). Because current control techniques do not allow for complete 

eradication (Christie et al. 2003), the integrated sea lamprey control program relies on 

several techniques to control sea lamprey populations. Velocity barriers, electrical 

barriers and adjustable-crest barriers block adult sea lamprey migration to spawning 

tributaries with minimal effects on non-target organisms (Hunn and Younges 1980; 
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McLaughlin et al. 2007). Cages are also used to trap sea lamprey during migration to 

remove spawning adult sea lampreys from tributaries.  Male sterilization programs are 

used to target adult lamprey by injecting males with the chemosterilant bisazir, which 

reduced reproductive potential when they attempt to spawn with females (Bergstedt et al. 

2003; Twohey et al. 2003a, 2003b). Trial testing of the potential to use mating 

pheromones and alarm cues to guide lamprey towards barriers and traps is also underway 

(Johnson et al. 2005; Siefkes 2017). However, chemical control using the selective 

lampricide 3-trifluoromethyl-4-nitrophenol (TFM) remains the primary means for sea 

lamprey control in the Great Lakes (Krueger and Marsden 2007; Li et al. 2007; 

McDonald and Kolar 2007). 

 

1.4 Discovery and Use of 3-trifluoromethyl-4-nitrophenol (TFM)  

The lampricide, 3-trifluoromethyl-4-nitrophenol (TFM; Chemical Abstracts 

Service Registry Number 88-30-2) is a yellow-orange, crystalline solid that has a 

solubility of approximately 5,000 mg L
-1

 and a pKa of 6.07 at 25 °C. It is an aromatic, 

fluoro-containing, m-substituted phenol (Figure 1.4) that is chemically and biologically 

very stable. Other physical and chemical properties and methods of chemical preparation 

are documented in Schnick (1972).  

In 1946, the United States Congress directed the Fish and Wildlife Service to 

develop measures for the control of sea lamprey in the Great Lakes (Van Oosten 1949). 

In 1953, studies at the Hammond Bay Biological Station (HBBS; Millersburg, Michigan) 

were conducted to identify a chemical that would be acutely toxic to larval sea lamprey, 

but non-toxic to other aquatic biota. Tests on more than 4, 300 compounds (see 
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Applegate et al. 1957) indicated that halogenated mononitrophenols were selectively 

toxic to larval sea lamprey (Applegate et al. 1958). Eventually, TFM was identified and 

sold to the Fish and Wildlife Service as Lamprecid 2770 by the Progressive Color and 

Chemical Company of New York (Moffett 1958). The first field testing of TFM was 

done on the Mosquito River, Michigan on May 14, 1958, and on the Silver River, 

Michigan on June 11, 1958 (Moffett 1958). The trials were successful, and marked the 

end of research efforts in the field. In Canada, experimental field work was completed on 

the Pancake River, Ontario, August 26 to 27, 1958, and on the West Davignon River, 

Ontario, November 5, 1958 (Fisheries Research Board of Canada 1958; Johnson 1959; 

Johnson and Tibbles 1962). 

Currently, the application of TFM to tributaries of the Great Lakes targets larval 

sea lampreys in the early spring to fall, when water temperatures range from 0.5 °C to 23 

°C (USGS 2013). However, the variability in the toxicity of TFM to larval sea lampreys 

is affected by the ratio of un-ionized to ionized TFM (Bills et al. 2003; Hlina et al. 2017; 

Hunn and Allen 1974).  When TFM is un-ionized at lower pH, it is lipid soluble and can 

easily cross epithelial membranes but at higher pH, it becomes less lipid-soluble and 

therefore harder to uptake (Hlina et al. 2017; Hunn and Allen 1974; McDonald and Kolar 

2007). Variability in TFM toxicity is also affected by factors such as temperature, 

conductivity and dissolved oxygen of the tributary water (Applegate et al. 1961; Johnson 

et al. 1999). Scholefield et al. (2008) suggested that seasonal variations in feeding 

activity, habitat, nutrition and lipid content could also affect sensitivity of larval sea 

lamprey to TFM.   
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The amount of TFM used in treatments is based on the 9 h minimum 

concentration of TFM that is lethal to 99.9 % of the larval lamprey, referred to as the 

LC99.9 or minimum lethal concentration (MLC). These determinations are often done 

using a TFM toxicity prediction chart, commonly referred to as the pH-alkalinity model 

(Johnson and Morse 1999; Bills et al. 2003), which accounts for the differences in TFM 

toxicity at higher pH compared to lower pH (Bills et al. 2003; Lech and Statham 1975; 

McDonald and Kolar 2007).   

Historical data from previous applications of TFM are also used to determine the 

application rate (Scholefield et al. 2008). Field applications of TFM use concentrations 

that are 1.2 to 1.5 times the MLC (McDonald and Kolar 2007) and treatments usually last 

10 to 12 h (Bills et al. 2003).  Sometimes multiple treatments are necessary as water flow 

dilutes the TFM concentration. Due to economic and operational constraints, only 200 of 

the approximately 433 tributaries containing larval sea lamprey are treated with TFM on 

a regular cycle (GLFC 2018).  

 

1.5 Toxicity of 3-trifluoromethyl-4-nitrophenol (TFM)  

TFM’s mechanism of toxicity is by uncoupling oxidative phosphorylation 

(Birceanu et al. 2011; Niblett and Ballantyne 1976). Oxidative phosphorylation leads to 

the formation of ATP in the mitochondria when a proton electrochemical gradient (proton 

motive force) is established between the mitochondrial matrix and the intermembrane 

space as electrons are passed along different protein complexes on the inner 

mitochondrial membrane.  Three of these protein complexes (complexes I, III, IV) pump 

protons from the mitochondrial matrix into the inter-mitochondrial space to establish the 
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proton motive force. The protons then flow down their electrochemical gradient through 

another protein complex, the ATP synthase, which harnesses the energy released by the 

H
+
 movement to phosphorylate ADP to ATP (Figure 1.4; See Voet et al. 2006, Wallace 

and Starkov 2000 for reviews).   

Acting as a protonophore, TFM leads to the dissipation of the proton 

electrochemical gradient, which interferes with mitochondrial ATP production because 

fewer protons pass through the ATP synthase, resulting in increased reliance on 

anaerobic glycolysis and increased mitochondrial oxygen consumption (Birceanu et al. 

2011; Niblett and Ballantyne 1976). In turn, there is increased reliance anaerobic 

pathways of ATP generation, including the increased deposphorylation of high energy 

phosphagens such as phosphocreatine, and on glycolysis which results in reduced 

glycogen and increased lactate in the brain, liver and muscle (Birceanu et al. 2011; 

Clifford et al. 2012). When ATP supply can no longer match demand, this likely starves 

the central nervous system and other physiological processes of ATP, eventually leading 

to death. It is not known, however, how variation in energy stores throughout the year 

affects the lamprey’s sensitivity to TFM.  

The toxicity of TFM depends on its rate of uptake, detoxification and elimination, 

which vary with environmental factors such as temperature (McDonald and Kolar 2007; 

Scholefield et al. 2008). TFM is most likely taken up as un-ionized TFM down diffusion 

gradients across the gills. This suggests that factors such as the rate of uptake could be 

dependent on metabolic activity, which increases with temperature (Holmes and Lin 

1994; Lewis 1980). Thus, at higher temperatures, rates of TFM uptake could be higher, 

leading to greater toxicity.  
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However, toxicity will also depend on how efficiently TFM is detoxified and 

eliminated by the fish. In non-target fishes such as rainbow trout (Oncorhynchus mykiss), 

TFM is conjugated to TFM-glucuronide (Kane et al. 1994; Lech 1974; Lech and Statham 

1975), which detoxifies the lampricide and makes it more water soluble and easier to 

excrete via the bile or urine (Clarke et al. 1989). In sea lamprey, the activity of the 

enzyme that metabolizes TFM to TFM-glucuronide, UDP-glucuronosyltransferase (UDP-

GT), is much lower compared to non-target fishes (Kane et al.1994; Lech and Statham 

1975), which makes them much more susceptible to TFM toxicity than non-target fishes. 

This was thought to be the sole basis for the lampricide’s selective effects on lamprey 

(Lech and Statham 1975; Kane et al. 1994; Statham 1974), but more recent work 

indicates that other pathways of TFM detoxification are also present in lamprey and non-

target fish. Recent work by Bussy et al. (2018a,b) demonstrated that conversion of TFM 

to TFM-sulfate, via sulfotransferase enzymes was another route of TFM detoxification, 

and that other pathways involved in the reduction and oxidation of TFM might also play 

a role in TFM detoxification.   

 

1.6 Seasonal Variation in the Toxicity of 3-trifluoromethyl-4-nitrophenol (TFM)  

Applegate et al. (1961) first speculated that the sensitivity of TFM varied 

seasonally and described TFM tolerance increasing during spring, and even more so in 

late summer.  More recently, Scholefield et al. (2008) collected sea lamprey from a 

number of different streams in the spring and later summer, and ran rigorous acute 

toxicity tests which demonstrated that tolerance was up to 2-fold greater during the 

summer. In other words, the amount of TFM required to treat streams in the summer was 



12 
 

greater. This could have important implications for sea lamprey control because 

underestimates of TFM requirements during a treatment could lead to “residual” sea 

lamprey that survive treatment, complete metamorphosis, and migrate down to the Great 

Lakes as parasitic lamprey. Moreover, use of greater amounts of TFM could make non-

target fish species more vulnerable to non-target adverse effects or mortality. However, 

the reasons for seasonal variations in TFM sensitivity have not yet been explained, which 

is the goal of this thesis.  

 

1.7 Research Objectives  

The overarching goal of this M.Sc. was to determine how season affected larval 

sea lamprey sensitivity to TFM, and to determine what physiological and abiotic factors 

best explained observed differences in TFM toxicity. 

Objective 1: Effects of Season on Sea Lamprey Sensitivity to TFM 

My first objective was to determine if sea lamprey collected from the same stream 

during different seasons exhibit differences in their sensitivity to TFM. Based on 

previous research (Scholefield et al. 2008; Robinson et al. unpublished data), I 

hypothesized that larval sea lamprey collected from the same stream will tolerate 

exposure to higher concentrations of TFM in the late summer than in mid-spring or early 

summer. To address this objective, larval sea lampreys were collected from the Au Sable 

River, Michigan, USA. in the spring, summer and fall and returned to the lab at the 

HBBS. The animals were then subjected to acute toxicity tests to determine if the 12 h 

LC50 and the 12 h LC99.9 (MLC) of TFM varied between the spring, summer and fall.  

Objective 2: Effects of Temperature on Sea Lamprey Sensitivity to TFM 
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My second objective was to determine if seasonal differences in TFM sensitivity 

were due to temperature effects, independent of seasonal changes in the biology of the 

animal. Accordingly, the effects of temperature on larval lamprey sensitivity were 

measured in animals collected from the same stream (Au Sable River) at the same time of 

year, but acclimated and exposed to TFM at different temperatures in the lab. I 

hypothesized that temperature will affect larval sea lamprey sensitivity to TFM more than 

season because it would directly influence metabolic rate, and therefore affect rates of 

TFM uptake, detoxification and elimination. For instance, at higher temperatures, 

increased metabolic rate could result in increased oxygen consumption by larval sea 

lamprey, which would create a positive feedback loop that would accelerate TFM uptake 

by the gills due to increased ventilation rates, and increase toxicity.  Alternatively, greater 

metabolic rate could also increase rates of TFM detoxification, counter-balancing 

increased TFM uptake, resulting in greater tolerance to TFM.   

Objective 3: Influence of Fuel Stores, Body Composition and Condition on the TFM 

Sensitivity of Larval Sea Lamprey  

My final objective was to quantify how seasonal variation in internal fuel stores, 

body composition and condition affected larval sea lamprey sensitivity to TFM. Due to 

increased nutrient availability, I predicted that energy reserves would be highest in the 

summer, leading to greater TFM tolerance. In the spring, however, I predicted that these 

reserves would be much lower due to over-wintering and decreased nutrient supply and 

feeding. This objective was addressed by measuring internal energy stores (glycogen, 

lipid, protein), dry ash and water content, and body condition (condition factor, 

hepatosomatic index) in lamprey collected at different times of the year (spring, summer, 
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fall) or subjected to the different temperature acclimation regimens described under 

objectives 1 and 2.   
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FIGURES 

 
 

Figure 1.1 The Great Lakes waterways 

 

The interconnectivity of the Great Lakes waterways made possible the spread of the sea lamprey (Morman et al. 1980). 

Source: US Army Corps of Engineers 2013. 
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Figure 1.2 Life History of the Sea 

Lamprey  

 

During the larval phase, sea lamprey 

typically spend three to seven years 

burrowed in the sediment of tributaries to 

the Great Lakes, and accumulate large 

amounts of lipid and glycogen reserves in 

preparation for metamorphosis (Youson 

1980, 2003). Metamorphosis takes place 

over 3-4 months in the summer and early fall. (B) In the fall, juvenile sea lamprey migrate downstream to the Great 

Lakes or the Atlantic Ocean, where they parasitize and prey on other fish (C). Following a 12-20-month parasitic 

phase, adult sea lamprey migrate upstream in the spring (Applegate 1950; Beamish and Potter 1975; Sorensen and 

Vrieze 2003); they are semelparous (Hardisty and Potter 1971) and hence die after spawning (GLFC 2013). Figure 

courtesy of Emily Martin (2014).  
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Figure 1.3 Hematophagous Feeding 

 

The sea lamprey (Petromyzon marinus) uses an oral disk to attach onto a host fish and feed on its bodily fluids 

(Beamish and Potter 1975). Host fish are parasitized for several weeks to several months, and each sea lamprey can 

eradicate up to 10-20 kg of fish during the adult parasitic phase (Bower 1998; Swink 2003). Source: Minnesota Sea 

Grant 2011. 
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Figure 1.4 Chemical Structure of 3-trifluoromethyl-4-nitrophenol 

 

Chemical structure of 3-trifluoromethyl-4-nitrophenol (TFM), a selective lampricide used to control invasive larval sea 

lamprey. TFM (Chemical Abstracts Service Registry Number 88-30-2) is a yellow-orange, crystalline solid that has a 

solubility of approximately 5,000 mg L
-1

 and a pKa of 6.07 at 25 °C. It is an aromatic, fluoro-containing, m-substituted 

phenol that is chemically and biologically very stable.  
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Figure 1.5 Schematic Diagram of the Electron Transport Chain (ETC) in the Mitochondria  

 

(A) Electron donors such as NADH and FADH2 pass through the ETC in a series of redox reactions; protons (H
+
) are 

pumped (green arrows) into the inner membrane space (dark orange), generating a proton gradient. The low 

permeability of the inner membrane normally prevents non-specific flow of protons into the mitochondrial matrix (light 

orange). As a result, protons pass along the electrochemical gradient via ATP synthases. The energy released by proton 

flow is used by the ATP synthases to phosphorylate ADP, generating ATP. This entire process is coupled since the 

formation of ATP is linked to the proton gradient and the flow of electrons via the ETC (Wallace and Starkov 2000; 

Voet et al. 2006). (B) The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) works by uncoupling oxidative 

phosphorylation; as a protonophore, TFM leads to the dissipation of the proton electrochemical gradient and interferes 

with mitochondrial energy production (Niblett and Ballantyne 1976, Birceanu et al. 2011; Clifford et al. 2013), 

resulting in increased reliance on anaerobic glycolysis and increased oxygen consumption.  
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Chapter 2: 

Contribution of physiological and abiotic factors to seasonal differences 

in the sensitivity of sea lamprey (Petromyzon marinus) to the lampricide 

3-trifluoromethyl-4-nitrophenol (TFM) 
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2.1 Introduction 

The piscicide, 3-trifluoromethyl-4-nitrophenol (TFM), has been used to control 

invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes since the 

early 1960s (Applegate et al. 1961; Hubert 2003; McDonald and Kolar 2007). Applied at 

regular intervals to nursery streams and rivers containing larval sea lamprey, TFM 

specifically targets the animals in their burrows, where they live as relatively sedentary, 

suspension feeders (Beamish and Potter 1975; Moore and Mallatt 1980; Sutton and 

Bowen 1994). Current treatment protocols are based on the minimal lethal concentration 

(MLC) of TFM, which is defined as the amount of TFM needed to kill 99.9 % of larval 

sea lamprey over 9 h (Bills et al. 2003). In practice, the concentrations used in treatments 

range from 1.2–1.5 times the MLC to ensure that treatment residuals (i.e., sea lamprey 

that survive TFM exposure) are minimal (McDonald and Kolar 2007). 

TFM exerts its mode of action by uncoupling mitochondrial oxidative 

phosphorylation, interfering with ATP production in both target and non-target fishes 

(Birceanu et al. 2011). Therefore, exposure to TFM induces a mismatch between energy 

supply and demand in the body, forcing the fish to rely on anaerobic pathways for 

survival. Energy reserves, such as glycogen and high energy phosphagens (e.g., 

phosphocreatine) become depleted, and once ATP supply cannot keep up with ATP 

demand, the animal dies (Wilkie et al. 2007, Birceanu et al. 2009, 2014, Clifford et al. 

2012). While the mechanism of TFM action is similar amongst different aquatic 

organisms (Viant et al. 2001, Wilkie et al. 2007, Birceanu et al. 2009, 2014; Clifford et 

al. 2012; Henry et al. 2015), the specificity of TFM is related to the reduced ability of 

larval sea lamprey to detoxify TFM using glucuronidation (Lech and Statham 1975; Kane 
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et al. 1994). In non-target fishes, this Phase II detoxification process converts TFM to 

TFM-glucuronide via conjugation, which is more water soluble and easier to excrete via 

the gastrointestinal or urinary tract (Dutton and Montgomery 1958; Dutton 1980; Clarke 

et al. 1991). 

Biotic factors such as life stage and body mass affect TFM sensitivity in sea 

lamprey. Henry et al. (2015) demonstrated that TFM sensitivity was highest in sexually 

mature adults compared to the earlier larval life stages. Tessier et al. (2018) demonstrated 

that rates of TFM uptake were inversely proportional to body size in lamprey, and that 

larger larval sea lamprey survived for longer periods when exposed to the MLC of TFM, 

suggesting that larger larvae are a potential source of treatment residuals.  Other factors, 

such as larval sea lamprey abundance, year class and size structure may also influence the 

effectiveness of TFM treatments (Hansen et al. 2003, Dunlop et al. 2017). 

Abiotic factors, such as differences in stream discharge and water chemistry, 

particularly pH and alkalinity, also influence TFM treatment success (Bills et al. 2003, 

Hansen et al. 2003). Because TFM toxicity decreases with increasing water pH and 

alkalinity, it is sometimes necessary to determine the MLC using stream-side toxicity 

tests and/or standard tables to calculate the MLC from on-site measurements of water pH 

and alkalinity (Bills et al. 2003). Previous treatment history and water discharge rates are 

also considered (P. Sullivan, Sea Lamprey Control Centre, Fisheries and Ocean’s 

Canada, pers. comm.). Scholefield et al. (2008) reported that the TFM sensitivity of 

larval sea lampreys was markedly higher in the spring compared to late summer, 

suggesting that season and/or temperature have a marked influence on TFM toxicity.  
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Given that TFM depletes energy reserves such as glycogen (see above), which are 

also known to fluctuate seasonally in the sea lamprey (O’Boyle and Beamish 1977), the 

goal of this study was to investigate how abiotic (season and temperature) factors 

interacted with physiological parameters (whole body and tissue energy reserves) to 

influence TFM sensitivity in sea lamprey. To this end, larval sea lamprey were collected 

at different times in 2013 (spring, early and late summer, fall) to determine if variations 

in energy stores explained the seasonal differences in the TFM sensitivity of sea lamprey.  

A second set of experiments, using lamprey collected from the same river but at the same 

time of year (July 2014), were conducted to determine if differences in water temperature 

contributed to seasonal differences in TFM sensitivity. The concentrations of TFM and 

TFM-glucuronide (Lech and Statham 1975; Kane et al. 1994; Hubert 2003) in the whole 

bodies of sea lamprey were also measured, to determine if seasonal differences in TFM 

detoxification capacity were an indicator of TFM sensitivity. In addition, body 

composition experiments were conducted on lamprey that were not exposed to TFM, to 

quantify changes in energy stores with season and temperature.  

  

2.2 Material and Methods  

2.2.1 Collection Site, Animals and Experimental Holding 

Larval sea lampreys were collected from the Au Sable River, Michigan using 

pulsed-DC backpack electrofishing (ABP-2 Electrofisher, Electrofishing Systems, LLC, 

Madison, WI, USA) by US Fish and Wildlife personnel in April, June, August and 

October 2013 and in June 2014. The river (Oscoda Charter Township, MI, USA) is a 

tributary of Lake Huron and runs approximately 200 km through the northern Lower 
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Peninsula of the state.  The Au Sable River is treated with TFM on a three-year cycle by 

US Fish and Wildlife Service personnel, and underwent TFM treatment following our 

last collection of sea lamprey in 2014. Following collection, the larval sea lampreys were 

transported to the Hammond Bay Biological Station (HBBS; Millersburg, MI) in coolers 

containing aerated river water. For the 2013 experiments, upon arrival at HBBS animals 

were transferred to 30 L glass aquaria (N = ~100 per aquaria), continuously receiving 

aerated Lake Huron water (pH 7.8 ± 0.4; hardness = 150 mg L
-1

 as CaCO3; dissolved 

oxygen ≥ 80 % saturation), with a 4-5 cm deep layer of sand lining the bottom of the 

aquaria to provide the larval sea lamprey with burrowing substrate. In 2014, animals were 

held in three 200 L plastic tanks (N = ~250 animals per tank), filled with sand as 

described above. Immersion chillers or heaters were used to set and maintain water 

temperature in the aquaria at the ambient temperature of the river at the time of collection 

(seasonal experiment) or at select experimental temperatures (temperature experiment; 

nominal temperatures = 6 °C, 12 °C, 21 °C). The larval sea lamprey were not fed during 

this period. All animal holding conditions and experimental methods were approved by 

the Wilfrid Laurier University Animal Care Committee and followed Canadian Council 

of Animal Care (CCAC) guidelines. 

  

2.2.2 Experimental Protocols 

2.2.2.1 Seasonal and Temperature Variation in the Toxicity of TFM to Larval Sea 

Lampreys 

The toxicity of TFM to larval sea lampreys was determined in two toxicity tests 

lasting 24 h. The animals were then acclimated to the water temperature at which they 
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were collected or experimental temperature(s) for 7 to 10 d before performing acute 

toxicity tests, which comprised a preliminary range-finder toxicity test to determine the 

approximate TFM concentration ranges to be used to determine the 12 h LC50 and 12 h 

LC99.9 of the fish in the subsequent larger scale tests. Each range-finder toxicity test 

comprised nine glass aquaria (18 L) filled with aerated Lake Huron water (16 L) to which 

the appropriate amounts of TFM were added (Appendix, Figure A1.1) The information 

from these ranger-finder tests was used to select the concentrations of TFM used in the 

acute toxicity tests. These tests were conducted in triplicate, at six TFM concentrations 

(N = 3, plus one control; 19 aquaria in total; see Table A1.1 for concentrations) using a 

similar set-up, but larger aquaria (30 L). The purpose of the control was to access the 

health of the animals without exposure to TFM and assure that mortality was <10 %, as 

outlined in the American Society and Testing Materials (ASTM; 2007) guidelines; 

survival during all experiments was 100 %.  

Twelve hours prior to the range-finder or acute toxicity tests, each aquarium was 

filled with Lake Huron water and placed in a Living Stream (108"L x 24"W x 22"D, 190 

gallons; Frigid Units Inc., Toledo, OH) partially filled with re-circulating water that was 

maintained at the appropriate temperature using either a chiller or immersion heater. At 

this time, the aquaria, containing no animals, were dosed with sufficient amounts of field 

grade TFM (35 % active ingredient dissolved in isopropanol, Clariant SFC GMBH 

WERK, Griesheim, Germany) to yield the appropriate target concentrations in each 

aquarium [0 (control), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 and 7.0 mg L
-1

]. The range of 

TFM concentrations selected for the acute toxicity tests were based on the information 

generated in the range-finder tests, and varied according to season and temperature. For 



27 
 

both the range-finder and the acute toxicity tests, water samples were collected 

immediately after adding TFM, and again the next morning prior to adding animals to the 

aquaria, and the amounts of TFM verified using spectrophotometric assays. The day of 

testing, the larvae were randomly distributed to each aquarium (N = 10 per aquaria in the 

range-finder tests; N = 15 for toxicity tests), and temperature, pH and dissolved oxygen 

were recorded immediately after the animals were added (0 h), and at 12 h and 24 h of 

exposure. The TFM concentration of water samples (5 mL) collected at 0 h, 12 h and 24 

h of the exposure was measured to confirm that TFM concentrations remained constant 

during the exposures. Survival was monitored hourly from 0-12 h, and at 24 h; when 

animals appeared dead (immobile, no visible ventilation), survival was tested by gently 

pinching the caudal fin with tweezers. Unresponsive (dead) animals were immediately 

removed from the tanks, at which time body length and mass were measured, and the 

whole bodies flash frozen in liquid N2 and stored at -80 °C. Surviving lamprey were 

euthanized with an overdose of tricaine methanesulfonate (1.5 g L
-1

 buffered with 3.0 g 

L
-1

 of NaHCO3; MS-222; Syndel Labs, Port Alberni, BC, Canada) before storage. The 

frozen carcasses from the seasonal range-finder toxicity tests were transported to Wilfrid 

Laurier University (WLU) on dry ice for subsequent measurement of whole-body TFM 

and TFM-glucuronide (preliminary range-finder toxicity test larval sea lamprey). The 

toxicity tests followed American Society and Testing Materials (ASTM; 2007) guidelines 

and the results were used to calculate lethal concentrations (12 h LC50 or 12 h LC99.9).  

2.2.2.2 Variation in the Proximate Body Composition of Sea Lamprey with Season or 

Temperature 
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To determine how energy stores and proximate body composition of larval sea 

lamprey changed with season or temperature acclimation and how this could impact TFM 

toxicity, tissues were collected from the appropriate groups of larvae not exposed to 

TFM. The night before sampling, lamprey (N = 48) were distributed into twelve 

containers (750 mL) receiving aerated lake water. Each container contained 2 g of diffuse 

aquarium cotton to provide burrowing substrate (e.g. Wilkie et al. 1999, 2001). 

Temperature, pH and dissolved oxygen were recorded immediately after the animals 

were added (0 h) and at 12 h. After 12 h, the lamprey were euthanized, one container at a 

time by cutting off water flow to the container, and adding a slurry of buffered tricaine 

methanesulfonate sufficient to anaesthetize the animals (0.5 g L
-1

 buffered with 1.0 g L
-1

 

of NaHCO3; MS-222), before transferring them one at a time to container containing a 

lethal dose (1.5 g L
-1

 buffered with 3.0 g L
-1

 of NaHCO3) of the anaesthetic. Lampreys 

were weighed, body length was measured, and then dissected for collection of brain and 

liver. The brain, liver and remaining carcass were snap frozen in liquid nitrogen and 

stored at -80 ºC until transported to WLU on dry ice. Upon arrival, tissues and carcasses 

were stored at -80 ºC until further analysis.  

2.3 Analytical Techniques 

2.3.1 Quantification of TFM Concentrations in Water 

Quantification of TFM concentration in water during range-finder and acute 

toxicity tests were completed using a spectrophotometric assay following Standard 

Operating Procedures of the Sea Lamprey Control Centre (IOP: 012.4, Fisheries and 

Oceans Canada, Sault Ste. Marie, ON). Briefly, the absorbance of freshly collected water 

samples (analyzed within 1 h of collection) and freshly prepared TFM standards (0, 0.5, 
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1.0, 2.0, 3.0, 5.0 and 7.0 g L
-1

) were read at a wavelength of 395 nm using a Genesys 6 

spectrophotometer (at HBBS; Thermo Electron Corporation, MA, USA), and the data 

used to calculate water TFM concentration.  

2.3.2 Solid Phase Extraction and High-Performance Liquid Chromatography   

Whole-body TFM concentrations were determined using high performance liquid 

chromatography (HPLC), following solid phase extraction (SPE; Appendix, Figure A1.2) 

as described by Hubert et al. (2001), in Birceanu et al. (2014). Larval sea lamprey from 

the seasonal range-finder toxicity tests were randomly selected from aquaria with 2.0 mg 

L-1 TFM. 

Briefly, quantification of TFM was done using a Varian HPLC set-up, comprised 

of a Varian ProStar 410 auto-sampler, ProStar 230 solvent delivery module and Prostar 

310 UV-VIS detector (Varian, Inc., Palo Alto, CA, USA), fitted with a reverse phase 

HPLC C-18 column (Kinetex 2.6 μm XB-C18 100A 100 x 3.00 mm; Phenomenex Inc., 

CA, USA). TFM standards (0.015, 0.050, 0.250, 0.500, 1.500, and 5.000 μg mL
-1

) were 

prepared from analytical grade TFM (Sigma Aldrich, St. Louis, MO, USA) in 20 mM 

sodium borate buffer (pH 8.5 ± 0.2). Standards and samples were injected (0.1 mL) via a 

mobile phase comprised of 83 % 20 mM sodium borate buffer (pH 8.5 ± 0.2) and 17 % 

acetonitrile, which yielded a TFM retention time of approximately 4.66 min. Percent 

recovery of TFM was determined to be 58 ± 9 %, which made it necessary to correct 

values for TFM and TFM-glucuronide by multiplying raw values by 1.42. 

Chromatographs were generated using Varian Star 5.51 software (Appendix, Figure 

A1.3; Varian, Inc., Palo Alto, CA, USA). Solutions were prepared with HPLC-grade 

chemicals and filtered reverse osmosis water (0.20 µm Millipore filters, Millipore, ME, 
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USA). Control samples were fortified with a 100 ng mL
-1

 TFM solution (Sigma Aldrich, 

St. Louis, MO, USA) to determine percent recovery. As above, corrected values for TFM 

and TFM-glucuronide were reported after raw values were multiplied by 1.42.  

2.3.3 Glucose and Glycogen Analysis 

Larval sea lamprey carcasses (N = 10 – 15 per experiment) were homogenized by 

mortar and pestle under liquid N2, and approximately 100 mg of the powder was 

transferred into a 1.5 mL microcentrifuge tube containing four volumes of 8 % PCA and 

1 mmol L-1 EDTA solution, vortexed, placed on ice for 10 minutes and centrifuged for 5 

minutes at 4 °C and 10,000 g. The supernatant (100 µL) was then neutralized with 15-30 

µL 3 M K2CO3, vortexed, and frozen in liquid nitrogen. To determine glycogen 

concentration, the supernatant was separated into two 100 µL aliquots; the first, for 

background glucose, was neutralized with approximately 5 μL of 3M K2CO3, and the 

second incubated with 20 μL of amyloglucosidase solution to hydrolyze the glycogen 

into glucose (glucosyl units) (pH 4.5 – 4.6) for 2 h in a water bath at 37 °C. After 

incubation, 70 % PCA was added to terminate the reaction, followed by neutralization of 

the sample with approximately 3M K2CO3. The free glucose in the background glucose 

aliquot and the amyloglucosidase treated aliquot was quantified using the LiquiColor® 

enzymatic method (Reference No. 1070-125, StanBio Laboratory, TX, USA) in 96-

microwell plates at 500 nm (NovaSpec II spectrophotometer; Pharmacia Biotech, 

Cambridge, England, UK) after 10 min incubation at 37 °C.  

2.3.4 Brain and liver analysis 

Brain and liver glycogen (N = 10 – 12 per experiment) were determined using the 

same method as in Section 2.3.3 (Glucose and Glycogen Analysis). For livers, a 20 μL 
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aliquot was taken during liver protein analysis as outlined in Section 2.3.3 (Protein), and 

1 part (20 μL) 16 % PCA was added for a final concentration of 8 % PCA in the 

microcentrifuge tube; for brains, 10 parts PCA was added.   

2.3.5 Lipid analysis 

Lipid content in the carcass was determined gravimetrically (N = 8 – 11 per 

experiment), using the chloroform:methanol extraction method (Lauff and Wood, 1996). 

Briefly, after grinding the carcasses to a fine powder under liquid N2, approximately 100 

mg of tissue was added to 10 mL of chloroform:methanol (2:1) in a 20 mL glass 

scintillation vial and left to incubate for 12 h at 4 °C. After incubation, 2.6 mL of 0.9 % 

NaCl solution was added and the samples were again left to incubate for 12 h at 4 °C. 

Next, a 5-mL syringe fitted with a 25 G needle was used to collect the 4-mL chloroform 

phase into a pre-weighed glass culture tube and chloroform was evaporated to dryness 

under a stream of nitrogen gas. The culture tubes were then transferred to a desiccator for 

1 h to ensure that any residual chloroform had evaporated and were then re-weighed to 

determine the mass of lipid in the tube. Lipid was calculated as outlined in Section 2.4 

(Calculation and Statistics).    

2.3.6 Protein analysis 

Larval sea lamprey carcasses (N = 8 – 11 per experiment) were homogenized as 

described above, and four parts 50 mM tris(hydroxymethyl)aminomethane buffer (pH 

7.4) were added to a 1.5 mL microcentrifuge tube. The slurry was further broken down 

with a hand-held pestle (PowerGen model 125 Homogenizer, Fisher Scientific, 

Mississauga, ON), vortexed and put on ice. The samples were then diluted 50 times for 

protein analysis, which was quantified spectrophotometrically using the bicinchoninic 
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acid (BCA) assay (Smith et al. 1985), with bovine serum albumin for standards.  Samples 

were incubated at 37 ºC for 30 minutes and the absorbance was determined at 562 nm in 

a 96-well plate, using a NovaSpec II spectrophotometer (Pharmacia Biotech, Cambridge, 

England, UK). 

Livers (N = 11 – 12 per experiment) were analysed using the same method except 

that they were homogenized in five parts TRIS (hydroxymethyl) aminomethane buffer 

(50 mM, pH 7.4) containing protease inhibitor (1 mg, Sigma). Sample preparation and 

analysis were done as previously described. 

2.3.7 Water content and dry ash analysis 

Percent water content and dry ash in larval sea lamprey carcasses (N = 9 – 10 per 

experiment) were determined gravimetrically using standard methods. First, percent 

tissue water was determined in the carcasses (whole body minus brain and liver) of 

lamprey not exposed to TFM by grinding the carcass to a fine powder under liquid N2. 

Approximately 50 mg of ground carcass was then placed in pre-weighed crucibles and 

dried to constant mass in a laboratory oven (Barnstead Thermolyne, 48000 furnace) at 60 

°C, over 48 h. The amount of dry ash was determined by combusting the dried tissue at 

750 °C for 4 h.  Water content and dry ash were calculated as outlined in Section 2.4 

(Calculations and Statistics). 

 

2.4 Calculations and Statistics 

2.4.1 Glucose and glycogen  

Glycogen was determined spectrophotometrically and calculated as follows:  

Glycogen (µmol g
-1

 ww) = glycogen (µmol g
-1

 ww) – background glucose (µmol g
-1

 ww)                                          
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                                                                                                                                           (1) 

Results for glucose are presented in µmol g
-1

 ww (wet weight) and results for glycogen 

are presented in µmol glucosyl units g
-1

 ww (wet weight). Modifications to the 

calculations were made as necessary for calculation of brain and liver glycogen.  

2.4.2 Lipid 

Lipid was determined gravimetrically; glass culture tubes were weighed before assay 

(empty) and after assay, with remaining lipid (g). Lipid was calculated as follows: 

Lipid in aliquot (g) = [empty culture tube (g) + lipid (g)] – empty culture tube (g)         (2) 

Lipid in sample (g) = [lipid in aliquot (g)] x [organic phase volume (mL)] / [aliquot 

volume mL)]                                                                                                                      (3)                                                                                                          

Where organic phase volume (mL) is the volume of the chloroform phase which 

separates from the methanol (approximately 7 mL) and the aliquot volume is the volume 

of chloroform phase transferred into the pre-weighed glass culture tube and evaporated 

(approximately 4 mL).  

Lipid (mg lipid mg
-1

 ww) = lipid in sample (mg) / wet tissue (mg)                                 (4) 

Where tissue mass is the mass of the ground tissue used for the analysis (approximately 

100 mg). Results for lipid are presented in mg lipid mg ww
-1

.  

2.4.3. Protein  

Protein was determined spectrophometrically and calculated as follows:  

[Protein] = [protein]sample (mg mL
-1

) x dilution volume (mL) x initial DF / wet tissue (g)                                                                                                                                     

                                                                                                                                           (5)                                                                                                            
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Where [Protein] is expressed in mg protein g
-1

 ww, [protein]sample is the protein 

concentration in the analyte calculated from the standard curve, dilution volume is the 

total combined volume of homogenate and distilled water (approximately 2.5 mL) and 

initial DF (5) is a dilution factor calculated as follows:  

Initial DF = tissue mass (mg) + TRIS-HCl (µL) / tissue mass (mg)                                 (6) 

Where wet tissue mass is the mass of ground sample in grams. Results for protein are 

presented in mg protein mg ww
-1

. Modifications to the calculations were made as 

necessary for calculation of liver protein. 

2.4.4 Water content and dry ash 

Percent tissue water was calculated as follows: 

% tissue water = [wet tissue (mg) – dry tissue (mg)] / wet tissue (mg) x 100 %              (7)  

Percent dry ash was equivalent to the amount of matter remaining in the crucible after 

combustion in the muffle furnace divided by the wet tissue mass according to the 

following equation: 

% dry ash = [dry ash (mg) / wet tissue (mg)] x 100 %                                                     (8) 

2.4.5 Hepatosomatic index (HSI) and condition factor (CF)    

The HSI was based on the wet liver mass divided by body mass according to the 

following formula: 

HSI = liver mass (mg) / body mass (mg) x 100                                                                (9) 

Whereas, CF was calculated according to Holmes et al. (1994) using the equation below: 
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CF = ([mass (g)] / length (mm)]
3
) x 10

6                                                                                                               
(10)

                                                                                                                                    
 

 

Probit analysis, linear regression (MLE) and maximum likelihood estimates were 

used to calculate lethal concentrations (LCs) using Comprehensive Environmental 

Toxicity Information System software (CETIS, Tidepool Scientific Software, 

McKinleyville, CA, USA, v1.8.5). Values for the 12 h LC50 and 12 h LC99.9 between 

seasons or temperature were considered significantly different if the 95 % confidence 

intervals (CI) did not overlap (Wheeler et al. 2006).  

Differences in larval lamprey length, mass, proximate body composition (glucose 

and glycogen, lipid, protein, water and dry ash), brain and liver glycogen, liver protein 

and hepatosomatic index (HSI) were analysed using analysis of variance (ANOVA), 

Kruskall-Wallis test, Welch’s ANOVA or Dunns Test, as appropriate, depending on 

assumptions of normality and homogeneity of variance. To determine where the 

significant differences lie, post hoc Tukey’s HSD, Multiple comparison test after 

Kruskal-Wallis, Dunn's Test of Multiple Comparisons Using Rank Sums or Games 

Howel test were used, as appropriate. Statistical analyses were conducted using R 

(version 3.1.3), R Studio (version 3.2.3) and figures were produced using Excel. 

Statistical significance was assessed at α = 0.05. 

 

2.5 Results  

2.5.1 Effects of Season and Temperature on the Acute Toxicity of TFM  

There were significant differences between the 12 h LC50 among acute toxicity 

tests run at 6 °C in April, 20 °C in June, 23 °C in August, and 12 °C in October. The 

sensitivity of sea lamprey to TFM was greatest in colder (5.6 °C) water, during the spring 
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(April), when the 12 h LC50 of TFM was 1.18 mg L
-1

 (95 % CI = 1.15 – 1.23; pH 7.68 ± 

0.02). However, TFM tolerance increased markedly during the summer with the LC50 

increasing more than two-fold by June (20.6 °C), to a value of 2.55 mg L
-1

 (95 % CI = 

2.41 – 2.69; pH 7.96 ± 0.04), then peaked in August, when the 12 h LC50 was 3.15 mg L
-1

 

(95 % CI = 3.04 – 3.26; pH 8.30 ± 0.01) and the water was warmest (23.5 °C). This was 

followed by an approximately 50 % reduction in the 12 h LC50, to 1.64 mg L
-1

 (95 % CI 

= 1.59 – 1.69; pH 8.26 ± 0.01) in October, at which time the water temperature was 12 °C 

(Figure 2.1). Similar, but more variable trends were observed when the acute toxicity data 

were expressed as the minimum lethal concentration (MLC) of TFM (12 h LC99.9). The 

MLC increased more than two-fold from 1.65 mg L
-1

 (95 % CI = 1.48 – 2.11; pH 7.68) in 

April to 3.98 mg L
-1

 (95 % CI = 3.44 – 5.95; pH 7.96 ± 0.04) in June, peaked in August 

to 4.91 mg L
-1

 (95 % CI = 4.49 – 5.71; pH 8.30 ± 0.01) before falling to 2.32 mg L-1 (95 

% CI = 2.16 – 2.60 pH 8.26 ± 0.01) in October (Figure 2.1A).  

Temperature markedly influenced TFM sensitivity, resulting in significant 

differences between the 12 h LC50 amongst fish subjected to acute tests at 6, 12 or 21 °C. 

TFM tolerance was lowest at 6 °C, when the 12 h LC50 was 1.41 mg L
-1

 (95 % CI = 1.37 

– 1.46; pH 7.85 ± 0.03), increased to 1.96 mg L
-1

 (95 % CI = 1.90 – 2.01; pH 8.05 ± 0.03) 

at 12 °C and then to 3.27 mg L
-1

 (95 % CI = 3.04 – 3.26; pH 8.24 ± 0.01) at 21 °C 

(Figure 2.1B).  Similarly, there were significant differences in the MLC, such that the 

LC99.9 at 6 °C was significantly lower than at 21 °C. Overall, the 12 h LC99.9 increased 

with temperature from 2.07 mg L
-1

 (95 % CI = 1.90 – 2.37; pH 7.85 ± 0.03) at 6 °C, to 

2.85 mg L
-1

 (95 % CI = 2.65 – 3.20; pH 8.05 ± 0.03) at 12 °C, and then to 5.02 mg L
-1

 

(95 % CI = 4.50 – 6.41; pH 8.24 ± 0.01) at 21 °C (Figure 2.1B).  
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2.5.2 Effects of Season and Temperature on TFM Accumulation and Detoxification 

In the larval sea lamprey sampled at the 12 h LC50 from the range-finder toxicity 

tests, the whole-body TFM burden was not significantly different in larval sea lamprey 

that suffered mortality in May, June, August and October, with values ranging from 28.4 

to 144.4 nmol TFM g
-1

 ww. TFM-glucuronide concentration ranged from 0.3 to 6.1 nmol 

TFM-glucuronide g
-1

 ww (Table 2.1). 

Range-finder results and acute toxicity test, TFM measured aquaria 

concentrations and water chemistry data are provided in Supplementary Data, Section 

2.1.A. (Preliminary Range-Finder Toxicity Test Results and Acute Toxicity Test Water 

Chemistry) and Supplementary Data Tables 1.3A – 1.9A. 

2.5.3 Effects of Season and Temperature on the Proximate Body Composition of Sea 

Lamprey   

2.5.3.1 Glucose and Glycogen  

Season had no effect on the concentrations of carcass (whole body minus brain 

and liver) glucose in larval sea lamprey, which averaged 7.2 ± 0.2 µmol g
-1

 ww, 7.3 ± 0.1 

µmol g
-1

 ww, 7.2 ± 0.1 µmol g
-1

 ww and 7.3 ± 0.1 µmolg
-1

 ww in April, June, August and 

October, respectively (Kruskal-Wallis chi-squared = 4.85, DF = 3, P = 0.18). There were 

however, differences in glycogen (Kruskal-Wallis chi-squared = 7.04, DF = 3, P = 1.80 x 

10
-7

), which averaged 24.2 ± 5.4 µmol g
-1

 ww in April, 21.1 ± 4.4 µmol g
-1

 ww and 19.5 

± 3.5 µmol g
-1 

in June and August, before significantly decreasing to 11.31 ± 2.8 µmol g
-1

 

ww in October (Figure 2.2A). Mean brain glycogen exhibited similar, but more 

pronounced trends (Kruskal-Wallis chi-squared = 13.017, DF = 3, P = 1 x 10
-12

), 

averaging 131.2 ± 20.0 µmol g
-1

 ww and 128.0 ± 8.8 µmol g
-1

 ww in April and June, 

respectively. By August, however, brain glycogen had significantly decreased to 83.3 ± 
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7.4 µmol g
-1 

ww, where it remained through October (85.4 ± 9.5 µmol g
-1 

ww; Figure 

2.2B). The opposite trend was observed in the liver, which was lowest in April, at 6.4 ± 

1.2 µmol g
-1

 ww, and then doubled in June to 12.8 ± 1.3 µmol g
-1

 ww, followed by a 

slight drop to 9.6 ± 0.9 µmol g
-1

 ww in August, before peaking at 15.5 ± 1.5 µmol g
-1

 ww 

in October (Figure 2.2C; Kruskal-Wallis chi-squared = 19.59, DF = 3, P = 1.00 x 10
-12

).  

Temperature acclimation slightly affected mean carcass glucose concentration, 

which averaged 8.8 ± 1.3 µmol g
-1

 ww, 7.4 ± 0.3 µmol g
-1

 ww, and 6.9 ± 0.1 µmol g
-1

 

ww in larval lamprey at 6, 12 and 21 °C, respectively (Kruskal-Wallis chi-squared = 

14.56, DF = 2, P = 1.00 x 10
-3

).  Mean carcass glycogen was more variable (Kruskal-

Wallis chi-squared = 4.03, DF = 2, P = 1.30
-2

), however, averaging 9.0 ± 1.5 and 10.4 ± 

2.1 µmol g
-1

 ww at 6 °C and 12 °C, but it was significantly lower at 21 °C, where it 

averaged 6.0 ± 1.2 µmol g
-1

 ww (Figure 2.3A). Mean brain glycogen was inversely 

proportional to acclimation temperature, averaging 173.9 ± 24.1 µmol g
-1

 ww at 6 °C, 

significantly decreasing to 147.6 ± 24.1 µmol g
-1

 ww at 12 °C and 58.0 ± 5.0 µmol g
-1

 

ww at 21 °C (Figure 2.3B; Kruskal-Wallis chi-squared = 20.08, DF = 2, P = 1.00 x 10
-12

). 

There were no significant effects of temperature on mean liver glycogen, which averaged 

11.2 ± 1.0 µmol g
-1

 ww, 11.1 ± 0.8 µmol g
-1

 ww and 11.6 ± 1.0 µmol g
-1

 ww at 6, 12 and 

21 °C, respectively (Figure 2.3C; Kruskal-Wallis chi-squared = 1.76 x 10
-2

, DF = 2, P = 

0.99).   

2.5.3.2 Whole-body lipid  

Season had a pronounced effect on mean carcass lipid in larval sea lamprey 

(ANOVA, F = 6.68, DF = 3, P = 1.06 x 10
-3

), which decreased in a stepwise fashion 

between April, when carcass lipid averaged 160 ± 29 mg g
-1 

ww, decreased to 115 ± 16 
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and 114 ± 18 mg g
-1 

ww in the summer (June and August), followed by a further decline 

in October to 47 ± 11 mg g
-1 

ww (Figure 2.4A). However, acclimation temperature had 

no significant effect on mean carcass lipid which averaged 109 ± 9, 102 ± 19, and 99 ± 

17 mg g
-1

 ww, at 6, 12, and 21 °C, respectively (Figure 2.4B; ANOVA, F = 0.38, DF = 2, 

P = 0.69). 

2.5.3.3 Whole-body and liver protein  

Mean carcass protein concentrations did not change with season in larval sea 

lampreys (ANOVA, F = 0.49, DF = 3, P = 0.69), averaging 85.7 ± 7.7 mg mg
-1 

ww in 

April, before dropping to 63.5 ± 4.9 mg mg
-1 

ww and 51.8 ± 5.5 mg mg
-1

 ww in the 

summer, and then increasing to 72.4 ± 4.5 mg mg
-1 

ww in the fall (Figure 2.5A). 

Temperature acclimation had no significant effect on mean carcass protein, which 

averaged 75.5 ± 12.4, 59.7 ± 3.4 and 60.9 ± 12.6 mg g
-1

 ww at 6, 12, and 21 °C, 

respectively (Figure 2.5B; Welch’s ANOVA, F = 0.71, num DF = 2, denom DF = 10.54, 

P = 0.52). 

Liver protein concentrations varied with season (ANOVA F = 7.356, DF = 3, P = 

4.38 x 10
-4

), but not with temperature (Welch’s ANOVA, F = 0.19743, num DF = 2.00, 

denom DF = 18.47, P = 0.82). Mean liver protein averaged 127.0 ± 7.2 mg mg
-1 

ww in 

April and was reduced by approximately 25% to 95.5 ± 4.9 mg mg
-1 

ww and 88.6 ± 8.1 

mg mg
-1 

ww in the summer.  However, liver protein rebounded to a concentration of 

113.3 ± 5.1 mg mg
-1 

ww in the fall (Figure 2.6A).  Mean liver protein concentrations in 

the temperature experiments averaged 106.3 ± 5.0, 102.4 ± 3.4, and 108.4 ± 8.7 mg mg
-1 

ww at 6, 12 and 21 °C, respectively (Figure 2.6B).  

2.5.3.4 Water content and dry ash  
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The mean water content of larval sea lamprey, based on measurements of the 

whole-body in April was 77.7 ± 1.8 %, but dropped significantly in the summer to 72.7 ± 

1.3 % and 74.4 ± 1.1 % in the summer (June, August, respectively), before significantly 

increasing to 81.4 ± 0.7 % in October (Figure 2.7A; Kruskal-Wallis chi-squared = 18.00, 

DF = 3, P = 1.00 x 10
-3

). Acclimation to different temperatures had no significant effect 

on the carcass water content of larval lamprey, which averaged 77.0 ± 1.0 %, 77.9 ± 0.5 

%, and 77.6 ± 0.9 % at 6, 12 and 21 °C, respectively (Figure 2.7B; Kruskal-Wallis chi-

squared = 0.30, DF = 2, P = 0.86).  

Whole-body dry ash also varied seasonally, averaging 0.85 ± 0.02 % in April, and 

then slightly decreasing to 0.79 ± 0.02 % and 0.80 ± 0.02 % in June and August.  By 

October, mean dry ash was lowest, at 0.69 ± 0.04 % (Figure 2.7A; Kruskal-Wallis chi-

squared = 14.44, DF = 3, P = 1.00 x 10
-3

). Temperature acclimation resulted in greater 

variation in mean dry ash of larval sea lamprey. However, there were no significant 

differences among the animals acclimated to 6, 12 and 21 °C, which averaged 0.84 ± 0.01 

%, 0.79 ± 0.02 % and 0.96 ± 0.09 %, respectively (Figure 2.7B; Kruskal-Wallis chi-

squared = 5.48, DF = 2, P = 0.06). 

2.5.3.5 Hepatosomatic Index Analysis  

Mean hepatosomatic index (HSI) changed with season in larval sea lampreys, 

averaging 1.21 ± 0.06 in April, before dropping to 1.00 ± 0.05 and 0.79 ± 0.07 in the 

summer (June and August) and then again increasing to 1.09 ± 0.05 (ANOVA, F = 11.18 

DF = 3, P = 1.4 x 10
-5

). Temperature also had a pronounced effect on mean HSI in larval 

sea lamprey, which averaged 1.34 ± 0.04 at 6 °C, decreased significantly to 1.09 ± 0.07, 
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and then decreased again to 0.99 ± 0.04 (Table 2.2; Welch’s ANOVA, F = 9.64, DF = 2, 

P = 1.00 x 10
-3

). 

Larval lamprey length and mass, brain and liver mass and water chemistry data 

are provided in Appendix A, Supplementary Data, Tables A2.10 – A2.13).  

 

2.6 Discussion  

2.6.1 Effects of Season and Temperature on the Acute Toxicity of TFM  

It has long been known that the sensitivity of larval sea lamprey varies with 

season (Applegate et al. 1961; Scholefield et al. 2008), but the underlying mechanisms 

were poorly understood. The present study demonstrates that the greater tolerance of sea 

lamprey to TFM in the summer is due primarily to corresponding increases in water 

temperature. Applegate et al. (1961) first reported that the ‘biological activity of TFM 

varies seasonally’, with the maximum toxic effects of TFM occurring during ‘the late 

fall, winter and early spring, and then declining through later spring and summer, with 

greatest TFM tolerance during July and August’. Using sea lamprey collected from 

streams in Michigan, Scholefield et al. (2008) demonstrated that TFM toxicity was 

greatest in the spring (May to June) compared to late summer (July to August), when the 

9 h LC50 and LC99.9 were 2- to 3-fold greater in a given stream. They also reported that 

spring 9 h LC99.9 test values were similar to those predicted by pH–alkalinity charts 

(104% to 117% of the chart values), which are used to calculate TFM application 

amounts based on water pH and alkalinity measurements (Bills et al. 2003).  In contrast, 

the corresponding 9-h LC99.9 test values measured in the summer were 32-170 % higher 

than those predicted by the charts. They also noted that the discrepancies from the charts 
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in the summer were unrelated to differences in alkalinity or pH, each of which affect the 

bioavailability of un-ionized TFM, which is the main determinant of TFM accumulation 

in lamprey (Hunn and Allen 1974; Hlina et al. 2017).   

The findings of the present study strongly suggested that the 2.5-3.0-fold greater 

tolerance of sea lamprey to TFM in the summer was due to warmer water temperatures, 

rather than differences in energy reserves. This conclusion is supported by the strong 

trend between temperature and the acute toxicity of TFM (12 h LC50, 12 h LC99.9). At 

first glance, this observation seems counter-intuitive because rates of TFM uptake and 

accumulation increase in direct proportion to water temperature (Hlina et al. 2017). 

Sediment or dissolved organic carbon absorption and adsorption of TFM are not factors 

in the current study, since there was no sediment in the aquaria. However, it should be 

noted that under such conditions the detoxification of TFM would be more efficient at 

warmer temperatures because like other metabolic processes, the reactions involved in 

TFM detoxification would proceed more quickly (see Hochachka and Somero 2002 for 

review). Because the lamprey were collected from the same sections of the Au Sable 

River, differences in local water chemistry and nutrient supply can also be ruled out as 

factors affecting TFM sensitivity. Moreover, all animals were acclimated to the same 

Lake Huron water prior to experiments at the HBBS. 

In non-target fishes such as rainbow trout, the detoxification of TFM relies on 

reactions corresponding to Phase II metabolism that include  glucuronidation (Lech and 

Statham 1975; Kane et al. 1994), sulfation (Bussy et al. 2018a), and possibly phase I 

processes including the reductive amination of TFM  (Bussy et al. 2018a,b). The 

lamprey’s lower capacity to bio-transform TFM using glucuronidation explains its greater 
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sensitivity to TFM (Lech and Statham 1975; Kane et al. 1994; Bussy et al. 2018b). While 

their overall capacity to detoxify TFM is lower than most non-target fishes, these studies 

demonstrate that lampreys do exhibit limited capacity to detoxify TFM (Kane et al. 1994; 

Bussy et al. 2018a,b). Moreover, Bussy et al. (2018b) recently demonstrated that other 

processes including sulfation, reductive and oxidative metabolism may be quantitatively 

important in TFM metabolism (Figure 2.11). Therefore, I propose that at higher 

acclimation temperatures, the combined higher activities of these enzymes may be 

sufficient to increase the sea lamprey’s capacity to detoxify TFM by forming greater 

amounts of TFM-glucuronide, sulfated-TFM, and reduced amino TFM, which leads to 

the generation of glutathione and acetylated metabolites (Figure 2.8). While the 

quantitative importance of these newly identified metabolites has not yet been defined, 

these products are generally associated with detoxification. In the sea lamprey, the 

reduced amino metabolite of TFM is also more abundant than the sulfated and 

glucuronide conjugates, suggesting that it may play a more important role in TFM 

detoxification. Future studies, addressing the role of these metabolites in TFM 

detoxification, or toxicity, and how their production is influenced by increased 

temperature would be very informative.  

TFM is a phenolic compound. It is notable that the toxicity of two other phenols 

known to uncouple oxidative phosphorylation, 4-nitrophenol and 2,4-nitrophenol, 

decreased in rainbow trout (Oncorhynchus mykiss) with increases in water temperature 

(Howe et al. 1994).  Howe et al. (1994) also reasoned that an increased capacity to 

detoxify these compounds in warmer waters explained the greater survival of rainbow 

trout.  Phenol toxicity to silver perch (Bidyanus bidyanus), rainbow trout (Oncorhynchus 
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mykiss), rainbowfish (Melanotaenia duboulayi) and western carp gudgeon (Hypseleotris 

klunzingerii) also decreased with increases in temperature that were well within the 

thermal tolerance ranges of these fishes (Patra et al. 2015). However, toxicity increased 

as water temperatures approached the thermal tolerance thresholds of each fish, when the 

combined effects of toxicant exposure and thermal stress likely made the fish more 

vulnerable. It should be noted that the maximum temperatures to which the sea lamprey 

in the present study were exposed, 21 °C, was well below their upper critical thermal 

tolerance limits of 29.5 – 31°C (Potter and Beamish 1975). 

2.6.2 Effects of Season and Temperature on Proximate Body Composition  

Exposure to TFM leads to a reduction of glycogen reserves in the brain and liver 

of sea lamprey and non-target fishes (Wilkie et al. 2007; Birceanu et al. 2009, 2014; 

Clifford et al. 2012; Henry et al. 2015) due to lower ATP production rates arising from 

TFM interference with mitochondrial oxidative phosphorylation (Birceanu et al. 2011). 

As a result, the animals rely on anaerobic energy reserves such as glycogen and 

phosphocreatine to make up for the shortfall in ATP supply, which likely culminates in 

death when these reserves are unable to meet ATP demands (Birceanu et al. 2009; 

Clifford et al. 2012). If glycogen reserves were lower in the spring due to decreased 

nutrient supply during the winter months, larval lamprey would be more vulnerable to 

TFM. This hypothesis was not supported, however. In fact, glycogen reserves were 

highest in the brain and carcass in the spring-early summer, before dropping markedly 

through the late summer and fall, suggesting that seasonal differences in these energy 

stores had little impact on TFM tolerance. 
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 Unlike other vertebrates, the brain and meningeal tissue of the sea lamprey has 

very high glycogen reserves (e.g. Rovainen et al. 1971, Murat et al. 1979, Foster et al. 

1993, Clifford et al. 2012). Indeed, glycogen levels in lamprey brain and meningeal 

tissue are at least four times those found in other vertebrates (Plisetskaya 1968, Rovainen 

et al. 1969, 1971), which may explain the relative unimportance of the liver as a site of 

glycogen storage in larval sea lamprey. These brain glycogen stores provide the lamprey 

with a large reservoir of glucose, an essential fuel for the central nervous system of 

chordates (Hochachka et al. 1993). Glucose supply to the brain is via glycogenolysis, 

which yields glucose-6-phosphate, which in turn is converted to glucose via the enzyme 

glucose-6-phosphatase (Rovainen et al. 1971). In other vertebrates, the liver fulfills this 

role, which in the lamprey appears to be less important. Because brain glycogen can drop 

by more than 50 % (Clifford et al. 2012) following TFM exposure, it was predicted that 

lower initial brain glycogen concentrations would make sea lamprey more susceptible to 

lampricide exposure. However, brain glycogen was well maintained through the winter, 

which argues against this prediction.  

 Liver glycogen, on the other hand, was lower in the spring, which might be 

because it was needed to sustain blood glucose through the winter. Indeed, carcass 

glucose stores were remarkably stable throughout the year (Figure 2.4A). Liver glycogen 

stores had more than doubled by the fall, but the liver glycogen storage patterns were not 

suggestive of any role in TFM tolerance. Nor were the patterns in carcass glycogen 

reserves, which steadily decreased. Because the bulk (~60 %; Thorson 1958; Wilkie et al. 

2001) of the whole body is muscle, most of the glycogen likely reflects intramuscular 

stores, which would be essential for fueling burst swimming or burrowing (Boutilier et 
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al. 1993; Wilkie et al. 2001). Because metabolic rate and activity levels were higher in 

the warmer, summer months, it is possible that steady state glycogen stores were lower 

for this reason. Similarly, O’Boyle and Beamish (1977) reported comparable declines in 

muscle glycogen through the late spring and summer in non-metamorphosing sea 

lamprey. The reductions in glycogen stores in the carcass were not likely a consequence 

of changes in tissue water content, which could have resulted in lower wet weight 

glycogen concentrations. Instead, carcass water actually decreased between early spring 

and late summer, before increasing markedly in the fall, which is also consistent with 

previous observations made in non-metamorphosing sea lamprey (Lowe et al. 1973).   

 Also arguing against any interaction between tissue glycogen stores and TFM 

tolerance were the decreases in brain glycogen concentration though the spring and 

summer, when the 12 h LC50 and 12h LC99.9 were highest. Although glycogen 

concentration, particularly in the brain, is affected by TFM exposure, the present findings 

indicate that glycogen stores are not a reliable predictor of TFM tolerance in sea lamprey.  

Season had a pronounced effect on whole body lipid in larval sea lamprey but 

temperature did not. Lipid concentrations were highest in April, and continuously 

declined through the summer and fall.  These observations were similar to much earlier 

work by Lowe et al. (1973), who made similar observations in larval sea lamprey studied 

over a one year period. The current studies suggest that higher lipid stores in the early 

spring were probably due to the onset of feeding following the spring thaw, followed by 

increased lipid consumption with warming waters. Indeed, this was noted by Kao et al. 

(2010) who showed that larval lamprey acclimated to 21 °C had total lipid amounts in the 

liver  and kidneys that were more 30 % lower than in larvae acclimated to 13 °C. 
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Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey 

primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not 

structural lipid, phospholipid (Kao et al. 2010). Nevertheless, it may be worth additional 

investigation to study whether lipid stores additional amounts of TFM, in larger pre-

metamorphic lamprey that have much higher lipid reserves (Lowe et al. 1973; O’Boyle 

and Beamish 1977; Kao et al. 1997), and thus increases TFM tolerance.  

Lowe et al. (1973) previously reported that whole-body protein does not vary 

seasonally in larval lampreys, as shown in the present study. The protein composition 

(5.1 – 8.5 % ww) measured was slightly lower than reported by Lowe et al. (1973), 

which averaged (about 10.5 to 12.5% of the wet weight). These differences could be 

explained by a range of factors, including that the present lamprey generally had higher 

lipid reserves than those studied by Lowe et al. (1973), and the animals were generally 

smaller as well.   

Seasonal variations in liver protein were evident, but temperature had no effect on 

liver protein. The reduced liver protein in the summer (June and August) coincided with a 

lower HSI at this time, which could be attributed to increased metabolic demands 

associated with living at warmer temperatures. There was also considerable glycogen 

accretion in the liver during the summer, which could have reduced the relative 

proportion of protein in the liver.  The protein content of larval lamprey is in general not 

as high as in teleost fishes, lying at the extreme lower end of values reported for the class 

Actinopterygii (Brett, Shelbourne and Shoop 1969, Groves 1970, Beamish 1972, Niimi 

1972). Protein content in lamprey also does increase with metamorphosis (Lowe et al. 

1973), but as mentioned the lampreys in this study were not approaching metamorphosis, 
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so the observed trend cannot be attributed to pre-metamorphosis or metamorphosis. 

Although low whole-body and liver protein coincides with higher TFM tolerance in the 

late summer (August), it is unlikely it would not be a preferred source of ATP production 

during TFM exposure, because the oxidation of amino acids arising from proteolysis 

relies on oxidative phosphorylation to generate ATP. Nevertheless, it would be 

informative to determine the relative fuel use patterns of sea lamprey during the larval 

phases to better determine how they manage their energy stores during this trophic phase 

of the sea lamprey life cycle.  

The ranges in water content values observed (72 – 81 %) are consistent with the 

literature when compared to the earlier work on larval sea lamprey by Lowe et al. (1973). 

Seasonal changes to water content have also been documented in many other fish species 

in winter and fall (marine fish, see Boran and Karaçam 2011; freshwater fish, see 

Sreenivasa et al. 1964). Dry ash in the seasonal experiments was significantly less in 

October than in April, June and August and significantly greater in April than in June 

while in the temperature experiments, there were no significant differences in dry ash of 

larval sea lamprey. These changes may be in response to physiological changes 

associated with, spawning, migration, and starvation or heavy feeding (Boran and 

Karaçam 2011).  In general, season seems to have more effect on larval sea lamprey 

water content than temperature, although no trend can be observed between water 

content, dry ash and TFM sensitivity.  

Body mass throughout the present experiment was similar in all groups, and the 

condition factor was greater than 1.5, suggesting that the animals were in good health.  

The slightly higher CF in the spring larvae coincided with a high carcass water content, 
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which could have increased the mass of the animals, leading to a slight overestimate of 

this value. That lipid, glycogen and protein were highest at this time suggests that even in 

the spring, the animal’s nutrient reserves were not compromised.  Similarly, because 

acclimation to different temperatures had little effect on CF, body mass and energy 

reserves, it demonstrates that the animals subjected to higher temperatures readily coped. 

Tessier et al. (2018) reported that TFM uptake rates of larval sea lampreys were 

inversely related to the body mass of sea lamprey, with smaller lamprey (0.6 g) clearing 

TFM four times faster than larger lamprey (2.4 g). It was concluded that while there is a 

very strong correlation between metabolic rates and sensitivity to TFM, body size may 

only be indirectly related to toxicity. Rather, metabolic rates of species are more likely a 

driving factor for toxicity compared to body size (Baas and Kooijman 2015). This 

observation strongly suggests that acclimation to cooler or warmer temperatures did not 

compromise the physiology of the larval lampreys, providing greater confidence in the 

conclusion that the greater tolerance of sea lamprey to TFM in the summer compared to 

the spring and fall is a function of water temperature, and not the condition of the 

lamprey.  

 

2.7 Conclusion 

In conclusion, the tolerance of sea lamprey to TFM is lowest in spring, and then 

markedly increases through summer, when water temperatures and presumably food 

availability are greatest, before dropping in the fall. The hypothesis that TFM tolerance 

was related to greater energy stores was not supported, however, because lipid and 

glycogen reserves were in fact lowest during late summer, when TFM tolerance was 
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greatest. Rather, there appeared to be a cause and effect between water temperature and 

TFM tolerance, which led to 2.5-fold increases in the 12 h LC50 of the lampricide. The 

greater TFM tolerance at higher temperatures is likely due to a higher capacity to 

detoxify TFM via enzyme-mediated phase II pathways which biotransform TFM to its 

glucuronide and/or sulfate conjugates, and perhaps by phase I reduction and oxidation 

pathways.  Although the activity of TFM-G is relatively low in sea lamprey, temperature-

induced increases in the activities of these chemical reactions, and those involved in 

sulfation, and phase I reduction and oxidation paths, due to Arrhenius effects may be 

sufficient to increase survival. Testing this hypothesis should be a priority of future 

studies.  Another priority would be conduct toxicity tests at the same experimental 

temperature using larval lamprey collected at different times of the year. 

These observations could also have important implications for the sea lamprey 

control program in the Great Lakes. For instance, it may be prudent to incorporate season 

and water temperature into models that are used to evaluate the amounts of TFM required 

for lampricide applications. It may also be possible to reduce total TFM requirements by 

treating large streams or rivers earlier or later in the year, when sea lamprey are most 

sensitive to TFM. It will also be important to validate the results from these laboratory 

studies, by performing similar tests under natural stream conditions. Finally, sea lamprey 

control efforts in the Great Lakes could be further complicated by future increases in 

mean and peak water temperatures arising from climate change, which would increase 

the amounts of TFM required for lampricide applications.  Thus, it is imperative to better 

understand how TFM uptake, distribution and elimination will be affected by further 
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increases in water temperature and how this could potentially affect ongoing efforts to 

control this invasive species in the Great Lakes.  
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TABLES & FIGURES 

Table 2.1. Effects of TFM exposure (12 h LC50; 2.0 mg L
-1

) on the concentrations of 3-trifluoromethyl-4-nitrophenol (TFM) and 

TFM-glucuronide (TFM-G) in larval sea lamprey collected from the Au Sable River at different seasons in 2013, and the 

concentration of TFM in the whole body sea lamprey that either survived or experienced mortality during exposure to 2.0 mg L
-1

 TFM 

regardless of season. The limit of quantification (LOQ) was 7.5 x 10
-3

 mg L
-1

 and the limit of detection (LOD) was 3.7 x 10
-3

 mg L
-1

.  

Data presented as mean ± standard deviation. Data sharing the same letters are not statistically different. 

Season 
Sample 

Size, N 
TFM nmol g

-1
 ww  Sample Size, N TFM-G nmol g

-1
 ww  

April (5.6 °C) 6 82.8 ± 27.8 (A) 7 1.9 ± 0.5 (a) 

June (20.6 °C) 6 79.1 ± 26.0 (A) 6 1.7 ± 0.6 (a) 

August (23.5 °C) 6 56.7 ± 4.90 (A) 7 1.7 ± 0.4 (a) 

October (11.7 °C) 7 52.0 ± 9.60 (A) 6 2.0 ± 0.5 (a)  
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Table 2.2 Hepatosomatic index (HSI) of larval sea lamprey in the proximate body composition experiments (12 containers, N = 3 – 5 

per container, no 3-trifluoromethyl-4-nitrophenol added) by season and temperature. Seasonal proximate body composition 

experiments were conducted at the ambient stream temperature at the time of larval lamprey collection (shown in brackets); 

temperature proximate body composition experiments were conducted in July 2014. Data presented as mean ± standard deviation. 

Data sharing the same letters are not statistically different. 

 

  

 

 

 

 

 

 

 

 

 

Experiment Sample Size, N HSI  

April (5.6 °C) 12 1.21 ± 0.06 (A) 

June (20.6 °C) 12 1.00 ± 0.05 (B) 

August (23.5 °C) 12 0.79 ± 0.07  

October (11.7 °C) 12 1.09 ± 0.05 (A,B) 

6 °C 10 1.34 ± 0.04  

12 °C 11 1.09 ± 0.07 (a) 

24 °C 12 0.99 ± 0.04 (a) 
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Figure 2.1 The effects of (A) season and (B) water temperature on the 12h 

LC50 and minimum lethal concentration (12 h LC99.9; MLC) of 3-

trifluoromethyl-4-nitrophenol. Seasonal acute toxicity tests were 

conducted at the water temperature at which the larval lampreys were 

collected (in brackets). Data presented as the 12 h LC50 (hatched bars) or 

the MLC [solid bars; N = 3 with lamprey = 247 – 313 per season and 

temperature, ± 95 % confidence interval (CI)]. Bars where CIs do not 

overlap are significantly different from one another.  
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Figure 2.2 Influence of season on glucose (hatched fill) and glycogen (solid fill) 

in larval sea lamprey (A) carcass, (B) brain and (C) liver collected in the spring 

(April), early (June) and late (August) summer, and the fall (October). Values in 

brackets correspond to the to the water temperature at which the animals were 

collected and held prior to sampling. Data presented as the mean + 1 SEM, N = 

11 – 12 per experiment. Bars sharing the same uppercase letters denote glycogen 

values that were not statistically significant from one another and identical 

lowercase letters denote glucose values that are the same.  
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Figure 2.3 Influence of acclimation temperature on glucose (hatched fill) 

and glycogen (solid fill) in larval sea lamprey (A) carcass, (B) brain and 

(C) liver. Animals were captured from the Au Sable River, Michigan, 

temperatures correspond to the to the water temperature at which the 

animals were collected and held prior to sampling. Data presented as the 

mean ± 1 SEM, N = 8 – 11 per temperature. Bars sharing the same 

uppercase letters denote glycogen values that were not statistically 

significant from one another and identical lowercase letters denote glucose 

values that are the same. 
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Figure 2.4 Influence of (A) season and (B) acclimation temperature on 

carcass lipid in larval sea lamprey captured from the Au Sable River, 

Michigan. Temperatures correspond to the to the water temperature at 

which the animals were collected and held prior to sampling. Data 

presented as the mean + 1 SEM, N = 8 – 11 per season, and N = 8 at each 

temperature. Bars sharing the same letters denote values that were not 

statistically significant from one another. 
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Figure 2.5 Influence of (A) season and (B) temperature on whole-body 

protein in larval sea lamprey. Seasonal proximate body composition 

experiments were conducted at the ambient stream temperature at the time 

of larval lamprey collection (shown in brackets). N = 8 – 11 per season. 

Bars represent the standard error of the mean (SEM). B Temperature 

proximate body composition experiments were conducted in July 2014. N 

= 7 – 8 per temperature. There were no significant differences in mean 

protein. 
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Figure 2.6 Influence of (A) season and (B) acclimation temperature on 

liver protein in larval sea lamprey captured from the Au Sable River, 

Michigan. Temperatures correspond to the to the water temperature at 

which the animals were collected and held prior to sampling. Data 

presented as the mean + 1 SEM, N = 11 – 12 animals per season, and N = 

10 – 12 per temperature tested. Bars sharing the same letters denote values 

that were not statistically significant from one another. 
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Figure 2.7 Influence of (A) season and (B) temperature acclimation on 

carcass water content (hatched fill) and dry ash (solid fill) of larval sea 

lamprey. Data presented as the mean ± 1 SEM, N = 8 – 11 carcasses per 

sample period (season or temperature) Bars sharing the same uppercase 

letter denote water content values that are not statistically different, 

whereas data sharing same lowercase letters represent dry ash 

measurements that are not statistically different. 
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Figure 2.8 TFM metabolism in fish as proposed by Bussy et al. (2018). 

UDPGT, uridine diphosphate glucuronosyltransferase; UDPGA, uridine5′-

diphosphoglucuronic acid; PST, phenol sulfate transferase; GST, 

glutathione S transferase; GSH, glutathione and NAT N-acetyltransferase 

(Source: Bussy et al. 2018). 
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Chapter 3: 

 

An integrated model of the effects of season and temperature on sea 

lamprey (Petromyzon marinus) sensitivity to the lampricide 3-

trifluoromethyl-4-nitrophenol (TFM) 
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3.1 Introduction  

The application of TFM to tributaries of the Great Lakes targets the invasive 

larval sea lamprey in the early spring to fall. Although it has been used for over 60 years, 

there remains a need to better understand why treatment residuals occur and how to 

reduce them. It is well known that TFM sensitivity is strongly influenced by biotic and 

abiotic variables, but the underlying reasons for this are poorly understood. The present 

study provided insight on the underlying factors that result in variations in TFM 

sensitivity. Although a direct statistical comparison between LC50s and LC99.9s (which is 

defined as the amount of TFM needed to kill 50 % and 99.9 % of larval sea lamprey, 

respectively) and proximate body composition was not established, there was a 

relationship between temperature and TFM sensitivity.  Thus, the seasonal variations in 

TFM sensitivity reported here and in other studies (Applegate et al. 1958; Scholefield et 

al. 2008) were mainly due to corresponding changes in water temperature. Thus, it may 

be advisable to incorporate water temperature into predictive models of sea lamprey 

sensitivity to TFM. In this chapter, the results of the current study are discussed in 

context of current chemical control methods for sea lamprey, and the implications of this 

information on future control efforts of sea lamprey in the Great Lakes are also discussed. 

 

3.2 Integrated Pest Management of the Sea Lamprey in the Great Lakes 

Invasive sea lamprey became a threat to the Great Lakes in the 1900s, resulting in 

the collapse of major fisheries within the Great Lakes by the 1940s and 1950s (Siefkes et 

al. 2013). The integrated sea lamprey control program relies on several techniques to 

control sea lamprey, including velocity barriers, electrical barriers, adjustable-crest 
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barriers and cages to block or remove adult sea lamprey with minimal effects on non-

target organisms (Hunn and Younges, 1980; McLaughlin et al. 2007). These physical 

control methods may eventually be used in combination with trial testing of mating 

pheromones and alarm cues, which could be used to guide lamprey towards barriers and 

traps (Johnson et al. 2005; Siefkes 2017). With chemical treatment, streams containing 

larval sea lamprey are treated with TFM every two to four years, resulting in decreased 

parasitic juvenile sea lamprey populations in the Great Lakes, which has led to the 

recovery of some game and commercial fisheries such as lake trout and whitefish 

(McDonald and Kolar 2007; Siefkes et al. 2013). However, residual sea lamprey that 

survive TFM treatment can undermine the effectiveness of sea lamprey control efforts. 

This thesis reveals that temperature is a key variable that needs to be considered when 

TFM is applied to sea lamprey infested streams.  

 

3.3 Methods for Selecting Streams for Lampricide Treatment 

Using an adaptive management approach (“science informs management”), the 

methods used to select streams for lampricide treatments are frequently evaluated and 

updated, resulting in a flexible treatment program that can be tailored to changes in 

lamprey distribution, abundance or abiotic variables including stream flows, and even 

time of year. The basis of this approach is prior assessment of larval density and stream 

productivity – the predicted number of transforming sea lamprey the following year – 

which is evaluated to select and prioritize streams for lampricide applications (Christie et 

al. 2003; Slade et al. 2003; Hansen and Jones 2008).  
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The two current stream survey methods are the quantitative assessment sampling 

(QAS) method and the rapid assessment (RA) approach (Hansen and Jones 2008).  Using 

the QAS method, data on the density, size, distribution, and habitat (Slade et al. 2003) are 

considered. The densities are then used to rank streams for chemical treatment using a 

computer model (the Empiric Stream Treatment Ranking [ESTR] system). The objective 

is to maximize the cost: benefit ratio of lampricide treatment resources (Hansen and 

Jones 2008). Data collected using the QAS method are costly because it involves 

intensive assessment of larval sea lamprey populations in the streams (Slade et al. 2003). 

The RA method evaluates the first type of habitat encountered at a site, as opposed to the 

best available habitat in QAS, and compares cost per kill for larvae > 100 mm. The 

assumption is that larval habitat, larval densities, and control strategies (i.e., above or 

below a sea lamprey barrier; Slade et al. 2003) are relatively homogenous. TFM 

treatments are typically deemed successful when they eradicate 95% to 100% of the 

larval sea lampreys in the tributary (Smith and Swink, 2003). 

 

3.4 The influence of physiological and abiotic factors on TFM sensitivity  

By better understanding the effects of season and temperature on TFM toxicity in 

larval sea lamprey, it may be possible to reduce the use of TFM by explicitly 

incorporating temperature in current models used to determine TFM concentrations (pH-

alkalinity model). For example, during the period from 1979 to 1989, an average of 

52,904 kg active ingredient (kg year
-1

) of TFM was applied annually to 316 streams. This 

was reduced to an average of 38,698 kg year
-1

 for the decade of 1990 to 1999. This 

reduction was enhanced in the years 1995 to 1999 to an average of 34,120 kg year
-1

. 
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Changes in streams selected for treatment and scheduling treatments during low stream 

discharge accounted for about 26% of the reduction in annual TFM use (Brege et al. 

2003). Based on current research, larval sea lampreys were less sensitive to TFM in the 

summer compared to the spring and fall, mainly due to the effects of water temperature 

rather than physiological status of the animals. For instance, the decrease in the LC50 in 

October was an unexpected finding because lamprey that had fed throughout the summer 

were expected to have greater glycogen stores which would be expected to increase TFM 

tolerance. Moreover, lower temperature in October would presumably lower larval sea 

lamprey metabolic rates and lower TFM uptake, leading to greater survival (Hlina et al. 

2017). However, the opposite occurred. At warmer temperatures TFM tolerance was 

greater, and this may have been due to an increased capacity of the animals to detoxify 

TFM at this time of the year.  Support for this hypothesis is the recent discovery that 

TFM detoxification pathways are more complex than previously thought. It was known 

that sea lamprey have the enzymes required to biotransform TFM to TFM-glucuronide, 

but that the activities of these enzymes were lower than in non-target fishes studied 

including rainbow trout (Lech and Statham 1975; Kane et al. 1994). However, the recent 

discovery that sea lamprey may possess other enzymes that metabolize TFM suggest that 

they have other routes of TFM detoxification including oxidation and reduction pathways 

(Bussy et al. 2018a,b). I propose that at higher temperatures the activities of the enzyme 

pathways involved in TFM detoxification are higher, which increases lampreys’ ability to 

survive exposure to TFM in the summer.  

 

3.5. Implications for Sea Lamprey Control 
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 Re-scheduling TFM treatments to earlier or later in the year might be beneficial 

for large streams or rivers to decrease the total amount of TFM required and to reduce the 

risk of residual sea lamprey that survive treatments, complete metamorphosis, and 

subsequently parasitize economically and culturally significant fish in the Great Lakes. 

Moreover, to reduce use of TFM, temperature needs to be incorporated in current 

models used to determine TFM concentrations (e.g., pH-alkalinity model), perhaps to 

create a pH-alkalinity-temperature model. Toxicity tests at various pH, alkalinity and 

temperature ranges could be conducted to develop a chart of TFF LC99.9 concentrations. 

Temperature is especially important as water temperatures increase with climate change; 

this would also allow for the spatial spread of sea lamprey to previously colder 

tributaries. Currently, TFM treatments are done in September and October to avoid non-

target effects on sturgeon, which is an optimal treatment time for larval sea lamprey 

because TFM toxicity is greatest at lower temperatures. Incorporating temperature into 

the TFM treatment model would allow for the most efficient use of TFM and reduce the 

number of lamprey that survive TFM treatments (residuals) and reduce the amount of 

TFM needed to treat the streams.  

 

3.6. Future Control Methods 

As this research was conducted, there have been advances in other methods of sea 

lamprey control. One such advance is the sea lamprey mating pheromone, called 3-keto 

ketromyzonol sulfate (3kPZS). In 2015, 3kPZS was registered as the first ever vertebrate 

pheromone biopesticide with the U.S. Environmental Protection Agency. During 

registration, several factors, including human health and occupational risks, and 
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environmental considerations are considered (Health Canada, 2017). The North 

American Free Trade Agreement (NAFTA) Technical Working Group on Pesticides 

serves as a focal point for addressing pesticide issues arising in the context of liberalized 

trade among the NAFTA countries and cooperation has included undertaking 

collaborative scientific work, collaborating on risk assessment or compliance methods 

and carrying out joint reviews, among others. The registration of 3kPZS had been many 

years in the making and was a collaborative effort with the U.S. Geological Survey, 

Michigan State University and Bridge Organics Company. This research has also 

provided a path for chemosensory compounds to be registered to control other vertebrate 

species, including aquatic species. 

Another advance is the use of nonphysical barriers, which are being tested for 

future use. Nonphysical barriers do not impound water and, in some cases, may be the 

only option in areas where physical barriers are impractical or would cause an 

unacceptable change in a waterway. Also, temporary nonphysical barriers could be used 

to control lamprey during migration times or even on a diel basis (Johnson et al. 2016) to 

limit impacts on nontarget species. The Bioacoustic Fish Fence (BAFF) marketed by 

Ovivo USA was tested for potential use in “pushing” and “pulling” sea lamprey in 

specific patterns, to prevent their upstream movement and spread. Miehls et al. (2017) 

could not provide definitive conclusions about the effectiveness of the BAFF, and further 

research will be needed to better understand the impact of various light and sound 

intensities. 

Finally, there has also been research into RNA interference to develop a sea 

lamprey-specific lampricide. This technique would cause increased mortality of the 
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larvae and could be used to kill filter-feeding larvae within streams, following 

development of a slow-release formulation. This technique is at proof-of-concept stage 

and has been made possible due to sequencing of the entire sea lamprey genome in 2012 

(Kuraku et al. 2013).  

 

3.7 Conclusion and Future Directions  

In conclusion, the tolerance of sea lampreys to TFM is lowest in spring. There 

was a relationship between water temperature and TFM tolerance, which resulted in 

increases in greater TFM sensitivity at lower temperatures. These observations could also 

have important implications for the sea lamprey control program in the Great Lakes. 

Incorporating season and water temperature into models that are used to predict the 

amounts of TFM required for lampricide applications is important, it may be possible to 

reduce total TFM requirements by treating large streams or rivers earlier or later in the 

year, when sea lamprey are most sensitive to TFM.  It will also be important to validate 

the results from these laboratory studies, by performing similar tests under natural stream 

conditions. Finally, it is imperative to better understand how TFM uptake, distribution 

and elimination will be affected by further increases in water temperature due to climate 

change and how this could potentially affect ongoing efforts to control this invasive 

species in the Great Lakes.   

There is a movement away from physical controls and removal of many dams due 

to effects on migrating fishes and also to restore the natural riparian environment (Miehls 

et al. 2017; Poff et al. 1997). However, this would result in increased use of TFM (Lavis 

et al. 2003) due to greater access to spawning habitat and ultimately, increased sea 
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lamprey production. Caution should therefore be exercised when making such decisions 

because traps and barriers, along with TFM, are key components of the integrated sea 

lamprey control program. Although there will be further developments in the 

understanding of sea lamprey biology, and potentially promising new methods of sea 

lamprey control in the future, for now TFM remains an essential tool for controlling 

invasive sea lamprey in the Great Lakes.  
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Appendix A – Supplementary Data  

A1.0 – Supplementary Data 

A1.1 Preliminary Range-Finder Toxicity Test Results and Acute Toxicity Test Water 

Chemistry   

 The seasonal range-finder toxicity tests suggested that the 12 h LC50 in April, 

June, August and October was between 1.00 – 1.50, 2.50 – 3.00, 2.50 – 3.00 and 1.30 – 

2.00 mg L-1, respectively. The temperature preliminary range-finder toxicity tests 

suggested that the 12 h LC50 at 6, 12 and 21 °C was between 1.25 – 1.75, 1.75 – 2.25 and 

3.0 – 3.50 mg L-1, respectively. Based on these results, the nominal concentrations of 

TFM were selected for the seasonal (Tables A1.1, A1.3 – A1.6) and temperature (Table 

A1.1, A2.7 – A2.9) acute toxicity tests. The resulting 12 h LCs are presented in Figure 

2.3A (season) and 2.3B (temperature). The resulting 12 h LTs are presented in Figure 

2.4A (season) and Figure 2.4B (temperature). 

Mean temperature in acute toxicity tests in April, June, August and October were 

5.6 (± 0.1 SEM, N = 57), 20.6 (± 0.1 SEM, N = 57), 23.5 (± 0.1 SEM, N = 57) and 11.7 

°C (± 0.1 SEM, N = 57), respectively. Mean measured temperatures in the temperature 

experiments were 6.4 (± 0.1 SEM, N = 63), 12.3 (± 0.7 SEM, N = 63) and 24.1 °C (± 

0.01 SEM, N = 63), respectively. As expected, there were differences in mean 

temperature of the toxicity tests (Kruskal-Wallis chi-squared = 60.463, DF = 6, P = 3.624 

x 10
-11

). Temperature in April was significantly lower than in June (observed difference = 

40.89, critical difference = 39.69), August (observed difference = 78.58, critical 

difference = 39.69) and 23 °C (observed difference = 71.82, critical difference = 38.74) 

temperature experiments. Temperature in August was significantly greater than in 
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October (observed difference = 62.63, critical difference =39.69) and 6 (observed 

difference = 56.56, critical difference = 38.74) and 12 °C (observed difference = 45.68, 

critical difference = 38.74) temperature experiments. 

Mean pH in April, June, August and October was 7.68 (± 0.02 SEM, N = 57), 

7.96 (± 0.04 SEM, N = 57), 8.30 (± 0.01 SEM, N = 57) and 8.26 (± 0.01 SEM, N = 57), 

respectively. Mean pH in the temperature experiments was 7.85 (± 0.03 SEM, N = 63), 

8.05 (± 0.03 SEM, N = 63) and 8.24 (± 0.01 SEM, N = 63), respectively. There were 

differences in mean pH of the toxicity tests (Kruskal-Wallis chi-squared = 119.7, DF = 6, 

P < 2.2 x 10
-16

). The pH in April was significantly lower than in August (observed 

difference = 109.87, critical difference = 39.69), October (observed difference = 93.63, 

critical difference = 39.69) and at 12 (observed difference = 49.63, critical difference = 

38.74) and 23 °C (observed difference = 84.53, critical difference = 38.74) temperature 

experiments.  The pH in June was significantly lower than in August (observed difference 

= 73.55, critical difference = 39.69), October (observed difference = 57.32, critical 

difference = 39.69) and at 23 °C (observed difference = 48.22, critical difference = 38.74) 

temperatures experiments. The pH in August was significantly higher than pH at 6 

(observed difference = 89.64, critical difference = 38.74) and 12 °C (observed difference 

= 60.24, critical difference = 38.74) temperatures experiments. The pH at 6 °C was 

significantly lower than pH in October (observed difference = 73.41, critical difference = 

38.74) and at 23 °C (observed difference = 64.31, critical difference = 37.76) temperature 

experiments and pH at 12 °C experiments was significantly lower than in October 

(observed difference = 44.00, critical difference = 38.74).  
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Mean dissolved oxygen in April, June, August and October was 106.5 (± 0.4 

SEM, N = 57), 89.9 (± 0.5 SEM, N = 57), 87.5 (± 0.1 SEM, N = 57) and 91.9 % (± 0.7 

SEM, N = 57). Mean dissolved oxygen in the temperature experiments was 103.5 (± 0.7 

SEM, N = 63), 98.9 (± 0.5 SEM, N = 63) and 88.1 % (± 0.8 SEM, N = 63), respectively. 

Temperature, pH and dissolved oxygen in acute toxicity tests are presented in 

Tables 2.1A – 2.5A (seasonal experiments) and Tables 2.1 A, 2.6A – 2.8A (temperature 

experiments), respectively.   

 

A.1.2 Proximate Body Composition Experiment Larval Sea Lamprey Sample Size, 

Length, Mass, Condition Factor and Water Chemistry   

Larval sea lamprey sample size, length, mass and condition factor in the 

proximate body composition experiments are presented in Table A2.10. A random subset 

dissected for collection of brain and liver from each experiment, with sample sizes and 

mass presented in Tables 2.11A and 2.12A, respectively. Proximate body composition 

water chemistry measured at start (0 h) is presented in Table A2.13. 

 

A.1.3 Solid Phase Extraction and High-Performance Liquid Chromatography   

Larval lampreys were ground under liquid nitrogen and approximately 300 mg of 

tissue collected in a polypropylene centrifuge tube. Next, 4 mL of 80 % methanol was 

added, and the sample was shaken (MaxQ 2000 orbital shaker, Thermo Fisher Scientific 

Inc., MA USA) and centrifuged (1228 × g; IEC MediLite 12, Thermo Electron 

Corporation, MA, USA) for 10 minutes each; supernatant was removed and placed in 

another polypropylene centrifuge tube. The process was repeated twice more, and the 



99 
 

supernatant was then evaporated to approximately 8 mL in a 55 °C water bath using a 

nitrogen gas evaporator (N-EVAP Analytical Evaporator, Organomation, MA, USA). 

The supernatant was then eluted through 1 cm of high-density glass filter beads 

(Empore Filter Aid 400, 3M, St. Paul, MN, USA) contained in  Bond Elute LRC-C18 

SPE columns (; Bond Elute LRC-C18 OH, 500 mg, Agilent Technologies, Santa Clara, 

CA, USA), previously conditioned with 10 mL of 100 % methanol and 10 mL of 70 % 

methanol. The pH of the collected eluent was adjusted to 9.5 ± 0.2 using 10 N NaOH, 

prior to a second elution using Empore SDB-XC SPE columns (10mm diameter/6 mL 

volume, 3M, St. Paul, MN, US), which had been conditioned with 10 mL of 100 % 

methanol, followed by 10 mL of pH 9.5 water. The resulting eluent was collected in clean 

polypropylene centrifuge tubes, evaporated and pH adjusted to 4.0 ± 0.2 using 12.1 N 

HCl.  The treated eluent was again filtered through the Bond Elute LRC-C18 columns, 

which had been conditioned with 10 mL of 100 % methanol and 10 mL of 24.6 mM 

acetate buffer (pH 4.0 ± 0.2). This was followed by elution with 12 mL of 60 % 24.6 mM 

acetate buffer:methanol (pH 4.0 ± 0.2), resulting in the extraction of TFM-glucuronide, 

for which the eluent was collected in a clean glass tube. A second elution using 6 mL of 

75 % methanol was then performed to isolate the TFM, which was collected in a second 

clean glass tube. The tubes containing TFM were evaporated to approximately 1 mL and 

then 1 mL of 40 mM sodium borate buffer (pH 8.5 ± 0.2) was added to the samples, 

resulting in a final volume of 2 mL; whole body TFM concentrations were determined 

using HPLC (described below).  

To the tubes containing TFM-glucuronide, 1 mL of solution of β-glucuronidase 

(1,644,000 unitsg
-1

 from bovine liver; Sigma Aldrich, MO, USA) dissolved in 400 mM 
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potassium phosphate buffer (pH 6.8 ± 0.2) was added. Samples were incubated in a water 

bath at 35 °C for 18 h to allow the enzyme to hydrolyze TFM-glucuronide to TFM, after 

which the reaction was terminated by the addition of 12.1 N HCl. The solution was then 

processed as described above for parent TFM, followed by HPLC quantification of TFM, 

which served as an indirect measure of TFM-glucuronide.  

Quantification of  TFM was done using a Varian HPLC set-up, comprised of a 

Varian ProStar 410 auto-sampler, ProStar 230 solvent delivery module and Prostar 310 

UV-VIS detector (Varian, Inc., Palo Alto, CA, USA), fitted with a reverse phase HPLC 

C-18 column (Kinetex 2.6 μm XB-C18 100A 100 x 3.00 mm; Phenomenex Inc., CA, 

USA). TFM standards (0.015, 0.050, 0.250, 0.500, 1.500, and 5.000 μg mL
-1

) were 

prepared from analytical grade TFM Sigma Aldrich, St. Louis, MO, USA) in 20 mM 

sodium borate buffer (pH 8.5 ± 0.2). Standards and samples were injected (0.1 mL) via a 

mobile phase comprised of 83 % 20 mM sodium borate buffer (pH 8.5 ± 0.2) and 17 % 

acetonitrile, which yielded a TFM retention time of approximately 4.66 minutes. Percent 

recovery of TFM was determined to 58 ± 9 %. 
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TABLES & FIGURES 

Table A1.1 Summary of acute toxicity test nominal TFM concentrations (19 aquaria: 6 concentrations in triplicate and control(s)) and 

water chemistry measured at 0, 12 and 24 h by experiment. Data presented as mean ± SEM. Seasonal toxicity tests were conducted at 

the ambient stream temperature at the time of larval lamprey collection (shown in brackets); temperature toxicity tests were conducted 

in July 2014. Statistical significance is indicated by letters. 

 

 

Experiment Nominal [TFM] (mg L
-1

) Mean Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean Dissolved 

Oxygen (%) ± SEM 

April (5.6 °C) 0.00, 0.50, 0.80, 1.00, 1.20, 

1.50, 2.00 

5.6 ± 0.1 (A) 7.68 ± 0.02 (A) 106.51 ± 0.36 

June (20.6 °C) 0.00, 1.25, 1.75, 2.25, 2.50, 

2.75, 3.00 

20.6 ± 0.1 (B) 7.96 ± 0.04 (C) 88.99 ± 0.49 

August (23.5 °C) 0.00, 2.00, 3.00, 3.75, 4.50, 

4.75, 5.00 

23.5 ± 0.1 (B, C) 8.30 ± 0.01 (B, D, E) 87.51 ± 0.10 

October (11.7 °C) 0.00, 1.00, 1.30, 1.60, 1.80, 

2.00, 2.30 

11.7 ± 0.1 (D, F) 8.26 ± 0.01 (B, D, H, J) 91.90 ± 0.71 

6 °C 0.00, 1.25, 1.50, 1.75, 2.0, 

2.25, 2.5 

6.4 ± 0.1 (D, F) 7.85 ± 0.03 (F, G) 103.47 ± 0.69 

12 °C 0, 1.50, 1.75, 2.0, 2.25, 2.50, 

2.75 

12.3 ± 0.7 (D, F) 8.05 ± 0.03 (B, F, I) 98.95 ± 0.55 

24 °C 0.00, 3.00, 3.25, 3.50, 3.75, 

4.00, 4.25 

24.1 ± 0.1 (B, E) 8.24 ± 0.01 (B, D, H) 88.08 ± 0.84 
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Table A1.2 Summary of larval sea lamprey sample size, length, mass and condition factor in the acute TFM toxicity 

tests (19 aquaria: 6 concentrations in triplicate and control(s)) by season and temperature. Data presented as mean ± 

SEM. Seasonal proximate body composition experiments were conducted at the ambient stream temperature at the time 

of larval lamprey collection (shown in brackets); temperature toxicity tests were conducted in July 2014. Statistical 

significance is indicated by letters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
Surviving lamprey were not measured and weighted; values are for mortalities during 24 h toxicity test 

+
Total sample size (N) varied per aquaria during the toxicity tests 

#
Experiments conducted with 2 additional control aquaria from seasonal experiments   

**
Condition factor = (mass (g))/length (mm))

3
 x 10

6
 (Youson et al. 1993) 

 

 

Experiment  Lamprey 

Mortality, 

N  

Surviving 

Lamprey, 

N 

Total 

Lamprey, N 

Mean Length 

(mm) ± SEM 

Mean Mass (g) ± 

SEM 

Condition Factor
**

 ± 

SEM 

April (6 °C) 168 122
*
 290

+
 69.2

*
 ± 1.1 (A) 0.62

*
 ± 0.03 (A) 1.70

*
 ± 0.02 (A,B) 

June (20 °C) 107 184
*
 291

+
 61.1

*
 ± 1.2 (B) 0.44

*
 ± 0.02 (B) 1.88

*
 ± 0.06  

August (23 

°C) 

234 79 313
+
 59.6 ± 0.7 (B) 0.39 ± 0.01 (B) 1.74 ± 0.02 (B) 

October (12 

°C) 

146 101 247
+
 68.6 ± 1.1 (A) 0.56 ± 0.03 (A) 1.63 ± 0.02 (A)  

6 °C
#
 209 106 315 74.0 ± 1.6 0.69 ± 0.03 1.59 ± 0.02 (b) 

12 °C
#
 170 144 314

+
 70.0 ± 1.2 0.61 ± 0.03 1.63 ± 0.02 (a,b) 

21 °C
#
 198 116 314

+
 65.6 ± 1.1 0.52 ± 0.02 1.66 ± 0.02 (a) 
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Table A1.3 April acute toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and one control) and water chemistry measured at 0, 12 and 

24 h by aquaria. Data presented as mean ± SEM.  

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean 

Dissolved 

Oxygen 

(%) ± SEM 

A 2.0 1.90 ± 0.02 5.2 ± 0.28 7.58 ± 0.11 102.6 ± 3.05 

B 1.2 1.16 ± 0.02 5.1 ± 0.28 7.50 ± 0.09 110.5 ± 1.63 

C 0.5 0.45 ± 0.01 5.1 ± 0.24 7.51 ± 0.01 106.2 ± 1.19 

D 1.2 1.85 ± 0.68 5.1 ± 0.32 7.63 ± 0.01 107.2 ± 1.69 

E 2.0 1.88 ± 0.03 5.2 ± 0.27 7.69 ± 0.03 107.0 ± 2.47 

F 1.5 1.51 ± 0.04 5.4 ± 0.12 7.70 ± 0.02 105.0 ± 0.49 

G 0.5 0.50 ± 0.04 5.3 ± 0.35 7.67 ± 0.02 106.8 ± 0.89 

H 0.8 0.80 ± 0.02 5.4 ± 0.30 7.65 ± 0.03 107.9 ± 2.00 

I 1.5 1.55 ± 0.12 5.5 ± 0.18 7.70 ± 0.00 106.3 ± 1.77 

J 0.8 0.78 ± 0.03 6.0 ± 0.10 7.75 ± 0.01 105.2 ± 1.92 

K 1.0 1.00 ± 0.04 5.9 ± 0.15 7.77 ± 0.01 107.4 ± 0.59 

L 1.5 1.48 ± 0.03 6.0 ± 0.19 7.80 ± 0.02 105.3 ± 1.70 

M 2.0 2.02 ± 0.04 5.9 ± 0.22 7.78 ± 0.09 105.7 ± 1.00 

N 1.0 0.93 ± 0.02 5.9 ± 0.18 7.73 ± 0.05 107.0 ± 1.28 

O 0.8 0.80 ± 0.04 5.9 ± 0.12 7.75 ± 0.03 106.4 ± 0.98 

P 0.5 0.46 ± 0.01 5.9 ± 0.15 7.71 ± 0.07 107.0 ±0.90 

Q 1.0 0.92 ± 0.03 5.9 ± 0.06 7.76 ± 0.04 105.4 ± 0.30 

R 1.2 1.17 ± 0.07 5.8 ± 0.12 7.77 ± 0.05 107.4 ± 0.85 

S 0.0 0.00 ± 0.00 5.7 ± 0.12 7.48 ± 0.07 107.5 ± 0.83 
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Table A1.4 June acute toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and one control) and water chemistry measured at 0, 12 and 

24 h by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean 

Dissolved 

Oxygen 

(%) ± SEM 

A 3.00 2.90 ± 0.02 19.9 ± 0.38 7.28 ± 0.06 89.07 ± 3.86 

B 1.75 1.77 ± 0.03 19.8 ± 0.35 7.74 ± 0.06 94.10 ± 3.14 

C 1.25 1.22 ± 0.01 19.8 ± 0.32 7.84 ± 0.04 90.93 ± 0.35 

D 2.75 2.69 ± 0.04 19.9 ± 0.36 7.90 ± 0.02 87.50 ± 0.82 

E 2.50 2.43 ± 0.03 19.9 ± 0.31 7.99 ± 0.03 90.80 ± 2.27 

F 2.25 2.28 ± 0.02 19.9 ± 0.31 8.02 ± 0.04 87.47 ± 2.92 

G 1.25 1.14 ± 0.00 21.1 ± 1.34 8.00 ± 0.03 88.80 ± 3.04 

H 0.00 0.00 ± 0.00 21.1 ± 1.41 8.01 ± 0.04 92.03 ± 1.91 

I 1.75 1.86 ± 0.07 21.1 ± 1.44 8.02 ± 0.04 88.90 ± 1.82 

J 3.00 2.95 ± 0.04 21.3 ± 1.66 8.05 ± 0.05 88.70 ± 2.46 

K 2.50 2.45 ± 0.04 21.2 ± 1.62 8.05 ± 0.02 88.27 ± 5.20 

L 2.75 2.86 ± 0.05 21.2 ± 1.59 8.04 ± 0.03 88.30 ± 4.07 

M 2.25 2.29 ± 0.03 21.2 ± 1.63 8.04 ± 0.02 87.93 ± 3.30 

N 1.25 1.22 ± 0.05 20.6 ± 0.07 8.03 ± 0.01 85.60 ± 3.89 

O 3.00 3.09 ± 0.09 20.5 ± 0.20 8.04 ± 0.01 85.90 ± 4.59 

P 2.50 2.45 ± 0.06 20.5 ± 0.23 8.05 ± 0.01 86.77 ± 2.84 

Q 2.75 2.77 ± 0.05 20.5 ± 0.23 8.04 ± 0.02 90.43 ± 2.65 

R 1.75 1.73 ± 0.05 20.5 ± 0.20 8.05 ± 0.01 90.77 ± 2.58 

S 2.25 2.20 ± 0.02 20.5 ± 0.20 8.05 ± 0.02 88.47 ± 1.43 
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Table A1.5 August acute toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and one control) and water chemistry measured at 0, 12 and 

24 h by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean 

Dissolved 

Oxygen 

(%) ± 

SEM 

A 4.50 4.31 ± 0.01 23.8 ± 0.38 8.18 ± 0.08 91.2 ± 1.94 

B 4.75 4.68 ± 0.03 23.8 ± 0.35 8.26 ± 0.04 89.2 ± 2.83 

C 3.00 2.99 ± 0.02 23.7 ± 0.35 8.27 ± 0.03 85.0 ± 2.52 

D 5.00 4.91 ± 0.01 23.7 ± 0.37 8.29 ± 0.01 92.4 ± 2.25 

E 3.75 3.82 ± 0.02 23.7 ± 0.36 8.30 ± 0.03 93.6 ± 1.58 

F 2.00 1.90 ± 0.02 23.7 ± 0.36 8.24 ± 0.04 78.2 ± 1.43 

G 4.50 4.44 ± 0.01 23.6 ± 0.26 8.30 ± 0.03 92.6 ± 0.55 

H 2.00 2.15 ± 0.03 23.6 ± 0.23 8.30 ± 0.03 89.4 ± 1.80 

I 3.00 2.88 ± 0.04 23.6 ± 0.26 8.30 ± 0.02 89.0 ± 0.62 

J 0.00 0.06 ± 0.01 23.6 ± 0.26 8.31 ± 0.02 86.7 ± 3.65 

K 5.00 4.94 ± 0.01 23.5 ± 0.26 8.33 ± 0.02 84.0 ± 1.67 

L 3.75 3.72 ± 0.03 23.6 ± 0.23 8.32 ± 0.03 90.2 ± 1.87 

M 4.75 4.79 ± 0.02 23.5 ± 0.26 8.34 ± 0.02 87.7 ± 2.41 

N 2.00 1.99 ± 0.01 23.2 ± 0.23 8.27 ± 0.03 82.2 ± 2.07 

O 4.75 4.72 ± 0.02 23.2 ± 0.23 8.31 ± 0.03 79.2 ± 1.98 

P 3.75 3.66 ± 0.04 23.2 ± 0.23 8.32 ± 0.02 89.8 ± 1.30 

Q 4.50 4.43 ± 0.01 23.1 ± 0.26 8.33 ± 0.02 87.5 ± 0.58 

R 3.00 2.90 ± 0.09 23.2 ± 0.23 8.31 ± 0.02 84.7 ± 5.53 

S 5.00 4.91 ± 0.04 23.1 ± 0.26 8.33 ± 0.02 89.9 ± 0.85 
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Table A1.6 October acute toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and one control) and water chemistry measured at 0, 12 and 

24 h by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean 

Dissolved 

Oxygen 

(%) ± 

SEM 

A 1.80 1.80 ± 0.01 12.4 ± 0.09 8.16 ± 0.03 109.4 ± 9.8 

B 1.00 0.95 ± 0.03 12.3 ± 0.03 8.17 ± 0.08 99.1 ± 2.1 

C 2.00 1.96 ± 0.02 12.2 ± 0.03 8.25 ± 0.01 99.4 ± 1.2 

D 1.30 1.24 ± 0.03 12.2 ± 0.03 8.26 ± 0.01 101.1 ± 0.3 

E 1.30 1.40 ± 0.03 12.1 ± 0.13 8.26 ± 0.03 100.4 ± 0.6 

F 2.30 2.26 ± 0.00 12.1 ± 0.15 8.29 ± 0.02 98.6 ± 1.2 

G 1.30 1.22 ± 0.04 11.5 ± 0.17 8.27 ± 0.02 99.0 ± 1.4 

H 1.80 1.81 ± 0.03 11.5 ± 0.19 8.27 ± 0.02 101.4 ± 1.0 

I 2.00 1.93 ± 0.02 11.4 ± 0.15 8.27 ± 0.02 99.6 ± 1.7 

J 0.00 0.00 ± 0.00 11.4 ± 0.15 8.28 ± 0.01 100.2 ± 1.2 

K 1.00 1.07 ± 0.03 11.5 ± 0.19 8.28 ± 0.02 100.0 ± 1.9 

L 1.60 1.64 ± 0.03 11.5 ± 0.19 8.27 ± 0.02 101.8 ± 0.9 

M 2.30 2.23 ± 0.02 11.4 ± 0.18 8.29 ± 0.01 101.3 ± 0.6 

N 2.00 2.01 ± 0.01 11.6 ± 0.27 8.27 ± 0.00 100.9 ± 0.6 

O 1.60 1.52 ± 0.00 11.5 ± 0.8 8.27 ± 0.02 97.7 ± 1.4 

P 2.30 2.34 ± 0.03 11.6 ± 0.27 8.26 ± 0.02 99.3 ± 1.2 

Q 1.00 1.05 ± 0.03 11.6 ± 0.27 8.25 ± 0.03 100.9 ± 0.5 

R 1.30 1.39 ± 0.05 11.6 ± 0.27 8.27 ± 0.02 100.4 ± 1.2 

S 1.80 1.80 ± 0.04 11.6 ± 0.28 8.27 ± 0.02 91.9 ± 11.0 
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Table A1.7 Acute 6 °C toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and controls) and water chemistry measured at 0, 12 and 24 h 

by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean 

Measured 

[TFM] (mg 

L
-1

) ± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

±SEM 

Mean 

Dissolved 

Oxygen 

(%) ± SEM 

A 2.25  2.25 ± 0.06 6.43 ± 0.52 8.13 ± 0.03 102.7 ± 2.9 

B 0.00  0.00 ± 0.00 6.37 ± 0.48 8.08 ± 0.02 104.7 ± 1.5 

C 1.75  1.81 ± 0.07 6.33 ± 0.57 8.02 ± 0.02 109.0 ± 3.3 

D 2.50  2.64 ± 0.02 6.33 ± 0.62 7.97 ± 0.03 105.7 ± 1.2 

E 2.00  2.01 ± 0.03 6.47 ± 0.53 7.85 ± 0.01 103.6 ± 0.4 

F 1.50  1.54 ± 0.04 6.47 ± 0.48 7.77 ± 0.04 105.3 ± 0.8 

G 1.25  1.26 ± 0.06 6.60 ± 0.50 7.76 ± 0.04 102.2 ± 1.4 

H 2.50  2.53 ± 0.03 7.03 ± 0.09 7.75 ± 0.15 92.2 ± 6.4 

I 1.50  1.49 ± 0.02 7.03 ± 0.07 7.86 ± 0.07 100.9 ± 0.9 

J 2.00  2.04 ± 0.03 6.90 ± 0.06 7.83 ± 0.10 103.3 ± 0.3 

K 1.75  1.74 ± 0.03 6.97 ± 0.03 7.83 ± 0.08 103.8 ± 1.0 

L 1.25  1.16 ± 0.05 6.97 ± 0.09 7.86 ± 0.05 103.1 ± 1.3 

M 0.00  0.00 ± 0.00 7.13 ± 0.09 7.89 ± 0.05 103.5 ± 0.5 

N 2.25  2.30 ± 0.02 7.20 ± 0.06 7.92 ± 0.07 102.6 ± 0.8 

O 0.00  0.00 ± 0.00 5.73 ± 0.03 7.84 ± 0.04 106.4 ± 1.8 

P 1.75  1.76 ± 0.04 5.73 ± 0.07 7.77 ± 0.01 106.9 ± 0.9 

Q 2.50  2.53 ± 0.01 5.70 ± 0.06 7.47 ± 0.23 104.6 ± 1.2 

R 1.25  1.23 ± 0.06 5.80 ± 0.15 7.72 ± 0.00 102.8 ± 0.5 

S 1.50  1.48 ± 0.02 5.83 ± 0.07 7.76 ± 0.00 102.9 ± 0.7 

T 2.25  2.38 ± 0.04 5.83 ± 0.12 7.84 ± 0.00 103.9 ± 1.0 

U 2.00 1.94 ± 0.05 6.03 ± 0.07 7.86 ± 0.02 102.7 ± 1.9 
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Table A1.8 Acute 12 °C toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and controls) and water chemistry measured at 0, 12 and 24 h 

by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean Dissolved 

Oxygen (%) ± 

SEM 

A 0.00 0.00 ± 0.00 13.17 ± 0.38 7.97 ± 0.05 103.5 ± 2.6 

B 1.75 1.69 ± 0.02 13.17 ± 0.43 7.94 ± 0.06 102.1 ± 1.4 

C 2.25 2.25 ± 0.04 13.13 ± 0.45 7.90 ± 0.06 99.2 ± 1.0 

D 1.50 1.55 ± 0.06 13.13 ± 0.49 7.89 ± 0.07 99.0 ± 1.7 

E 2.50 2.47 ± 0.06 13.17 ± 0.47 7.90 ± 0.07 97.7 ± 0.6 

F 2.75 2.84 ± 0.06 13.23 ± 0.44 7.90 ± 0.06 99.0 ± 1.3 

G 2.00 2.05 ± 0.04 13.23 ± 0.44 7.90 ± 0.06 97.4 ± 0.6 

H 2.50 2.55 ± 0.04 11.67 ± 0.22 8.10 ± 0.05 103.8 ± 1.6 

I 0.00 0.00 ± 0.00 11.70 ± 0.25 8.07 ± 0.02 103.3 ± 1.0 

J 1.50 1.50 ± 0.03 11.50 ± 0.26 8.08 ± 0.03 99.0 ± 0.9 

K 1.75 1.75 ± 0.03 11.57 ± 0.23 8.05 ± 0.01 98.6 ± 1.4 

L 2.75 2.78 ± 0.05 11.47 ± 0.23 8.09 ± 0.02 94.2 ± 2.1 

M 2.25 2.27 ± 0.02 11.43 ± 0.24 8.06 ± 0.03 96.2 ± 1.8 

N 2.00 2.06 ± 0.08 11.57 ± 0.27 8.03 ± 0.03 96.4 ± 1.2 

O 2.50 2.54 ± 0.07 12.23 ± 0.18 8.24 ± 0.06 97.8 ± 2.8 

P 2.75 2.78 ± 0.05 12.20 ± 0.17 8.18 ± 0.00 98.4 ± 2.8 

Q 1.50 1.53 ± 0.03 12.17 ± 0.15 8.22 ± 0.10 98.0 ± 0.5 

R 2.00 2.07 ± 0.03 12.10 ± 0.17 8.19 ± 0.08 98.9 ± 0.8 

S 2.25 2.33 ± 0.07 12.13 ± 0.18 8.15 ± 0.11 96.1 ± 0.8 

T  0.00 0.00 ± 0.00 12.17 ± 0.20 8.18 ± 0.07 100.3 ± 0.3 

U 1.75 1.81 ± 0.04 12.17 ± 0.20 8.14 ± 0.07 99.0 ± 1.6 
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Table A1.9 Acute 21 °C toxicity test nominal TFM concentrations (19 aquaria: 6 

concentrations in triplicate and controls) and water chemistry measured at 0, 12 and 24 h 

by aquaria. Data presented as mean ± SEM. 

Aquaria Nominal 

[TFM] 

(mg L
-1

) 

Mean Measured 

[TFM] (mg L
-1

) 

± SEM 

Mean 

Temperature 

(°C) ± SEM 

Mean pH 

± SEM 

Mean 

Dissolved 

Oxygen 

(%) ± SEM 

A 3.00 3.10 ± 0.05 24.47 ± 0.28 8.25 ± 0.10 81.2 ± 2.8  

B 3.75 3.80 ± 0.03 24.43 ± 0.32 8.25 ± 0.06 87.2 ± 3.3 

C 0.00 0.00 ± 0.00 24.47 ± 0.33 8.28 ± 0.06 87.5 ± 0.5 

D 4.00 4.12 ± 0.05 24.47 ± 0.28 8.28 ± 0.06 86.7 ± 1.5 

E 3.50 3.58 ± 0.03 24.47 ± 0.28 8.26 ± 0.06 87.5 ± 1.1 

F 3.25 3.33 ± 0.05 24.43 ± 0.27 8.23 ± 0.05 86.5 ± 1.7 

G 4.25 4.23 ± 0.06 24.43 ± 0.27 8.27 ± 0.03 85.4 ± 2.5 

H 4.25 4.44 ± 0.00 23.63 ± 0.15 8.24 ± 0.11 98.7 ± 8.9 

I 3.00 3.10 ± 0.06 23.70 ± 0.12 8.18 ± 0.07 83.4 ± 2.1 

J 3.50 3.62 ± 0.01 23.70 ± 0.12 8.22 ± 0.03 92.6 ± 0.5 

K 0.00 0.00 ± 0.00 23.67 ± 0.09 8.21 ± 0.04 92.9 ± 2.0 

L 3.25 3.35 ± 0.04 23.67 ± 0.09 8.21 ± 0.03 90.5 ± 2.8 

M 3.75 3.78 ± 0.02 23.67 ± 0.09 8.21 ± 0.02 83.9 ± 1.6 

N 4.00 4.11 ± 0.03 23.67 ± 0.09  8.23 ± 0.01 86.7 ± 1.1 

O 3.00 3.17 ± 0.03 24.00 ± 0.17 8.27 ± 0.02 85.7 ± 1.1 

P 4.00 4.22 ± 0.02 24.03 ± 0.15 8.26 ± 0.01 86.7 ± 1.7 

Q 3.50 3.73 ± 0.04 24.03 ± 0.15 8.27 ± 0.01 91.7 ± 0.9 

R 4.25 4.54 ± 0.05 24.07 ± 0.18 8.27 ± 0.00 90.9 ± 2.5 

S 3.25 3.42 ± 0.03 24.07 ± 0.18 8.26 ± 0.03 86.0 ± 1.5 

T 0.00 0.00 ± 0.00 24.07 ± 0.18 8.25 ± 0.03 88.7 ± 1.0 

U 3.75 3.91 ± 0.01 24.07 ± 0.18 8.25 ± 0.00 89.3 ± 0.5 
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Table A1.10 Summary of larval sea lamprey sample size, length, mass and condition 

factor in the proximate body composition experiments (12 containers, N = 3 – 5 per 

container, no TFM added) by season and temperature. Data presented as mean ± SEM. 

Seasonal proximate body composition experiments were conducted at the ambient stream 

temperature at the time of larval lamprey collection (shown in brackets); temperature 

proximate body composition experiments were conducted in July 2014.  

+
Total sample size (N) varied per container during proximate body composition experiments 

**
Condition factor = (mass (g))/length (mm))

3
 x 10

6
 (Youson et al. 1993) 

 

 

 

 

 

 

 

 

 

 

 

Experiment  Sample 

Size, N
+
 

Mean Length 

(mm) ± SEM 

Mean Mass (g) 

± SEM 

Condition 

Factor
**

 ± SEM 

April (5.6 °C) 38 98 ± 4  1.60 ± 0.20 1.45 ± 0.38 

June (20.6 °C) 44 90 ± 3 1.19 ± 0.12 1.50 ± 0.20 

August (23.5 

°C) 

47 82 ± 2 0.84 ± 0.06 1.48 ± 0.29 

October (11.7 

°C) 

49 82 ± 1 0.78 ± 0.03 1.38 ± 0.17 

6 °C 50 86 ± 2 0.88 ± 0.05 1.30 ± 0.14 

12 °C 49 87 ± 2 0.88 ± 0.05 1.29 ± 0.15 

24 °C 45 83 ± 2 0.76 ± 0.05 1.30 ± 0.12 
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Table A1.11 Larval sea lamprey brain sample size and mass in the proximate body 

composition experiments (12 containers, N = 3 – 5 per container, no TFM added) by 

season and temperature. Data presented as mean ± SEM. Seasonal proximate body 

composition experiments were conducted at the ambient stream temperature at the time 

of larval lamprey collection (shown in brackets); temperature proximate body 

composition experiments were conducted in July 2014. A random subset dissected for 

collection of brain from each experiment.  

Experiment Sample Size, N Mean Brain Mass (mg) ± 

SEM 

April (5.6 °C) 11 3.32 ± 0.44 

June (20.6 °C) 10 3.34 ± 0.50 

August (23.5 °C) 8 2.60 ± 0.26 

October (11.7 °C) 9 2.78 ± 0.62 

6 °C 8 2.45 ± 0.40 

12 °C 9 2.26 ± 0.33 

24 °C 9 2.38 ± 0.35 
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Table A1.12 Larval sea lamprey liver sample size and mass in the proximate body 

composition experiments (12 containers, N = 3 – 5 per container, no TFM added) by 

season and temperature. Data presented as mean ± SEM. Seasonal proximate body 

composition experiments were conducted at the ambient stream temperature at the time 

of larval lamprey collection (shown in brackets); temperature proximate body 

composition experiments were conducted in July 2014. A random subset dissected for 

collection of liver from each experiment. Statistical significance is indicated by letters. 

Experiment  Sample Size, N Mean Liver Mass (mg) ± 

SEM 

April (5.6 °C) 12 24.60 ± 4.49 

June (20.6 °C) 12 13.54 ± 2.17 

August (23.5 °C) 12 7.48 ± 0.74 

October (11.7 °C) 12 9.22 ± 0.99 

6 °C 10 12.60 ± 1.45 

12 °C 11 10.92 ± 1.37 

24 °C 12 7.38 ± 0.94 
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Table A1.13 Summary of proximate body composition (12 containers, N = 3 – 5 per 

container, no TFM added) water chemistry measured at start (0 h) by season and 

temperature. Data presented as mean ± SEM. Seasonal proximate body composition 

experiments were conducted at the ambient stream temperature at the time of larval 

lamprey collection (shown in brackets); temperature proximate body composition 

experiments were conducted in July 2014.  

Experiment Temperature (°C)  pH 
Dissolved Oxygen 

(%) 

April (5.6 °C) 6.1 7 105.96 

June (20.6 °C) 19.7 .9 95.77 

August (23.5 °C) 22.6 .3 90.72 

October (11.7 °C) 11.3 8.3 98.47 

6 °C 7.3 7.8 105.60 

12 °C 11.2 8.0 102.30 

24 °C 22.0 8.2 90.71 
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Figure A1.1 Acute Toxicity Testing of TFM.    

The acute toxicity (12 h LC50 and the MLC) of TFM to larval sea lamprey was 

determined using static exposure systems comprising glass aquaria (18 L) filled with 

aerated Lake Huron water (16 L), to which the appropriate amounts of TFM were added.  
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Figure A1.2 Solid phase extraction (SPE)  

Three solid phase extractions were performed on sea lamprey tissues to determine TFM 

and TFM-glucuronide concentrations. 
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Shaker @ 499 for 10 mins 
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Add sample to column and collect in new 50 

Pellet 
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~ 300 mg 

ground tissue 
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tube 
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N2 Evaporate in 55°C H2O Bath  

(until ~ 4.4 ml left) 

Adjust sample pH to 9.5 with 1 N NaOH  

(~ 5.5 - 17.5 ul)  

 

Condition column with 10 ml pure methanol 

and let it go to waste 

Condition column with 10 ml pH 9.5 water 

and let it go to waste 

Add sample to column and collect in new 15 

ml T.T. 

Elute original T.T. with 2.5 ml 95 % pH 9.5 

water and go to sample 

Elute column with 1 ml 95 % pH 9.5 water   

and go to sample (Volf = 7.9 ml) 

N2 Evaporate in 55°C H2O Bath 

(lose ~ 0.175 ml methanol) 

Adjust sample pH to 4.0 with 1 N NaOH  

(~ 5.5 - 17.5 ul)  

 

Condition column with 10 ml pure methanol 

and let it go to waste 

Condition column with 10 ml 24.6 mM 

acetate buffer and let it go to waste 

Add sample to column and let it go to waste 

3RD SPE 

2ND SPE 
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Elute original T.T. with 3 ml 24.6 mM 

acetate buffer and go to waste 

Elute column with 3 ml 24.6 mM acetate 

buffer and go to waste 

Elute TFM-glucuronide with 2 6ml portions 

of 60% 24.6 mM acetate buffer: methanol 

into new labelled 10 ml T.T. 

 

Cap and Remove T.T. Add new T.T. to collect TFM 

N2 Evaporate in 55°C H2O Bath 

(until ~ 6 ml is left) 

 

(lose ~ 0.175 ml methanol) 

 

Add 1 ml of β-glucuronidase solution to 

sample 

 

(lose ~ 0.175 ml methanol) 

 

Incubate ~ 18-h in mixer @ 35°C H2O Bath 

 

 
Adjust pH between 2.5-3 with 0.6 N HCl 

(~190 ul lamprey, 300 ul trout) 

Elute TFM with 3 2 ml portions of 75% 

methanol into 8 ml T.T.   

N2 Evaporate in 55°C H2O Bath 

(until ~ 1.5 ml left) 

Add 0.5 ml of 40 mM borate buffer 

 

 

Adjust volf to 2.0 ml using E-pure  

 

 

HPLC  
 

 Condition column with 10 ml pure methanol 

and let it go to waste 

Condition column with 10 ml 4.92 mM 

acetate buffer and go to waste 

Add sample to column and let it go to waste 

Elute original T.T. with 3 ml 4.92 mM 

acetate buffer and go to sample 

4TH SPE 

Glucuronide TFM 
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Figure A1.3 TFM Chromatograph  

Quantification of  TFM was done using a Varian HPLC set-up, comprised of a Varian 

ProStar 410 auto-sampler, ProStar 230 solvent delivery module and Prostar 310 UV-VIS 

detector (Varian, Inc., Palo Alto, CA, USA), fitted with a reverse phase HPLC C-18 

column (Kinetex 2.6 μm XB-C18 100A 100 x 3.00 mm; Phenomenex Inc., CA, USA). 

TFM retention time was approximately 4.66 minutes. 
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