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ABSTRACT 

In recent years, climate warming has led to an increase in the severity and 

frequency of naturally occurring fires in boreal ecosystems globally. In 2014, an 

unprecedented 3.4 million hectares of boreal forest burned in the Northwest Territories 

(NWT). While much research has focused on post-fire succession of serotinous tree 

species such as Picea mariana (black spruce) and Pinus banksiana (jack pine), the 

understory community of vascular plants play an important role in ecosystem functioning 

but less is known about the response of this component of the system to changing fire 

regimes. Regeneration strategies such as the ability to resprout from underground 

rhizomes or disperse an abundance of seeds following fire are examples of plant traits 

that are adapted to fire regimes and have supported patterns of early recovery of boreal 

plant communities. Environmental factors such as surficial moisture and soil substrate 

conditions can also impact post-fire community assembly. Vascular plant community 

responses to changing fire severity and frequency will shape patterns of succession; 

understanding changes in these patterns in vascular plant assembly immediately 

following disturbance will enable future predictions to be made regarding forest recovery. 

Understanding the patterns of early recovery of plant communities is of interest both for 

humans and wildlife that depend on self-recovery of vegetation in this region.  

During the summer of 2015, information was collected on the presence of plant 

species and their regeneration modes in 212 sample plots throughout the NWT. Our 

objectives were to 1) quantify the role of environmental variables and fire characteristics 

on taxa richness and regeneration traits following an extreme wildfire event; and 2) 
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characterize and investigate vascular plant species composition immediately following 

fire, with a view to understanding the environmental variables and plant traits underlying 

post-fire assembly processes.  

We found that plant community recovery in the southern boreal forest of the NWT 

is rapid and dominated primarily by rhizomatic species present pre-fire. Our findings 

suggest that environmental characteristics influenced patterns of community assembly 

across multiple spatial scales. Poorly drained areas with greater surficial moisture and 

associated soil characteristics strongly supported self-replacement of plant communities.  
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 The boreal forest 

The boreal forest stretches across the northern circumpolar regions of Alaska, 

much of northern Canada, Russia, Scandinavia as well as parts of Scotland (NRC 2005). 

For the most part, the boreal forest exists above 50° north latitude and is part of the biome 

also known as Taiga (NRC 2005). Climate in the Taiga region tends to have long, 

extremely cold winters and short, warm summers, resulting in a brief growing season; 

there are also strong seasonal fluctuations in air temperature and day length (Bonan and 

Shugart 1989). Permafrost (ground that stays below 0°C for two or more consecutive 

years; Muller 1947) distribution is also tightly linked to climate and is an important 

control on subsurface characteristics such as soil temperature, moisture, subsurface 

hydrology, biogeochemistry, rooting zone depth and microtopography (Woo 1992). This 

vast expanse of woodland comprises one third of the world’s total forested landscape 

covering approximately 1.3 to 1.5 million square kilometres (Dudley et al. 1998). 

Undisturbed boreal forest ecosystems are important global carbon sinks containing more 

than 30% of all carbon present in the terrestrial ecosystems (Kasischke 2000).  

Canada is home to 28% of the world’s boreal forests (NRC 2017) and the wildlife 

that inhabit this ecosystem. It is important to the Canadian economy and livelihoods of 

many northern Canadian communities (Dudley et al. 1998; Nelson et al. 2008). In 

Canada, the boreal forest is dominated by closed and open canopy coniferous forests of 

Picea spp. (spruce) and Pinus spp. (pine). The boreal forest has low diversity despite its 

size, which can be attributed to harsh climatic conditions and limited solar energy driven 
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by its northern distribution; the boreal forest supports approximately 300 vascular plant 

species from upwards of 47 families in North America (La Roi 1967). The boreal 

forest’s composition is generally described by the dominance of conifers underlain by 

low shrubs, herbaceous vegetation, mosses and lichens. Many species of vascular plants 

are common across all areas of the boreal forest, for example, while shrubs and trees are 

generally of the same genera. In the North American boreal forest, Pinus banksiana 

Lamb. (jack pine) and Picea mariana (Mill) BSP (black spruce) (Brouillet et al. 2013) 

are the two most widespread and dominant coniferous species (Arseneault 2001); other 

common dominant conifers include Picea glauca (Moench) Voss (white spruce) and 

Larix laricina (Du Roi) K. Koch (tamarack). Common deciduous trees and shrubs 

include Betula papyrifera Marsh. (paper birch), Betula neoalaskana Sargent (Alaska 

paper birch), Populus tremuloides Michx (trembling aspen), Populus balsamifera 

Linnaeus (balsam poplar), Betula glandulosa (glandular birch) and many species of Salix 

(willow). Understory shrubs common to this area include Vaccinium vitis-idaea 

(lingonberry), Vaccinium uliginosum (bog bilberry), Arctostaphylos uva-ursi (bear berry), 

Ledum groenlandicum (Labrador tea) and Rosa acicularis (prickly rose). Common herbs 

include Rubus chamaemorus (cloud berry), Linnaea borealis (twinflower), Cornus 

canadensis (bunchberry) and Hedysarum alpinum (alpine hedysarum).  

Although dominant trees and stand types are a main focus of ecological research 

in the boreal forest, an important component of forest biodiversity is the community of 

understory plants, which have a strong influence on the overall forest structure and 

contribute immensely to forest ecosystem functioning (Nilsson and Wardle 2005). The 

diversity of plants in the understory for example, can increase total resource uptake by 
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plants and subsequently lower nutrient loss within an ecosystem (Hooper and Vitousek 

1997). Many environmental characteristics present in stands such as the presence of 

permafrost and cold, acidic soil are moderated in part by the understory plant species 

composition (Bonan 1992; Fisher et al. 2016) further emphasizing the importance of this 

component of the ecosystem. Although diversity of the understory community in the 

boreal forest is considered low in comparison to more temperate and tropical forests, 

there is still much to be understood concerning the life history and phenology of many 

boreal understory species. A deeper understanding of boreal community dynamics is 

required to address concerns for biodiversity conservation and forest management in a 

changing climate. Ecosystem services such as subsistence for human-wellbeing in the 

form of edible plants and unique habitats that support wildlife will be sensitive to 

variation in understory species composition. Such understanding would also enable 

predictions of future forest changes that are important to wildlife through improved 

understanding of changing habitat conditions. 

1.2 Wildfire in the boreal forest 

The boreal forest is adapted to natural disturbances such as pest outbreaks, 

drought and wind damage, which naturally range in frequency and scale; these non-stand 

replacing disturbances help to maintain heterogeneity by creating a mosaic of stands that 

are perpetually in different stages of regeneration across the landscape (Antos and Parish 

2002; Burton et al. 2008). The major driver of ecological processes within the boreal 

forest however, is wildfire, which is a stand replacing disturbance mechanism that 

ultimately dictates dominant patterns of succession and tree species distribution; 

dominant patterns of tree distribution can further dictate regional and local fire regimes 
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depending on the flammability of the successional vegetation (Payette 1992; Cumming 

2001; Stocks et al. 2003; Keeley 2009). From an ecological perspective, wildfires are 

considered beneficial for the ecosystem as they renew the forest by aiding in the release 

of nutrients that support plant growth (MacLean et al. 1983), destroy pests and diseased 

trees (McCullough et al. 1998) and help to open the canopy enhancing penetration of 

sunlight to the forest floor (Hart and Chen 2006). Large expanses of even-aged stands 

throughout the boreal biome provides evidence of periodic wildfire events (Payette 1992; 

Stocks et al. 2003).  

Combined factors characterizing an ecosystem’s fire history in a given area are 

collectively known as the fire regime (Heinselman 1981). The fire regime comprises the 

frequency (number of fires per unit time in a given area; Payette 1992), intensity (heat 

energy release), size, pattern and severity (combustion of above and belowground 

biomass during fire; Van Wagner 1983) of a particular fire. The general temporal and 

spatial patterns of fire behaviour and effects over multiple fire cycles (decades to 

centuries) determine the fire regime in a given ecosystem. Fire regime and behaviour vary 

depending on factors such as vegetation type, fuel structure, stand age and successional 

stage (i.e., present age-class structure of the forest is particularly important to 

understanding its past fire history for example; Van Wagner 1978). Climate and weather 

patterns, topography and landscape patterns (such as temporal and spatial variation in 

habitat type, soil type, etc.) also influence fire behaviour (Taylor and Skinner 2003; 

Wotton et al. 2010).  



5 
 

Forest fire regimes in Canada differ across the country; the eastern boreal forests, 

for example, tend to be characterized by longer fire intervals (~150 years) and lower 

severity. In western Canada, fires are often extensive in size, severe (Stocks et al. 2003), 

and more frequent (~50-150 years) (Payette 1992; Bergeron and Dansereau 1993; Larsen 

1997; Chipman and Johnson 2002). An examination of the spatial distribution of all 

Canadian fires >200 hectares in the 1980s showed that by far the greatest area burned 

was in the boreal region of west-central Canada (Stocks et al. 1996). Furthermore, the 

Taiga Plains and Taiga Shield Ecozones in northwestern Canada experience some of the 

highest annual rates of burn relative to the area of forest available, in comparison to other 

ecozones across Canada (Burton et al. 2008). These higher burn rates can be attributed to 

a combination of fire-prone ecosystems, extreme fire weather, lightning activity and 

reduced levels of protection throughout the region (Stocks et al. 1996) due to low human 

population densities.  

Wildfires can also occur throughout the growing season. Following snow-melt in 

spring, for example, fuel types are highly flammable, as deciduous trees have not yet 

flushed and herbaceous ground cover and conifer foliage often has low moisture content, 

resulting in an active if short-lived ‘spring fire season’ (Lewis and Ferguson 1988; 

Kasischke and Turetsky 2006). Later in the growing season, deep moss layers and peat 

soils common in P. mariana stands can become dry and highly flammable during 

summer droughts as well as during the early fall as vegetation becomes dormant, 

resulting in severe crown fires (Payette 1992). Furthermore, depth to the water table, 

which is also important for the preservation of deep organic layers (Harden et al. 2006) 

lowers through the growing season, likely leading to a combination of longer droughts, 
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increased availability of fuel (Kasischke and Turetsky 2006) and greater potential for 

smouldering combustion (Van Wagner 1987; Peter 1992; Miyanishi and Johnson 2002). 

The rate of combustion and overall fire behaviour is influenced heavily by the 

chemical and physical characteristics of the vegetation present (Ward 2001), with high 

moisture content within fuels impeding the rate of combustion (Nelson 2001), indicating 

a strong influence of vegetation on fire regime. Fuels are often classified as ground fuels 

(highly decomposed and partially decomposed organic material in contact with the 

inorganic layer), surface fuels (recently fallen and partially decomposed twigs and etc.) 

and crown fuels (canopies of mostly coniferous trees) (Payette 1992; Nelson 2001). 

Ladder fuels such as saplings, arboreal lichens and dead lower branches within conifer 

forests enable vertical movement of fire from surface fuels into the canopy (Payette 

1992). Picea mariana stands typically experience high severity crown fires that result in 

complete crown mortality, but often vary in severity at the soil level (Miyanishi and 

Johnson 2002). The spread of fire is determined mainly by factors such as weather 

(including wind direction and speed), topography, fuel quantity and fuel moisture content 

(Nelson 2001). There is usually considerable interest in the flaming front or zones of fire 

where the combustion is primarily flaming. Smouldering combustion is also common in 

large litter layers of the boreal forest under limited oxygen conditions (Weber 2001) and 

limited fuel moisture (Peter 1992). Smouldering combustion can lead to substantial 

combustion of biomass after the flaming front has passed with implications for 

regeneration processes. 
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1.3 Community assembly: plant traits, fire and the environment  

The structure of the boreal forest can be thought of as a mosaic of stands in 

various stages of growth and recovery following disturbance; this process of change in 

the structure and composition of a community is known as succession. Species in the 

boreal forest are adapted to regular wildfire; successional patterns are determined by 

species adaptations to various fire regimes (Keeley et al. 2011). In warmer, conifer 

dominated forests for example, thick bark and self-pruning strategies (the bottom 

branches of coniferous trees are dropped), are adaptations that ensure less impact on 

individuals of that species in different fire regimes. Regeneration strategies are an 

example of plant traits that can be adapted to certain fire regimes such as seeds that 

germinate in response to smoke and heat (Bond and van Wilgen 1996), providing a 

fitness advantage to plants that possess those traits in fire-prone environments (Keeley et 

al. 2011). 

In the much colder environment of high-latitude boreal forests, growth is limited, 

stand replacing fires are common and species adaptations to fire differ from that of more 

southerly forested ecosystems. Dominant tree species in the boreal zone of northern 

Canada such as P. banksiana and P. mariana, have serotinous cones (canopy stored seeds 

depend on heat-induced release); therefore, the cones are able to withstand heat and 

provide an abundant seed source immediately following fire if they are not completely 

burned. The serotinous characteristics of these tree species can lead to the sustained 

presence of serotinous species over generations of disturbances as these species are able 

to self-replace throughout disturbance cycles (Lamont and Enright 2000; Buma et al. 

2013).  
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Additionally, some plants have the ability to resprout from belowground 

vegetative structures that remain protected in the soil. Likewise, the establishment of 

deep seedbanks that persist within the soil and germinate following fire is another 

example of regeneration strategies that ensure high plant and propagule survival rates 

following fire in the boreal (Rowe 1983; Wang and Kemball 2005). Residual organisms 

and plant structures that are available and successful following past disturbances provide 

a biological legacy that ensures successful regeneration through future disturbances 

(Franklin et al. 2000; Johnstone et al. 2016). In general, there are two common post-fire 

regeneration strategies that plants use in the boreal forest: 1) regrowth from above or 

belowground vegetative structures such as woody stems or rhizomes (underground stems 

that grow horizontally, putting out lateral shoots and adventitious roots at intervals) and 

2) seed dispersal (movement of seeds away from the parent plant (Lyon and Stickney 

1976). In the boreal forest rhizomes are generally able to survive high temperatures from 

fire (Granström and Schimmel 1993; Schimmel and Granström 1996). Off-site seed-

dispersal or on-site seeds can survive the disturbance in the form of canopy seedbanks 

(serotinous conifers) or soil seedbanks as well.  

Dispersed seed from plants can also form dormant seedbanks that reappear 

following disturbance (Bond and van Wilgen 1996); species with thick, hard seed coats 

such as Rosa spp. and Corydalis spp. are known to maintain persistent, fire dependent 

seed pools in Alaska, for example (Viereck 1973). Corydalis sempervirens has been 

known to maintain viable seedbanks for up to eighty years (Fyles 1989) and have seeds 

that are dispersed within proximity to the parent plant by ants (Sprengelmeyer and 

Rebertus 2015). Other early successional species that can be represented in persistent 
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seedbanks and are known to germinate following fire include Geranium bicknellii 

(northern cranesbill) and Dracocephalum parviflorum (Lyon and Stickney 1976). The 

mechanism by which seedbanks are germinated is not always clear; Geranium bicknellii 

has been shown to require exposure to high temperatures for dormancy release and likely 

relies on fire to do so (Granström and Schimmel 1993). Other studies on post-fire 

seedbank germination suggest heat, smoke and light trigger germination (or a 

combination of these) depending on the species (Abrams and Dickmann 1982; Archibold 

1989; Granström and Schimmel 1993; Read et al. 2000) 

Plants are not always limited by one regeneration mode, however. Early post-fire 

plant communities are often suspected to be a combination of species that have survived 

the fire, species that have re-colonised from undisturbed forest, or both (Bond and van 

Wilgen 1996). Examples of variation in regeneration modes among boreal plants include 

common resprouters such as Vaccinium vitis-idaea and Ledum groenlandicum. Trees and 

shrubs such as P. tremuloides, Alnus spp. and B. papyrifera can proliferate successfully 

from underground structures that survive fire, but also from small, light-weight, wind-

dispersed seeds capable of traveling over a kilometre from their source (Dyrness et al. 

1986; Zasada 1986). It is expected that these multi-modal species have the potential to be 

successful under varying disturbance conditions. For example, the graminoid 

Calamagrostis canadensis (Michx.) PB (bluegrass), is one of the most abundant post-fire 

herbaceous species owing to quick-growing underground root systems coupled with 

successful seed dispersal by wind (Dyrness et al. 1986). Studies on the biology of 

Epilobium angustifolium (fireweed), a successful coloniser following fire, have shown 

100% seed viability of samples taken in Quebec and grown in warm, moist conditions in 
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the laboratory (Jobidon 1968), and that a single plant may yield as many as 80 000 seeds 

per year (Salisbury 1962). The prolific nature of this species, supplemented with its 

ability to produce rhizomatically, makes its post-fire success inevitable. Since many 

studies focus on forest recovery in terms of canopy trees, further understanding of the 

drivers of regeneration strategies of understory plants in varying fire conditions and 

environmental conditions is required. Understory vegetation exerts strong controls on 

aboveground and belowground processes such as patterns of succession and the 

proportion of a stand’s net primary productivity (Chapin 1983). Furthermore, understory 

vegetation accounts for the species diversity and subsequent functional diversity within 

stands (Roberts 2004, Nilsson and Wardle 2005). Predicting ecological responses of early 

recovering vascular plants, including both understory and tree species, will help 

determine forest recovery and the subsequent functioning of future forests.  

Overall, regeneration strategies have been selected for by past fire conditions, 

ultimately facilitating the resilience of particular understory communities and enabling 

future generations to thrive following fire (Keeley et al. 2011). This resilience is a 

component of the ecosystem’s resilience or the ability for a system to persist and absorb 

change and disturbance while maintaining relationships between populations or system 

variables (Holling 1973). It is thought that the ability of plants to re-establish post-fire is 

mainly influenced by the amount of organic soil that is consumed during fire, and the 

extent of damage or loss of belowground structures (Schimmel and Granström 1996). For 

slow growing, rhizomatic regenerators, future generations do particularly well in areas 

where organic soil is left substantially intact (i.e., following low severity fires) or where 

rooting depths extend below the depth of burn (Schimmel and Granström 1996). The 
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resilience of the understory community is not solely dependent on fire behaviour 

however. The physical environment is tightly coupled with vegetation composition and 

will, therefore, play a role in both fire behaviour and post-fire community assembly. 

Pre-fire plant community structure is governed heavily by soil conditions in 

northern boreal forests, where organic soil layers are particularly important for 

determining abiotic conditions that contribute to vegetation, decomposition and carbon 

balance across these landscapes (Harden et al. 2006; Fisher et al. 2016). Variation in 

species composition across interior Alaska has been attributed in part to site drainage in 

relation to topography, for example (Hollingsworth et al. 2006). Indeed, in some cases, 

pre-fire site characteristics and environmental gradients are more important than fire 

severity in determining patterns of post-fire community assembly (Chipman and Johnson 

2002; Hart and Chen 2006; Boiffin et al. 2015). Furthermore, resprouter dominance has 

been known to increase along moisture gradients (Smith et al. 1993), and diversity and 

species richness have been found to increase downslope where moisture and nutrients are 

suspected to be more available (Chipman and Johnson 2002). There is a need to develop 

our understanding of the role of fire characteristics, environmental conditions and the 

regenerative abilities of the understory communities to better predict species composition 

and vegetative responses in varying fire regimes. 

1.4 Environmental characteristics, stand type and fire behaviour 

Environmental gradients across the landscape are often reflected in dominant 

stand type, which is strongly influenced by soil conditions in particular (Fosberg et al. 

1996). Canadian boreal forests demonstrate substantial differences in soil conditions and 
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associated forest type; organic soil depths in unburned P. mariana stands are often much 

greater than P. banksiana-dominated stands, for example (Letang and de Groot 2012; 

Walker et al. 2017 in press). Soil temperature and moisture conditions are affected by 

organic soil depths and soil bulk density, further influencing stand composition through 

seedbed conditions (Letang and de Groot 2012).  

Many factors contribute to the accumulation of organic soil depths and the P. 

mariana stands that are supported by them; these factors include the presence or absence 

of permafrost, low decomposition rates, cold soil temperatures and a surplus of moisture 

(van Cleve et al. 1983; Bonan and Shugart 1989). Organic layer accumulation leads to a 

rise in the water table, subsequently creating high soil moisture conditions in Sphagnum-

rich, P. mariana stands in particular (Fenton et al. 2006). Low-lying, poorly drained areas 

with P. mariana dominance also support understory species that grow well in wet, 

nutrient poor, acidic conditions such as Ledum groenlandicum and Equisetum spp. 

(horsetails). 

Pinus banksiana-dominated stands on the other hand, are moisture limited, with 

shallow organic soil depths and low fuel loads (Letang and de Groot 2012). Pinus 

banksiana-dominated stands and their associated understory species perform well in well-

drained areas on ridgetops and upland sites with course, gravelly to sandy soils (Carroll 

and Bliss 1982; Pinno and Errington 2016; Day et al. 2017). Species common in drier 

substrates include the shrub Rosa acicularis and the herb Linnaea borealis.  

It is likely then, that stand type combined with the environmental conditions 

conducive to stand type, will influence fire behaviour and vegetation. In P. mariana-
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dominated stands in particular, the combination of deep organic soils that tend to be cold 

and maintain high moisture levels year-round (as a result of high water tables) have the 

potential to resist fire and maintain permafrost, for example (Harden et al. 2006). It is 

safe to say that moisture holding capacity of soils and the associated water table depth are 

important in determining how a fire burns and how a community returns. The deeper the 

organic layers, the more likely that the legacies of thermal and nutrient cycling governed 

by fire and revegetation will be maintained, for example (Harden et al. 2006). 

1.5 Boreal forest and climate change 

Over the past century, the boreal forest has experienced climate change (IPCC 

2013), exemplified by warming trends that have been most apparent. In the past 75 years, 

northwestern Canada has warmed at 2-3 times the global average (Zhang et al. 2000). 

Temperatures are projected to rise by an additional 2–11°C by 2100 (IPCC 2013). The 

impacts of such rapid warming are still not completely known. Higher latitudes are 

particularly sensitive to warming temperatures given the effects of warming on 

hydrological processes such as snow melt, permafrost thaw, precipitation and 

evapotranspiration in the boreal forest (Settele et al. 2014). Evidence of rising 

temperatures, increased precipitation (Chapin et al. 2000), increased evapotranspiration 

and subsequent decreased fuel moisture have been documented (Wotton et al. 2010).  

Increased evapotranspiration has led to drought stress in some areas (Stocks et al. 2000), 

including evidence of drought stress in trees (Barber et al. 2000; Walker et al. 2015).  

Weather conditions conducive to fire such as warming temperatures, increased 

drought conditions and increased fire ignitions from lightning have already brought about 
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variation in the temporal and spatial scales of naturally occurring wildfire in recent years 

(Soja et al. 2007). In the past 50 years, for example, there has been a strong increase in 

the annual area burned in western North America (Kasischke et al. 1995; Gillett et al. 

2004; Soja et al. 2007), which has been attributed to climate warming (Stocks et al. 2000; 

Soja et al. 2007; Macias Fauria and Johnson 2008). Continued altered fire regime and 

behaviour in response to changing climate and weather are predicted in the future (Amiro 

et al. 2008, DeGroot et al. 2013), including increases in area burned and fire frequency 

(Kasischke and Turetsky 2006; Krawchuk et al. 2009). Increases in the length of fire 

seasons are also predicted (Wotton and Flannigan 1993; Wotton et al. 2017). The trend 

towards larger areas of the boreal forest burning since the 1970s (Soja et al. 2007) has 

recently been exemplified in fire seasons in western Canada. In the past five years alone, 

we have seen three unprecedented fire years; in 2014, the Northwest Territories 

experienced an extremely large fire year with approximately 3.4 million hectares burned. 

Similarly, Saskatchewan saw 1.7 million hectares burned in 2015 (CIFFC 2014) and most 

recently, British Columbia surpassed provincial historical records in 2017 (BC Wildfire 

Service). Combined, this evidence points to the fact that the fire regime is changing 

necessitating improved understanding of the response of boreal vegetation to these 

changes.  

In relation to vegetation, changes in fire characteristics such as severity and 

frequency can affect community regeneration patterns and influence the future 

composition of the boreal forest (Hollingsworth et al. 2006; Johnstone and Chapin 

2006a). Severe fires in Alaska, for example, have shifted P. mariana-dominated stands 

toward dominance by deciduous broadleaf species; severe fires have exposed mineral soil 
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seedbeds upon which small-seeded, wind-dispersed species such as P. tremuloides can 

readily establish and out-compete slower-growing P. mariana (Johnstone and Chapin 

2006b) Evidence increasingly points to the early establishment of the long-term 

understory community in the first few years following wildfire, therefore, fire 

characteristics and environmental conditions for early colonisers immediately following a 

fire are thought to determine the successional trajectory of the stands (Johnstone and 

Chapin 2006a; Johnstone, Hollingsworth, et al. 2010; Hollingsworth et al. 2013; Day et 

al. 2017). Knowledge of these changes in varying stand conditions involving P. 

banksiana, P. mariana and a mixture of the two is not well understood, especially as 

climate warming continues and fire regimes continue to change. 

Variable fire characteristics such as fire severity and frequency, can affect post-

fire regeneration as a function of mode of regeneration (Rowe 1983; Schimmel and 

Granström 1996; Wang and Kemball 2005; Johnstone, Hollingsworth, et al. 2010; 

Hollingsworth et al. 2013). Since rooting depths and mode of regeneration differ among 

species, the depth of consumption of the organic soil layer will impact the way that plants 

regenerate and the assemblage of species that return following fire (Flinn and Wein 1977; 

Schimmel and Granström 1996). Plants that rely on re-sprouting from underground will 

have less success in environments where organic layer thickness is severely reduced by 

combustion (Schimmel and Granström 1996; Johnstone, Chapin, et al. 2010) since many 

species rooting systems are within the organic layers (Flinn and Wein 1977, see Chapter 

3, Figure 3.2). Vaccinium vitis-idaea for example, has a surficial rooting system 

extending only 2-3cm belowground (Schimmel and Granström 1996) while Ledum 

groenlandicum (Labrador tea) rhizomes are found at 15-30cm depth (Dyrness et al. 
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1986). Systematic differences in rooting depth may, therefore, result in differential 

responses of rhizomatous species to the depth of soil burning; deeper root systems, 

especially those at the interface between organic soil and mineral soil would be expected 

to be at an advantage to survive particularly severe fires (Schimmel and Granström 

1996). In Strong and La Roi's study in central Alberta (1983), eight of the eleven 

coniferous stands studied had 50% of root mass within a 15cm zone, the bulk of which 

generally occurred within 5cm of the forest floor, further suggesting the vulnerability of 

many species to soil combustion. On the other hand, a low severity fire in moist organic 

soil may result in limited combustion of surface fuels with little effect on deeply buried 

plant parts, which will promote the regeneration of the pre-fire community (Schimmel 

and Granström 1996).  

Colonisation from seed may be enhanced after relatively deep burning fire, both 

for species with a soil seedbank and those that disperse from off-site seed sources if the 

depth of burn destroys belowground root systems and exposes mineral soil (Bond and 

van Wilgen 1996; Johnstone and Chapin 2006b; Johnstone, Hollingsworth, et al. 2010). 

With very severe burns however, seed banks in the soil may be destroyed allowing for 

dispersers to have better establishment with increasing depth of burn, since dormant seed 

banks are typically concentrated at the interface of organic and mineral soils (Schimmel 

and Granström 1996). It should be noted, however, that some species may be tolerant of 

high temperatures associated with fire. Indeed, Rubus idaeus, Geranium bicknellii and 

Galium triflorum were found to be significant indicator species in intensely burned 

patches in a P. tremuloides dominated forest in Alberta; the author attributed their 

regeneration from seedbanks (Lee 2004), suggesting that some seedbanks are capable of 
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regenerating following severe fires given their tolerance to high heat or heat and smoke 

serve to enhance germination (Bond and van Wilgen 1996). Geranium bicknellii has been 

shown to require high temperatures for dormancy release as mentioned earlier 

(Granström and Schimmel 1993). Literature on the specifics of boreal seedbank biology 

is limited, however; further understanding of how individual species are successful 

components of the understory following fire is needed.  

Similarly, more frequent fires may alter the potential for seedbanks to re-establish 

successfully over time as seeds are depleted from the seedbank and not given sufficient 

time to re-establish. The same may be said about the ability for underground, rhizomatic 

tissue to be depleted with frequent fires as moist, organic soil and the community 

supported by this soil takes time to accumulate.  

Ultimately, a complex feedback between climate, soil interactions, forest type and 

understory composition controls overall ecosystem functioning in the boreal forest. 

Patterns of forest cover have shown to strongly reflect the interactions between 

disturbance regime and species regenerative potential (Payette 1992; Suffling 1995). The 

impacts of species-level losses or changes within an ecosystem through wildfire may 

have far-reaching impacts that alter forest ecosystem functioning (Weber and Stocks 

1998; Nilsson and Wardle 2005). The deciduous trajectory in parts of Alaska is a 

dramatic alternative to the conifer-dominated boreal forests because of changes in litter 

production, decomposition, lower organic soil accumulation and warmer soils that 

characterize deciduous forests (Johnstone, Chapin, et al. 2010). Furthermore, the high 

moisture content in deciduous forest fuels will reduce the amount of crown fire and total 
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fuel consumption during wildfire events, although the degree to which future boreal fuel 

load and fuel type will change is still unknown (de Groot et al. 2013). Lost or altered 

forest cover and associated understory vegetation from changing fire regimes can hinder 

carbon sequestration in both trees and forest soils and can affect the capacity of the boreal 

forest to function as a carbon sink (Kasischke 2000). 

1.6 Importance and rationale of research 

Changes to current or future fire regimes can be expected to have pronounced 

effects on boreal plant species composition with implications for boreal forest functioning 

(Weber and Stocks 1998; Burton et al. 2008). Given the vast expanse of the boreal forest 

as well as its importance to ecological processes at local and global scales, understanding 

the future composition and function of this ecosystem is essential in light of biodiversity 

conservation, forest management and community adaptation. The unprecedented fire year 

in 2014 in the NWT provided a timely opportunity to examine drivers of understory 

species richness, community assembly and plant species composition following an 

extensive disturbance in an understudied part of the boreal forest of western Canada.  

By linking species traits with composition and environment (including fire 

characteristics) this comprehensive approach draws important conclusions on the 

ecological processes that drive community assembly following extensive wildfire. This 

work helps build upon monitoring efforts addressing the recovery of high latitude forests 

following fire, enabling decisions to be made regarding land use planning for humans and 

wildlife, and resource development in fire-dominated ecosystems where unprecedented 

fire regime changes are predicted.  
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1.7 Objectives and hypotheses  

In this thesis, my goals were to: (1) quantify the role of environmental variables 

and the severity and frequency of fire on vascular plant taxa richness and regeneration 

traits following an extreme wildfire event; and (2) characterize and investigate vascular 

plant species composition immediately following fire, with a view to understanding the 

environmental variables and plant traits underlying post-fire assembly processes. 

I hypothesized that taxa richness and the potential for resprouting would decline 

with increased severity and frequency because of limitations on regeneration from 

underground rhizomes in heavily consumed organic soils and in young stands that have 

not had the chance to re-establish understory communities or organic soil depths 

following the last disturbance. In more severe burns, species with multiple regeneration 

modes such as those capable of aerially seeding and storing seedbanks would be more 

likely to establish. However, in the most severe fires it was expected that aerial dispersers 

would be the most successful.  

1.8 Thesis Overview 

The first chapter of this thesis is a general introduction to the boreal forest and the 

role of wildfire as the main agent of disturbance throughout the boreal forest ecosystem. 

The chapter then investigates how vascular plant communities are able to re-establish 

following wildfire, and the role of environmental characteristics in governing vegetation 

and fire characteristics. The impacts of climate change on the natural fire regime is then 

investigated. The chapter concludes with potential consequences of a changing fire 
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regime on the recovery of the vascular plant community and the long-term implications 

of these changes. 

The second chapter has been formatted in preparation for submission as a 

manuscript to a scientific journal. This manuscript is co-authored with Nicola Day, 

Xanthe Walker, Jill Johnstone, Steve Cumming, Michelle Mack, Merritt Turetsky and my 

supervisor Jennifer Baltzer. My role in this research project included leading field data 

collection and data processing such as identifying species in the field and mounting plant 

specimens for the Wilfrid Laurier Herbarium.  My role also extended to leading data 

analyses and writing and revising the thesis. The manuscript outlines the immediate 

drivers of understory community assembly following extensive wildfires spanning two 

ecozones in the NWT. We found a strong environmental legacy associated with surficial 

moisture and soil characteristics to be driving post-fire taxa richness and community 

assembly. This environmental legacy enables the biological legacy of plant traits that 

drive compositional differences following fire across both ecozones and stand types.  

The third and final chapter of this thesis discusses the contributions of this 

research to monitoring efforts addressing the recovery of high latitude forests following 

fire. I investigate how our findings compare to other fire ecology studies looking at 

drivers of post-fire vegetation recovery in boreal forests around the world and suggest 

further rationale behind the resilience we are seeing in these forests in response to a 

severe wildfire event. To this end, I introduce some novel rooting depth data as a case 

study to highlight the environmental variability and subsequent vegetation legacy across 

the landscape. The chapter also touches upon the inherent relationships between people 
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and the environment in the NWT and the role of fire in their livelihood and future. The 

chapter points out the integrative approach of this project and potential future research 

directions. Lastly, the chapter concludes with a summary of the thesis.  
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CHAPTER 2. ENVIRONMENTAL LEGACIES DRIVE                                   

POST-FIRE VASCULAR PLANT RECOVERY IN                      

SUB-ARCTIC BOREAL FOREST 

 

2.1 Abstract 

The boreal forest is adapted to regular wildfire with fire characteristics playing a 

key role in post-fire plant community assembly. The frequency and severity of fire 

provides a filter for successful plant regeneration strategies, such as the ability to resprout 

from belowground tissue. Understanding how fire characteristics and other environmental 

variables impact the mechanisms of vascular plant establishment may enable us to predict 

plant regeneration responses to changing fire regimes in the face of climate change. This 

is important given that the understory community of vascular plants plays an important 

role in ecosystem function.  In 2014, an unprecedented 3.4M ha of boreal forest burned in 

the Northwest Territories (NWT). The 2014 fire provided an opportunity to investigate 

the drivers of vascular plant taxa richness, community assembly and plant species 

composition using taxonomic and trait-based methods. We established 212 permanent 

plots across the Taiga Plains and Taiga Shield Ecozones. A range of abiotic and biotic 

variables were measured, including depth of organic layer, fire severity and pre-fire stand 

composition throughout conifer-dominated stands. Species presence and modes of 

regeneration of vascular species were recorded. Our generalized findings demonstrated 

that belowground regeneration of the plant community was most common across both 

ecozones. Poorly drained areas with greater surficial moisture and associated soil 

characteristics enabled a proportionally greater representation of species regenerating 

from rhizomes across multiple spatial scales. Lower severity fires resulted in greater post-
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fire taxa richness; post-fire plant communities following more severe fires had 

proportionally greater representation of species regenerating via seed dispersal and seed 

bank. Our findings suggest the vascular plant community composition in the southern 

boreal forest of the NWT demonstrates self-recovery following fire disturbance, as a 

result of moisture conditions and soil substrate legacy effects.  
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2.2 Introduction 

Stand-replacing wildfires are a common form of disturbance in the western boreal 

forest of North America with average fire return intervals ranging between 50-150 years 

(Payette 1992; Bergeron and Dansereau 1993; Larsen 1997). The boreal forest is highly 

resilient to this disturbance agent, having the ability to reorganise into the same structure 

and function following fire (Holling 1973; Gunderson 2000), with stand self-replacement 

a common successional trajectory (Johnstone and Chapin 2006a). However, warming 

trends have been pronounced in this region in recent decades at a rate that is 2-3 times the 

global average (Zhang et al. 2000). This has led to an increase in fire frequency and 

severity (Kasischke and Turetsky 2006), a pattern that is predicted to continue in the 

future (Amiro et al. 2009; de Groot et al. 2013; Wotton et al. 2017). Such changes are 

expected to impact understory community assembly and vegetation patterns 

(Hollingsworth et al. 2013). Greater understanding of how vascular plant communities 

assemble and are maintained at local and landscape scales is necessary to predict changes 

to ecosystem successional patterns and functional diversity with changing fire regimes. 

Plant traits are an important component determining the rate and trajectory of 

post-fire plant community assembly, with different fire characteristics selecting for 

different regeneration strategies (Keeley et al. 2011; Hollingsworth et al. 2013). Current 

boreal plant regeneration strategies have evolved under past fire conditions; patterns in 

plant communities and species distributions within the boreal forest are therefore 

reflected in the processes of forest recovery and succession following large-scale 

disturbances (Loucks 1970; Heinselman 1981). For example, the serotiny (heat induced 
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release of long-term canopy stored seeds) of dominant conifers that comprise the canopy 

of mature forests is an important mechanism ensuring stand self-replacement over 

repeated cycles of wildfire, especially in mature stands (Johnstone and Chapin 2006a). 

Residual organisms and plant structures that are available and successful following past 

disturbances provide a biological legacy that ensures successful regeneration following 

future disturbances (Franklin et al. 2000; Johnstone et al. 2016). Dominant tree species in 

the boreal forest such as Pinus banksiana Lamb. (jack pine) and Picea mariana (Miller) 

B.S.P. (Brouillet et al. 2013) (black spruce) have cones that open following high heat 

exposure for example and provide a seed source immediately following fire. Adaptive 

strategies of plants in the understory community also ensure high plant and propagule 

survival rates following fire (Rowe 1983; Wang and Kemball 2005). Specifically, 

understory plant regeneration may occur from on-site seeds that survive the disturbance 

(i.e., cone and seed banks), or from resprouting from deeply buried vegetative structures 

(Lyon and Stickney 1976).  

Given predicted changes in fire regime, colonisation from seed may be enhanced 

after relatively deep burning fire, both for species with a soil seedbank and those that 

disperse from off-site seed sources if the depth of burn destroys belowground root 

systems and exposes mineral soil (Bond and van Wilgen 1996). With very intense burns 

however, seed banks in the soil may be destroyed allowing for dispersers to have better 

establishment with increasing depth of burn (Schimmel and Granström 1996).   There is a 

need to improve our understanding of the functional mechanisms driving changes in post-

fire plant species composition and consequently, species richness in boreal plant 

communities to predict responses of these communities to altered fire characteristics. 
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Fire severity (combustion of above and belowground biomass during fire) coupled 

with frequency, size, intensity, type (ground vs. canopy) and season of burn are all 

considered important processes governing ecosystem recovery, structure and function 

following fire (Van Wagner 1983) and naturally influence stand-level and landscape 

vegetation patterns (Bergeron and Dansereau 1993). Of these processes, soil burn 

severity, or the depth of burn in surface soil organic layers (Van Wagner 1983), is often 

attributed to having the greatest impact on post-fire plant communities because of the 

concentration of regeneration potential in the organic layer in the form of regenerative 

tissues and seedbanks (Schimmel and Granström 1996; Hollingsworth et al. 2013; Pinno 

and Errington 2016).  Previous studies looking at post-fire species richness in the boreal 

forest showed that species richness can decline in severely burned areas (Hollingsworth 

et al. 2013; Pinno and Errington 2016). Patterns and processes underlying plant traits 

such as plant phenology and seed biology in the boreal forest are still poorly understood 

following various fire regimes. Furthermore, given the dominant role of fire in the boreal 

landscape, it is often difficult to decipher between pre-existing environmental 

characteristics and changes to the environment caused by fire.  

Indeed, environmental characteristics inherent to the site such as site productivity, 

seedbed condition and soil moisture (often associated with topography), have been shown 

to be important in forest regeneration following fires (Greene et al. 1999; Hollingsworth 

et al. 2006; Johnstone, Chapin et al. 2010). Biotic and abiotic environmental conditions 

act as ecological filters, selecting for plant communities that are successful following 

disturbance (Keddy 1992). Not surprisingly, plant species richness and diversity are often 

studied following fire since changes in soil composition, light and nutrient regimes are 
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rapid during this time (Hart and Chen 2006), all of which factor heavily on vegetation 

growth (Chipman and Johnson 2002; Hollingsworth et al. 2006). Previous studies 

looking at post-fire species richness in the boreal forest showed that species richness can 

increase in lower topographic positions where moisture and nutrients may accumulate 

(Chipman and Johnson 2002).  

Deciphering between the role of environmental characteristics and fire 

characteristics is even more challenging when you consider their interaction and ability 

for one to influence the other. For example, poorly drained sites with deep organic soils 

prior to fire provide excellent environmental conditions for slow growing, stress-tolerant 

species capable of rhizomatic regeneration from above and belowground tissue ( Grime 

1977; Schimmel and Granström 1996; Lavorel and Garnier 2002). These same site 

conditions may also provide the cool, moist conditions to protect these sites from deep 

burning and the effects of increased fire severity or frequency (Johnstone and Chapin 

2006b). Developing new understanding about the role of fire characteristics, 

environmental conditions and the plant traits associated with community assembly in 

response to an altered fire regime, will improve our ability to model and predict species 

composition and vegetative responses in the future. 

Throughout the summer of 2014 extensive wildfires burned approximately 3.4 

million hectares of boreal forest in the Northwest Territories (NWT) of Canada, spanning 

the Taiga Plains and Taiga Shield Ecozones (CIFFC 2014). The unprecedented fire year 

provided the opportunity to examine the potential for severe wildfire to impact post-fire 

vascular plant regeneration processes spanning two ecozones across a gradient of P. 
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banksiana and P. mariana-dominated stands and ask questions about the relative 

importance of environmental gradients versus fire characteristics in shaping post-fire 

community assembly. The study objectives were to: (1) quantify the role of 

environmental variables and the severity and frequency of fire on vascular plant taxa 

richness and regeneration traits following an extreme wildfire event; and (2) characterize 

and investigate vascular plant species composition immediately following fire, with a 

view to understanding the environmental variables and plant traits underlying post-fire 

assembly processes. 

 Our findings enable us to identify compositional patterns in plant communities 

from a combination of plant functional traits and environmental filters that are thought to 

structure post-fire landscapes in this region and their relationship with fire severity. By 

linking species traits with composition, environmental characteristics and fire 

characteristics this comprehensive approach draws important conclusions on the 

ecological processes that drive community assembly following extensive wildfire in the 

NWT. 

2.3 Materials and Methods 

2.3.1 Study Area 

This study was conducted across a broad geographical range within the NWT, 

spanning two low subarctic ecozones: The Taiga Plains Low Subarctic (LS) Ecozone and 

the Taiga Shield LS Ecozone. Both ecozones have short, cool summers and long, cold 

winters. Average annual temperatures in Hay River (60.8162°N, -115.7854°W) and 

Yellowknife (62.4540°N, -114.3718°W) are -2.5°C and -4.3°C, respectively; average 

annual precipitation is 336mm and 228mm, respectively (Environment Canada 2017). 
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The climate within this region is representative of much of our study area though we had 

study plots that extended North of Yellowknife. The Taiga Plains LS comprises the 

central third of the Taiga Plains and is a mix of undulating glacial till plains and peatlands 

with permafrost in wetter areas (Ecosystem Classification Group 2007). This area is 

characterised by open, slow growing, forest dominated by P. mariana and P. banksiana 

that extend to the northern edge of the boreal forest (Ecosystem Classification Group 

2008). The Taiga Shield LS in the eastern part of the NWT has hilly bedrock with thin 

boulder till overlain in places by layers of clay, sand, gravel and boulders. Study regions 

in both ecozones are underlain by discontinuous permafrost, which is defined by ground 

that stays perennially below 0°C for two or more consecutive years (Muller 1947) and 

covers between 50% and 90% of the landscape (Brown and Pewe 1974). 

2.3.2 Site selection 

Between May and August 2015, 212 permanent plots were established across a 

400km latitudinal range covering seven burn complexes from the 2014 fire season, 

ranging from Kakisa in the South to Gamètì and Wekweètì in the North (Figure 2.1). For 

accessibility purposes, most of the sampling plots were established within 1km of roads 

or edges of water bodies. To reduce bias, random sampling locations were generated from 

geospatial data to encompass an array of different strata across the seven burn complexes 

creating a stratified, random sampling design (Cumming in preparation, Appendix Table 

1). Strata were comprised of the following: 1) 2014 date of burn information determined 

from MODIS fire progression maps (late season vs. early season burn). We assumed that 

late season burns would be more severe due to the typically greater availability of fuel at 

the end of season (Kasischke and Turetsky 2006); 2) pre-fire dominant stand type based 
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on Land Cover Map of Canada 2005 (LCC05), produced from 250m spatial resolution 

MODIS data (Latifovic et al. 2004) and Forest Resource Inventory (FRI) when available, 

which maps the distribution and abundance of forest tree species to a spatial resolution of 

2-10ha (Cumming et al. 2015). Land cover classes were common, conifer-dominated 

classes and represented different stand densities in the sampling landscape. Pre-fire 

vascular plant species composition was not available and could only be speculated based 

on dominant stand type and associated environmental conditions.  These strata ensured 

that we captured a range of conifer-dominated forest types in our sampling; and 3) fire 

history (areas with fire records since 1960 vs. those that had no record of fire since 1960) 

allowing us to sample stands ranging widely in fire return interval. Each random 

sampling location was assigned a moisture classification based on the mineral soil texture 

and presence or absence of permafrost (Johnstone et al. 2008; Appendix Figure 1)To 

help understand the impacts of site moisture conditions on fire severity and subsequent 

growing conditions for regenerating plants, two other locations were selected to span the 

local moisture gradient, within 500m of the first randomly chosen coordinate (i.e., within 

a single MODIS pixel). A site was considered the conglomeration of all three plots (i.e., 

moisture classes were nested within strata).  

2.3.3 Data collection and calculation; vegetation 

In 2015, elevation, GPS coordinates, slope and aspect were measured at each 

sampling plot and two parallel 30m transects were established, running from south to 

north. The point of origin at the western-most transect was permanently marked for future 

sampling (Appendix Figure 2).   
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 Along the eastern-most transect, five 1m2 quadrats were established at 6m 

intervals along the transect line with the first quadrat placed at the origin. To characterize 

regeneration of plant communities after a fire, the presence of each vascular species was 

documented in each quadrat. Unknown specimens were collected at least 1m away from 

the transect to be verified at a later date, however, species that were very small or 

unidentifiable were grouped by genus. To characterize seedbed conditions within each 

quadrat, ground cover of each of the following categories was recorded to the nearest 

percent within each vegetation quadrat: organic soil cover, mineral soil cover, litter, 

charcoal, ash, standing water, burned and unburned feathermoss, lichens, burned and 

unburned sphagnum, rock, woody debris, Marchantia spp. (a common liverwort post-

fire) and Ceratadon spp. (a common moss post-fire). Variables that were thought to 

possibly be conditionally dependent were combined. Since Marchantia spp. and 

Ceratadon spp. are common early colonising bryophytes and are often found together, for 

example, we clumped these in our analyses into a “bryophyte” category. A Pearson’s 

correlation matrix was conducted (Appendix Table 14). Rock and organic cover were 

removed because of correlations with organic soil cover and mineral soil cover, 

respectively. Variables that were present in trace amounts (i.e. ash) were not considered 

for the candidate models. The variables considered to support excellent seedbed 

conditions following fire were used in the final candidate models: mineral soil cover, 

bryophyte and charcoal. As all 2015 Taiga Plains sampling occurred early in the growing 

season, we revisited these sites in May 2016 to assess whether the spring 2015 presence 

data represented the full vascular species composition of the first post-fire growing 
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season. They were revisited again in August 2016 to capture the changes in species 

presence in the second growing season. 

We determined the regeneration strategy of plants that were present in each 

quadrat by excavating individuals of each sampled species closest to the North and South 

ends of the sampling transects or at least 1m away from the quadrats to minimize 

disturbance. Regeneration mode was categorized on a scale of 1-4: 1) survival intact, 2) 

regeneration from seed, 3) aboveground regeneration such as resprouting from a stump or 

log and 4) belowground resprouting from root/rhizomatous tissue. Aboveground 

resprouting and survival following fire were rarely recorded in our plots and were 

consequently removed from the analysis (i.e., survival intact was found at < 10 of our 209 

plots) leaving only two categorical variables: regeneration from seed and regeneration 

from belowground resprouting. All information collected on plant regeneration was 

collected in the first growing season post-fire between the end of May and end of August 

2015. 

The majority of vascular plants were identified to species; 61% on the Taiga 

Plains and 70% on the Taiga Shield, respectively. All specimens were verified at the 

National Herbarium of Canada. Specimens that could not be identified to species were 

allocated to genus.  All Equisetum spp. except Equisetum scirpoides, were classified to 

the genus level given the difficulty in deciphering among species immediately following 

disturbance when reproductive structures are typically not present. Similarly, all conifers 

of the Pinus and Picea genera were identified to genus in the first sampling season to 

avoid misidentification of such small individuals. Carex spp. were identified at the genus 
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level to avoid misidentification as many of the samples taken had not reached maturity 

but were mature enough to decipher perigynia. The presence of genus-level identification 

within the dataset lead us to discuss taxa richness instead of species richness throughout. 

For simplification, we refer to the Betula genus as being Betula neoalaskana Sargent 

(Alaska paper birch) on the Taiga Shield and Betula glandulosa (glandular birch) on the 

Taiga Plains as the tree form was dominant on the Taiga Shield and the shrub form was 

dominant on the Taiga Plains. We recognize the issues of identifying the leaves of this 

genus at early life stages given similar leaf morphologies and hybridisation of Betula spp. 

in the region (Johnsson 1945; Jarvinen et al. 2004) but use these species names to 

decipher between the tree and shrub forms of this genus in general. A full species 

composition list for the Taiga Plains and Taiga Shield can be found in Appendix Table 2 

and Appendix Table 3). Nomenclature followed Porsild and Cody (1980) to remain 

consistent with field guide nomenclature from Johnson et al. (1995) except for Salix spp., 

which were identified as Salix A-H morphospecies based on their leaf phenotypic traits 

(Appendix Table 5). To avoid redundancy, all tree species names are abbreviated after 

the first use; all other understory species maintain their full names throughout. Tree 

names were updated using the Database of Vascular Plants of Canada (VASCAN) 

(Brouillet et al. 2013). A large portion of collected voucher specimens are now located in 

the Wilfrid Laurier University Herbarium in Waterloo, Ontario, Canada (vouchers # 1-

95). 

2.3.4 Data collection and calculation; environmental and fire characteristics 

Trees that were originally rooted between the two 30m transects (spanning 2m) 

were assessed for aboveground fire severity by visually assessing canopy consumption 
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(cone and branches) using a categorical scale from 0-3 based on Johnstone et al. 2008 

(Appendix Table 4). The consumption index followed: 0=no consumption; cones 

uncharred with many live, green needles remaining; 1=low consumption; cones 0-33% 

charred with few needles and small twigs remaining; 2=moderate consumption; cones 34-

66% charred with few small twigs and many branches remaining; 3=high consumption; 

67-100% charred cones or none remaining with most lower canopy branches consumed. 

To create a continuous variable representing above ground consumption (tree 

consumption), we averaged the branch consumption rankings at each plot; cone rankings 

were excluded from this calculation because of the difficulty deciphering the absence of 

cones as a result of burning vs. absence pre-fire.   

Burn depth was assessed by measuring organic soil consumption as a 

measurement of the distance from the highest 1-3 adventitious roots on P. mariana trees 

to the forest floor (Boby et al. 2010). Adventitious roots are produced as organic soil 

accumulates ensuring access to surficial soil resources (LeBarron 1945); the remnants of 

adventitious roots are visually evident after burning (Kasischke and Johnstone 2005; 

Boby et al. 2010). To create the burn depth variable in P. mariana stands, a correction 

was applied to the adventitious root height measurements to account for the fact that 

adventitious roots are not located at the surface of the soil (~4 cm; Walker et al. 2017 in 

press). In P. banksiana-dominated stands where adventitious roots are not present, the 

residual organic layer depth was subtracted from the estimates of organic layer depths 

specific to site moisture classes in stands that burned prior to 1960 (n=36 control plots in 

strata named Control Group (CG) 1, CG 2 and Control Shield (CS); Walker et al. 2017 in 

press).  
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All trees originally rooted between the two 30m transects that were ≥ 1.3m in 

height were measured for diameter at breast height (DBH; 1.3m); these measurements 

included snags that were dead at the time of fire and fallen trees that were killed by fire. 

The basal diameter of trees < 1.3m tall were also measured. Tree density (stems m-2) and 

basal area (m2 ha-1), were calculated as measures of stand structure. Basal area was 

calculated from stem diameter at breast height or base if less than 1.3m in height (BA = 

(DBH/2)^2). 

In order to create a continuous stand age variable (estimate of time since last fire), 

we collected tree cores and cookies of the dominant coniferous tree species in the pre-fire 

tree canopy (n = 5 per dominant species). Cookies or cores were taken as close to the tree 

stem base as possible to minimize bias in estimating tree ages (Vasiliauskas and Chen 

2002). Samples were sanded with a belt sander and palm sander using progressively finer 

grit (200-600 grit). The polished samples were then scanned at 3800 dpi and the images 

imported and counted in Cybis CooRecorder v.7.8 (Larsson 2006) or WinDendro 2009 

(Regent Instruments Canada Inc. 2009). For cross-sectional samples, tree rings were 

counted twice at 90° angles while in tree cores, rings were counted on both sides of the 

core. Seventeen samples did not show evidence of the pith; where the pith was not 

sampled, the minimum count was taken from as close as possible to where there was 

some evidence of the pith. Where there was no evidence of any pith, rings were counted 

until a subjective point, such as a break in a core. If the two counts had >5% discrepancy 

due to unclear ring definition from compaction, they were manually recounted. We did 

not cross-date annual growth rings because samples were taken for a coarse estimate of 

stand age (time since last fire), not to infer any information regarding within year growth 



43 
 

or to interpret information from individual tree rings. When aging stands, we assumed 

tree ages would cluster around the date of the last major fire event (pulse of post-fire 

recruitment). When >50% of trees fell within 10-20 years of each other, a plot was 

assumed to have arisen from one fire event and the maximum tree age was used to age 

the stand. Where there was weak evidence for a specific stand age, samples from the 

other plots within the site were consulted to support a decision. Sites without a dominant 

cluster were further inspected; maximum or median tree age was used so that whichever 

was picked was consistent with age of nearby plots. 

2.4 Data Analysis 

All analyses were performed using R v.3.3.1 (R-Development Core Team 2016). 

All statistical analyses were conducted separately for the Taiga Plains and Taiga Shield 

due to differences in the timing of measurements that occurred systematically between 

the two ecozones. Species area curves created using the “rarefaction” method in the 

vegan package version 2.4-1 (Oksanen et al. 2017) ensured sampling saturation was 

achieved on the Taiga Plains and Taiga Shield despite sampling these ecozones at 

different times during the summer of 2015; this addressed sample-size bias in taxa 

richness assessments to allow direct comparison of post-fire taxa richness in the two 

ecozones (Gotelli and Colwell 2010; Oksanen et al. 2017).  

Since we sampled the Taiga Plains early in the spring of 2015 and some of the 

specimens were very small, we were concerned we did not fully capture the first growing 

season of the vascular plant community in our first sampling period. To ensure we chose 

the most accurate sampling period representing the first growing season, a Mantel test 
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with Pearson’s correlation of coefficient was used on the three separate sampling periods 

(Spring 2015, Spring 2016 and Fall 2016) on the Taiga Plains (Mantel 1967; Legendre 

and Legendre 1998) using the vegan package (Oksanen et al. 2017). The Mantel test is a 

permutational test that computes the relationship between two distance matrices while 

testing the statistical significance of matrix correlations. We used the Sorenson distance 

indicating binary data and used 1000 permutations. The Mantel test examined if there 

were any temporal differences in species composition at different sampling times. Results 

from our Mantel tests for the Taiga Plains indicated that species composition in Spring 

2015 was not significantly different from Spring 2016 since it was significantly 

correlated with the Fall 2016 matrix (r= 0.70, P≤0.05). Subsequently, we chose to use the 

Spring 2015 data as representative of the first growing season post-fire. 

Of the original 212 plots, we removed one site on the Taiga Shield that was 

missing stand age data, for a total of 209 plots; 125 and 84 plots on the Taiga Plains and 

Taiga Shield, respectively. There was one outlier in the Taiga Plains data (ZF46-1A), 

which was a plot that exhibited a higher quantity of mineral soil cover than other plots, 

but it was retained in the analyses since it was considered a true representation of the high 

mineral soil and charcoal content at this site post-fire. Significant findings did not change 

as a result of this outlier.  

Principal Coordinates Analysis (PCoA) was used to investigate species 

compositional differences among stand types and between ecozones. PCoA is a distance-

based ordination method used to visualize patterns in data and allows for the use of data 

that is not continuous (Gower 1966). PCoA was calculated using species 
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presence/absence data by plot, specifying the Sorenson distance for the similarity matrix. 

Sorenson distances are suggested for binary data (Grace and McCune 2002; Legendre 

and Legendre 2012) and were calculated using ‘vegdist’ in vegan (Oksanen et al. 2017). 

The PCoA was run using function ‘cmdscale’ in base R. Species scores were calculated 

to produce a supporting species ordination using the ‘wascores’ function in the vegan 

package. 

2.4.1 Modelling post-fire regeneration modes and taxa richness 

We used Generalized Linear Mixed Effects Models (GLMMs) to quantify the role 

environmental characteristics and fire characteristics on taxa richness and mode of 

regeneration following fire. GLMMs allow for the incorporation of random effects (plot 

nested within site nested within burn) with non-normal, multivariate data (Burnham and 

Anderson 2002; Zuur et al. 2010; Mazerolle 2016). GLMMs were run at the plot-level for 

regeneration modes and at the quadrat-level for taxa richness since fine-scale predictors 

were available (i.e., the number of taxa in each quadrat, % cover variables and residual 

organic depths). Quadrat-level analyses were thought to be more telling of variability that 

can occur at finer scales following fire in these stands and the nested design was 

accounted for in these analyses. Analysis of taxa richness at the plot-level was conducted 

for comparison purposes; results are included in Appendix Table 6 and Appendix Table 

7. Continuous predictor variables included: plot basal area, tree consumption, burn date 

(day of year), residual organic depth, burn depth, stand age, percent mineral soil cover, 

percent charcoal cover and percent bryophyte cover. In addition, dominant stand type and 

moisture class were included as categorical predictor variables (Appendix Table 8).  
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Exploratory scatter plots and box plots were created to assess normality and 

potential outliers in all variables to be used in our models (Zuur et al. 2010). All 

continuous predictor variables associated with the initial candidate models were 

normalized and tested for collinearity by constructing a Pearson’s correlation matrix 

(Appendix Table 9). R-values where 0.3 < r < 0.5 between two variables are thought to 

demonstrate a weak relationship (Moore et al. 2013). However, given the noise within 

ecological data, we assumed typically “weak” relationships to be important; all 

correlation values ≥0.35 were considered correlated and removed from the analyses.     

Burn depth was positively correlated with stand age in both ecozones and was 

subsequently removed from the analyses. Burn depth was also correlated with residual 

organic depths on the Taiga Plains.  The categorical variable, moisture class was also 

removed because of a strong correlation with residual organic layer thickness. Residual 

organic layer thickness was log-transformed to meet normality. Since we did not include 

burn depth in our GLMMs, residual organic depths were recognized as representive of 

both site conditions and fire severity; we included residual organic depth in our Seedbed 

Model given its important determinant of seedbed quality.  

A priori candidate models (Anderson 2008) were used to test specific hypotheses 

about combinations of predictors that might be most important in predicting post-fire 

community assembly and taxa richness. These models were: 1) Fire Characteristics, 2) 

Stand Characteristics, and 3) Seedbed Conditions (Table 2.1). 

We also included the full model (all predictors) and the null model (random term 

only) in our suite of candidate models. GLMMs were performed with the “lme4” (Bates 
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et al. 2015) package and the multi-model averaging package “AICcmodavg” (Mazerolle 

2016) to select the candidate model based on the lowest second order Akaike Information 

Criterion (AICc). We modeled the number of taxa in each quadrat (i.e. taxa richness) 

using a Poisson distribution (log link). We also modeled the proportion of plants 

regenerating from seed at each plot using a binomial distribution (logit link). Mode of 

reproduction was modelled as a binomial response that described the probability of a 

plant reproducing from seed as a measure of the proportion of plants reproducing from 

seed compared to rhizome at each plot. A priori contrasts were used to compare the 

categorical variable dominant stand type; P. banksiana-dominated stands were the 

reference stand for all models (Crawley 2007). We quantified the proportion of observed 

variance explained by the fixed effects (marginal R2) and both fixed and random effects 

(conditional R2) of the lowest AICc candidate models for the Poisson and binomial 

distributions using the package “MuMIn” (Barton 2015); the calculation of change in 

variance in this package followed Nakagawa and Schielzeth (2013). Regression estimate 

plots were created using the “coefplot2” package (Bolker 2012).  

2.4.2 Species composition; environmental characteristics, fire characteristics and 

species traits  

To understand environmental variables and plant traits underlying assembly 

processes and species composition, we combined two complementary multivariate 

techniques: RLQ and the Fourth Corner statistic using the “ade4” package (Dray and 

Dufour 2007). The RLQ summarizes the joint multivariate structure of three matrices: (R) 

environmental variables, (L) community composition and (Q) species-level functional 

traits (Legendre et al. 1997; Dray and Legendre 2008). In summarizing the relationship 
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between these three matrices, RLQ analysis assigns scores to samples, species, traits, and 

environmental variables along orthogonal axes based on permutation tests and produces a 

graphical summary of the main structures.  

The Fourth Corner analysis then takes the weighted row scores from the RLQ 

matrices and statistically tests the relationships between environmental variables and 

species traits one trait and one environmental variable at a time (Dray and Legendre 

2008; Dray et al. 2014). The Fourth Corner analysis uses the site scores of the species 

ordination as row weights for the R matrix and species scores of the sites ordination as 

row weights for the Q matrix. Applying the fourth-corner tests to the output of the RLQ 

analysis is a new approach recommended by Dray et al. (2014).  

In testing bivariate associations in the Fourth Corner analysis, P-values were 

calculated using the default permutation model (named model 6 by Dray et al. 2014), 

linking matrices L and Q. This combined approach corrects for type I error rates (Dray et 

al. 2014). We conducted 49, 999 random permutations of sites and species in testing the 

null hypothesis that the distribution of species with fixed (i.e., site-independent) traits is 

not influenced by environmental conditions, with model 4, which links the matrices L and 

R and tests the null hypothesis that the species composition of sites with fixed 

environmental conditions is not influenced by the species traits. Due to multiple tests on 

environmental variables, the P-values were corrected by the false discovery rate method 

(FDR; Benjamini and Hochberg 1995; Dray et al. 2014). RLQ and Fourth Corner 

analyses were also conducted at the plot-level for comparison purposes; results can be 

found in Appendix Table 10. 
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In the RLQ and Fourth Corner analyses the same fire characteristics, pre-fire 

stand characteristics and seedbed condition variables were used in the R matrix as 

comprised the set of GLMM candidate model predictors. The continuous variables were: 

burn date, stand age, tree consumption, basal area, residual organic depth, percent 

charcoal cover, percent mineral soil cover and percent bryophyte cover. We used the 

continuous variable representing the proportion of each tree species in each stand type 

instead of the dominant stand type variable to refine the analysis. The estimated 

proportion of the dominant tree species pre-fire was calculated as the density of stems per 

m2 of 60m2 sampled area. Since RLQ is an ordination, we included additional correlated 

variables that were excluded from our GLMM models. These additional variables 

included moisture class (categorical) and burn depth (continuous). A complete 

description of variables used in the RLQ and Fourth Corner analyses can be found in 

Appendix Table 8. 

Species life-history traits used in the Q matrix were compiled from field 

measurements, observations and literature sources, and were used as predictors of species 

composition post-fire. Broadly speaking the selected traits followed Noble and Slatyer 

(1980), who suggested that species “vital attributes” play an imperative role in succession 

following disturbance. These vital attributes include: (1) persistence of a species during 

and after disturbance; (2) the ability to establish and grow to maturity in the developing 

community; and (3) the time taken for the species to reach critical life stages. The five 

life history traits we used were: 1) the proportion of each individual regenerating from 

seed in each quadrat, 2) growth form (shrubs, forbs, trees, graminoids, seedless vascular 

plants, 3) seed dispersal mode (wind, animal), 4) life span (annual, biennial, perennial) 
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and 5) leaf persistence (evergreen, deciduous). For a detailed description and rationale of 

the life history traits used in the RLQ analyses, see Appendix Table 11. 

We used dummy variables to code nominal-scale categorical variables in the traits 

and environmental matrices with the number of dummy variables representing a single 

attribute being equal to the number of levels (categories) in that variable minus one (Zar 

2010). The level for each categorical variable that was chosen as the default state was the 

level represented by the greatest frequency in the sample. For each dummy variable, the 

state for the variable could either be 0 or 1. For a list of all variables and the default levels 

used in the matrices, see Appendix Table 10. 

In our Taiga Plains data, the community matrix (L: m x k) represented 102 taxa 

(k) at 591 quadrats (m). The environmental matrix (R: m x p) displayed information about 

the 17 environmental variables (p) at the 591 quadrats (m). The traits matrix (Q: k x n) 

described 9 life history traits (n) of the same 102 taxa (k).  In our Taiga Shield data, the 

community matrix (L: m x k) represented 43 taxa (k) at 380 quadrats (m). The 

environmental matrix (R: m x p) displayed information about the 17 environmental 

variables (p) at the 380 quadrats (m). The traits matrix (Q: k x n) described 9 life history 

traits (n) of the same 43 taxa (k). The community matrix (L) was analysed and generated 

scores through correspondence analysis (CA) (Hirschfeld 1935). Correspondence analysis 

is like Principal Component Analysis but allows for the use of discrete variables (in this 

case the presence or absence of plant species). The R and Q matrices were analysed, and 

scores were generated from Hill-Smith Principal Components Analysis, which is a form 
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of Principal Components Analysis that allows for mixed continuous and categorical 

variables (Hill and Smith 1976).   

2.5 Results 

During the 2015 sampling period, we recorded a total of 79 species (including 

trees) and 43 genera (plants we could not identify to species) of vascular plants in 38 

families on the Taiga Plains. On the Taiga Shield we recorded 30 species and 13 genera 

from a total of 17 families. The majority of plots were in stands dominated by P. mariana 

or P. banksiana, with a small group of plots in stands designated “other”, which were 

dominated by Larix laricina (Du Roi) K. Koch (tamarack) on the Taiga Plains and Picea 

glauca (Moench) Voss (white spruce) on the Taiga Shield. On the Taiga Plains, the 

majority of the sites dominated by L. laricina were located in young stands in our most 

southerly fire perimeters (SS33 and ZF20), in mesic-subhygric and subhygric conditions.   

2.5.1 General vascular plant composition 

The PCoA of vascular plant species composition revealed a clear differentiation in 

community structure based on ecozone. The first two axes of the PCoA explained 22.19% 

of the total variation (axis 1: 13.41%; axis 2: 8.78%), and predominantly distinguished 

differences in species composition on the basis of ecozone and stand type, respectively 

(Figure 2.2). Species composition differences were most notable between P. banksiana 

and P. mariana -dominated stands on the Taiga Plains where prolific seeders in the 

Asteraceae family were more common in the P. banksiana-dominated stands and species 

associated with slow-growing, hardy rooting systems such as Ribes spp. and Rubus spp. 
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were more common in P. mariana stands (Figure 2.3). Complete lists of species 

documented in each ecozone can be found in Appendix Table 2 and Appendix Table 3.  

Of the entire species pool, we recorded information on regeneration modes for 64 

species and 33 taxa that could only be identified to genus; this effort represented 31 

families on the Taiga Plains. We recorded information on regeneration modes for 27 

species and 13 taxa that could only be identified to genus, representing 16 families on the 

Taiga Shield. Reproduction from rhizome was the most common mode of regeneration in 

both ecozones (Figure 2.4 and Appendix Table 13). On the Taiga Plains, 90% of 

measured species regenerated from rhizomes at least once in our dataset, demonstrating 

the importance of this mode of regeneration following fire. Common species that 

predominantly regenerated from rhizome on the Taiga Plains included Rosa acicularis, 

Galium boreale, Potentilla fruticosa and Ledum groenlandicum. On the Taiga Shield, 

81% of measured species reproduced rhizomatically at least once in our data. The species 

that reproduced solely sexually on the Taiga Plains and Taiga Shield were either rare 

(occurring in five plots or less) or are not known to reproduce from rhizome. These 

species were similar across both ecozones and included; Viola spp., Corydalis spp. and 

Pinaceae seedlings. Geranium bicknellii and Dracocephalum parviflorum also 

regenerated from seed, but were found mainly on the Taiga Plains. Some species such as 

Alnus crispa, Epilobium angustifolium, B. neoalaskana, Betula glandulosa and 

Cyperaceae spp. exhibited both regeneration modes at multiple transects indicating the 

potential for concurrent sexual regeneration (seed dispersal and/or seedbank germination) 

and vegetative regeneration (resprouting).  
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2.5.2 Predictors of post-fire taxa richness and community assembly 

Species rarefaction curves approached saturation in both ecozones (Figure 2.5) 

suggesting that our sampling efforts were adequate to characterize the post-fire 

community. Quadrat-level and plot-level taxa richness was similar in both ecozones, 

however, the Taiga Plains exhibited greater taxa richness overall (Figure 2.5, Appendix 

Table 2, Appendix Table 3). On the Taiga Plains, the average vascular plant taxa 

richness in each quadrat was 5.9 and 11.4 taxa in each plot. On the Taiga Shield the 

average number of taxa in each quadrat was 4.2 and 7.6 taxa in each plot. Average taxa 

richness per site was 21.9 on the Taiga Plains and 13.6 on the Taiga Shield respectively.  

Variation in taxa richness was best predicted by the Seedbed Conditions model 

(R2
marginal =0.05; R2

conditional=0.54) on the Taiga Plains and the Full model (R2
marginal =0.40; 

R2
conditional =0.51) on the Taiga Shield (Table 2.2, Table 2.3, Figure 2.7). Within the 

Seedbed Conditions model of our GLMM analysis, residual organic layer was a 

significant positive predictor of taxa richness in both ecozones. On the Taiga Shield, P. 

mariana-dominated stands had significantly greater taxa richness compared to P. 

banksiana or P. glauca-dominated stands, which corresponds closely with residual 

organic layer thickness as P. mariana tends to inhabit sites with a thicker organic layer 

(Figure 2.6).  

Taxa richness GLMMs that were analysed at the plot-level demonstrated 

variations on the initial findings when compared to the quadrat-level analysis, however 

the role of seedbed conditions, namely greater residual organic soil depths, remained an 

important indicator of taxa richness across the landscape (Appendix Table 6). Variation 
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in taxa richness was best predicted by the Seedbed Conditions model in both ecozones 

(Appendix Table 7). Fine-scale seedbed indicators such as bryophyte and mineral soil 

were no longer significant on the Taiga Plains, but became significant on the Taiga Shield 

(Appendix Table 6). Greater variation was explained by fixed effects when modelled at 

the plot-level on the Taiga Plains (R2
marginal =0.10; R2

conditional =0.47) compared to the 

quadrat level indicating substantial within-plot variation in composition.  

Variation in the proportion of plants regenerating from seed was best predicted by 

full models on both the Taiga Plains (R2
marginal =0.05; R2

conditional=0.05) and the Taiga 

Shield (R2
marginal =0.21; R2

conditional =0.23) (Table 2.4. Table 2.5, Figure 2.8). Again, 

seedbed conditions had a significant impact on regeneration modes in both ecozones as 

did the burn date; both ecozones saw an increase in the proportion of plants regenerating 

from seed in areas with thinner residual organic layer and those that burned later in the 

season. On the Taiga Plains specifically, we saw an increase in the proportion of plants 

regenerating from seed in the presence of early-colonising bryophytes (Marchantia spp. 

and Ceratadon spp.) and in stands dominated by L. laricina (Figure 2.7). Seedbed 

conditions important to the proportion of plants reproducing from seed on the Taiga 

Shield included exposed mineral soil and low charcoal cover. Similar to the taxa richness 

models, stand characteristics were also important in community assembly on the Taiga 

Shield; the proportion of plants regenerating from seed on the Taiga Shield increased in 

stands with greater basal area and aboveground tree consumption. There were 

proportionally fewer plants reproducing from seed in P. mariana and P. glauca-

dominated stands (Figure 2.8).  



55 
 

2.5.3 Trait-environment relationships and species composition 

Our RLQ analyses demonstrated a strong gradient of environmental constraints on 

vascular plant composition organised by pre-fire stand type and moisture class; the Taiga 

Plains and Taiga Shield demonstrated similar, significant trait-environment relationships 

mediated by species in the RLQ analyses (Figure 2.9, Figure 2.10). The first two axes of 

the RLQ analysis captured 82.8% and 11.0% of the trait-environment projected inertia on 

the Taiga Plains and 84.5% and 9.8% on the Taiga Shield (Table 2.6). Correlations 

between traits and environmental variables were 0.32 and 0.18 for axis 1 and 2, 

respectively on the Taiga Plains and 0.50 and 0.25 for axis 1 and 2, respectively on the 

Taiga Shield (Table 2.6).   

Compositional patterns in the vascular plant community of the stands were 

determined mainly by the pre-fire proportion of each dominant tree type present (P. 

mariana and P. banksiana) in conjunction with site moisture class and residual organic 

layer thickness (Figure 2.9, Figure 2.10). On the Taiga Plains in general, stands 

dominated by P. banksiana trees tended to be in dry, xeric sites with sandy to gravelly 

soils with an understory of herbs such as Vicia spp., Galium spp., Linnaea borealis and 

Calamagrostis canadensis. Picea mariana-dominated stands were predominantly located 

in mesic and subhygric conditions that are often associated with low lying, poorly-

drained areas with greater accumulation of organic matter. These stands had a vascular 

plant composition that was strongly related to greater residual organic soil layers that 

would have accumulated over time and subsequently tended to be in older age classes 

(Figure 2.9). Species associated with this stand type were Equisetum spp., graminoids 

such as Oryzopsis spp., taxa from the Liliaceae family, Campanula rotundifolia and Salix 
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spp. Species that appeared to do well across many moisture classes regardless of stand 

type in our data included slow growing, rhizomatous species such as Ledum 

groenlandicum, Arctostaphylos uva-ursi and taxa from the Rosaceae family. 

Species composition on the Taiga Shield Ecozone was also strongly influenced by 

the pre-fire forest type. Similar to the Taiga Plains, stands with a greater pre-fire 

proportion of P. banksiana tended to be located in dry, xeric conditions with sandy to 

coarse-textured soils. Short-lived herbs such as Geranium bicknellii, Corydalis 

sempervirens and Epilobium glandulosum were present in these dry conditions. Species 

of the Poaceae family were not particular to any specific moisture class or stand type as 

they appeared at the origin of the species ordination (Figure 2.10).  As proportional 

representation of pre-fire P. mariana increased, graminoids became more common, most 

commonly Calamagrostis spp. and Carex spp. as did Salix spp. For further information 

on stand differences, please see Appendix Table 12. 

Our Fourth Corner analysis revealed that the composition of post-fire plant 

communities was mainly influenced by the regeneration mode trait. In both ecozones, the 

Fourth Corner statistic differentiated plants regenerating from seed as being significantly 

positively associated with charcoal, mineral soil and bryophyte cover (productive seedbed 

conditions), burn date, the pre-fire proportion of P. banksiana trees in the stand and drier 

soil moisture categories (Table 2.7). A negative association was found between the 

aforementioned significant trait and the proportion of P. mariana trees in the stand, sub-

hygric plots and residual organic thickness on the first axis (Table 2.7) indicating that 

these sites were dominated by resprouting species. The seedless vascular growth form 
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(Equisetum spp.) differed in its associations in each ecozone as well. On the Taiga Plains, 

presence of Equisetum spp. was positively associated with residual organic layer 

thickness, depth of burn, and wet site moisture classes associated with pre-fire P. 

mariana dominance. In contrast, on the Taiga Shield, Equisetum spp. were positively 

associated with the same environmental variables as plants reproducing from seed, which 

may be indicative of differing rhizome/rooting depths of this growth form or responses of 

different species since this taxon was grouped by genus in these two ecozones. 

Specific findings unique to the Taiga Plains included a negative association 

between burn depth and the proportion of plants regenerating from seed on the first axis. 

Burn depth was correlated with residual organic depth, consequently greater burn depths 

were present in areas of greater residual organic depths (Table 2.7). Plants with wind 

dispersed seed were differentiated on the second axis and were significantly positively 

associated with bryophyte cover (Table 2.7). 

Unique to the Taiga Shield, the Fourth Corner statistic differentiated plants 

regenerating from seed as being positively associated with the proportion of P. glauca-

dominated stand type, as well as in older stands with increased basal area on the first axis. 

Also on the first axis, shrubs were positively associated with residual organic layer 

thickness, stand age, the proportion of P. mariana trees in the stand and sub-hygric plots. 

No traits or environmental variables were significantly differentiated on the second axis 

for the Taiga Shield results (Table 2.7) 

When the RLQ and Fourth Corner analysis was conducted at the plot-level, the 

role of moisture class coupled with stand type was highlighted again in relation to species 
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composition on theTaiga Shield. On the Taiga Plains, however, there were no significant 

species traits associated with the environmental variables at the plot-level (Appendix 

Table 10).  

2.6 Discussion 

Despite the NWT boreal forest experiencing wildfire that extended across an 

unprecedentedly large spatial extent in 2014, this study indicates an overarching 

environmental legacy associated with surficial moisture conditions and soil 

characteristics. This environmental legacy ultimately drives post-fire taxa richness, 

community assembly and the traits that determine compositional differences following 

fire in this region. Combined results of our analyses demonstrated strong relationships 

between species composition, traits, regeneration mode and taxa richness in relation to 

seedbed quality in particular. These findings are telling of a stronger, underlying driver of 

post-fire taxa richness and community assembly relating to site moisture, which is also 

driving some differences observed between stand types and species composition as well 

(Figure 2.9, Figure 2.10). These findings are surprising in that large-scale disturbances 

like the 2014 wildfires are expected to trigger abrupt forest transitions (Johnstone et al. 

2016), however, the vulnerability of plant communities in a changing fire regime may be 

more dependent on regional variation than we anticipated.  

Despite distinct ecozone conditions and associated compositional differences 

(Figure 2.2, Figure 2.3), there were consistent and similar findings in terms of post-fire 

plant assembly. In our GLMM results, regardless of the model selected, variables 

associated with seedbed conditions were consistent drivers of both taxa richness and 
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community assembly (Figure 2.7, Figure 2.8). Previous research has similarly 

demonstrated that edaphic factors in combination with climate are primary drivers 

influencing patterns in species diversity and richness in southwestern Yukon (Paudel et 

al. 2016). Local conditions such as water and nutrient availability as well as substrate 

heterogeneity have demonstrated a stronger effect than climate on understory richness 

throughout other parts of Canada (Bartels and Chen 2010; Zhang et al. 2014). The 

presence of colonising bryophytes in combination with mineral soil exposure, served as 

important indicators of seedbed quality in this study as well. Ceratadon spp. and 

Marchantia spp. are known to grow in areas of high light availability (Skutch 1929; 

Brassard and Chen 2006), high mineral soil content and in moist microsites 

(Hollingsworth et al. 2013), all excellent conditions for plants regenerating from seed that 

require rapid access to surficial moisture and light in early establishment phases (Hart and 

Chen 2006; Johnstone and Chapin 2006b). 

Our findings supported the notion that fire severity is important to community 

assembly in this region as well. This finding is similar to other studies of large fire events 

that have found post-fire vegetation in boreal landscapes to be driven primarily by fire 

severity (Bernhardt et al. 2011; Hollingsworth et al. 2013; Pinno and Errington 2016). 

Our findings are consistent with some aspects of studies documenting community 

assembly following fire, for example, high plant and propagule survival rates following 

fire were linked with residual organic soil depths as has previously been demonstrated by 

Schimmel and Granström (1996), while exposed mineral soil provided an excellent 

environment for seed germination similar to the findings of Johnstone, Hollingsworth, et 

al. 2010. We recognize the inherent relationship between controlling characteristics of 
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moisture and organic layer depth on fire behaviour (Miyanishi and Johnson 2002); fire 

behaviour inevitably leads to post-fire seedbed conditions. Since we did not include 

information on the proportion of organic material combusted in our GLMMs, and 

residual organic depth was included in our Seedbed Model, we have interpreted findings 

from our GLMMs as telling of environmental conditions as opposed to fire 

characteristics, however the residual organic seedbed variable represents information 

about both site conditions and fire severity. The large proportion of plants reproducing 

from rhizome in both ecozones was telling of the importance of this mode of regeneration 

following fire in this region, as well as the availability of organic soil to maintain these 

structures and support re-establishment of vascular plants.   

Unique to our study was the consistent presence of ephemeral, early successional, 

seedbank species such as Geranium bicknellii, Dracocephalum parviflorum (Lyon and 

Stickney 1976; Anderson and Romme 1991) and Corydalis spp. (Viereck and 

Schandelmeier 1980), that were telling of the seedbed conditions following fire in both 

ecozones (Figure 2.7, Figure 2.8). Most species regenerating solely from seed in this 

study were from soil seedbanks while recruitment from aerial dispersers was more 

limited and highly variable. Therefore, despite the 2014 fires being the most widespread 

on record for this region, seedbanks were present and viable in the soil following the 

extensive disturbance. These findings were surprising given the expectation that seedbank 

species do well in light to mid-severity fires (Schimmel and Granström 1996; Wang and 

Kemball 2005), which further indicates that the 2014 fires were either not extremely 

severe, or that species reproducing from seedbank in this study are adapted to severe fire 

conditions. For example, Dracocephalum parviflorum has been documented as being 
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present following severe fires in a more southerly system (Orr 1970) suggesting that 

tolerance of the seeds of some of these species to extreme heating may be high. Available 

literature on the seed biology of these species is limited, however, given the general 

success of seedbank species like Dracocephalum parviflorum, Geranium bicknellii and 

Corydalis spp. following fire, it is suspected that these species form deeply buried 

seedbeds in varying fire cycles, which is characteristic of early successional species 

(Grandin and Rydin 1998; Lee 2004; Hollingsworth et al. 2013). At the same time, an 

important characteristic of early successional forbs is their large proportion of annual 

production devoted to seeds (Grime 1977). Observations from a colleague collecting 

conifer seeds in the first growing season following the 2014 fires indicated that there was 

an abundance of Dracocephalum parviflorum seeds in the seed rain collected (K. Reid, 

observation). Likewise, Epilobium angustifolium has been estimated to yield as many as 

80 000 seeds per year and be capable of drifting 2-3 km in the wind (Salisbury 1962; 

Solbreck et al. 1987). A combination of seedbank survival and prolific seed dispersal 

following fire is likely the combination that enables some forbs to do so well in the first 

stages following fire in the southern NWT, especially in seedbed conditions with exposed 

mineral soil. 

Our decision to analyse ecozones separately was validated by our PCoA results, 

whereby there was a distinct division between ecozones based on the number of species, 

the types of species and to some degree, stand type (Figure 2.2 and Figure 2.3). These 

findings support the GLMM results that demonstrated stand type as a more important 

driver of taxa richness and community assembly on the Taiga Shield in particular (Table 

2.3 and Table 2.5).  Our GLMM results for taxa richness demonstrated a large 



62 
 

discrepancy between the variation explained by the fixed effects in the two ecozones 

(Shield R2
marginal=0.40; Plains R2

marginal =0.05). The large difference between the marginal 

R2 values suggests that the nested sampling design had a disproportionately larger 

influence on the Taiga Plains. This is possibly indicative of the variability in 

environmental conditions expressed across plots and burn complexes on the Taiga Plains.  

This notion is further supported in our plot-level analysis whereby marginal R2 increased 

to 10% (Appendix Table 7). The Taiga Shield and the Taiga Plains differ dramatically in 

geomorphological histories, soils development and parent materials (Ecological 

Stratification Working Group 1996). It can be said that the Taiga Shield has more 

limiting environmental conditions; it is typically known as a harsh environment with 

areas of bare ground and rock, thin boulder till and bedrock interspersed with fine-

grained sediment (Ecosystem Classification Group 2008). Strata on the Taiga Shield were 

mostly sparse or low-density mixed, conifer stands (Appendix Table 1). The Taiga 

Plains on the other hand, is a mix of undulating glacial till plains and peatlands 

(Ecosystem Classification Group 2007) and strata on the Taiga Plains exemplified more 

of a gradient from P. mariana dominant to P. banksiana-dominant stands. Greater 

contrast in environmental conditions on the Taiga Shield were likely an important reason 

stand type was a more important driver of taxa richness and community assembly and 

why we see less plant diversity on the Taiga Shield in general.  

For the most part, our RLQ and Fourth Corner analyses supported relationships 

found in our GLMM analyses; the assembly of post-fire plant communities in both 

ecozones was driven mainly by reproductive traits selected for in association with 

residual organic soil thickness and pre-fire stand type (Figure 2.9Figure 2.9, Figure 
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2.10). The role of moisture class coupled with stand type was highlighted in relation to 

species composition in the RLQ and Fourth Corner results in particular. Where burn 

depth was low, for example, we saw an increase in the proportion of each species 

reproducing from seed, namely forbs, in xeric, P. banksiana-dominated stands. On the 

other hand, slow growing, rhizomatous species such as shrubs were found in deep 

residual organic layers in stands dominated by P. mariana.  This stark contrast indicates 

that P. banksiana forests potentially offer better substrates for seedling establishment 

(Duchesne and Sirois 1995), whereas P. mariana stands maintain an organic soil layer 

that inhibits seed germination and provides conditions for a strong legacy-effect of 

species composition following fire (Johnstone and Chapin 2006b), which can also be 

thought of as tfhe biological legacy of the system (Franklin et al. 2000; Johnson et al. 

2016). This notion is also supported by greater residual organic depths in stands with a 

greater proportion of P. mariana (Figure 2.9, Figure 2.10).  

Only fine spatial-scales (quadrat-level) displayed significant correlations between 

the traits and the environment on the Taiga Plains. This discrepancy between RLQ and 

Fourth Corner results at the plot versus quadrat-level suggests that the environmental 

variables used in this study explained a lower proportion of the species traits variance at 

broader scales than at finer scales on the Taiga Plains. Alternatively, other traits that we 

did not use may be associated with the distribution of species at broader scales. The 

occurrence of rare species on the Taiga Plains may also contribute to the lack of 

significant findings (Appendix Table 10). There were more rare taxa (≤ 5 occurences) in 

the Taiga Plains composition data than the Taiga Shield data. Since presence/absence 

data was used in the analyses, there were regular occurrences of zeros (absences) in the 
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matrices. Multiple zeros combined with the variability of within plot environmental 

conditions (see GLMM results) suggests that the RLQ and Fourth Corner were unable to 

pick up on specific conditions at which species and their associated traits were significant 

at the plot-level.  

We suggest that variance in post-fire community assembly in accordance with 

stand type reflects the overall differences in subsurface conditions inherently present in 

these stands; P. mariana and P. banksiana-dominated stands inhabit distinct moisture 

conditions and are qualitatively different regardless of successional stages (Larsen 1997). 

In their extensive study looking at forest floor depths across six ecozones in Canada, 

Letang and de Groot (2012) found that the dominant tree species influences both forest 

floor fuel loads and forest floor depths; P. mariana-dominated stands had approximately 

twice the forest floor depths as P. banksiana-dominated stands in five out of six ecozones 

studied. Walker et al. (2017 in press) recently confirmed these findings in our study 

region where organic soil depths in unburned P. mariana-dominated stands were greater 

than P. banksiana-dominated stands. Differences in depths of organic soil layers have 

been attributed to a surplus of moisture in cold, wet soils and low decomposition rates 

that subsequently support accumulation of organic matter over time in P. mariana-

dominated stands (van Cleve et al. 1983; Bonan and Shugart 1989). Pinus banksiana-

dominated stands on the other hand, have been found to be moisture limited, with shallow 

organic forest floor depths and subsequently lower fuel loads (Letang and de Groot 

2012). Organic soil thickness and soil bulk density are known to be some of the most 

important characteristics affecting both soil temperature and moisture regime that in turn 
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influence stand composition and the general ability for P. banksiana to outcompete P. 

mariana in well-drained soils (Letang and de Groot 2012). 

Given the close relationship between soil properties and stand type, it can be 

argued that poorly drained sites with deeper organic soils prior to fire provided the 

environmental conditions for slow growing, rhizomatous species to re-establish pre-fire 

vegetation. In more northerly P. mariana-dominated stands, topography (drainage) is 

extremely important in determining species composition and vegetation patterns of late 

successional sites (van Cleve et al. 1983; Hollingsworth et al. 2006), which indicates that 

as long as moisture class is maintained to some degree, vascular plant communities in the 

northwestern boreal forests can maintain similar species composition through disturbance 

cycles, especially in stand types where moist organic material can re-establish over time. 

Indeed, it has been suggested from findings in Alaska that landscape positions providing 

cool, moist conditions may be relatively protected from the effects of increased fire 

severity or frequency (Johnstone and Chapin 2006b). This protection is likely linked to 

the shallow depth of the water table and its role in preserving cold, organic soil depths 

even through multiple fire cycles (Harden et al. 2006). This notion supports why pre-fire 

vegetation was more prominent in stands with greater organic soil depths on the Taiga 

Shield in particular, where P. mariana-dominated stands in this ecozone saw an increase 

in taxa richness and a decrease in plants reproducing from seed. Similarly, a recent study 

looking at taxa richness and time since fire in the Taiga Shield Ecozone also found taxa 

richness was greater in P. mariana-dominated stands, attributable, in part, to soil type in 

the stands in comparison to P. banksiana-dominated or mixed stands in the study; the 

authors interpreted soil type as a strong determinant of moisture holding capacity and 
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drainage (Day et al. 2017). In contrast, it is quite likely that rhizomatous species were not 

as prevalent in P. banksiana-dominated stands pre-fire, which is why we did not find an 

abundance of rhizomatic species in these stands. Following a reconnaissance of three P. 

banksiana stand types in northeastern Alberta and southwestern Saskatchewan for 

example, Carroll and Bliss (1982) found a tall shrub layer absent from most stands 

studied and only ten species present in the shrub layer, indicative of lower rhizomatic 

regenerative potential in similar P. banksiana-dominated stands in our study. Similar to 

our findings, Carroll and Bliss (1982) also found greater species richness in the stand-

type they documented as a mixture of P. banksiana and P. mariana trees. 

Fire characteristics that did prove important in our GLMM models can be 

interpreted in relation to moisture and/or species composition related to stand types as 

well. The proportion of plants reproducing from seed at each plot increased in later 

season burns in both ecozones (Figure 2.7, Figure 2.8). These findings likely result from 

the combination of stand type and seed biology and/or phenology. In 2014, P. banksiana-

dominated stands burned later in the season across both ecozones (Appendix Figure 4). 

The combination of dry, thin organic layers burning late in the season likely provided 

ideal seedbed conditions for germinating seeds the following spring (supported by our 

RLQ results), whereby more plants regenerated from seed in P. banksiana-dominated 

stands on the Taiga Plains and Taiga Shield (Figure 2.9, Figure 2.10). Late-season fires 

were likely beneficial for seedbank species, whereby extended light conditions, moisture 

and nutrients from snow melt the following spring (2015), provided previously buried 

seeds the opportunity to germinate and establish. Likewise, the early-season timing of 

seed dispersal of many boreal vascular species (FEIS 2017) may also support plants in 
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dispersing seeds from neighbouring areas onto freshly burned sites in the spring 

following fire. A closer investigation into the increase of plants regenerating from seed in 

L. laricina-dominated stands demonstrated evidence of species that survived the fire in 

2014 (i.e., survival intact) including Salix spp., Betula glandulosa and various graminoids 

that are known to flower in the spring (FEIS 2017). Conversely, earlier season fires in 

moister conditions might have given resprouting plants greater opportunity to take hold in 

the same year in which the fire occurred.  

Overall, our results demonstrate that environmental conditions post-fire (which 

were likely influenced by moisture conditions pre-fire; Bernhardt et al. 2011) impose 

environmental legacies that have a strong influence in the southern boreal forests of the 

NWT where the 2014 wildfires were unprecedented in terms of areal extent, but 

apparently not severe in comparison to more northerly studies (Walker et al. 2017 in 

press). 

2.7 Conclusion 

Warmer temperatures and hotter, drier conditions are expected to extend the 

length of fire seasons, as well as increase the frequency, spatial extent and severity of 

fires in the northwestern boreal forest and elsewhere in Canada over the next century 

(Kasischke and Turetsky 2006; Girardin et al. 2013; Wotton et al. 2017). Understanding 

how forest plant communities assemble and are maintained at local and landscape scales 

is necessary to predict changes to ecosystem function associated with a changing fire 

regime.  
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Here we present strong evidence of the interacting effects of environmental 

legacies combined with species traits in determining local and regional-scale vascular 

plant community assembly patterns in the first year following extensive wildfire in the 

southern boreal forests of the NWT. We also found evidence for a role of fire 

characteristics in shaping these results, given the inherent linkages amongst vegetation 

legacies and fire behaviour. Our findings suggest the southern boreal forest of the NWT 

demonstrates resilience, as a result of moisture conditions and soil substrate legacy 

effects, which differ in comparison to similar post-fire studies in other areas of the 

western North American boreal forest. 
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FIGURES 

 

Figure 2.1 Map of sampling areas within the Northwest Territories spanning two 

ecozones and encompassing seven burn complexes. Map shows sampled plots from the 

2014 burns (n=209). True sample size is obscured given overlapping plots. 
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Figure 2.2  Plot scores for Principal Co-ordinates Analysis (PCoA) ordination with 

Sorenson distance. Values in brackets on the axes represent the amount of variation in 

species composition explained by each axis. Symbols denote pre-fire stand type and 

colour indicates ecozone. Stand types refers to dominant conifer present; other=L. 

laricina and Picea spp. on the Taiga Plains and Picea glauca on the Taiga Shield, 

piba=Pinus banksiana, pima= Picea mariana. 
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Figure 2.3 Species scores for Principal Co-ordinates Analysis (PCoA) ordination. Values 

in brackets on the axes represent the amount of variation in species composition 

explained by each axis. Grey crosses are site scores. See Appendix Table 2 and 

Appendix Table 3 for definitions of species codes. 
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Figure 2.4 Boxplots showing the proportion of total taxa that were recorded regenerating 

from seed or rhizome (including those regenerating from both) on the Taiga Plains 

(n=105 taxa) (A) and Taiga Shield (n=43 taxa) (B). See also Appendix Table 13. Box 

=25th and 75th percentiles; horizontal line within the box represents the median. Whiskers 

are greater than +/- 1.5 times the interquartile range; circles represent outliers. 
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Figure 2.5 Species rarefaction curves comparing sampling effort in 2015 on the Taiga 

Plains (A) and Taiga Shield (B). The line represents the mean and perpendicular lines 

represent confidence intervals.  
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Figure 2.6 Boxplots showing Residual Organic Soil Depth (cm) in each Dominant Stand 

Type in plots on the Taiga Plains (n=125 plots) (A) and Taiga Shield (n=84 plots) (B). 

Box =25th and 75th percentiles; horizontal line within the box represents the median. 

Whiskers are greater than +/- 1.5 times the interquartile range; circles represent outliers. 

Stand type refers to dominant conifer present; Other=Larix laricina on the Taiga Plains 

and Picea glauca on the Taiga Shield; piba= Pinus banksiana; pima= Picea mariana. 

B 

A 
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Figure 2.7 Regression estimates from the selected GLMM candidate model (lowest AICc 

model) of variation in post-fire taxa richness on the Taiga Plains (A) and Taiga Shield 

(B). Points represent the mean coefficient regression estimate. The dark line represents 

±1 SD and the lighter line represents the 95% confidence intervals (2SD). All variables 

were standardized except the categorical variable representing stand type. On the Taiga 

Plains, R2
marginal=0.05; R2

conditional=0.54. On the Taiga Shield, R2
marginal =0.40; R2

conditional 

=0.51. Environmental variables include: mineral, bryophyte and charcoal=percent cover 

of exposed mineral soil, bryophyte (Marchantia spp. and Ceratadon spp.) and charcoal in 

each quadrat; residual organic=depth of post-fire residual organic soil (cm); tree 

consumption=average consumption of aboveground branches at each plot based on 

categorical values (see Appendix Table 4); age=average age of each stand/plot; burn 

date=calendar day of burn; basal area=total measured basal area (cm2) of all species 

measured at each plot expressed on a per m2 basis; stand types (pima, other) refers to 

dominant conifer present; other=Larix laricina on the Taiga Plains and Picea glauca on 

the Taiga Shield, pima= Picea mariana.(contrasted to Pinus banksiana). See Table 2.3 

for significance values. 

B 

A 
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Figure 2.8 Regression estimates from the GLMM candidate model (lowest AICc model) 

of the variation in the proportion of plants regenerating from seed on the Taiga Plains (A) 

and Taiga Shield (B). Points represent the mean coefficient regression estimate. The dark 

line represents ±1 SD and the lighter line represents the 95% confidence intervals (2SD). 

All variables were standardized except the categorical variable representing dominant 

stand type. Environmental variables include: mineral, bryophyte and charcoal=average 

percent cover of exposed mineral soil, bryophyte (Marchantia spp. and Ceratadon spp.) 

and charcoal in each plot; residual organic=depth of post-fire residual organic soil (cm); 

tree consumption=average consumption of aboveground branches at each plot based on 

categorical values (see Appendix Table 4); age=average age of each stand/plot; burn 

date=calendar day of burn; basal area=total measured basal area (cm2) of all species 

measured at each plot expressed on a per m2 basis; stand types (pima, other) refers to 

dominant conifer present; other=Larix laricina and Picea spp. on the Taiga Plains and 

Picea glauca on the Taiga Shield, pima=Picea mariana.(contrasted to Pinus banksiana). 

See Table 2.5 for significance values. 

A 

B 
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Figure 2.9 Results of the first two axes of RLQ analysis of the Taiga Plains data showing 

ordination of the first two axes of the coefficients for the environmental variables (R), 

coefficients for the traits (Q) and species ordination (L). Values in brackets on the axes of 

L represent the projected inertia (or variance in species and environmental scores 

captured) in each axis; d refers to grid-size. Environmental symbols in R: mineral, 

bryophyte, charcoal=percent covers exposed in each quadrat; burn date=calendar day of 

burn; basal area= total measured basal area (cm2) of all species measured at each plot 

expressed on a per m2 basis; piba, pima and other proportion= estimated proportion of 

dominant, pre-fire tree species based on density of stems per m2 of 60 m2 sample area 

where piba=Pinus banksiana, pima=Picea mariana, other=Larix laricina; xeric, subxeric, 

mesic subxeric, mesic, mesic subhygric and subhygric= ranking of plot moisture potential 

using the moisture class (Appendix Figure 1); age=stand age in years; residual 

organic=soil organic layer depth (cm) at each quadrat; burn depth=depth of burn (cm). 

Trait symbols in Q: proportion seeders=proportional representation of each species 

reproducing from seed at each plot; shrub, graminoid, seedless vascular, tree=growth 

forms based on general habit of growth (forb as default variable); deciduous=leaf 

persistence based on leaf type (evergreen as default variable); wind=seed dispersal mode 

(animal as default variable); annual, biennial=life span of each species (perennial as 

default variable). For species ordination (L) symbols have been jittered to reduce overlap, 

and only the most influential points on the axes are shown. For definition of species 

codes, see Appendix Table 2. 
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Figure 2.10 Results of the RLQ analysis of the Taiga Shield data showing ordination of 

the first two axes of the coefficients for the environmental variables (R), coefficients for 

the traits (Q), species ordination (L). Values in brackets on the axes of L represent the 

projected inertia (or variance in species and environmental scores captured) in each axis; 

d refers to grid-size. Environmental symbols in R: mineral, bryophyte, charcoal=percent 

covers exposed in each quadrat; burn date=calendar day of burn; basal area= total 

measured basal area (cm2) of all species measured at each plot expressed on a per m2 

basis; piba, pima and other proportion= estimated proportion of dominant, pre-fire tree 

species based on density of stems per m2 of 60 m2 sample area where piba=Pinus 

banksiana, pima=Picea mariana, other=Picea glauca; xeric, subxeric, mesic subxeric, 

mesic, mesic subhygric and subhygric= ranking of plot moisture potential using the 

moisture class (Appendix Figure 1); age=stand age in years; residual organic=soil 

organic layer depth (cm) at each quadrat; burn depth=depth of burn (cm). Trait symbols 

in Q: proportion seeders=proportional representation of each species reproducing from 

seed at each plot; shrub, graminoid, seedless vascular, tree=growth forms based on 

general habit of growth (forb as default variable); deciduous=leaf persistence based on 

leaf type (evergreen as default variable); wind=seed dispersal mode (animal as default 

variable); annual, biennial=life span of each species (perennial as default variable). For 

species ordination (L) symbols have been jittered to reduce overlap, and only the most 

influential points on the axes are shown. For definition of species codes, see Appendix 

Table 3. 
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TABLES 

Table 2.1 Summary of candidate models used in GLMMs to characterize variation in 

taxa richness and post-fire mode of regeneration.  

Model Name Predictor Variables Scale (units) 

Null NA NA 

Fire 

Characteristics 

Burn Date Ordinal (day of year) 

 Stand Age (age) Continuous (years) 

 Tree Consumption Continuous (average of 

categorical values per plot) 

Stand 

Characteristics 

Dominant Stand Type: stand 

pima, stand other 

Categorical 

 Basal Area Continuous (total basal 

area, cm2) of all tree 

species expressed on a per 

m2 basis 

Seedbed *Residual organic depth 

(residual organic) 

Continuous (cm) 

 *Percent charcoal cover 

(charcoal) 

Continuous (%) 

 *Percent bryophyte cover 

(bryophyte) 

Continuous (%) 

 *Percent mineral soil cover 

(mineral) 

Continuous (%) 

Full All predictor variables listed See Above 

*Values were calculated at the quadrat level for taxa richness and at the plot level for 

regeneration mode. Random effects were burn complex, site and plot for taxa richness analysis; 

burn complex and plot for regeneration mode analysis. All predictor variables were standardized 

except dominant stand type; residual organic was log transformed and standardized. 
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Table 2.2 Ranking of the GLMM candidate models used to predict variation in taxa 

richness post fire on the Taiga Plains (A) and Taiga Shield (B), with the selected model 

(lowest AICc) in bold. Null model included with only the nested study areas as random 

effects: burn/site/plot. For each model (row headings) we reported: number of effects in 

each model(K), Log-likelihood (Log(L)), Akaike Information Criterion (AICc), change in 

AICc compared to lowest AICc model (ΔAICc), Akaike model weight (weight) and 

variance explained by fixed factors (marginal R2) and both fixed and random factors 

(conditional R2). Each model assumes a Poisson error structure and uses a logarithm link 

function. 

A 

Model          K Log(L) AICc ΔAICc weight 

marginal  

R2 

conditional 

R2 

Seedbed 8 -1379.95 2776.13 0.00 0.61 0.05 0.54 

Full  14 -1374.16 2777.03 0.90 1.00 0.11 0.52 

Fire 

Characteristics 7 -1396.59 2807.35 31.22 1.00 

 

0.04 0.53 

Null  4 -1400.05 2808.16 32.02 1.00 0.00 0.54 

Stand 

Characteristics 7 -1399.32 2812.83 36.69 1.00 

 

0.00 0.55 

 

B 

Model  K Log(L) AICc ΔAICc weight 

marginal 

R2 

conditional 

R2 

Full  14 -820.58 1670.20 0.00 0.99 0.40 0.56 

Seedbed 8 -831.47 1679.29 9.09 0.01 0.27 0.51 

Stand 

Characteristics 7 -844.10 1702.48 32.28 0.00 

 

0.19 0.60 

Null  4 -856.03 1720.15 49.96 0.00 0.00 0.59 

Fire 

Characteristics 7 -855.71 1725.70 55.50 0.00 

 

0.00 0.60 
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Table 2.3 The lowest AICc-selected candidate model describing variation in taxa 

richness on the Taiga Plains (Seedbed Model) (A) and Taiga Shield (Full Model) (B). 

Bold variables indicate a significant relationship with the response variable (taxa richness 

per quadrat). Table shows: Intercept, Burn Date=calendar day number, Age=stand age 

calculated from tree ring analyses, Tree Consumption=average consumption of 

aboveground branches at each plot based on categorical values, Stand Pima=dominant 

stand type classified as P. mariana, Stand Other=dominant stand type classified as mix of 

conifer species including L. laricina on the Taiga Plains and P. glauca on the Taiga 

Shield, Residual Organic=the depth of the soil organic layer remaining post-fire in cm, 

Charcoal=percent charcoal cover at each quadrat, Bryophyte=percent cover of 

Marchantia spp. and Ceratadon spp. at each quadrat, Mineral=percent cover of mineral 

soil exposed at each quadrat. See also Table 2.1 and Appendix Table 8 for a complete 

description of candidate models and variables used.  Each variable was standardized; 

residual organic was log-transformed to meet a normal distribution. 

A Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept 1.580 0.111 14.178 2.00E-16 

Residual Organic 0.086 0.032 2.652 0.008 

Charcoal -0.020 0.235 -0.890 0.373 

Bryophyte -0.072 0.231 -3.138 0.001 

Mineral -0.074 0.026 -2.808 0.005 

 

B Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept 0.860 0.183 4.702 2.58E-06 

Stand Pima 0.480 0.192 2.493 0.012 

Stand Other -0.486 0.292 -1.666 0.095 

Basal Area 0.067 0.077 0.876 0.380 

Burn Date 0.030 0.056 0.535 0.592 

Age -0.068 0.044 -1.547 0.121 

Tree Consumption -0.038 0.044 -0.871 0.383 

Residual Organic 0.332 0.047 6.989 2.76E-12 

Charcoal -0.030 0.033 -0.899 0.368 

Bryophyte 0.031 0.026 1.201 0.229 

Mineral -0.090 0.045 -2.006 0.045 
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Table 2.4 Ranking of the GLMM candidate models used to predict variation in 

regeneration modes post- fire on the Taiga Plains (A) and Taiga Shield (B) with the 

supported model (lowest AICc) in bold. The Null model included with only the nested 

study areas as random effects: burn/site/plot. Response variable for all models was the 

proportion of plants regenerating from seed at each plot. For each model (row headings) 

we reported: number of effects in each model(K), Log-likelihood (Log(L)), Akaike 

Information Criterion (AICc), change in AICc compared to lowest AICc model (ΔAICc), 

Akaike model weight (weight) and variance explained by fixed factors (marginal R2) and 

both fixed and random factors (conditional R2).  Each model assumes a Binomial error 

structure and uses a logit link function. 

A 

Model  K Log(L) AICc ΔAICc weight 

marginal  

R2 

conditional 

R2 

Full 13 -216.08 461.49 0.00 0.67 0.05 0.05 

Seedbed 7 -223.96 462.89 1.40 0.33 0.03 0.03 

Fire Characteristics 6 -230.6 473.93 12.44 0.00 0.02 0.02 

Null 3 -241.19 488.58 27.09 0.00 0.00 0.01 

Stand Characteristics 6 -239.49 491.70 30.20 0.00 0.00 0.03 

B 

Model  K Log(L) AICc ΔAICc weight 

marginal  

R2 

conditional 

R2 

Full  13 -557.46 1141.81 0.00 1.00 0.21 0.23 

Seedbed 7 -569.46 1153.19 11.38 0.00 0.17 0.20 

Stand Characteristics 6 -682.35 1376.90 235.09 0.00 0.07 0.09 

Fire Characteristics 6 -729.78 1471.77 329.96 0.00 0.01 0.05 

Null 3 -737.27 1480.60 338.79 0.00 0.00 0.06 
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Table 2.5 The lowest AICc-selected candidate model describing variation in the 

proportion of plants regenerating from seed on the Taiga Plains (Full model) (A) and 

Taiga Shield (Full model) (B). Bold variables indicate a significant relationship with the 

response variable (proportion of plants regenerating from seed per plot). Table shows: 

Intercept; Burn Date=calendar day number; Age=stand age calculated from tree ring 

analyses; Tree Consumption=average consumption of aboveground branches at each plot 

based on categorical values (see Appendix Table 4); Stand Pima=dominant stand type 

classified as P. mariana; Stand Other=dominant stand type classified as a mix of conifer 

species including L. laricina on the Taiga Plains and P. glauca on the Taiga Shield; 

Residual Organic=the depth of the soil organic layer remaining post-fire, measured in 

cm; Charcoal=percent charcoal cover averaged across five quadrats at each plot; 

Bryophyte=percent cover of Marchantia spp. and Ceratadon spp. averaged across five 

quadrats at each plot; Mineral=percent cover of mineral soil exposed, averaged across 

five quadrats at each plot. Each variable was standardized; Residual Organic was log-

transformed to meet a normal distribution. See also Table 2.1 and Appendix Table 8 for 

a complete description of candidate models and variables used. Each variable was 

standardized; Residual Organic was log-transformed to meet a normal distribution. 

A Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept -1.213 0.159 -7.587 3.27E-14 

Burn Date 0.256 0.072 3.552 3.00E-04 

Age 0.076 0.066 1.141 0.253 

Tree 

Consumption 0.045 0.063 0.721 0.470 

Stand Pima 0.256 0.191 1.34 0.180 

Stand Other 0.854 0.411 2.079 0.037 

Basal Area 0.013 0.063 0.210 0.834 

Residual 

Organic -0.362 0.087 -4.157 3.23E-05 

Charcoal 0.042 0.065 0.646 0.518 

Bryophyte 0.124 0.052 2.383 0.017 

Mineral 0.012 0.071 0.168 0.866 

 

B Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept -0.01 0.328 -0.032 0.970 

Burn Date 0.251 0.125 1.995 0.046 

Age 0.108 0.073 1.477 0.139 

Tree 

Consumption 0.279 0.111 2.503 0.012 

Stand Pima -0.525 0.257 -2.041 0.041 
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Stand Other -0.801 0.322 -2.484 0.012 

Basal Area 0.149 0.068 2.176 0.029 

Residual 

Organic -0.861 0.071 -11.978 2.00E-16 

Charcoal -0.170 0.065 -2.593 0.009 

Bryophyte 0.094 0.051 1.855 0.063 

Mineral 0.155 0.065 2.367 0.017 
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Table 2.6 Summary of the RLQ analysis for the Taiga Plains (A) and Taiga Shield (B). 

The table shows eigenvalues and percentages of projected inertia accounted for by the 

first two RLQ axes. Covariance refers to the covariance between the two new sets of 

factorial scores projected onto the first two RLQ axes (square root of eigenvalue); 

correlation refers to the correlation between the two new sets of factorial species scores 

projected onto the first two RLQ axes; cumulative inertia refers to the variance of each 

set of factorial scores computed in the RLQ analysis, both for the environment and for the 

traits. 

A Axis 1 Axis 2 

Eigenvalues 0.632 0.096 

% Projected Inertia 81.359 12.412 

Covariance 0.795 0.310 

Correlation 0.329 0.174 

Cumulative inertia 

(environment) 3.340 5.101 

Cumulative inertia (traits) 1.740 3.546 

 

B Axis 1 Axis 2 

Eigenvalues 1.840 0.210 

% Projected Inertia 85.391 7.272 

Covariance 1.187 0.346 

Correlation 0.500 0.216 

Cumulative inertia 

(environment) 3.204 5.043 

Cumulative inertia (traits) 1.750 3.141 
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Table 2.7 Results of Fourth Corner analysis showing all possible bivariate association 

between the environmental variables (y axis) and life history traits (x axis) on (A) the 

Taiga Plains and (B) the Taiga Shield. Significant (P-value≤0.05). Positive significant 

associations are represented in black; negative associations are in light grey; white 

indicates no relationship. Environmental variables include: Residual Organic=depth of 

post-fire residual organic soil (cm); Charcoal, Bryophyte and Mineral=average percent 

cover of exposed charcoal, bryophyte (Marchantia spp. and Ceratadon spp.) and mineral 

soil in each quadrat; Burn Date=calendar day of burn; Age=average age of each 

stand/plot; Pima, Piba and Other Proportion=proportion of dominant stand type based on 

stem density per m2 of 60 m2 sample area; Basal Area=total measured basal area (cm2) of 

all species measured at each plot expressed on a per m2 basis; Burn Depth=depth of burn 

(cm), moisture classes (Xeric, Subxeric, Mesic-subxeric, Mesic-subhygric, 

Subhygric)=ranking of plot moisture category based on moisture, soil type and 

permafrost presence (see Appendix Figure 1 ); Tree Consumption =average consumption 

of aboveground branches at each plot based on categorical values (see Appendix Table 

4).Traits include: Proportion Seeders=the proportion of individuals of each species found 

reproducing from seed at each plot, Wind Dispersed=plants with seeds that are primarily 

dispersed by wind (default=animal); Evergreen=leaf persistence of each plant based on 

leaf type (default=deciduous); growth form (Graminoid, Seedless Vascular, Shrub, 

Tree)= grouped plants by growth form representing similarities in structure/function 

(default= Forbs); lifespan (Annual, Biennial)=life span of each species 

(default=perennial).See also Appendix Table 8 for a complete description of 

environmental variables and Appendix Table 11 for a complete description of life 

history traits. 
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CHAPTER 3. GENERAL DISCUSSION 

This project provides insight into the mechanisms controlling post-fire vascular 

plant communities in the Taiga Plains and Taiga Shield Ecozones of the Northwest 

Territories (NWT). The NWT provides conditions for monitoring the large-scale response 

of the boreal forest in a changing climate, including the effects of future disturbance 

regime changes since this part of the boreal forest is largely intact and it experienced an 

unprecedentedly large fire year in 2014 (GNWT 2016). Findings from this work can 

build upon pan-boreal monitoring efforts addressing the recovery of high-latitude forests 

following fire and increase our understanding of the impacts of the extensive forest fires 

in times of climate change. Our findings showed this part of the boreal ecosystem has the 

ability to support and maintain ecological processes and the community of organisms that 

exist within the system.  

One of the primary contributions of this project is the baseline dataset we 

established, including the creation of permanent sampling plots across the southern NWT 

landscape. Sustained monitoring of these plots will improve our understanding of the 

changes in post-fire plant species composition and richness through succession and future 

disturbances. This will enable decisions to be made regarding land use planning and 

resource development in fire-dominated ecosystems where fire regime changes are 

predicted.  

Post-fire succession research such as this, also enables predictions of future forest 

changes that are important to wildlife through improved understanding of changing 
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habitat conditions. Funding for part of this research was provided by the Government of 

the Northwest Territories’ (GNWT) Cumulative Impact Monitoring Program (CIMP), 

with the intended focus of enabling predictions of long-term fire effects on wildlife 

habitat such as predictive Rangifer tarandus (caribou) habitat mapping within the 

forested areas of the Taiga Plains and Taiga Shield Ecozones. Cumulative effects of 

stressors such as drought and disturbance in the form of wildfire affects the habitat of 

Rangifer tarandus groenlandicus (barren ground caribou) and Rangifer tarandus caribou 

(woodland caribou), two caribou subspecies with partial ranges in the NWT, for example 

(GNWT 2016). Fire disturbance is likely to affect habitat availability for these caribou, 

where winter foraging grounds will potentially be avoided following fire (Joly et al. 

2010). Overall, researchers will use these findings as part of the NWT-specific post-fire 

succession modules in the modelling program Spatial Discrete Event Simulation 

(SpaDES), which will help support decision making on future forest management for 

wildlife in the region (Chubaty et al. 2017).  

3.1 Integrative Approach  

This work formed part of a larger, trans-disciplinary examination of the aftermath 

of the 2014 forest fires in the NWT. Many individuals from various backgrounds and 

research institutions were involved in the development of the sampling design and 

protocols within the scope of this project including universities and the GNWT. Although 

the bulk of this study focused on forest ecology and botany, the integrative nature of the 

project included investigations into soil carbon, biogeochemistry, permafrost dynamics 

and site energy balance and relied heavily on the experience and expertise of multiple 
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principle investigators. All of the investigations will feed into spatially explicit modelling 

efforts. 

Associated with the integrative biology in this project is the inherent link between 

the biology and humans as inhabitants of the investigated landscape. For communities 

that still pursue traditional lifestyles, loss of diversity or shifts in species distributions in 

time and space could have consequences in terms of food security and land-use decisions. 

This project bridged the social component of the ecosystem we studied with our 

ecological findings. Indigenous communities in the NWT that have relied on hunting, 

trapping, gathering and the use of medicinal plants for generations could find their 

traditional use of and relationship with the land in this area changing with an altered fire 

regime. Caribou, for example, are historically an important wildlife resource and remain 

an important source for food, clothing, and cultural identity for Indigenous people in the 

NWT. Indigenous cultures are also connected to the land through trapping, fishing and 

harvesting berries such as Vaccinium spp. (blueberries and cranberries) and Rubus 

chamaemorus (cloud berry), all of which are an important part of northern Indigenous 

culture given their social and economic values. Understanding plant community response 

to fire and the associated impacts on wildlife will help prepare these communities for 

future conditions and support adaptation planning in association with services critical to 

human well-being in this subsistence region (Nelson et al. 2008). 

Although I did not incorporate social impacts into the main body of work, during 

this project, I had the privilege to work with local community members including 

Indigenous communities, government workers and territorial park personnel throughout 
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the NWT. In the summer of 2015 for example, a colleague and I participated in a Young 

Leaders’ Summit, an initiative organised by Ecology North in which a group of young 

environmental professionals from across the Canadian north spent the day with us 

learning about forest ecology and the work we were doing in the NWT. Other outreach 

opportunities included a Fire Education Event with the Ka’a’gee Tu First Nation in 

Kakisa, which I helped to plan and where I spent the day with students, elders and social 

scientists teaching students how to conduct vegetation sampling and learning about fire 

ecology from scientific and traditional knowledge perspectives. My most recent 

contribution was helping to create an Educational Kit as part of a pilot project initiated by 

the GNWT to incorporate mapping tools such as ArcGIS into classrooms. I contributed 

documents to the kit to help support teachers and students wishing to establish permanent 

sampling plots, sample plants in the field and collect specimens for the creation of a 

classroom herbarium. All of these occasions have provided opportunities for informal 

discussions on the role of fire in a changing climate and occasions to connect with people 

from diverse backgrounds.  

3.2 Significance  

Since multiple interacting factors such as fire characteristics, climate variability, 

plant regeneration strategies and environmental characteristics interact to affect 

vegetation regeneration following fire, disentangling the relative influences of each can 

be challenging. This same complexity governing vegetation distribution and disturbance 

histories throughout the boreal forest makes predicting responses to disturbance such as 

wildfire difficult. This study is unique in that I demonstrate the consistent importance of 

seedbed quality and associated soil characteristics across multiple spatial scales. I was 
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able to demonstrate consistent drivers of post-fire vascular plant communities across a 

large spatial scale whereby differences in results at the plot, stand and landscape levels 

are often common in similar work (De Grandpré et al. 1993; Turner and Romme 1994; 

Boiffin et al. 2015; Markham and Essery 2015). The results of the papers above 

combined with our results demonstrate the need to continue investigating post-fire 

succession in this region. Generalizing findings and making predictions may have limited 

power in extending to broader scales within the boreal forests of Canada and globally, 

which is partially why our hypotheses were incorrect when extending results from Alaska 

to expectations in the NWT. Specifically, our predictions regarding the role of fire in 

post-fire vascular plant recovery based on studies in western North America (Bernhardt et 

al. 2011; Hollingsworth et al. 2013; Pinno and Errington 2016) were not consistent with 

the results presented in Chapter 2.  

In our results, poorly drained areas with greater surficial moisture, greater organic 

soil depths and P.mariana-dominated stand types enabled pre-fire plant communities to 

be maintained in the NWT. Furthermore, there was a greater representation of plants 

regenerating from belowground across the landscape, which led us to liken our findings 

to the ecological resilience of these ecozones, or the ability for a system to persist and 

absorb change and disturbance while maintaining relationships between populations or 

system variables (Holling 1973). These findings indicate that deep organic soil depths 

that are able to maintain moisture may have a higher threshold for resisting successional 

trajectory shifts as fire characteristics continue to change with a warming climate 

(Johnstone and Chapin 2006b). Overall, our results demonstrate that environmental 
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conditions post-fire impose environmental legacies that have a stronger influence than 

fire characteristics in the southern boreal forests of the NWT. 

As mentioned in Chapter 1 of this document, vegetation patterns are tightly linked 

with both topography and disturbance histories. Ecological resilience across the Taiga 

Plains and Taiga Shield Ecozones can also be attributed then, to a landscape that is 

adapted to large-scale fires (Burton et al. 2008), but also fires that are not particularly 

severe. Our results are comparable to a paper from eastern Canadian boreal forests where 

habitat characteristics such as stand type and gradients of moisture explained a higher 

proportion of variation in species composition following fire; these findings were 

consistent across multiple scales and the authors attributed findings to a low severity burn 

(Boiffin et al. 2015). Further evidence of the 2014 NWT fires not being severe was 

demonstrated by Walker et al. (2017 in press), in which a mean burn depth of 9.4cm was 

measured in P. mariana-dominated stands, approximately half the depth of burns in 

interior Alaska in recent years.  

 Despite the NWT being relatively flat, topography and geomorphological 

histories still played a strong role in patterns of vegetation and associated legacies. In a 

study looking at 3461 km2 area within the mixed-wood boreal forest in western Canada, 

Bridge and Johnson (2000) found an important role of surficial geology and geomorphic 

processes in producing the upland mosaic pattern of species composition and stand types 

across the landscapes. Their findings included a section of forest in Saskatchewan, which 

is known to be a notoriously flat region. Therefore, we should not underestimate the role 
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of the minimal topography in the NWT in maintaining the vegetative legacy I reported 

on.  

The vegetative legacy and associated resilience that is demonstrated in this study 

is possibly a result of the high amount of landscape heterogeneity in our study region. 

Differing geomorphological histories and varying subsurface soil characteristics have 

already been extensively discussed. Stand characteristics, from age-classes to stand type 

and density were likewise, variable across both ecozones (Appendix Table 1). The 

landscape scale of our study, ultimately allowed us to capture a mixture of stand types, 

multiple moisture classes and stands in various stages of succession. Indeed, large scale 

fires are thought to promote landscape heterogeneity and biodiversity across the boreal 

forest more generally (Burton et al. 2008). Many ecological models have suggested that a 

diverse and heterogeneous ecosystem is more ecologically resilient to environmental 

stress as it has an increased ability to absorb disturbance without dramatic change to 

ecosystem properties and processes; such ecosystems may also recover more quickly 

(Holling 1973; Peterson et al. 1998; Gunderson 2000). Furthermore, forest ecologists 

have pointed out the role of spatial heterogeneity in the resilience of other ecosystems in 

warmer climates (Virah-sawmy et al. 2009; Levine et al. 2016). 

To further support the power of a heterogeneous landscape that possibly 

contributes to the resilience in this region, I have chosen to present a case study to 

explore new data collected in 2016 that will help enhance our understanding of plant 

community resilience. The plant-edaphic interface is seldom examined, despite the 

importance of this area in influencing fire behaviour and the vegetative legacy of plant 
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communities in particular. A combination of varying soil substrates, fire histories and 

rooting depths would be expected to contribute to the resilience demonstrated in the 

southern NWT. 

3.3 Rooting depths of vascular plants in southern NWT: A case study  

3.3.1 Overview 

As laid out in Chapters 1 and 2 of this thesis, the impact of fire on rhizomatic 

tissue is dependent on the severity of the fire (organic soil combustion) and the depths at 

which rhizomatic tissue and seedbanks are stored (Schimmel and Granström 1996; Wang 

and Kemball 2005). This large-scale project has enhanced our understanding of the post-

fire responses in the NWT, however, classifying regeneration modes into resprouters and 

seeders did not provide us with a full understanding of the depths of rooting structures in 

the plant communities and the predictive power such information could afford with future 

increased fire severity and frequency. It was hypothesized that the greater variability in 

rooting depths within plant communities, the greater the ability of pre-fire communities to 

re-establish under a range of fire characteristics. 

Methods  

In 2016, I conducted field work in affiliation with the 2014 fire project in a series 

of plots that burned prior to the 1960s in the southern region of the Taiga Plains. In these 

plots, I assessed secondary root and rhizome depths of persistent successional vascular 

plants at a series of control plots (n=48) including CG1 (control group) and CG2 (used 

for burn depth calibrations in the 2014 burn data) as well as CG3 near Hay River (Figure 

3.1). At each control plot, I measured the rooting depth of as many species as possible 
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that were present in the previous years’ species presence data. I aimed for a minimum of 

three replicates per species, however, this was not always feasible since species I was 

looking for (those that were also present in post-fire communities) were not always 

present or abundant in the control plots (n=227 measurements). Belowground 

measurements were taken by carefully digging next to the rooting structure of each 

individual and measuring the depth (cm) from the first secondary root or first rhizome, 

stolon or bulb encountered to the top of the soil profile and noting the substrate in which 

the root was growing in (moss layer, fibric layer, humic layer and mineral soil layer).  

A Shapiro Wilk test was used to assess the normality of the rooting depth data. A 

Fligner-Killeen test was used to assess homogeneity of variances of rooting depths in 

each moisture class. The Fligner-Killeen test is non-parametric, assesses medians and is 

sensitive to outliers (Conover et al. 1981; Crawley 2007). 

3.3.2 Findings and comparisons to the literature 

The majority of rooting structures were located in the upper organic layers of the 

soil profile (Figure 3.2). The rooting depth data was not normally distributed and was 

non-transformable (Shapiro Wilk: W=0.88, P-value<0.05). Variance in rooting depths 

was not significantly different across moisture classes (Fligner-Killeen: med chi-

sq.=5.92, df=5, P-value=0.31) (Figure 3.3). Although there appears to be little variation 

in the general rooting zone of vascular plants in this region, general observations can still 

be made to support the idea that rooting depth variability is contributing to the landscape 

resilience seen in this region. There is, for example, variation among individual species 

rooting depths and the moisture classes in which the species were found in Tables 3.1. 
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Ledum groenlandicum, for example, had rhizomes ranging from 4-12cm belowground. 

The dwarf shrubs family Vaccinium spp. had roots ranging from ~3-11cm and were 

found growing in a range of moisture classes. Some herbs also demonstrated similar 

variation; the common forb Hedysarum alpinum had roots extending from 3.5-14.5cm in 

a range of moisture classes as well (Table 3.1). Furthermore, an inspection of the rooting 

depth outliers present in each moisture class (Figure 3.3), revealed that the outliers are 

incidences of deeper rooting depths ranging from 15-25cm. A closer inspection of the 

data indicated that these were different species from multiple growth forms. These 

findings potentially indicate that the species we sampled demonstrate the ability to 

regenerate in varying burn depths (Figure 3.3), however the bulk of plant community re-

establishment in this region is likely dependant on relatively shallow organic soil 

combustion.  

In comparison to other studies assessing root distributions in the boreal forest, our 

root depths initially appear relatively shallow (Table 3.2). Studies have shown that some 

vascular plant species such as Rosa acicularis and Ledum groenlandicum are capable of 

deep rooting structures (Table 3.2). Flinn and Wein (1977) found Ledum groenlandicum 

roots at a depth of 48cm and Strong and La Roi (1983) found rooting depths up to 140cm 

for the same species (Table 3.2). These studies did not necessarily restrict their 

assessment to the area in which the first secondary root or rhizome was encountered in 

the soil horizon and so the species reproductive abilities in the literature presented may be 

much shallower than the maximum rooting depths documented. Similar to our work, 

Strong and La Roi (1983) found rooting depths of many vascular plant species to be 

within 15cm of the ground surface in Alberta. They suggested the bulk of root systems 
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are close to the forest floor because of warmer soil temperatures and possible mechanical 

limitations such as increased soil density with depth. It is also possible that shallow 

rooting depths provide a competitive advantage following early season nutrient pulses 

associated with spring snow melt (Pomeroy et al. 1999).  

3.3.3 Conclusions and future suggestions 

1) The shallow rooting depths and the presence of rhizomes in the humic and fibric 

layers of the soil profile that I present in the NWT supports the notion that the 

forests in this region are adapted to fire histories that are not severe. These 

observations also support our understanding that the 2014 fires were extensive in 

size, but not particularly severe since there was a greater frequency of plants 

reproducing from rhizome on the Taiga Plains and Taiga Shield Ecozones. 

2) Shallow rooting systems are not unique to this region.  

3) The variability of rooting depths within the upper organic layers of many vascular 

plant species likely contributes to the heterogeneity in the region, which likely 

contributes to the ecosystem resilience throughout multiple fire cycles, as was 

demonstrated in the 2014 fires.  

4) Despite the inherent physical labour associated with gathering data on functional 

traits such as rooting depths, a greater understanding of the life history traits of 

plant species in relation to environmental gradients in this region is necessary. 

Consistent field measurement protocols are also imperative so that relationships 

between plant communities and the environment can be understood and compared 

across scales and studies. 
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3.4 Future directions 

Although the boreal forest in the NWT demonstrated resilience to an extreme fire 

event, there should be caution in assuming the effects of rapid climate change will not 

alter the resilience of these ecozones in the near future. Continued monitoring to 

understand the thresholds at which forest types and underlying soil substrates will no 

longer be resilient to changing climate and associated acceleration of fire regimes is 

needed, especially in relation to subsurface conditions such as permafrost. Severe drought 

conditions combined with increased fire frequency could easily tip the threshold of this 

region and result in historically moisture-rich sites to burn more readily, as was observed 

in the 2014 fires. Picea mariana-dominated stands in mesic moisture classes will 

possibly experience the first and most drastic changes. Picea mariana forests at dry and 

moderately well-drained landscape positions were most vulnerable to complete 

combustion of the organic soil layer in 2014 (Walker et al. 2017 in press).  

At the same time, further investigation into fire ecology of P. banksiana-

dominated stands is required. If these forest types do not have the organic soil depths or 

moisture conditions necessary to protect a vegetative legacy, upland sites of the NWT 

may be at risk of depleting canopy and soil seedbanks as well as rhizomatic tissue more 

quickly (Bond and van Wilgen 1996). Successful vascular plant species under such 

conditions are likely to have the following attributes: fast-growing, capable of dispersing 

seeds long distances, persistent on the landscape (long life-span) and able to regenerate 

from multiple modes such as Salix spp. and Betula spp. of the shrub growth forms and 

Calamagrostis spp. of the graminoid growthform. Ruderal species that are known to 

proliferate easily and invade disturbed sites such as Epilobium spp. and Taraxacum 
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officinale F.H. Wiggers (common dandelion) will also be at an advantage, presumably 

with reduced competition. Ultimately, these stands may shift to homogenized 

communities without the additional diversity that current vascular plant communities can 

provide across the landscape. 

On a final note, this study focused on vascular plants, however, the role of non-

vascular plant communities in supporting the maintenance of sub-surface moisture 

conditions through regular fire cycles is also important. Given the limited understanding 

of the role of non-vascular species in contributing to the resilience of vascular plant 

communities following fire, future research in this area would be beneficial to our 

understanding of legacy effects in the boreal forest as well.  

3.5 Summary 

The pressure of climate warming in northwestern Canada has led to more severe 

and frequent forest fires in the boreal forests of this region. The unprecedented fire year 

in 2014 provided the opportunity to examine the potential for severe wildfire to impact 

post-fire vascular plant regeneration processes spanning two ecozones across a gradient 

of P. banksiana and P. mariana-dominated stands. The community of vascular plant 

plants, which have a strong influence on the overall forest structure and ecosystem 

functioning, are less commonly the focus of post-fire succession studies. The 2014 fire 

provided an opportunity to investigate the drivers of taxa richness, community assembly 

and vascular plant species composition following an extensive disturbance event in the 

boreal forest of western Canada using taxonomic and trait-based methods. Our 

generalized findings demonstrated that vascular plant communities regenerating in the 
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NWT are resilient across both ecozones. I attributed these findings to landscapes that 

have increased subsurface moisture and organic soil depths that are able to override fire 

characteristics in supporting the compositional stability of vascular plant communities in 

this region. These findings are further summarised as the prevalence of an environmental 

legacy, which enables a vegetative legacy in the southern NWT. 

3.5.1 Overall 

a) The boreal forest is adapted to regular wildfire, which helps to shape landscape 

diversity and influence ecosystem processes such as succession. In recent years, 

climate change has warmed and dried parts of the boreal forest so that the severity 

and frequency of naturally occurring fires has increased.  

b) Fire can drive selection for particular plant traits such as plant regeneration 

strategies, that are well suited to such wildfire. The fire regime plays a key role in 

plant community assembly post-fire; resilience of the pre-fire vascular plant 

community is possible if the fire is not severe and rhizomatic tissue is left in 

relatively intact. 

c) Understanding how variations in fire severity and other environmental variables 

impact the mechanisms of vascular plant establishment may enable us to predict 

plant regeneration responses to changing fire regimes in the face of climate 

change. With increased fire severity, organic layer depth is severely altered, which 

has the potential to remove underground root systems that would otherwise 

resprout following a fire. An increase in fire frequency means regenerating stands 

will sustain multiple disturbances in a short period of time, potentially impacting 

future plant regenerations in the process. 

d) The results of this research demonstrate the importance of maintaining data 

collection at permanent sampling plots across the NWT landscape and for 

modelling wildlife habitat and forest management practices in a changing climate.  

3.5.2 Drivers of post-fire vascular plant communities in the NWT 

a) Different surficial geology and geomorphological histories on the Taiga Pains and 

Taiga Shield produced different patterns of species composition and stand types 

across the landscape, with the Taiga Shield being less diverse than the Taiga 

Plains.  
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b) Despite these ecozone differences, environmental characteristics in both ecozones 

demonstrated the importance of seedbed quality and soil characteristics driving 

vascular plant regeneration immediately following fire.  

c) Lower severity fires resulted in greater post-fire taxa richness; post-fire plant 

communities following more severe fires had greater representation of seed 

dispersal and seed bank species. Picea mariana stands on the Taiga Shield in 

particular, demonstrated post-fire residual organic soil depths conducive to 

increased taxa richness and the re-establishment of rhizomatic, pre-fire vegetative 

communities. Seedbank species did surprisingly well in the more severe burns 

implicating heat tolerance in these seeds. 

d) Fire characteristics that did prove important to community assembly such as burn 

date (seasonal timing) and burn depth had an underlying association with pre-fire 

site conditions such as moisture and species composition/stand type. 

e) I concluded that poorly drained areas with greater surficial moisture and 

associated soil characteristics enabled a pre-fire vegetative legacy to be 

maintained in the NWT. Maintained organic soil depths have a higher threshold 

for resisting successional trajectory shifts as fire regimes continue to change with 

a warming climate. We likened the subsurface conditions to the environmental 

legacy in this region. 

3.5.3 Significance 

a) The Taiga Plains and Taiga Shield Ecozones of the NWT have the ability to 

support and maintain ecological processes, including the community of plants that 

exist within the system as climate and associated fire regime changes. 

b) The mechanisms controlling post-fire vascular plant species composition and taxa 

richness in this boreal region are largely governed by environmental 

characteristics such as moisture class, soil texture and associated stand types. 

c) The results from this study demonstrate that a changing climate has not interfered 

with the recovery of vascular plant communities following fire in this region. 
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 FIGURES 

 

Figure 3.1 Map of sampling areas within the Northwest Territories spanning two 

ecozones and encompassing seven burn complexes. Map shows sampled plots from the 

2014 burns (n=209) and unburned control plots sampled for species rooting depth 

measurements (n=48). True sample size is obscured given overlapping plots. 
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Figure 3.2 Frequency of rooting substrates of species pool sampled in unburned sites in 

southern NWT in 2016 (n = 227). Humic=decomposed organic soil; 

fibric=undecomposed material; mineral=mineral soil; moss=live moss; mineral/humic 

=transition area at which decomposed organic soil appeared to combine with the mineral 

soil layer. 



115 
 

 

 

Figure 3.3 Boxplot showing Rooting Depths (cm) of vascular plants (n=227) measured 

across six moisture classes. Box =25th and 75th percentiles; horizontal line within the box 

represents the median. Whiskers are greater than +/- 1.5 times the interquartile range; 

circles represent outliers. Moisture classes range from dry (xeric) to wet (subhygric) and 

are based on Appendix Figure 1 (Johnstone et al. 2008). Rooting depths were measured 

in 2016 in a southern NWT chronosequence of stands that burned prior to the 1960s 

(n=48 control plots). Data was not normal and non-transformable. Variance is not 

significantly different based on medians (Fligner-Killeen: med chi-squared=5.92, df=5, 

P-value=0.31). 
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 TABLES 

Table 3.1 Table showing range and mean rooting depths of a subset of species on the 

Taiga Plains Ecozone grouped by growth form. Dominant moisture class is in accordance 

with the 2014 sampling protocol ( Johnstone et al. 2008) (see Appendix Figure 1). 

Species Code  

Mean 

Rooting 

Depth (cm) 

Range 

(cm) 

Number of 

Samples 

Dominant 

Moisture Class 

Graminoids 

 

 

  Carex spp. 4.5 1-6 7 range 

Poa spp. 5.0 3-8 4 range 

Shrubs 

 

 

  Rosa acicularis 9.1 6-13 3 dry 

Ledum groenlandicum 9.0 4-12 4 wet 

Arctostaphylos uva-ursi 3.2 0.5-5.5 5  dry  

Myrica gale 12.8 11-16.5 3 wet 

Potentilla fruticosa 8.0 4.5-15 3 range 

Vaccinium uliginosum 6.0 3-11 3 range 

Vaccinium vitis-idaea 6.1 3-10.5 3 range 

Arctostaphylos rubra 6.0 3.5-12 4 range 

Andromeda polifolia 3.3 2-5.5 7 range 

Empetrum nigrum 3.1 2.5-4.5 3 range 

Shepherdia canadensis 6.8 5-10 4 range 

Forbs     

Rubus pubescens 4.7 3.5-7 4 range 

Linnaea borealis 4.0 3-5 3  dry  

Cornus canadensis 3.3 0.5-7 3 range 

Zygadenus elegans 9.6 7-15 4 range 

Epilobium angustifolium 6.0 3-12 4 range 

Achillea millefolium 5.6 2-9 4 range 

Anemone parviflora 5.6 3.5-7.5 3 range 

Campanula rotundifolia 7.8 5.5-10 3 range 

Galium trifidum 5.1 3-8 4 range 

Geocaulon lividum 5.6 3.5-9 4 range 

Hedysarum alpinum 7.9 3.5-14.5 5 range 

Seedless Vasculars 

 

 

  Equisetum scirpoides 8.2 2.5-16 5 range 

Equisetum variegatum 2.6 1.5-4 3 range 
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Table 3.2 Literature review of mean and range of rooting depths of various boreal 

vascular plants grouped by growth form. Stand type refers to the dominant stand as 

described by the authors; Picmar=Picea mariana; Pinban=Pinus banksiana; 

Psemen=Pseudotsuga menziesii (Douglas fir) and Mixed=deciduous species mixed with 

either Pinban or Picmar. NA indicates missing information for that reference. 

Species  Study 

Location  

Stand 

Type 

Rooting 

Depth 

(cm) 

Range(cm) Source 

Shrubs      

Rosa acicularis   NA 0-20 Fire Effects Information 

System (FEIS 2017) 

Rosa acicularis AB Pinban 96.66 30-140 Strong and La Roi 1986 

Rubus pubescens AB Pinban 14 NA Strong and La Roi 1986 

Ledum 

groenlandicum 

AB Picmar 27 27 Strong and La Roi 1986 

Ledum 

groenlandicum 

NB Mixed, 

Picmar 

45 40-48 Flinn and Wein 1977 

Ledum 

groenlandicum 

NA  NA 15-50 Hebert and Thiffault 2011 

Ledum 

groenlandicum 

Alaska Picmar NA 15-30 Dyrness et al. 1986 

Arctostaphylos 

uva-ursi 

AB Pinban 122.5 110-135 Strong and La Roi 1986 

Vaccinium vitis-

idaea 

AB Pinban 10.33 5-17 Strong and La Roi 1986 

Vaccinium vitis-

idaea 

Sweden  NA 2-3 Schimmel and Granström 

1996 

Vaccinium vitis-

idaea 

AB Mixed NA 19-23 Smith 1962 

Forbs      

Linnaea borealis AB Pinban 9 NA Strong and La Roi 1986 

Cornus 

canadensis 

AB Pinban 

Picmar 

17.5 9-13 Strong and La Roi 1986 

Cornus 

canadensis 

NB Mixed 8 6-13 Flinn and Wein 1977 

Cornus 

canadensis 

BC Psemen  NA 5-13 McLean 1969 

Epilobium 

angustifolium 

BC Psemen NA 1.5-5 McLean 1969 

Epilobium 

angustifolium 

NB Mixed 3.66 2.5-5 Flinn and Wein 1977 
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APPENDIX  

 

Appendix Figure 1 Pictograph used to identify and label moisture classes across 

multiple strata in the NWT Taiga Plains and Taiga Shield Ecozones. Image modified 

from Johnstone et al. 2008. At each site, we sampled across the available moisture 

classifications and classified plots according to this key.  
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Appendix Figure 2 Diagram outlining sampling protocol in 2015 field season. Each plot 

consisted of two parallel transects of 30m in length. Transect 1 was used to characterize 

pre-fire stand composition and density and aboveground biomass consumption. Along 

transect 1, loss of organic soils was measured using the adventitious root (AR) method 

(Boby et al. 2010). Maximum thaw depth was measured at three-meter intervals, 

alternating along each transect. Vegetation (V) data were collected along transect 2.  
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Appendix Figure 3  Boxplots showing Residual Organic Depth (cm) in each Moisture 

Class of plots (n=125) on the Taiga Plains (A) and Taiga Shield (n=84) (B). Box =25th 

and 75th percentiles; horizontal line within the box represents the median. Whiskers are 

greater than +/- 1.5 times the interquartile range; circles represent outliers. Moisture 

classes range from dry (Xeric) to wet (Subhygric) and were based on Appendix Figure 1 

from Johnstone et al. 2008.

A 

B 
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Appendix Figure 4 Boxplots showing Burn Date (day of year) in each dominant stand 

type on the Taiga Plains (n=125) (A) and Taiga Shield (n=84) (B). Box =25th and 75th 

percentiles; horizontal line within the box represents the median. Whiskers are greater 

than +/- 1.5 times the interquartile range; circles represent outliers. Other=Larix laricina; 

Piba=Pinus banksiana; Pima=Picea mariana. 

B 

A 
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Appendix Table 1 Table of sample sites and strata based on ecozone. Pre-fire 

vegetation= Picea mariana (Pima), Pinus banksiana (Piba) or a combination of the two 

(mixed). When Forest Resource Inventory (FRI) was available, dominant species was 

used for site selection; Canadian Landcover Class (LCC05) information was used 

otherwise. 

Burn 

ID 

Burn 

Name 

Ecozone Pre-fire 

vegetation 

Pre-fire 

forest 

density 

Burn 

season 

Re-

burned

? 

# of  

Sites 

# of 

plots 

SS033 Kakisa Taiga 

Plains 

Pima Medium early no 4 12 

   Pima Low early no 2 6 

   Pima Medium early yes 2 3 

   Pima Low early yes 2 4 

ZF020 Central Taiga 

Plains 

Pima FRI early  no 4 11 

   Pima FRI late no 3 9 

   Piba FRI early no 3 9 

   Piba FRI late no 4 10 

ZF046 Northern Taiga 

Plains 

Piba FRI early no 3 9 

   Piba FRI early yes 3 9 

   Piba FRI late no 3 9 

   Piba FRI late yes 3 9 

ZF035 Gamètì  

West 

Taiga 

Plains 

mixed Sparse mid no 3 9 

   mixed Medium mid no 3 9 

   mixed Low mid no 3 9 

ZF044 Gamètì  

East 

Taiga 

Shield 

mixed Medium early no 3 9 

   mixed Low early no 3 9 

   mixed Low late no 3 9 

ZF026 Wekweètì  Taiga 

Shield 

mixed Medium early no 3 9 

   mixed Low early no 3 9 

   mixed Sparse early no 3 9 

   mixed Sparse early yes 3 9 

ZF104 Discovery 

Mine 

Taiga 

Shield 

mixed Medium mid no 2 4 

   mixed Low mid yes 2 4 

   mixed Medium mid yes 4 8 

   mixed Low mid no 4 8 
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Appendix Table 2 Species composition data on the Taiga Plains. NA indicates 

specimens identified to family. Nomenclature follows Porsild and Cody (1980). 

Family 

Species 

Code Species Latin Name 

Asteraceae Achmil Achillea millefolium 

Poaceae Agrosp Agrostis spp. 

Poaceae Agrsp Agropyron spp. 

Betulaceae Alncri Alnus crispa 

Ericaceae Andpol Andromeda polifolia 

Ranunculaceae Anecan Anemone canadensis 

Ranunculaceae Anepar Anemone parviflora 

Ranunculaceae Anesp Anemone spp. 

Caryophyllaceae Arasp Arabis spp. 

Ericaceae Arcrub Arctostaphylos rubra 

Ericaceae Arcuva Arctostaphylos uva-ursi 

Caryophyllaceae Aresp Arenaria spp. 

Asteraceae Asteraceaesp NA 

Asteraceae Astersp1 Aster spp. 

Asteraceae Astpun Aster puniceus 

Fabaceae Astragalussp Astragalus spp. 

Asteraceae Astsib Aster sibiricus  

Betulaceae Betgla Betula glandulosa 

Betulaceae Betpap Betula neoalaskana 

Betulaceae Betsp Betula spp. 

Poaceae Calsp Calamagrostis spp. 

Campanulaceae Camrot Campanula rotundifolia 

Cyperaceae Carexsp Carex spp. 

Caryophyllaceae Carsp NA 

Ericaceae Chacal Chamaedaphne calyculata 

Chenopodiaceae Chesp Chenopodium spp. 

Ranunculaceae Coptri Coptis trifolia 

Fumariaceae Coraur Corydalis aurea 

Cornaceae Corcan Cornus canadensis 

Fumariaceae Corsem Corydalis sempervirens 

Lamiaceae Drapar Dracocephalum parviflorum 

Onagraceae Epiang Epilobium angustifolium 

Onagraceae Epigla Epilobium glandulosum 

Onagraceae Epipal Epilobium palustre 

Equisetaceae Equsci Equisetum scirpoides 

Equisetaceae Equsp Equisetum spp. 

Asteraceae Erisp Erigeron spp. 
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Poaceae Fessp Festuca spp. 

Rosaceae Fraves Fragaria vesca 

Rosaceae Fravir Fragaria virginiana 

Rubiaceae Galbor Galium boreale 

Rubiaceae Galtri Galium trifidum 

Santalaceae Geoliv Geocaulon lividum 

Geraniaceae Gerbic Geranium bicknellii 

Rosaceae Geusp Geum spp. 

Fabaceae Hedalp Hedysarum alpinum 

Fabaceae Hedbor Hedysarum boreale 

Fabaceae Hedsp Hedysarum spp. 

Asteraceae Hieraciumsp Hieracium spp. 

Asteraceae Hieumb Hieracium umbellatum 

Cupressaceae Junhor Juniperus horizontalis 

Pinaceae Larlar Larix laricina 

Fabaceae Latoch Lathyrus ochroleucus 

Ericaceae Leddec Ledum decumbens 

Ericaceae Ledgro Ledum groenlandicum 

Poaceae Leysp Leymus spp. 

Liliaceae Lily1 NA 

Caprifoliaceae Linbor Linnaea borealis 

Caprifoliaceae Londio 

Lonicera dioica var. 

glaucescens 

Asparagaceae Maisp Maianthemum genus 

Myricaceae Myrgal Myrica gale 

Poaceae Orysp Oryzopsis asperifolia 

Ericaceae Oxymic Oxycoccus microcarpus 

Celastraceae Parpal Parnassia palustris 

Ranunculaceae Parpar Parnassia parviflora 

Asteraceae Petpal Petasites palmatus 

Asteraceae Petsag Petasites sagittatus 

Hydrophyllaceae Phafra Phacelia franklinii 

Pinaceae PinPic NA  

Poaceae Poasp Poa spp. 

Salicaceae Popbal Populus balsamifera 

Salicaceae Poptre Populus tremuloides 

Rosaceae Potans Potentilla anserine 

Rosaceae Potfru Potentilla fruticose 

Rosaceae Potsp Potentilla spp. 

Ranunculaceae Ranabo Ranunculus abortivus 

Ranunculaceae Ransce Ranunculus sceleratus 

Ranunculaceae Ransp NA 

Grossulariaceae Ribes Ribes spp. 
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Grossulariaceae Riboxy Ribes oxyacanthoides 

Rosaceae Rosaci Rosa acicularis 

Rosaceae Rossp NA 

Rosaceae Rubaca Rubus acaulis 

Rosaceae Rubcha Rubus chamaemorus 

Rosaceae Rubide Rubus idaeus 

Rosaceae Rubpub Rubus pubescens 

Juncaceae Rush1 NA 

Salicaceae Salsp1 Salix spp. 

Salicaceae SalspA Salix spp. 

Salicaceae SalspB Salix spp. 

Salicaceae SalspC Salix spp. 

Salicaceae SalspD Salix spp. 

Salicaceae SalspE Salix spp. 

Salicaceae SalspF Salix spp. 

Salicaceae SalspG Salix spp. 

Salicaceae SalspH Salix spp. 

Salicaceae SalspI Salix spp. 

Cyperaceae Scihud Scirpus hudsonianus 

Asteraceae Senpau Senecio pauperculus 

Elaeagnaceae Shecan Shepherdia canadensis 

Asteraceae Solmul Solidago multiradiata 

Asteraceae Solspa Solidago spathulata 

Caryophyllaceae Stelon Stellaria longifolia 

Caryophyllaceae Stesp Stellaria spp. 

Asteraceae Taroff Taraxacum officinale 

Ericaceae Vacsp Vaccinium spp. 

Ericaceae Vaculi Vaccinium uliginosum 

Ericaceae Vacvit Vaccinium vitis-idaea 

Caprifoliaceae Vibedu Viburnum edule 

Fabaceae Vicame Vicia Americana 

Fabaceae Viciasp Vicia spp. 

Violaceae Vioadu Viola adunca 

Violaceae Violasp NA 

Violaceae Vioren Viola renifolia 

Melanthiaceae Zygele Zygadenus elegans 
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Appendix Table 3 Species composition data on the Taiga Shield. NA indicates 

specimens identified to family. Nomenclature follows Porsild and Cody (1980). 

Family 

Species 

Code Species Latin Name 

Betulaceae Alncri Alnus crispa 

Ericaceae Andpol Andromeda polifolia 

Ericaceae Arcrub Arctostaphylos rubra 

Ericaceae Arcuva Arctostaphylos uva-ursi 

Betulaceae Betgla Betula glandulosa 

Betulaceae Betpap Betula neoalaskana 

Betulaceae Betsp Betula spp. 

Poaceae Calsp Calamagrostis spp. 

Cyperaceae Carexsp Carex spp. 

Ericaceae Chacal Chamaedaphne calyculata 

Ranunculaceae Coptri Coptis trifolia 

Fumariaceae Coraur Corydalis aurea 

Fumariaceae Corsem Corydalis sempervirens 

Fumariaceae Corsp Corydalis spp. 

Lamiaceae Drapar Dracocephalum parviflorum 

Ericaceae Empnig Empetrum nigrum 

Onagraceae Epiang Epilobium angustifolium 

Onagraceae Epigla Epilobium glandulosum 

Onagraceae Epipal Epilobium palustre 

Equisetaceae Equsci Equisetum scirpoides 

Santalaceae Geoliv Geocaulon lividum 

Geraniaceae Gerbic Geranium bicknellii 

Ericaceae Leddec Ledum decumbens 

Ericaceae Ledgro Ledum groenlandicum 

Poaceae Leysp Leymus spp. 

Caprifoliaceae Linbor Linnaea borealis 

Ericaceae Oxymic Oxycoccus microcarpus 

Pinaceae PinPic NA  

Poaceae Poasp Poa spp. 

Salicaceae Poptre Populus tremuloides 

Grossulariaceae Ribes Ribes spp. 

Rosaceae Rosaci Rosa acicularis 

Rosaceae Rubcha Rubus chamaemorus 

Salicaceae Salsp1 Salix spp. 

Salicaceae SalspA Salix spp. 

Salicaceae SalspE Salix spp. 

Salicaceae SalspG Salix spp. 
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Salicaceae SalspH Salix spp. 

Salicaceae SalspI Salix spp. 

Cyperaceae Scihud Scirpus hudsonianus 

Elaeagnaceae Shecan Shepherdia canadensis 

Ericaceae Vaculi Vaccinium uliginosum 

Ericaceae Vacvit Vaccinium vitis-idaea 
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Appendix Table 4 Stand-level consumption classification system used to assess canopy 

consumption by assessing cone and tree branches. Classification=the categorical number 

given after assessment of each tree. Adapted from Johnstone et al. 2008.  

 

Classification Cone Tree 

No consumption (0) 0% charred Live with green needles 

remaining  

Low (1) 0-33% charred Few needles, most small twigs 

remaining  

Moderate (2) 34-66% charred Few small twigs, many 

branches  

High (3) 67-100% charred or no 

cones remaining 

Most branches and cones 

consumed 
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Appendix Table 5 Salix identification key describing eight morphospecies used in the 

field based on leaf phenotypic traits. 

* Salix D = B. These have been combined into Salix B in the data; all others have 

maintained their original name.  

 

 

 

Morphospecies Name Description of phenotypic traits 

Salix A leaves serrated  

leaves not hairy at maturity (tomentose) 

no white, powdery or waxy substance on leaf underside 

 

*Salix B leaves not serrated 

leaves hairy at maturity 

no white, powdery or waxy substance on leaf underside 

 

Salix C leaves not serrated 

leaves not hairy at maturity 

no white, powdery or waxy substance on leaf underside 

 

SalixE 

 

 

 

Salix F 

 

 

 

Salix G 

 

 

Salix H 

 

Salix I 

 

leaves not serrated 

leaves not hairy at maturity 

powdery or waxy substance on leaf underside 

 

leaves serrated 

leaves hairy at maturity 

no white, powdery or waxy substance on leaf underside 

 

leaves serrated 

leaves hairy at maturity 

powdery or waxy substance on leaf underside 

 

leaves not serrated 

leaves hairy at maturity 

powdery or waxy substance on leaf underside 

 

leaves serrated 

leaves not hairy at maturity 

powdery or waxy substance on leaf underside 
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Appendix Table 6 The lowest AICc-selected candidate model describing variation in 

taxa richness on the Taiga Plains (Seedbed Model) (A) and Taiga Shield (Seedbed 

Model) (B). Bold variables indicate a significant relationship with the response variable 

(taxa richness per plot). Table shows: Intercept, Residual Organic=the depth of the soil 

organic layer remaining post-fire (cm), Charcoal=percent charcoal cover at each quadrat, 

Bryophyte=percent cover of Marchantia spp. and Ceratadon spp. at each quadrat, 

Mineral=percent cover of mineral soil exposed at each plot. See also Table 2.1 and 

Appendix Table 8 for a complete description of candidate models and variables used.  

Each variable was standardized; residual organic was log-transformed to meet a normal 

distribution. 

A Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept 2.28 0.113 20.105 2.00E-16 

Residual Organic 0.069 0.024 2.841 0.004 

Charcoal -0.005 0.063 -0.083 0.933 

Bryophyte -0.018 0.043 -0.414 0.678 

Mineral -0.062 0.048 -1.270 0.204 

 

 

 

 

 

B Estimate 

Std. 

Error z-value Pr(>|z|) 

Intercept 1.960 0.042 45.86 2.00E-16 

Residual Organic 0.398 0.055 7.13 1.02E-12 

Charcoal -0.031 0.060 -0.53 0.598 

Bryophyte 0.157 0.050 3.09 0.002 

Mineral -0.142 0.070 -2.04 0.041 
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Appendix Table 7 Ranking of the GLMM candidate models used to predict variation in 

taxa richness post-fire (plot-level) on the Taiga Plains (A) and Taiga Shield (B), with the 

selected model (lowest AICc) in bold. Null model included the nested study areas as 

random effects: burn/site. For each model (row headings) we reported: number of effects 

in each model(K), Log-likelihood (Log(L)), Akaike Information Criterion (AICc), change 

in AICc compared to lowest AICc model (ΔAICc), Akaike model weight (weight) and 

variance explained by fixed factors (marginal R2) and both fixed and random factors 

(conditional R2). Each model assumes a Poisson error structure and used a logarithm link 

function. 

A 

Model          K Log(L) AICc ΔAICc weight 

marginal  

R2 

conditional 

R2 

Seedbed 7 -365.01 744.98 0.00 0.73 0.10 0.47 

Full  13 -358.93 747.13 2.16 0.25 0.19 0.51 

Null  3 -373.70 753.60 8.62 0.01 0.00 0.37 

Fire 

Characteristics 6 -370.74 754.19 9.21 0.01 

 

0.09 0.40 

Stand 

Characteristics 6 -371.65 756.01 11.04 0.00 

 

0.02 0.43 

 

B 

Model  K Log(L) AICc ΔAICc Weight 

marginal 

R2 

conditional 

R2 

Seedbed 7 -194.74 404.96 0.00 0.62 0.57 0.57 

Full  13 -187.36 405.91 0.95 0.38 0.61 0.61 

Stand 

Characteristics 6 -221.32 455.74 50.77 0.00 

 

0.29 0.29 

Null  3 -240.10 486.50 81.54 0.00 0.00 2.73 

Fire 

Characteristics 6 -239.81 479.70 87.74 0.00 

 

0.00 0.00 
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Appendix Table 8 Description of codes and environmental variables used in GLMM 

models and RLQ analyses. Code=names used in ordination graphs; Variable=the actual 

name of the variable used; Scale=type of data used; Description=detailed information on 

how the variable was obtained.  

Code Variable Scale Description 

Basal Area Total basal 

area 

Continuous Total measured basal area (cm2) of all 

species measured at each plot expressed on 

a per m2 basis. Basal area was calculated 

from stem diameter at breast height or base 

if less than 1.3m in height (area of each 

tree=π(DBH/2)^2. 

  

Stand Pima  

Stand Piba 

Stand Other 

Dominant 

stand type 

Categorical Based on dominant coniferous tree species 

at each plot, P. mariana, P. banksiana, 

Other= L. laricina (Taiga Plains); P. glauca 

(Taiga Shield). 

  

**Pima Proportion  

**Piba Proportion                           

**Other Proportion 

Proportion of 

dominant 

stand type 

Continuous Estimated proportion of dominant, pre-fire 

tree species based on density of stems per 

m2 of 60m2 sample area. Estimate includes 

all trees and saplings that were alive at the 

time of the 2014 fires. Pima=P. mariana, 

piba=P. banksiana, other=L. laricina and 

Picea spp. on the Taiga Plains and P. glauca 

on the Taiga Shield. 

Tree Consumption Average above 

ground tree 

consumption 

Continuous Average per plot of ranked tree 

consumption variables: blank=snag pre-fire, 

0=none, alive and no consumption; 1=low, 

only needles consumed, most small twigs 

remaining; 2=moderate, with few needles 

and small twigs remaining but many 

branches; 3=high, most of the aboveground 

canopy except the central trunk and branch 

stubs consumed, NA=for all the unburned 

plots (see Appendix Table 4). 

Burn Date Burn date Continuous Date of Burn (calendar day) measured from 

daily fire progression maps (Cumming 

2017); pixel-based approach (roughly 500m 

x 1km). 

*Xeric,  

*Subxeric  

*Mesic-subxeric 

*Mesic         

*Mesic-subhygric 

*Subhygric 

Moisture class Categorical Ranking of plot moisture potential using the 

moisture class (Appendix Figure 1; 

Johnstone et al. 2008). Values range from 

dry (Xeric) to wet (Subhygric) and are also 

affiliated with soil texture and the presence 

of permafrost.  

 

Residual Organic 

 

Residual 

Organic Soil 

 

Continuous 

 

Mean of organic layer depth (cm) measured 

at 10 points along the transect. 
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Depth 

 

Age 

 

Stand Age 

 

Continuous 

 

Based on ~5 basal samples (cookies and 

cores) taken per dominant tree species per 

plot. This variable is the mean number of 

rings counted based on 2 measurements. 

 

*Burn Depth 

 

Burn Depth 

 

Continuous 

 

Depth of burn calculated by 1) adventitious 

root height and the associated offset for P. 

mariana sites OR 2) subtracted residual 

organic layer depth from the control plots 

average soil organic layer depth associated 

with each moisture class in control P. 

banksiana stands.  

 

Mineral 

 

Percent 

Mineral Soil 

Cover 

 

Continuous 

 

Percent cover of exposed mineral soil in 

each quadrat. 

 

Charcoal 

 

Percent 

Charcoal 

Cover 

 

Continuous 

 

Percent cover of burnt wood that remained 

as charcoal in each quadrat. 

 

Bryophyte 

 

Percent 

Bryophyte 

Cover 

 

Continuous 

 

Percent cover of Marchantia spp. 

(liverwort) and Ceratadon spp.(common 

post-fire moss) in each quadrat. 

*Variables accompanied with an (*) were included in RLQ analyses, but not GLMMs because of 

correlations. 

 **The proportion of dominant tree species was used in the RLQ analysis instead of the categorical 

dominant stand type used in the GLMMs. 
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Appendix Table 9 Pearson’s correlation matrices of continuous environmental variables considered for all analyses of Taiga Plains 

data (A) and Taiga Shield data (B). Bold numbers indicate the cut-off at which we assumed an important correlation (≥0.35). Burn 

Date=calendar day of burn; Age=stand age in years; Basal Area=total measured basal area (cm2) of all species measured at each plot 

expressed on a per m2 basis; Residual Organic=soil organic layer depth (cm) at each plot; Charcoal, Bryophyte, Mineral=mean percent 

covers exposed in each plot; Burn Depth=depth of burn (cm); Tree Consumption=average consumption of aboveground branches at 

each plot based on categorical values (see Appendix Table 4).   

A 
Burn 

Date 
Age 

Basal 

Area 

Residual 

Organic 
Charcoal Bryophyte Mineral 

Burn 

Depth 

Tree 

Consumption 

Burn Date 1 

        Age -0.21 1 

       Basal Area -0.14 0.11 1 

      Residual Organic -0.33 -0.03 -0.07 1 

     Charcoal 0.07 -0.07 0.04 -0.14 1 

    Bryophyte 0.01 0.04 0.03 0.01 0.02 1 

   Mineral 0.16 -0.05 -0.02 -0.35 0.26 -0.02 1 

  Burn Depth -0.34 0.48 -0.02 0.40 -0.10 0.14 -0.20 1 

 Tree Consumption -0.03 0.12 0.09 0.06 0.02 0.03 0.01 0.23 1 

 

B 
Burn 

Date 
Age 

Basal 

Area 

Residual 

Organic 
Charcoal Bryophyte Mineral 

Burn 

Depth 

Tree 

Consumption 

Burn Date 1 

        Age -0.28 1 

       Basal Area -0.07 0.28 1 

      Residual Organic -0.14 0.21 -0.18 1 

     Charcoal 0.23 -0.14 0.14 -0.16 1 

    Bryophyte 0.23 -0.09 0.12 -0.09 0.00 1 

   Mineral 0.16 -0.12 0.10 -0.26 0.10 0.13 1 

  Burn Depth -0.21 0.46 0.27 0.34 -0.08 0.06 -0.01 1 

 Tree Consumption -0.19 0.06 0.05 0.07 0.00 -0.10 -0.05 0.22 1 
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Appendix Table 10 Results of Fourth Corner analysis showing all possible bivariate 

association between the environmental variables (y axis) and life history traits (x axis) on 

(A) the Taiga Plains and (B) the Taiga Shield. Significant (P-value≤0.05). Positive 

associations are represented in black; negative associations are in light grey; white 

indicates no relationship. Environmental variables include: Residual Organic=depth of 

post-fire residual organic soil (cm); Charcoal, Bryophyte and Mineral=average percent 

cover of exposed charcoal, bryophyte (Marchantia spp. and Ceratadon spp.) and mineral 

soil in each quadrat; Burn Date=calendar day of burn; Age=average age of each 

stand/plot; Pima, Piba and Other Proportion=proportion of dominant stand type based on 

stem density per m2 of 60 m2 sample area; Basal Area=total measured basal area (cm2) of 

all species measured at each plot expressed on a per m2 basis; Burn Depth=depth of burn 

(cm), moisture classes (Xeric, Subxeric, Mesic-subxeric, Mesic-subhygric, 

Subhygric)=ranking of plot moisture category based on moisture, soil type and 

permafrost presence (see Appendix Figure 1 ); Tree Consumption =average consumption 

of aboveground branches at each plot based on categorical values (see Appendix Table 

4).Traits include: Proportion Seeders=the proportion of individuals of each species found 

reproducing from seed at each plot, Wind Dispersed=plants with seeds that are primarily 

dispersed by wind (default=animal); Evergreen=leaf persistence of each plant based on 

leaf type (default=deciduous); growth form (Graminoid, Seedless Vascular, Shrub, 

Tree)= grouped plants by growth form representing similarities in structure/function 

(default= Forbs); lifespan (Annual, Biennial)=life span of each species 

(default=perennial).See Appendix Table 7 for a complete description of environmental 

variables and Appendix Table 8 for a complete description of life history traits. 
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Appendix Table 11 Description of life history traits of vascular plants used in RLQ and Fourth Corner Analyses. Trait Code=the 

terminology found on associated ordination graphs; Trait=the functional trait being measured; Scale=whether the trait was continuous 

or categorical; Description=a description of how the trait information was calculated; Rationale=reasoning for including trait in 

analyses; Source=where and when the trait data was collected. 

Trait Code Trait Scale Description Rationale Source 

Proportion 

Seeders 

Proportion of 

individuals of 

each species 

regenerating 

from seed 

Continuous Total number of 

observations of each 

species regenerating 

from seed  

Ability to establish post-fire, especially 

on severely burned sites. 

Field data collected 

in 2015 

Shrub, 

Graminoid, 

Seedless 

Vascular, Tree, 

Forb 

Growth Form Categorical; 

forbs as 

baseline state 

for modelling   

Plants categorized by 

similar morphology and 

general habit of growth 

Ability to persist (survive) fire based 

on regeneration strategy and/or 

phenology. 

Literature 

(Johnson 1995, 

USDA)  

Wind, Animal Seed Dispersal 

Mode 

Categorical; 

animal as 

baseline state  

Primary mode of seed 

dispersal for each 

species (wind, animal) 

Ability to establish; wind-dispersed 

seeds more likely to quickly disperse 

and be abundant (Grime 1977). 

Field observation 

and fruit type 

Annual, 

Biennial, 

Perennial 

Duration Categorical; 

perennial as 

baseline state 

Life span of each 

species (annual, biennial 

or perennial) 

Time to maturity and ability to 

establish. Annuals and biennials grow 

quickly, disperse seeds rapidly and 

spread quickly (Grime 1977). 

Literature (Johnson 

1995, FEIS 2017) 

Deciduous 

Evergreen 

Leaf 

Persistence  

Categorical; 

evergreen as 

baseline state 

Based on leaf type 

(deciduous or 

evergreen) 

Time to maturity and ability to 

establish. Deciduous leaves have a 

short period of leaf production with 

high potential productivity. Deciduous 

species often have lightweight, wind-

dispersed seeds (Grime 1977; Lavorel 

and Garnier 2002). 

Literature (Johnson 

1995, FEIS 2017) 
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Appendix Table 12 Summary of general stand characteristics in each ecozone. Table 

shows mean± standard deviation and standard error of variables on the Taiga Plains 

(n=125 plots) and Taiga Shield (n=84 plots). Burn Date=calendar day of burn; Age=stand 

age; Basal Area=total measured basal area of all species measured at each plot expressed 

on a per m2 basis; Residual Organic=soil organic layer depth at each plot; Burn 

Depth=depth of burn; Tree Consumption=average consumption of aboveground branches 

at each plot based on categorical values (see Appendix Table 4). 

 

Taiga Plains 

 

Taiga Shield 

 

Variable 

Mean±   Standard 

Deviation  

Standard 

Error 

Mean± Standard 

Deviation  

Standard 

Error 

Burn Date (day) 202.26 ± 10.98 0.98 196.72 ± 8.87 0.96 

Age (years) 104.12 ± 43.04 3.84 101.52 ± 51.11 5.57 

Basal Area (cm2/ m2) 17.09 ± 9.50 0.85 8.77 ± 5.90 0.64 

Residual Organic (cm)  14.06 ± 15.03 1.34 13.41 ± 14.56 1.58 

Burn Depth (cm) 9.59 ± 3.58 0.32 10.67 ± 3.23 0.34 

Tree Consumption 

(averaged categorical 

scale; 0-3) 

2.08 ± 0.76 0.06 1.49 ± 0.56 0.06 
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Appendix Table 13 Frequency table showing the proportion of total taxa found 

regenerating from seed only, rhizome only or taxa that exhibited both regernation 

strategies.  

 

Seed Rhizome Both Total taxa 

     
Taiga Plains 9 60 36 105 

Taiga Shield 7 24 12 43 
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Appendix Table 14 Pearson’s correlation matrix of percent cover variables combined across ecozones. Bold numbers indicate the cut-

off at which we assumed an important correlation (≥0.35). Lichen=live and scorched crustose lichens; litter=loose organic material; 

organic=organic matter; sphagnum=live and scorched Sphagnum spp. moss; wood=downed woody debris thicker than a pencil; 

moss=live and scorched feathermoss; bryophyte=Ceratadon spp. and Marchantia spp.; rocks=rocks and/or gravel; mineral=exposed 

mineral soil; charcoal=burnt wood that remained as charcoal (black); water=standing water; ash=deposits of ash.  

 

 lichen litter organic sphagnum wood moss brypophyte rocks mineral charcoal water ash 

lichen  1 

           litter  -0.15 1 

          organic  0.04 0.12 1 

         sphagnum  0.06 -0.09 0.06 1 

        wood  -0.07 -0.01 -0.13 -0.06 1 

       moss  0.04 -0.08 0.08 0.00 0.03 1 

      brypophyte  -0.04 -0.13 0.01 -0.03 0.13 -0.04 1 

     rocks  0.03 -0.13 -0.65 -0.04 -0.01 -0.05 -0.04 1 

    mineral  -0.07 -0.02 -0.61 -0.04 0.13 -0.06 0.02 0.04 1 

   charcoal  -0.12 0.10 -0.09 -0.08 0.10 -0.11 0.03 0.02 0.21 1 

  water  -0.01 -0.01 -0.04 0.00 0.00 -0.01 0.00 -0.02 0.02 -0.03 1 

 ash  -0.04 -0.04 -0.14 -0.02 0.17 -0.03 0.10 -0.05 0.12 0.06 -0.01 1 
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