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ABSTRACT 

Permafrost degradation in the peat-rich southern fringe of the discontinuous permafrost zone 

is producing substantial changes to land cover with concomitant expansion of permafrost-free 

wetlands (bogs and fens) and shrinkage of forest supported by permafrost peat plateaus. Predicting 

discharge from headwater basins in this region depends on understanding and numerically 

representing the interactions between storage and discharge within and between the major land 

cover types, and how these interactions are changing. To better understand the implications of land 

cover change on wetland discharge, the hydrological behaviour of a channel fen in the headwaters 

of Scotty Creek, Northwest Territories, Canada, dominated by peat plateau-bog complexes, was 

modelled using the Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. 

The model performance was evaluated against measured snow depth, snow water equivalent 

(SWE), evapotranspiration (ET), and water level. The model adequately simulated snowpack 

dynamics, with root mean square errors (rmse) not greater than 11.8 cm for hourly snow depth at 

a point and 37 mm for annual maximum SWE from snow survey transects. The model generally 

captured seasonal ET flux and water level fluctuation, with rmse less than 0.089 mm/hr and 50 

mm, respectively. After model performance evaluation, a sensitivity analysis was conducted to 

assess the consequences of permafrost loss on discharge from the sub-basin by incrementally 

reducing the ratio of peat plateau to wetland area in the modelled sub-basin. Reductions in 

permafrost extent decreased total annual discharge from the channel fen by 2.5% on average for 

every 10% permafrost loss, due to increased surface storage capacity, reduced runoff efficiency 

and increased landscape ET. Runoff ratios for the fen hydrological response unit dropped from 

0.54 to 0.48 after the simulated 50% permafrost area loss, with a substantial reduction from 0.47 

to 0.31 during the snowmelt season. The reduction in peat plateau area also resulted in decreased 
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intra-annual variability in discharge, with higher low-flows and small increases in subsurface 

discharge, and decreased peak discharge with large reductions in surface runoff. The current trend 

of increasing discharge observed in the Scotty Creek basin may not be permanent, as this model 

shows that a completely connected sub-basin results in decreasing channel fen discharge with 

further land cover change. 

 

KEYWORDS: wetlands, discontinuous permafrost, discharge, Cold Regions Hydrological 

Modelling platform, peatlands, land cover change  
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1. INTRODUCTION 

This thesis has been organized following the manuscript format to include three chapters. 

The first chapter is an introduction to the body of work, which includes relevant background 

research conducted in the Scotty Creek basin and on peatland hydrology, as well as a summary of 

the objectives and methods used in this study. The second chapter is a complete manuscript that 

presents the major findings of this research, including more detailed methods, results and 

discussions. The third and final chapter summarizes the principal findings of the study and presents 

opportunities for further work. Additional material in the form of water balance and numerical 

model details are present in a supplementary material chapter at the end of this body of work. 

1.1 Literature Review 

Hundreds of papers have been written worldwide on the function of individual wetlands in 

specific environments within the local water cycle. A review of this literature shows that on the 

global average, wetlands can provide almost any hydrological role (Bullock & Acreman, 2003). 

The dominant climatological processes in the geographical area of interest provide insight into 

understanding the hydrological functions of a wetland, as well as understanding soil properties that 

describe peatlands in general. In the Scotty Creek basin, cold regions processes, and in particular 

the influence of permafrost and snowmelt, and the extensive coverage of peatlands play crucial 

roles in understanding the hydrology of the region (Quinton et al., 2009).  

In the peatlands of North America, the effects of freezing surface soils may have a larger 

role than in regions dominated by minerogenic soils (Woo & Winter, 1993). Frozen mineral soils 

have been shown to allow minimal but measurable infiltration (Alexeev et al., 1972; Gray et al., 

1984; Zhao & Gray, 1999), however peatlands may have a significantly higher moisture content 
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and thus may be seen as virtually impenetrable when frost is consistent at the surface. In some 

cases, buildup of white ice or the formation of concrete frost occurs at the surface of peatlands as 

the water table exceeds the wetland surface periodically during freeze up (Price, 1987; Damman, 

1986). The energy controls on the development of surface frost is also largely driven by soil 

moisture content, as water has a much higher heat loss required to initiate freezing than dry peat, 

regulating the depth and the rate of peatland surface freezing (Farouki, 1981; Woo & Winter, 

1993). This heat loss is also controlled by the snow cover timing, extent and snow water equivalent 

(SWE), as snow acts as an insulator between the peatland surface and the atmosphere (Brown & 

Williams, 1972). Most significantly, the surface ice in peatlands impedes snowmelt from 

infiltrating in early spring (Woo & Winter, 1993), contributing to high discharge rates as the 

wetlands are unable to attenuate high flows (Roulet & Woo, 1986).   

Peatlands have two broadly defined layers with significantly different porosities and 

hydraulic conductivities (Ingram, 1978). The upper layer near the ground surface is commonly 

referred to as the acrotelm. It is the layer that contains actively growing peat producing vegetation, 

has air filled pores on a more common basis, and in which the water table typically varies. Below 

this acrotelm layer is the catotelm, which has a much smaller hydraulic conductivity and typically 

has smaller variations in water saturation, pore size, and biological attributes (Ingram, 1978). The 

thickness of the acrotelm varies, particularly with varying peatland surface topography, with 

depths of up to 50cm where hummocks are present and as little as 10cm in the hollows between 

them (Damman, 1986). Though thickness may vary with surface topography, overall there appears 

to be relatively stable acrotelm thicknesses with time that is controlled by negative feedback-loops 

between water-table elevations and peat formation (Belyea & Clymo, 2001). The vastly different 

physical properties of peat near the ground surface and deep peat means that the water table does 
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not react linearly to additional water inputs (Hogan et al., 2006) and long-term draw-down of the 

water table results in more rapid decomposition of peat impacting the physical properties of the 

deep peat, reducing the porosity and in turn increasing the water table elevation (Whittington & 

Price, 2006). Ultimately, the dominant peatland cover type, or microform, and the rate of peat 

formation change to compensate for changes in water table elevation and water storage.  

The Scotty Creek basin has been the site of intense field study to improve our 

understanding of the heterogeneous peatlands typical of the discontinuous permafrost zone in the 

Lower Liard River, allowing for better parameterization in hydrological modelling (Pietroniro et 

al., 1996; Quinton et al., 2003; Quinton et al., 2009).  Permafrost in this basin was first developed 

due to vertical peat accumulation followed by a period of climate cooling (Pelletier et al., 2017), 

and exists as thin permafrost bodies with steep sides between permafrost and non-permafrost areas 

(McClymont et al., 2013). Within the Boreal Plains where peatlands are underlain by clay-rich 

glacial till, groundwater flow is restricted to near-surface, local systems (Ferone & Devito, 2004) 

and permafrost can acts as a barrier to subsurface contributions between land cover types (Price & 

Fitzgibbon, 1987). Thus, understanding subsurface contributing area depends on accurately 

describing the extent and connectedness of Scotty Creek’s different peatlands. There exist five 

major land cover types in the Scotty Creek basin: mineral uplands (48% areal extent), peat plateaus 

(20%), flat ombrotrophic bogs (19%), channel fens (12%) and lakes (2%) (Chasmer et al., 2014), 

though in the upper two-thirds of the watershed mineral uplands are less common (Quinton et al., 

2003). The basin has undergone rapid land cover change due to permafrost thaw with an estimated 

11% decrease in peat plateau area between 1970 and 2008 (Quinton et al., 2011), and the ratio of 

peat plateau perimeter to area has increased linearly between 1947 and 2008 (Chasmer et al., 2011). 
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Understanding the hydrological implications of this change depends first on understanding the role 

of individual land cover types, and second on investigating the interactions between them. 

Peat plateaus are elevated features in the landscape due to a permafrost core and they 

function as runoff generators (Quinton et al., 2003). The peat porosity and saturated hydraulic 

conductivity decreases with depth with a sharp transition near the division of the acrotelm and 

catotelm, between 10 and 20 cm depth from the vegetated surface (Quinton et al., 2008). The 

largest hydrologic event of the year is the spring freshet. When snowmelt occurs, the frost table is 

within 0.1m of the surface (Quinton & Hayashi, 2005) in the zone of high saturated hydraulic 

conductivity on the order of 103 m/d (Quinton et al., 2008). The snowmelt water forms part of a 

perched aquifer and is rapidly transported to surrounding wetlands, contributing to high discharge 

during the freshet (Wright et al., 2008). After snowmelt, plateaus continue to contribute to 

surrounding wetlands by laterally transporting water through the zone of low saturated hydraulic 

conductivity, though rain can sufficiently raise the water table in order to result in rapid movement 

(Quinton & Baltzer, 2013). As permafrost thaws, peat plateaus undergo both vertical and lateral 

thaw (Quinton et al., 2011). At the thawing edges of peat plateau there is a rapid change in 

vegetation structure as black spruce trees, the dominant vegetation on peat plateau, are intolerant 

to flooding (Baltzer et al., 2014; Chasmer et al., 2011; Patankar et al., 2015). At the edges of peat 

plateaus permafrost thaw results in surface subsidence which results in higher moisture content in 

the peat. When black spruce tree roots are in sufficiently high moisture content the roots are no 

longer able to function (Baltzer et al., 2014; Patankar et al., 2015). Deteriorating root function in 

turn affects tree viability due to overall decreases in transpiration rates leading to tree mortality 

and reduced canopy extent (Chasmer et al., 2011). The resultant increase in shortwave radiation 

reaching the ground surface increases ground temperature and further contributes to permafrost 
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thaw. The combination of these positive feedbacks results in increased permafrost fragmentation 

and net forest loss (Baltzer et al., 2014). Vertical permafrost thaw not only results in forest loss 

and plateau fragmentation, but lateral permafrost thaw results in decreased plateau runoff due to 

lowered hydraulic gradients and thickening of the active layer (Quinton & Baltzer, 2013). 

Modelling of complete forest loss due to permafrost degradation replaced by a homogeneous 

wetland landscape concluded that in the long term, forest loss may result in changing precipitation 

inputs and climatic cooling due to changes in the boundary layer heights in the summer, which 

may be sufficient to slow down the effects of climate warming (Helbig et al., 2017b). 

In the Scotty Creek basin, wetlands either take the form of flat bogs or channel fens. Bogs 

in this basin are either hydrologically isolated from the drainage network that act as storage 

features (Quinton et al., 2003) or may form part of a bog cascade (Connon et al., 2014). Bog 

cascades may be seasonally connected to the drainage network when soil moisture conditions are 

sufficiently high, typically during the snowmelt season, by connecting through ephemeral flow 

through features that cut through adjacent permafrost bodies. After snowmelt, the combined effect 

of thawing surface ice leading to infiltration, and the draw-down of the water table because of 

evapotranspiration, can create a storage deficit that temporarily disconnects a bog, or a series of 

bogs connected leading to an unconnected bog, from the drainage network (Connon et al., 2015). 

In this way, the bog cascades may behave similarly to the ‘element threshold’ concept developed 

by Spence and Woo (2006), where the Scotty Creek basin has a variable contributing area 

dependent on moisture conditions. As permafrost thaw increases and peat plateaus give way to flat 

bogs and channel fens, basin contributing area is expected to increase (Connon et al., 2015). 

Channel fens are wide, linear wetlands that connect in a dendritic pattern between lakes, 

acting as flow through features to laterally convey water to the basin outlet (Quinton et al., 2003). 
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Roughness based routing algorithms have been shown to accurately represent flow conditions in a 

channel fen, with manning’s roughness values of n=0.13 to 0.17 (Quinton et al., 2003). Isotopic 

composition of water in a channel fen was similar to an upstream lake during high flow conditions 

and similar to adjacent peat plateaus during low flow conditions, suggesting the channel fen may 

become hydrologically disconnected from the upstream lake and receive no lake outflow under 

sufficiently low moisture conditions (Hayashi et al., 2004).  

There is a network of linear disturbances in the Scotty Creek basin in the form of old, 

unused winter roads and cut lines from seismic exploration (Williams et al., 2013). These linear 

disturbances cross all previously described land cover types, removing the tree cover from peat 

plateaus. The loss of tree cover in these linear disturbances results in increased radiation at the 

ground surface contributing to permafrost degradation (Quinton et al., 2009; Chasmer et al., 2011), 

though the use of mulching practices has been shown to reduce to rate of permafrost degradation 

(Mohammed et al., 2017). Permafrost degradation may potentially short-circuit the existing 

drainage network by removing permafrost dams which impede flow between bogs and fens, either 

by connecting previously isolated bogs or by providing a shorter path than an existing cascade 

(Quinton et al., 2011). Hydrologic connectivity between bogs and channel fen through a seismic 

line crossing a peat plateau has been observed with hydraulic gradients moving water from the bog 

to the fen, from the fen to the bog, and from the crossed peat plateau to both the fen and the bog 

(Braverman & Quinton, 2016). However, a study of seismic lines including DEM analysis found 

that overall there was a low connectivity between adjacent wetlands due to linear disturbances 

(Williams et al., 2013). An in-depth study of one seismic line in particular found that the seismic 

line behaved more similarly to a bog than a channel fen, as it was seasonally connected through 

surface pathways and only contributed to the channel fen from upstream bogs and peat plateaus 



7 
 

during the snowmelt period (Williams et al., 2013). Williams et al. (2013) concludes that though 

the density of seismic lines is five times higher than the density of the natural drainage network 

(Quinton et al., 2011) the studied linear disturbances appear to have not increased the basin’s 

hydrological connectivity.  

Permafrost degradation and the associated hydrological changes also have the potential to 

impact nutrient, carbon and energy cycling in the Scotty Creek basin. Mercury and methylmercury 

are found in greater concentrations in downstream bogs within bog cascades, suggesting that as 

the basin becomes increasingly connected there will be an increased number of features that are 

hotspots for mercury methylation that can contribute to downstream ecosystems (Gordon et al., 

2016). Hydrology and carbon export are tightly linked in peatlands (Holden, 2005). Wetland 

expansion in Scotty Creek can increase basin methane emissions sufficiently that estimated 

increases in boreal forest carbon dioxide uptake will not offset the net greenhouse gas forcing 

(Helbig et al., 2017a; Helbig et al., 2017b), though methane emissions may also increase without 

wetland expansion due to increasing spring soil temperatures (Helbig et al., 2017c). Analysis of 

peat cores suggests that permafrost periods have slower carbon accumulation rates than non-

permafrost periods for both bogs and plateaus (Pelletier et al., 2017), but that the lower carbon 

accumulation rates during permafrost periods may be compensated in the long term by varying 

decomposition rates of peat types on plateaus. Wetlands have increased radiation energy inputs at 

their surface compared to plateaus, and increasing wetland area means increased radiative energy 

inputs at the basin scale. This energy can then influence lateral permafrost thaw through subsurface 

heat transfer associated with groundwater flow (Kurylyk et al., 2016), leading to even further 

increased wetland area. Vegetation cover, energy inputs, hydrology, permafrost degradation and 

land cover change are all tightly linked in the Scotty Creek basin. 
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1.2 Objectives 

The primary objectives of this research are to improve the understanding of how channel 

fens in the discontinuous permafrost zone may respond to further wetland expansion with 

permafrost-loss driven land cover change. Therefore, the research objectives are as follows: 

1. Develop a conceptual model for a channel fen that includes the seasonally dominant 

hydrological processes in the Scotty Creek basin, 

2. Develop a numerical model of the discharge from a channel fen using the Cold Regions 

Hydrological Modelling platform, and  

3. Perform a sensitivity analysis of the consequences of permafrost loss on the discharge from 

a channel fen by incrementally reducing the forest peat plateau area in the model and 

increasing the wetland area as either channel fen or bog. 

1.3 Methods 

A channel fen in the Scotty Creek basin (Figure 1b) was intensively instrumented in order 

to conduct a detailed water balance analysis that could be used to inform a conceptual model of 

the hydrology of channel fens in the region. The studied channel fen (Figure 1c) covers a straight 

distance of approximately 600m connecting the upstream Goose Lake to the downstream First 

Lake. Hydrological data were grouped into three components for the water balance, discharge into 

the fen, discharge out of the fen, and atmospheric fluxes.  



9 
 

 
 

Figure 1.  a) Study area within the Northwest Territories, b) the Scotty Creek basin, and c) the 
studied channel fen (red) including land cover types, equipment locations and elevation from 
Light, Imaging Detection, And Ranging survey (LiDAR). Equipment locations (e.g. eddy 
covariance, meteorological tripods) in green were used for numerical modelling in Cold Regions 
Hydrological Modelling platform (CRHM) and performance evaluation. Equipment locations 
(e.g., water level recorders, and meteorological tripod) within the channel fen watershed in yellow 
were part of the water balance calculations performed to develop the conceptual model. 

 

A meteorological tripod was set up (Figure 1c) to measure four-component radiation, air 

temperature, relative humidity, wind speed, depth to snow surface, and ground temperature every 

half hour in the studied channel fen. The tripod was also equipped with eddy covariance equipment 

(hydrometer, 3d sonic anemometer) to measure evapotranspiration between April and the end of 

August.  Hourly precipitation measurements were recorded at a nearby Geonor weighing gauge, 

whose data was corrected for wind undercatch. Water level recorders were installed in the 
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upstream and downstream lakes, along the center of the channel fen, and in adjacent hydrologically 

connected features (open bogs, seismic line, abandoned winter road). Four transects (T1through 

T4, Figure 1c) were established that cross the fen surface perpendicular to the direction of flow in 

order to measure snow depth and density, water depth and velocity, and depth to seasonal frost. 

Transects were oriented such that all characteristic vegetation types on the fen were included when 

measuring snow, water and frost variables, as well as extending into open connected features on 

each transect. Two ablation stakes were established along each of the four transects, one in an area 

representing the channel fen and one representing an open connected feature. The ablation stakes 

were supplemented with snow depth and density surveys conducted three times weekly at the end 

of the snow accumulation season and throughout the spring freshet to establish the rate of 

snowmelt. Once the snowcover on the fen was depleted, water depth and velocity were monitored 

three times weekly using an acoustic Doppler system until water velocities were below the ability 

of equipment to detect. The depth of seasonal frost was monitored post snowmelt using a frost 

probe at all transect points weekly during the first month after snowmelt, or until the seasonal frost 

had disappeared. The location and elevation of all transect points and equipment was recorded 

using a Differential Global Positioning System. 

The conceptual model derived from the above water balance and hydrological 

measurements was used in combination with previously published field studies in Scotty Creek to 

inform a numerical model. CRHM was used to build a hydrological model of the channel fen in 

order to model discharge out of the channel fen. Modules descriptions and parameter sources are 

available in the supplemental materials chapter. The model’s performance was evaluated by 

comparing modeled values against snow depth, snow water equivalent, evapotranspiration, and 

water level measured in multiple HRUs as there existed no record of wetland discharge to use for 
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validation (Table I). The proportion of peat plateau in the model was incrementally reduced and 

replaced by either bog or wetland area according to four wetland-area-increase scenarios, 

I. All lost plateau area becomes bog (Scenario “All Bog”), 

II. the ratio of channel fen–to-bog area of the 2010 HRU delineation in the modelled 

sub-basin is maintained, with expanded wetland area added at a ratio of 1.63:1 fen 

to bog (Scenario “Sub-Basin”), 

III. the ratio of fen-to-bog area of the greater Scotty Creek watershed is used to 

determine the ratio at which simulated lost plateau area is replaced, with expanded 

wetland area added at a ratio of 1.92:1 fen to bog (Scenario “Scotty”),  

IV. all simulated peat plateau reduced area is replaced by expanded fen area (Scenario 

“All Fen”). 

These four scenarios were run for three increments of prescribed permafrost loss, 10% less 

permafrost than the extent in 2010, 25% less and 50% less. Runoff ratios were calculated to 

illustrate the changing hydrologic behaviour of the basin. 
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2.1 ABSTRACT 

Permafrost degradation in the peat-rich southern fringe of the discontinuous permafrost 

zone is producing substantial changes to land cover with concomitant expansion of permafrost-

free wetlands (bogs and fens) and shrinkage of forest supported by permafrost peat plateaus. 

Predicting discharge from headwater basins in this region depends on understanding and 

numerically representing the interactions between storage and discharge within and between the 

major land cover types, and how these interactions are changing. To better understand the 

implications of land cover change on wetland discharge, the hydrological behaviour of a channel 

fen in the headwaters of Scotty Creek, Northwest Territories, Canada, was modelled using the 

Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. The model 

performance was evaluated against measured snow depth, snow water equivalent (SWE), 

evapotranspiration (ET), and water level. The model adequately simulated snowpack dynamics, 

with root mean square errors (rmse) not greater than 11.8 cm for hourly snow depth and 37 mm 

for annual maximum SWE. The model generally captured seasonal ET flux and water level 

fluctuation, with rmse not greater than 0.089 mm/hr and 50.2 mm, respectively. After model 

performance evaluation, a sensitivity analysis was conducted to assess the impact of permafrost 
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loss on discharge from the sub-basin by incrementally reducing the ratio of peat plateau to wetland 

area in the modelled sub-basin. Reductions in permafrost extent decreased total annual discharge 

from the channel fen on average by 2.5% for every 10% permafrost loss, due to increased surface 

storage capacity, reduced runoff efficiency and increased landscape ET. Runoff ratios for the fen 

hydrological response unit decreased from 0.54 to 0.48 after the simulated 50% permafrost area 

loss, with a reduction from 0.47 to 0.31 during the snowmelt season. The reduction in peat plateau 

area also resulted in decreased intra-annual variability in discharge, with higher low-flows and 

small increases in subsurface discharge, and decreased peak discharge with large reductions in 

surface runoff. The current trend of increasing discharge observed in the Scotty Creek basin may 

not be permanent, as this model shows that a completely connected sub-basin results in decreasing 

channel fen discharge with further land cover change. 

2.2 INTRODUCTION

Northwestern Canada has experienced rapid climate warming with air temperatures 

increasing at twice the rate than the global average (IPCC 2014). Shallow permafrost temperatures 

have increased across Canada (Smith et al., 2005; Taylor et al., 2006), which has resulted in 

widespread loss of permafrost in the discontinuous and sporadic permafrost zones and the rate of 

such losses is accelerating in northwestern peatlands (Camill, 2005). Permafrost degradation has 

significant impacts on the hydrology in the northwestern permafrost-dominated region of Canada. 

For example, studies have highlighted increasing baseflow across the Northwest Territories (St 

Jacques & Sauchyn, 2009), changes in the rate of catastrophic lake drainage (Marsh et al., 2009), 

and widespread land cover changes with thermokarst development as surface vegetation changes 

from boreal forest to extensive wetlands (Jorgenson et al., 2001; Quinton et al., 2009). 

Geochemical analyses in western Siberia highlight a shift from a surface water-dominated system 
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to groundwater-dominated system with increased mean air temperature and resultant permafrost 

degradation (Frey et al., 2007). Modeling applications have shown how a decrease in intra-annual 

variability composed of an increase in base flow and a decrease in peak flow serve as a useful 

indicator of permafrost degradation in basins based on hydrometric data alone (Frampton et al., 

2013). Changes in the hydrology affect other key ecosystem processes such as carbon dynamics 

(Dimitrov et al., 2014; Helbig et al., 2017a; O’Donnell et al., 2012), transport of nutrients (Frey & 

McClelland, 2009) and toxins (Gordon et al., 2016), and ground thermal regimes (Sjöberg et al., 

2016). 

In the peatland-dominated southern margin of discontinuous permafrost of northwestern 

Canada (Kwong & Gan, 1994), the impact of permafrost degradation is tightly linked to ecological 

change. Examples of this impact are well illustrated by the Scotty Creek watershed. Peat plateaus 

are raised by 1-2m above the surrounding wetlands and the local water table due to an ice-rich 

permafrost core, and are covered by black-spruce dominated boreal forest (Quinton et al., 2003). 

When this permafrost core thaws, the ground surface subsides and is flooded by the adjacent 

wetlands (bog or fen). Black spruce trees at the edge of thawing permafrost respond poorly to 

increased wetness as measured by sap flow in root systems and radial growth of trees (Baltzer et 

al., 2014; Pantakar et al., 2015), where waterlogged roots cease to function entirely, eventually 

leading to reduced tree cover and a transition from forest land cover to wetland.  As permafrost 

thaw proceeds, the proportion of the landscape occupied by peat plateaus decreases and as a result 

so does the proportion of landscape runoff generated by these features. Runoff from thawing peat 

plateaus also decreases over time since thaw induced ground surface subsidence reduces the 

hydraulic gradient driving flow (Quinton & Baltzer, 2013).  Since the major land cover types of 

bog, fen and peat plateau each have a specific function in the water balance of basins (Quinton et 
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al., 2003), a change in their relative proportion may affect the basin hydrograph.  Permafrost thaw 

has increased hydrological connectivity among wetlands. For example, bogs that were once 

hydrologically isolated have developed ephemeral connections with other such bogs so that 

collectively they cascade water from one bog to the next and eventually into the channel fen from 

where it is routed to the basin outlet. This thaw-induced increased connectivity of wetlands has 

expanded the runoff contributing area of drainage basins, a process that offers a plausible 

explanation for the rising discharge from basins observed throughout the southern fringe of 

permafrost in northwestern Canada (Connon et al., 2014).  

Predicting basin discharge in this region depends first on understanding the individual 

impacts of permafrost degradation on the major land cover types, and second on understanding the 

hydrological interactions between the major land cover types. Significant improvements have been 

made in our understanding of the hydrological contributions from peat plateaus (Wright et al., 

2008; Quinton & Baltzer, 2013) and bogs (Connon et al., 2015) to channel fens with on-going 

permafrost degradation.  However, our understanding of the system needs improvement on two 

topics. First, there exists no conceptual model of how channel fens store and transport water, 

though they are understood to function as lateral transport of water to the basin outlet (Quinton et 

al., 2003) and roughness based algorithms were determined to be appropriate for approximating 

surface discharge (Hayashi et al., 2004). Secondly, current studies on permafrost degradation in 

the discontinuous permafrost zone are operating under the framework of expanding contributing 

area through thaw-induced increases in hydrologic connectivity. However, there is an upper limit 

to how much the contributing area can expand. Once all bogs form part of a cascade, and all areas 

are able to contribute to the basin, how might discharge from channel fens change?   
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Wetlands can have a wide variety of hydrological functions, with wetlands contributing to 

both reduction and augmentation of floods and peak flows depending on their particular 

environmental and climatic conditions (Bullock & Acreman, 2003). It is therefore crucial to study 

the seasonally dominant functions of channel fens in Scotty Creek before attempting to 

numerically model their discharge.  Improving our understanding of channel fens with a detailed 

water balance, combined with previous works on bog cascades and on peat plateaus, provides the 

opportunity to represent the fen-bog-peat plateau complex in a numerical model. Physically-based 

hydrological models are useful for testing the impacts of land cover and climate change on 

hydrological variables. The Cold Regions Hydrological Modelling (CRHM) platform has been 

successfully applied to simulate hydrological processes in many Canadian regions (Pomeroy et al., 

2007), such as northern Canada (Dornes et al., 2008; Rasouli et al., 2014; Krogh et al., 2017), the 

Canadian prairies (Fang et al., 2010; Cordeiro et al., 2017; Mahmood et al., 2017), and the 

Canadian Rockies (Fang et al., 2013; Pomeroy et al., 2016) as well as globally, in China (Zhou et 

al., 2014), Patagonia (Krogh et al., 2015), the Pyrenees (Lopez-Moreno et al., 2012) and the 

German Alps (Weber et al., 2016).  CRHM has also been used for sensitivity analysis to assess the 

impact of changing climatic conditions on snowpack development (Lopez-Moreno et al., 2012), 

the impact of forest cover on snowmelt hydrology (Pomeroy et al., 2012), and the impact of 

antecedent conditions on the Alberta June 2013 flood in a mountainous headwater basin (Fang & 

Pomeroy, 2016). CRHM was selected for the purposes of this study because of its widespread 

successful applications, its concentration on cold regions processes, and its relatively simple input 

data requirements. 

Here we aim to improve the understanding of how permafrost thaw driven conversion of 

forest to wetland affects the hydrology of channel fens. This will be achieved through the following 
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specific objectives: (i) develop a conceptual model for a channel fen of the seasonally dominant 

hydrological processes; (ii) develop a numerical model of the discharge from a channel fen using 

CRHM; and (iii) perform a sensitivity analysis of the impact of permafrost loss on the discharge 

from a channel fen by incrementally reducing the area of permafrost-underlain peat plateau in the 

model and increasing the area of permafrost-free channel fen and bog. 

2.3 STUDY SITE 

Scotty Creek is a 152 km2 biophysically representative basin for the lower Liard River 

valley in the Northwest Territories, Canada. The basin is in the southern fringe of the discontinuous 

permafrost zone, approximately 50 km south of Fort Simpson (Figure 1a, 1b). Approximately 40% 

of the basin is underlain by shallow permafrost (<10 m thick) (Burgess & Smith, 2000; Quinton et 

al, 2011). Daily average air temperature (1981-2010) recorded at the Fort Simpson airport is -2.8 

°C, with average air temperatures of -24.2 °C for January and 17.4 °C for July. The region receives 

an average of 388 mm of precipitation annually, of which 187 mm falls as snow (Environment and 

Climate Change Canada, 2017). Elevation in the basin ranges from 210 m to 285 m above sea 

level, with an average gradient of 0.0032 m/m (Quinton & Hayashi, 2008). The majority of the 

basin has deep peat deposits (2-8 m) underlain by a clay-rich glacial till with occasional sandy 

mineral uplands (Aylsworth et al., 2000).  

The headwater portion of the basin is characterized by large wetland areas interspersed 

with raised, forested peat plateaus and small lakes (Quinton et al., 2003). There are four major land 

cover types in this portion of the basin: peat plateau, channel fen, bog, and lake. Detailed 

descriptions of land cover function can be found for peat plateaus (Wright et al., 2008), and bogs 

and bog cascades (Connon et al., 2015). However, only more preliminary studies have been 

performed on channel fens (Quinton et al., 2003). In Scotty Creek, the areal portion of land cover 
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types is approximately 20% peat plateau, 12% fen, 19% bog and 3% lake, with 43% of the area as 

mineral uplands, which are predominantly absent in the wetland dominated headwaters (Chasmer 

et al., 2014; Quinton & Hayashi, 2008). The basin has seen a rapid decrease in permafrost area; 

38% of peat plateau area was converted to wetlands between 1947 and 2008 (Quinton et al., 2011). 

This study focuses on one channel fen, which covers a straight distance of approximately 600 m 

between a source lake (Goose Lake) and outlet lake (First Lake, Figure 1c). The fen was selected 

as it had well-defined edges with a limited number of hydrologically-connected contributing areas, 

including peat plateaus, bogs, and two linear disturbances (a cut line from seismic exploration and 

an abandoned winter road), was nearby long term meteorological measurements, and was 

accessible from the Scotty Creek research facilities. Peat depth in the fen ranges between 3.0 to 

4.5 m and is underlain by clay-rich glacial till with a relatively low hydraulic conductivity. The 

fen is considered representative of the land cover type in the basin as a whole, with an average 

flood-wave velocity of 0.11 km/hr which is equal to the reported celerity of a headwater fen in 

Quinton et al. (2003) and average measured surface velocity of 0.032 m/s compared to 0.02 m/s in 

Quinton et al (2003). 

2.4 METHODS 

2.4.1 Instrumentation 

A water level recorder network (Solinst Levelogger Gold, Hobo U20L-04) was installed in 

the center of the channel fen (Figure 1c) as well as in all non-forested connected features (for 

example, bogs and linear disturbances) in late August 2014, recording every minute and 

calculating half-hourly averages. This water level recorder network was operational overwinter 

2014-2015 as it was installed significantly below freezing depths (>1 m). Water level recorders 
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were anchored to black iron pipe, which had been hammered into the underlying mineral soil to 

prevent mire breathing from moving sensors (Fritz et al., 2008). 

Hourly total precipitation data were recorded using a Geonor T-200B weighing gauge 

installed in August 2008 with no overhead canopy and serviced bi-annually. Geonor data were 

corrected using the R programming language and environment used for statistical computing (R 

Core Team, 2017).The CRHMr R package (Shook, 2016) was used to correct recorded jitter, the 

function’s automated filtering of noise in Geonor data are described in Pan et al. (2016). 

Precipitation data were then corrected for undercatch by determining precipitation type from 

hydrometeor temperature and adjusting for the catch efficiency (CE) of the gauge depending on 

wind speed (Ws) measured at the height of the altar shield (Harder & Pomeroy, 2013; Smith, 

2007). 

                            = , = 1.18 .                                                      (1) 

In April 2015, a meteorological tripod was set up in a central location on the fen. It was 

equipped to measure four-component radiation (CNR4, Kipp and Zonen, Delft, the Netherlands), 

air temperature and relative humidity (HC-S3-XT, Rotronic Hygroclip, Switzerland), wind speed 

(05103, R.M. Young Wind Monitor, United States of America), depth to snow surface (SR50, 

Campbell Scientific Canada, Edmonton, AB), and ground temperature (109, Campbell Scientific 

Inc, Logan, UT, USA, installed every 15 cm between 0 cm and 75 cm below the vegetated surface) 

every half-hour. Evapotranspiration from the fen (ETfen) was measured using high frequency eddy 

covariance equipment installed on the fen meteorological tripod (Figure 1c) taking measurements 

at a 10 Hz frequency between 09/04/2015 and 25/08/2015. The 3D wind velocities were measured 

using a sonic anemometer (CSAT, Campbell Scientific Inc, Logan, UT, USA), and the changes in 

atmospheric water vapor were measured using a krypton hygrometer (KH20, Campbell Scientific 
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Inc, Logan, UT, USA). Latent heat fluxes were calculated using the EDDYPRO software (version 

6.1.0; LI-COR Biogeosciences). Eddy covariance data processing included the following steps: 

the sonic anemometer tilt was corrected using double rotation, spikes were removed in the high 

frequency time series using the method developed by Vickers & Mahrt (1997), high frequency 

ETfen data were block-averaged for an hourly time series, and covariance maximization was used 

to compensate for time lags (Fan et al., 1990), 

Evapotranspiration (ET) was also measured for a bog (ETbog) and for the landscape (ETland), 

which were derived from eddy-covariance instruments as described by Helbig et al. (2016) and 

Warren et al. (2017). A tripod located in a large open bog (Figure 1c) was instrumented with eddy-

covariance equipment (CSAT3A & EC150, Campbell Scientific) in 2014, and was used to evaluate 

the performance of the summertime modelled ETbog in 2014 and 2015 for the bog HRU. A 15m 

meteorological tower (Figure 1c) was equipped with the same eddy-covariance instrumentation 

above the forest canopy in 2013. The eddy covariance flux footprint resulted in a landscape-scale 

measurement of the combined ETland of bog and peat plateau areas during the summer in 2013, 

2014 and 2015; no fen area is included in this measurement.  Details regarding instrument set-up 

and processing of ETbog is described in Helbig et al. (2017b). Details regarding the derivation of 

landscape ETland is in Warren et al. (2017). Flux footprint data quantifies the percent-bog and 

percent-peat plateau contribution to the half-hourly ETland measurements (see Helbig et al., 2016). 

Modelled bog and peat plateau ET values were combined using the same contributions as the 

reported footprint model-derived percent-contributions to create a modelled ETland (Warren et al., 

2017). For all years and for the ETbog and ETland measurements, modelled results were compared 

against measured hourly values for days with at least 75% measurement data coverage. 
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Data from two meteorological tripods that were established in 2004 were compiled for 

CRHM modelling (August 2008-August 2015, locations of tripods in Figure 1c). Data from a 

tripod erected in an open bog were used to represent input data for modelled bog, channel fen and 

lake area; separate input data were used for the peat plateau from a meteorological tripod installed 

below the canopy on a peat plateau. Input data included average hourly incoming shortwave 

radiation (CNR1, Net Radiometer, Campbell Scientific, Logan, UT, USA), wind speed (031A, 

Met One Wind Speed Sensor, Campbell Scientific, Logan, UT), relative humidity and air 

temperature (HMP45C, Temperature and Relative Humidity Probe, Vaisala Inc, Helsinki, 

Finland). Data gaps less than three hours were filled using linear interpolation. Data gaps longer 

than three hours were filled using measurements from other meteorological stations located on 

similar land cover types from the Scotty Creek network of meteorological stations. The tripods 

also included a Sonic Ranging Sensor (SR50A, Campbell Scientific, Logan, UT, USA). Annual 

manual measurements of the distance from the sensor to the snow surface were conducted at the 

end of the snow accumulation season to validate sensor recordings. Missing snow depth above 8 

cm were gap filled with the most recently recorded values. Snow depth measurements below 8 cm 

had poor quality signal values. Snow depth measurements below 8 cm were considered 0 cm. In 

2010, the SR50 sensor installed on the bog tripod was replaced after multiple malfunctions; data 

between servicing of the bog tripod in 2009 and replacement of the sensor in 2010 were removed 

from the analysis. 

The water table was recorded in the bog using a vented water level recorder (WL16s, Water 

Level Logger, Global Water Instrumentation, Sacramento, CA, USA, 2008-2013) and a non-

vented water level recorder corrected using a separate barometric logger (3001, Levelogger Gold, 

Solinst, Georgetown, ON, Canada, 2014-2015) in the bog where the meteorological tripod was 
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located (Figure 1c). Sensors were installed annually in the early summer after snowmelt and after 

the surface of the bog had thawed, and were removed before soil freezing in the fall. The depth to 

water table, depth to sensor tip, and depth to ground surface from the top of the well were measured 

at install and removal. 

2.4.2 Water Balance 

Four transects (T1through T4, Figure 1c) were established in late August 2014 that cross 

the fen surface perpendicular to the direction of flow in order to measure snow depth and density, 

water depth and velocity, and depth to seasonal frost. All variables were measured approximately 

every 5 m, except for snow density which was measured every 25 m. Transects are separated by 

an average of 140 m, with total distances of 175 m, 140 m, 105 m and 65 m of Transects 1 through 

4, respectively. Transects were oriented such that all characteristic vegetation types on the fen were 

included when measuring snow, water and frost variables, as well as extending into open 

connected features on each transect. In early March 2015, two ablation stakes were established 

along each of the four transects, one in an area representing the channel fen and one representing 

an open connected feature. The ablation stakes were supplemented with snow depth and density 

surveys conducted three times weekly at the end of the snow accumulation season and throughout 

the spring freshet to establish the rate of snowmelt. Once the snowcover on the fen was depleted, 

water depth and velocity were monitored three times weekly using an acoustic Doppler system 

(SonTek, FlowTracker, San Diego, CA, USA) until water velocities were below the ability of 

equipment to detect. The depth of seasonal frost was monitored after snowmelt using a frost probe 

at all transect points weekly during the first month after snowmelt, or until the seasonal frost had 

disappeared. The location and elevation of all transect points and equipment was recorded using a 

Differential Global Positioning System (DGPS, Leica GS10 RTK GPS, Switzerland). 
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On days where eddy covariance data were not available, the Priestley-Taylor (Priestley & 

Taylor, 1972) method was used to estimate ETfen from the fen surface. ETfen is assumed to be zero 

during the “winter” period, between 18/12/2014 and 04/03/2015. If less than 75% of hourly block-

average eddy covariance data were available, then the Priestley-Taylor method was used to 

estimate daily ETfen. 

Measurements of water level, snowmelt, rainfall and ETfen were used to compute a channel 

fen water balance (equation 2). This was done by partitioning fluxes into three components: 

discharge into the fen, discharge out of the fen, and the atmospheric flux. 

              = ( + ) − ( + ) + ( + − )                        (2) 

where S [mm/day] is the change in storage in the channel fen, Q [mm/day] is the discharge of water 

into or out of the fen calculated separately for the surface discharge and the subsurface discharge, 

Ps [mm/day] is snowmelt added at the fen surface, Pr [mm/day] is rainfall, and ET [mm/day] is 

loss to the atmosphere through ETfen. Incoming discharge was calculated as the input into the 

channel fen from Goose Lake, as well as the input of the bog connected on T1, the seismic line 

connected on T2, the small bog connected on T3, and the winter road connected on T4 (Figure 1c). 

Outgoing discharge was the output from the channel fen to First Lake. Due to the low hydraulic 

conductivity of the underlying glacial till layer, deep groundwater flow was considered to be a net 

zero flux, with no vertical loss or gain. Details on calculation of surface discharge (Manning’s 

equation) and subsurface discharge (Darcy’s law) is included in the supplemental materials. 

For the purposes of discussion, four time periods were assigned; the “spring” period 

between 04/04/2015 and 31/05/2015 whose start date is defined by the first observation of 

snowmelt in the channel fen during field studies and whose end date is determined by when the 

water level in the fen reached a relatively stable height of within 5 cm above the fen surface, the 
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“summer” period between 01/06/2015 and 26/08/2015 defined as the time period after water table 

stabilization that occurred with the end of the spring freshet and ending when data collection ended 

in 2015, the “fall” period between 02/09/2014 and 17/12/2014 whose start date is defined by the 

beginning of data recording in the channel fen and whose end date is defined by the first time 

period where frozen ground was recorded at the bog tripod  from a temperature probe installed at 

10 cm below the vegetated surface, and the winter period between 18/12/2014 and 04/03/2015 

defined as the remaining time interval between previously defined “fall” and “spring” periods. 

2.4.3 Numerical Model Description - CRHM 

CRHM is a flexible, process-based, modular modelling platform (Pomeroy et al., 2007). It 

uses the Hydrological Response Unit (HRU) concept to permit flexible basin discretization from 

lumped to finely distributed and requires continuous forcing data including temperature, relative 

humidity, wind speed and precipitation. A library of modules is available to model hydrological 

processes, with a focus on processes crucial to cold regions (e.g., snow transportation, interception, 

sublimation and melt, infiltration into frozen soils, ground freeze and thaw), however a full range 

of non-cold regions modules are available. A basin-specific model application is built by selecting 

appropriate modules based on the basin of interest. Modules must then be parameterized based on 

field observations, from literature or by calibration. 

CRHM was used to model the hydrology of a small sub-basin (0.45 km2) representative of 

the peat plateau-bog-channel fen complex found in the headwaters of Scotty Creek. Model 

modules were selected to reflect the cold region processes outlined in the conceptual model 

developed from the water balance calculations and field studies (Figure 2, module descriptions 

and parameter sources in supplemental materials). The modelled sub-basin represents the 

hydrology of the channel fen, which connects Goose Lake and First Lake (Figure 1c). The 
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watershed for the channel fen was determined through spatial analysis using the ArcMap Spatial 

Analyst/Hydrology toolbox using the 2010 LiDAR derived DEM as input (Chasmer et al., 2010). 

Due to the low topographic gradients of the headwaters of the Scotty Creek basin, there is little 

difference in slope, elevation or aspect across the modelled sub-basin. Land cover type has been 

shown to be the most important factor leading to different hydrological processes (Quinton et al., 

2003). The HRUs for the modelled sub-basin were determined from a land cover classification 

map of the Scotty Creek watershed based on 2010 LiDAR data collection (Chasmer et al., 2014), 

therefore the baseline model run is representative of the 2010 permafrost extent, covering 112,600 

m2 or 25% of the modelled sub-basin area. Four HRUs were defined in this model: peat plateau, 

bog, fen and lake. In this study, all bogs within the watershed of the channel fen are considered 

hydrologically connected to the channel fen and the entire modelled sub-basin is considered a 

contributing area. The model simulates snow interception and sublimation from forest canopies, 

energy balance snowmelt, evapotranspiration, peat soil water storage and transmission, frost table 

dynamics, and runoff by surface, subsurface and groundwater flows above the clay-rich layer. 

Model parameters were determined from field observations, spatial analysis of the 2010 LiDAR-

based DEM, or derived from field studies at Scotty Creek (parameters and sources included in the 

supplemental materials). The model was driven by a continuous hourly time series of incoming 

shortwave radiation, wind speed, relative humidity, air temperature and precipitation 

(instrumentation described above).  
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No discharge measurements exist for the channel fen to use for validation. Instead, four 

key hydrological variables were used to evaluate model performance: point snow depth, transect-

based snow water equivalent (SWE), point ET and point water table. Table 1 outlines availability 

of performance evaluation data according to HRU. Table 2 lists four statistics used to evaluate 

model outputs: mean error (me), percent bias (pbias), root mean square error (rmse), and 

normalized root mean square error (nrmse), as well as the number of values (n). The equations 

used to calculate these statistics are outlined in Table 3. Statistics were calculated using the 

“hydroGOF” package available for R (Zambrano-Bigiarini, 2014). Additionally, model outputs 

were evaluated using graphical goodness-of-fit measures, including r-squared values associated 

with the linear regression of paired values represented in one-to-one plots and Nash-Sutcliffe 

Efficiencies (nse) for time series where applicable.  



27 
 

 

 

 



28 
 

2.5 RESULTS 

2.5.1 Water Balance 

 
 
Figure 2. Conceptual diagram of water movement through channel fens in wetland dominated peat 
rich basins in the discontinuous permafrost zone as determined through field work conducted at 
the Scotty Creek Research Basin. Rectangles represent processes while diamonds represent yes/no 
questions. WL: Water Level. Note, bog cascades, seismic lines and lakes may become 
hydrologically disconnected from a channel fen under sufficiently low water level conditions. 

As a result of the fieldwork conducted on the channel fen outlined in Figure 1c, a 

conceptual model of how water moves through the fen was developed (Figure 2). The channel fen 

had highest rates of surface runoff during the spring freshet. A layer of seasonal frost at the fen 

surface was observed during field studies, which may have limited or prevented infiltration of 

snowmelt water. According to the water balance calculations, 58% of annual surface runoff from 

the fen occurred during the “spring” snowmelt period between 04/04/2015 and 31/05/2015 (Figure 

3b), which accounted for more than 95% of total discharge during the same time period. The water 
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table reached an average maximum of 23 cm above the ground surface of the fen, and dropped to 

within 5 cm by 01/06/2015 midway between the lakes, though an area directly next to First Lake 

remained ponded to a minimum depth of 12 cm above the fen surface during the entire study. 

During the “summer” period the water table remained consistently near the fen surface and 

responded quickly to rain events. ETfen exceeded precipitation inputs over this period with an 

ETfen/rainfall ratio of 1.2 for the summer of 2015 (Figure 3a, 3c).  The connected land cover types 

(surrounding peat plateau, connected bog cascades, and the upstream lake) consistently contributed 

to the fen and maintained a sufficiently high water level to allow high rates of evaporation and 

transpiration from the vascular plants. As ETfen rates decreased in the “fall’ period, the change in 

storage in the fen became positive and subsurface discharge peaked. During the “fall” period, 

between 02/09/2014 and 17/12/2014, the fen subsurface discharge accounted for 45% of total 

subsurface discharge that occurred during the whole water balance period, 02/09/2014 to 

26/08/2015 (Figure 3d). Discharge during the winter was limited to the subsurface, as the surface 

of the fen remained frozen until after the spring freshet with a maximum measured refreezing depth 

of 24 cm. Subsurface discharge during the “winter” period accounted for 18% of total annual 

subsurface discharge. Discharge out of the fen was almost equal to subsurface inputs, with an 

average positive change in storage of 3 mm/day between 18/12/2014 and 03/04/2015.  
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Figure 3. Components of the water balance calculations performed to solve for change in storage, 
S, in equation 2 for the fall 2014 to fall 2015 time period for (a) evapotranspiration, (b) surface 
discharge in (QsurIN) and out (QsurOUT) of the channel fen, (c) precipitation inputs as either 
snowmelt or direct rainfall, and (d) subsurface discharge in (QsubIN) and out (QsubOUT) of the 
channel fen. 
 

2.5.2 Numerical Model 

2.5.2.1 Performance Evaluation 

Simulated snow depth was compared to the hourly measured snow depth at points near the 

peat plateau and bog tripod sites (described above). Simulated SWE was compared to measured 

SWE from annual snow surveys taken along transects that intersected the bog and peat plateau 

tripod locations.  Snow depth and density were measured at sampling points along the transects to 

determine SWE, and measured SWE for bog and peat plateau were calculated from averaged 
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values for all points on the corresponding transects. Modelled snow depth, water level, and 

evapotranspiration were compared against measurements whose collection is as described above. 

The CRHM model output is a depth of water that is stored in the soil column. This depth 

of water was used to estimate the depth of water table above or below the ground surface using the 

following assumptions: (1) there is a small amount of water that cannot be drained as it is part of 

the non-active porosity equal to 0.18 volumetric soil water content (Zhang et al., 2010); (2) all 

water between the ground surface and the saturated water table is held at this minimum saturation 

level; (3) all pore space below the water table is saturated with water; and (4) the water table is 

above the ground when the modelled depression storage (Sd) is larger than 0 mm. The depth to 

water table is considered positive when below ground, and negative when above ground. 

The model successfully captures the variation in hourly measured snow depth in the peat 

plateau and bog with high (>0.85) r-squared values (Figure 4a, 4b). Though there is an 

underestimation bias in the peat plateau and an overestimation bias in the bog (Table 2, Figure 4a, 

4b), the high nse values (Figure 4c, 4d) and small rmse values (Table 2) for the simulation period 

suggest generally good model performance. 
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Figure 4. One-to-one plots of (a) plateau and (b) bog snow depth; dashed black lines indicate linear 
regression for all years and all data points. Time-series data of (c) plateau and (d) bog snow depth. 
Vertical dashed lines indicate the end of the calendar year. 
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The model accurately captured the variation in the measured SWE in the peat plateau and 

bog with r-squared values higher than 0.64 (Figure 5a, 5b).  The model was able to capture the end 

of season SWE for six seasons from 2009 to 2014 for the peat plateau (Figure 5c) with small 

positive bias and small difference compared to the measurements (Table 2). The model tended to 

overestimate the end of season SWE for seven seasons from 2009 to 2015 for the bog (Figure 5d), 

with higher overestimation bias and larger difference compared to the measurements (Table 2).  

The model’s higher overestimation of bog SWE is emphasized by model’s overestimation of bog 

snow density. The average measured density during end-of-season snow surveys conducted in 

Scotty Creek on the bog land cover type between 2009 and 2015 is 0.17 g/cm3, the modelled snow 

density (obtained by dividing the modelled SWE by the modelled snow depth) for the same dates 

is 0.26 g/cm3. The model also appears to be underestimating how much snow is sublimated or 

transported out of the bog HRU, with average difference between total snowfall and measured 

SWE between 2009 and 2015 of 36 mm and a modelled difference of 4 mm. In the peat plateaus, 

the model is more accurately capturing annual snow sublimation and transport processes, with a 

measured difference between snowfall and peat plateau SWE of 40 mm and a modelled difference 

of 42 mm during the same time period. Wind speeds measured in the bog (Figure 1c) are low and 

often below the model’s threshold required to transport snow.  
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Figure 5. One-to-one plots comparing modelled versus measured values for (a) plateau, and (b) 
bog snow water equivalent; black dashed lines indicate the linear regression. Time-series data of 
(c) plateau, and (d) bog snow water equivalent; bars indicate standard error. Vertical dashed lines 
indicate the end of the calendar year. 
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At the landscape scale, modelled ETland had a low overestimation bias and relatively small 

difference compared to the measured ETland (Table 2), but it obtained only 69% of the variation in 

ETland measurements with low r-squared value (Figure 6a). For the bog HRU, the model captured 

the majority of the variability of ETbog measurements with a high r-squared value (Figure 6b), 

though the modelled ETbog showed an overestimation bias and larger differences than for ETland 

(Table 2). Accurately modelling ETbog is crucial to estimating ETland as wetland ET can 

significantly exceed peat plateau ET due to higher moisture availability at the surface (Wright et 

al. 2008). Part of the difference between the model’s ability to replicate ETbog versus ETland may 

be explained by the two approaches used to model peat plateau ET (Penman-Monteith) and ETbog 

(Preistley-Taylor). Though the Priestly-Taylor method has been shown to accurately predict 

evaporation from peatlands with non-vascular coverage in Scotty Creek (Connon et al 2015), 

peatlands with vascular plant cover are better represented by methods that account for atmospheric 

water vapor conditions in addition to net-radiation such as the Penman-Monteith method (Lafleur 

& Roulet, 1992). The high availability of input data, including information on the surface 

conductance of black spruce trees (Zha et al., 2010) allowed for the application of the Penman-

Monteith method to simulate ET of the peat plateaus with a high coverage of vascular plants 

(Quinton et al., 2003). However, tree density on the peat plateaus of Scotty Creek is sufficiently 

low (Chasmer et al., 2011) to allow for significant contributions from the understory to peat plateau 

ET (Warren et al., 2017). As the conductance parameter used to calculate ET on peat plateau was 

based on studies on black spruce trees, it is possible that the model’s inability to capture the 

variability in ETland could be explained by the under-representation of understory conductance on 

peat plateaus. 
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Figure 6. One-to-one graphs comparing modelled versus measured values for (a) landscape, and 
(b) bog evapotranspiration; dashed black lines indicate the linear regression for all years and all 
data points.  
 

The model did not accurately simulate water table fluctuations in summers of 2011 and 

2014 but adequately captured the bog’s water table fluctuations in other years (Figure 7c). On 

average, there was a 50 mm difference between the modelled and measured bog water table during 

the simulation period of 2008-2015 (Table 2).  Modelled water table’s overall overestimation bias 

(Table 2) was attributed to water table being simluated deeper than the measurements for summers 

of 2011, 2012, 2013, and 2014. The model output, Sd, used in this performance evaluation for 

water table depth above the vegetated surface is a proxy. In the model the output Sd operates as a 

surface storage parameter, and receives inputs not only from excess water in the underlying soil 

column, but also receives precipitation inputs and runoff from upstream HRUs. This could explain 

some of the model’s lack of skill for simulating above ground storage, for example during the end 

of summer season of 2011 when the water table was near the surface and large late summer rain 

storms provided additional inputs. 
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Figure 7. (a) One-to-one graph comparing modelled versus measured water table values for above 
and below ground, (b) for below ground values only; dashed black lines represent the linear 
regression for all years and all data points. (c) Time-series of modelled and measured water table 
values. Vertical dashed lines indicate the end of the calendar year. 
 

2.5.2.2 Sensitivity Analysis  

After evaluating the model performance, a sensitivity analysis was conducted to assess the 

impact of permafrost loss compared to the 2010 permafrost extent on channel fen surface and 

subsurface flows by varying the ratio of wetland to peat plateau in the modelled sub-basin. When 

peat plateau is lost in Scotty Creek, it is not possible to predict what type of wetland will replace 
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the lost forested area, either as bog or channel fen. To account for this uncertainty in the sensitivity 

analysis, four scenarios of increased wetland area were defined: (1) the simulated peat plateau-

reduced area is replaced by expanded bog area (Scenario “All Bog”); (2) the ratio of channel fen–

to-bog area of the 2010 HRU delineation in the modelled sub-basin is maintained, with expanded 

wetland area added at a ratio of 1.6:1 fen to bog (Scenario “Sub-Basin”); (3) the ratio of fen-to-

bog area of the greater Scotty Creek watershed is used to determine the ratio at which simulated 

lost peat plateau area is replaced, with expanded wetland area added at a ratio of 1.9:1 fen to bog 

(Scenario “Scotty”); (4) all simulated peat plateau reduced area is replaced by expanded fen area 

(Scenario “All Fen”). All four scenarios were modelled for 10%, 25% and 50% permafrost 

reductions compared to the 2010 permafrost extent.  

Average annual runoff to precipitation ratios between 2009 and 2015 were calculated as 

the total discharge from the fen HRU divided by the precipitation as recorded by the Geonor after 

wind under-catch correction. Runoff ratios were also calculated for a “snowmelt” period, defined 

as the time from the first modelled SWE loss after maximum SWE to the last day snow cover was 

present in any HRU, and a “summer” period, defined as the time between the first day after all 

SWE is melted and September 30th of every year. 

For all four scenarios, and for all prescribed increments of permafrost loss, the total annual 

discharge from the fen HRU decreases (Figure 8). On average over the whole modelling period of 

2009 to 2015, for every 10% of peat plateau area replaced with wetland area there is a decrease in 

total annual discharge from the channel fen by 2.5%. Scenario All Bog, the scenario where the 

simulated reduction of peat-plateau permafrost is replaced entirely with an increase in bog area 

and no new fen area is modelled, results in the smallest decrease in fen discharge. Scenario All 

Fen, where lost peat plateau permafrost area is replaced with fen area and no new bog area is 
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modelled, results in the largest decrease in fen discharge. The impacts of permafrost reduction on 

the annual discharge volume were variable from year to year depending on wet or dry conditions. 

The decrease in discharge from the fen HRU was greater in wet years, where discharge from the 

modelled sub-basin is larger than 220 mm/yr, than in dry years.  For instance, for the 50% 

permafrost reduction in Scenario Sub-Basin, annual cumulative discharge decreased by 53 mm 

(345 mm to 292 mm) in 2009 when water year precipitation was 598 mm but dropped by only 19 

mm (168 mm to 149 mm) in 2013 when the water year precipitation of 348 mm was much less 

(Figure 8d). 
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Figure 8. Annual cumulative discharge from Fen HRU for the modelled subarctic muskeg 
watershed for 10%, 25% and 50% modelled permafrost loss compared to the 2010 permafrost 
extent for (a) Scenario All Bog; (b) Scenario Sub-Basin; (c) Scenario Scotty; and (d) Scenario All 
Fen. Vertical dashed lines indicate the end of the calendar year. 
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Though the annual discharge from the fen HRU decreased in all scenarios, this does not 

hold true on the seasonal basis. Scenario Sub-Basin is used to illustrate this pattern (Figure 9b). 

During large late summer storms, identified as storms greater than 25 mm/d, and during snowmelt 

the modelled hourly discharge from the fen HRU is up to 75% lower when compared to the 2010 

permafrost extent modelled discharge. Because the decrease coincides with the large peak in the 

channel fen hydrograph (Figure 9a, c), this results in a significant decrease in total annual 

discharge. During low-flow periods just before the snow freshet begins and for extended periods 

in the summer the hourly discharge from the fen HRU is greater than the 2010 modelled fen HRU 

discharge. To investigate this further, the total discharge from the fen HRU was separated into its 

three modelled layers; groundwater discharge (25 cm – 400 cm below surface), vadose zone 

discharge (0 cm – 25 cm below surface), and surface runoff. 

Scenario Sub-Basin is used to illustrate the change in discharge from the three modelled 

layers (Figure 10). The modelled increase in groundwater discharge compared to the 2010 

permafrost extent was most pronounced during low flow periods (e.g. August to December), and 

the annual cumulative difference was greatest in dry years (e.g. 2013 and 2014) with a total 

discharge of less than 220 mm/yr (Figure 10a). The increased vadose zone (0 cm – 25 m layer) 

discharge is more prominent in wet years (e.g. 2009 and 2010, Figure 10b). Surface runoff 

discharge was most sensitive to permafrost reductions (Figure 10c). For the 50% permafrost loss, 

reductions in surface runoff ranged from 48% in a wet year (i.e. 2009) to 27% in a dry year (i.e. 

2013). Though the discharge in both 0 mm – 25 cm and 25 cm– 400 cm layers increased with 

modelled permafrost loss, a reduction in surface runoff was not compensated for, resulting in an 

overall reduction in total discharge from the fen HRU in all scenarios and for all amounts of 

simulated permafrost loss. 
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Sc 
 
Figure 9. (a) Total annual discharge out of the channel fen sub-basin with no simulated reduction 
in permafrost extent; (b) Daily total rainfall in the Fen HRU; and (c) Percent difference between 
the hourly discharge from the Fen HRU comparing the Scenario Sub-Basin and the 2010 model 
run for simulated 10%, 25% and 50% reduction in permafrost extent. Vertical dashed lines indicate 
the end of the calendar year. 
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Figure 10. Annual cumulative discharge from the Fen HRU for the modelled subarctic muskeg 
watershed from the (a) groundwater zone (25 m - 400 cm below fen surface); (b) vadose zone (0 
cm - 25 cm below fen surface); and (c) surface runoff for Scenario Sub-Basin for the 2010 model 
run and for 10%, 25% and 50% reduction in permafrost extent. Vertical dashed lines indicate the 
end of the calendar year. 

2.6 DISCUSSION 

Water balance calculations suggest that the channel fen is dominated by surface runoff 

(Figure 3b). It is therefore crucial for numerical modelling to accurately predict water table 

position and snowmelt rates for channel fens. These findings suggest that as permafrost continues 

to thaw, annual discharge will decrease, with the greatest decreases from surface flows. The 



44 
 

discharge from the fen also shows decreased intra-annual variability. Simulated discharge is higher 

during periods of low-flow, and peak flows during late summer storms and during the spring 

freshet are lower as permafrost thaws. This pattern of increased minimum discharge and decreased 

maximum discharge has been shown to be a common pattern in basins undergoing permafrost 

degradation (Frampton et al., 2013). Some mechanisms that may explain these changes in wetland 

discharge include increases in basin ET and in storage. 

 

In the sensitivity analysis, the average annual total ET per unit area for any HRU is not 

changed, only relative HRU areas (Table 4).  Over the basin, annual ET from bogs and channel 

fens is higher than from the forested peat plateau, with CRHM simulated values of 384 mm, 388 

mm and 92 mm, respectively. The sensitivity analysis shows that as the peat plateau shrinks and 

wetland areas expand with permafrost degradation, the overall watershed ET flux increases, as 

also reported by Helbig et al. (2016). ET rates increase by approximately 3.5%, or the equivalent 

of 7.4 mm/km2 annually, for every 10% decrease in permafrost area compared to the 2010 extent. 

As ET is a major source of water loss in bogs (Connon et al., 2014) and at the basin scale accounts 

for between 65% and 70% of total incoming precipitation between 1999 and 2002 (Quinton & 

Hayashi, 2008), an increase in evapotranspirative loss at the basin scale could explain the reduction 

in events where the water table surpasses the surface and contributes to reduced annual runoff. 
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Unlike peat plateaus, the bogs and fens in the sub-basin were parameterized to store water 

above the ground in topographic depressions. Therefore, when the modelled peat plateau area is 

reduced, the area occupied by bogs and fens, collectively the wetland area, is proportionately 

increased.  Consequently, the fraction of the landscape with a depression storage capacity is 

increased. This landscape fraction functions as a hydrological buffer separating the runoff 

producing areas (i.e. peat plateaus) from the basin drainage network of channel fens. Permafrost 

thaw induced widening of this buffer increases the flow length and travel time through it, and as a 

result, the hydraulic response of channel fens is expected to be increasingly attenuated with on-

going permafrost thaw. A widening wetland buffer will also lower the elevation of the wetland 

water table since the hydrological input (e.g. snowmelt water) is distributed over a larger area. As 

a result, greater hydrological input would be needed to overcome the depression storage capacity 

so that overland flow could occur.  

The reduction in peak discharge and increased low flows is apparent when calculating 

runoff ratios based on simulated discharge. The average annual runoff ratio for the seven-year 

period 2009-2015 was 0.54, assuming a constant areal permafrost extent equal to the extent in 

2010.  Reducing the permafrost coverage by 50%, lowered the runoff ratio to 0.48, highlighting 

the modelled sub-basin’s reduction in efficiency at exporting atmospheric inputs. This change is 

most evident during the “snowmelt” period, where average snowmelt runoff ratios declined from 

0.47 based on the 2010 permafrost extent to 0.31 assuming a 50% reduction of permafrost extent. 

The “summer” period did not show this behavior. Average summer runoff ratios remained constant 

at 0.58 due to small increases in groundwater and vadose zone discharge during the higher low-

flow periods. 
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Though recent studies (e.g. Connon et al., 2014) have highlighted increased hydrological 

connectivity as a mechanism behind increases in discharge and runoff ratios for Scotty Creek for 

the period 1995-2011, it is important to note that the present study assumed that all areas in the 

model domain were hydrologically-connected to the channel fen and to the basin outlet. This is a 

critical distinction to make since Connon et al. (2014) argue that permafrost thaw is increasing the 

hydrological connectivity of the landscape to the basin outlet, a process that could account for 

rising stream flows in the absence of rising precipitation. The modelled sub-basin does not 

represent changes in contributing area and the potential effects of bog capture; contributing area is 

instead held constant at its highest possible value and the composition of that area is changed with 

the goal of predicting changes in discharge in this sub-basin once further bog capture is no longer 

possible. Therefore, previous literature highlighting the mechanisms behind increasing discharge 

tied to shrinking permafrost areas do not contradict the findings of this study.  

This study also does not address issues of changing climate directly in the form changes to 

temperature or precipitation inputs, only the sensitivity of the system under current climate 

conditions to further land cover change. However, forecasted increases in mean annual air 

temperature and decreases in end of season SWE (IPCC 2014) would interact simultaneously with 

land cover change to impact peatland discharge. Increased air temperature could act as a positive 

feedback to further the decrease in discharge projected by this study if increasing air temperature 

results in increased evapotranspiration (Tarnocai, 2006). Decreased end of season SWE in this 

basin could compound with the effects of changing land cover highlighted in this study. By 

simultaneously decreasing the volume of snowmelt added to the system while increasing the area 

of the system capable of storing ponded water the depth of water above the surface in bogs and 
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fens is further reduced, potentially resulting in an even larger decrease in channel fen discharge 

during peak flow. 

2.7 CONCLUSION 

Based on application of a CRHM model, reductions in permafrost extent are predicted to 

decrease total annual discharge in a channel fen in the Scotty Creek watershed due to increased 

surface storage capacity, reduced runoff efficiency, and increased basin scale evapotranspiration. 

On average, there is a 2.5% reduction in total annual discharge from the modelled channel fen for 

every 10% loss of peat plateau area in the sub-basin. In general, as wetland area increases, the peak 

discharge during the snowmelt season and during large late-summer storms decreases. The 

discharge during periods of low discharge slightly increases as wetland area increases. Both the 

total annual groundwater and vadose zone discharge increase slightly, showing a change in flow 

pathways as permafrost decays and peat plateau is replaced by wetland. However, the reduction of 

total annual runoff dominates, resulting in an overall decrease in total annual discharge as peat 

plateau and permafrost area decrease. The current trend of increasing discharge observed in the 

Scotty Creek basin may not be permanent, as this model shows that a completely connected sub-

basin results in decreasing channel fen discharge with further land cover change. 
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3. CONCLUSION 

3.1 Principal Findings 

As permafrost extent was incrementally reduced, model scenarios showed that total annual 

discharge from the channel fen sub-basin reduced; for every 10% prescribed loss of permafrost 

extent compared to the 2010 scenario discharge decreased by 2.5%, depending on the ratio of bog 

to channel fen areas. The decrease in total annual discharge was not reflected in all components of 

total discharge. Total annual discharge from the vadose zone (0 cm below fen surface to 25 cm) 

and groundwater zone (25 cm below fen surface to 400 cm) increased in all modelled years. 

However, the reduction in total annual runoff was significantly large in order to compensate for 

the increase in below ground reduction for an overall reduction in wetland total annual discharge. 

The model also showed a reduction in intra-annual variability, with lower peak discharges during 

the spring freshet and larger discharges during low-flow seasons.  

These changes may be explained through two mechanisms. First, an increase in basin ET, 

and second, an increase in basin storage. Although the total ET modelled in the individual HRU 

types did not change with the prescribed reductions in permafrost extent, the difference in total 

annual ET between HRU types is sufficiently high that the combined basin-scale ET rate increases 

as wetland area increases and peat plateau area decreases. Therefore, this modelling application 

shows that as permafrost extent is incrementally reduced, basin scale evapotranspiration increases; 

for every 10% prescribed loss of permafrost extent compared to the 2010 scenario basin 

evapotranspiration increases by 3.5%. Unlike peat plateaus, wetland areas are capable of storing 

water at the surface in ponded depressions; changing the proportional cover of wetlands in the 

modeled sub-basin results in an increased basin wide capacity to store water. Increasing wetland 

area therefore increases the buffering zone between runoff generating areas (i.e. peat plateaus) and 
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the basin drainage network, acting to attenuate peak flows and maintain subsurface discharge in 

low flow periods. 

The Scotty Creek watershed has historically been experiencing an increase in total annual 

discharge. Field studies on the changing hydrology of the region have identified potential sources 

for this increase in basin discharge, including the strong influence of expanding wetland areas in 

the form of bog capture and bog cascades. This study aims to understand a system where the 

mechanisms of bog capture can no longer increase basin contributing area (i.e. is when all portions 

of the landscape contribute to basin discharge), and predicts a reversal in the current trend in total 

annual discharge.  

3.2 Future Work 

The development of a conceptual model outlining the movement of water through channel 

fens, and the incorporation of this with an extensive body of previous work to build and 

parameterize a numerical model presents a significant body of work contributing to our ability to 

adapt research into physical processes at Scotty Creek into large scale hydrological modelling. The 

modelled bog-fen-plateau complex represents an example of the typical wetland-forest system 

representative of the headwaters of Scotty Creek, providing a foundation for which further 

modelling efforts could build on. To expand the modelling work undertaken as part of this thesis, 

future work must take into account the presence of mineral uplands that are more prominent in the 

lower one-third of the basin (Chasmer et al., 2014). Modelling of mineral uplands may require 

further fieldwork, as they are conventionally understood to lack permafrost below their surface, 

and as such may not be able to be approximated by our hydrological understanding of peat 

plateaus. Parameters such as porosity, rooting depth, hydraulic conductivity, and vegetation 

characteristics, as well as spatial analysis of slope, aspect and elevation would be required before 
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this land cover type could be incorporated in future modelling in CRHM if the modules used in 

the modelling work of this thesis are used. Under the permafrost conditions of 2017, not all bogs 

are directly connected to a channel fen (Chasmer et al., 2014; Connon et al., 2015). In order to 

scale up this modelling project from an individual fen-bog-plateau complex to a larger 

representative area, work would be required to incorporate seasonally connected bogs as part of a 

bog cascades, as well as a conceptualization of how bogs connect in a cascade (i.e., number of 

bogs typically in a chain, number of bogs that contribute to a downstream bog, etc) to establish 

HRU number and sequence. 

This model structure could also be used to assess the impact of currently observed and 

future projects of climate change. Further increases in air temperature (IPCC 2014), and decreases 

in end of season SWE (IPCC 2014) would all interact simultaneously with land cover change to 

impact peatland discharge. Increasing air temperature could act as a positive feedback to further 

the decrease in discharge projected by this study if increasing air temperature results in increased 

evapotranspiration or accelerated permafrost thaw. Decreased end of season SWE in this basin 

could compound with the effects of changing land cover highlighted in this study. By 

simultaneously decreasing the volume of snowmelt added to the system while increasing the area 

of the system capable of storing ponded water the depth of water above the surface in bogs and 

fens is further reduced, potentially resulting in an even larger decrease in channel fen discharge 

during peak flow. The simultaneous interactions of multiple impacts of climate change could be 

assessed using CRHM for the Scotty Creek basin as a whole, or for a smaller sub-basin in a similar 

fashion to this body of work. 
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5. SUPPLEMENTAL MATERIALS 

5.1 Details on Water Balance  

Surface discharge was calculated as a flux between two water level recorders using 

Manning’s formula, 

                      = , where for ≫ , =                                                        (3) 

The cross sectional area, A [m2], is the width of the fen multiplied by the depth of water above the 

surface at the location of the upstream water level recorder. The hydraulic radius, Rh [m], was 

approximated using the depth of water above the surface of the upstream water level recorder, as 

the fen width is significantly larger than the water depth. The slope of the water surface between 

the upstream and downstream water level recorder was calculated using DGPS elevation of the 

underlying wetland surface and adding the height of the water table above the fen surface, and 

dividing by the straight line distance between the water level recorders. Manning’s roughness 

coefficient, n [s/m1/3], was calculated by rearranging Manning’s equation and using a velocity 

derived from the measured celerity, c [m/s], in response to a large summer rain event. 

                                             =                                                                                       (4) 

Average discharge rates for each 30-minute interval were summed to obtain total daily surface 

discharge. The daily discharge was then divided by the surface area of the fen which was derived 

from a land cover classification map of the basin (Chasmer et al., 2014) to obtain the daily flux, 

Qsur [mm/day]. 

Subsurface discharge was calculated only for the saturated layer below the water table 

using Darcy’s Law, 

                                                      =                                                                     (5) 
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where the area, A [m2], is the width of the fen multiplied by the depth of saturated peat at the 

location of the downstream water level recorder. The depth of saturated peat is the distance 

between the full depth of the peat profile, as determined by field sampling, and the top of the 

saturated layer as recorded by the water level recorder. The hydraulic head, h [m], was determined 

using the DGPS measured elevation at the location of the water level recorder added to the depth 

of water relative to the surface. The distance between water level recorders, L [m], was determined 

using DGPS location. The saturated hydraulic conductivity of a channel fen, k [m/s], was 

determined to have the following relationship with the depth from peat surface from field fen tracer 

tests conducted in the year 2000, 2003 and 2005 (Hayashi & Quinton, 2005) 

                                                 = 0.7701 .                                                                   (6) 

An average saturated hydraulic conductivity was calculated by taking the integral of the above 

relationship over the depth of saturated peat. The average half hourly discharge was summed to a 

daily flux, Qsub [mm/day], using the same method as that of surface discharge. 

5.2 Details on CRHM Modules 

The modules outlined in Figure 11 chosen to represent the processes in this sub-basin are as 

follows (module name and variation number in brackets): 

1. Observations (obs): makes input meteorological data (wind speed, temperature, relative 

humidity, incoming shortwave radiation, precipitation) available to other modules. 

2. Sunshine Hour (calcsun#1): uses incoming shortwave radiation to estimate sunshine hours; 

used as input to net all-wave radiation and snowmelt modules. 

3. Longwave Radiation (longVt): uses incoming shortwave radiation to calculate incoming 

longwave radiation; used as input to canopy module (Sicart et al., 2006). 
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4. Net Radiation (netall): calculates the snow-free net all-wave radiation from the estimated 

shortwave radiation (Garnier & Ohmura, 1970) and the estimated net longwave radiation 

(Brunt, 1932) using air temperature, vapor pressure, and actual sunshine hours (Granger & 

Gray, 1990); used as input to evapotranspiration and ground surface temperature modules. 

5. Evapotranspiration (evap_Resist): uses Priestley-Taylor evaporation equations (Priestley 

& Taylor, 1972) to calculate evaporation from saturated surfaces (wetlands and lake) and 

uses Penman-Monteith evaporation equations (Monteith, 1965) to calculate actual 

evaporation from the soil column in HRUs with unsaturated surfaces (peat plateau). 

6. Canopy(CanopyClearingGap#1): estimates the sub-canopy shortwave and longwave 

radiation and canopy interception of snowfall and rainfall, and updates under-canopy 

snowfall and rainfall. The module has options for a full forest canopy, a forest clearing gap, 

or a completely open area with no canopy effects (Ellis et al., 2010). 

7. Snow Albedo (albedo_Richard): calculates snow albedo during winter and melt periods 

(Verseghy, 1991), used as input to energy-budget snowmelt module. 

8. Blowing Snow (pbsm): simulates snow sublimation and transport between HRUs based on 

surface aerodynamic roughness (Pomeroy & Li, 2000). 

9. Energy-Budget Snowmelt (ebsm#1): calculates snowmelt for snowpack using energy 

balance of net radiation, sensible and latent heat, and advection from rainfall, and change 

in internal energy (Gray & Landine, 1988). 

10. Infiltration (frozenAyers): calculates snowmelt infiltration into frozen soils using Gray’s 

snowmelt infiltration algorithm (Zhao & Gray, 1999) and rainfall infiltration into unfrozen 

soils based on soil texture and ground cover (Ayers, 1959). 
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11. Ground Surface Temperature (tsurface#3): calculates the ground surface temperature using 

air temperature and thermal conductivity and energy of snowpack during snowcover period 

based on conduction approach (Luce & Tarboton, 2010) and using air temperature and net 

radiation for snow-free period based on radiative-conductive-convective approach 

(Williams et al., 2015). 

12. Freeze and Thaw Soil Layers (XG): a freeze-thaw algorithm using a simplified solution of 

Stefan’s heat flow equation (Changwei & Gough, 2013) for user defined number of soil 

layers. Uses ground surface temperature as input. 

13. Hydraulic Conductivity (K_Estimate): estimates drainage factors based on Darcy’s law for 

unsaturated hydraulic conductivity using the Brooks and Corey relationship (Fang et al., 

2013). Provides the drainage factors for soil moisture balance module. 

14. Soil Moisture Balance (SoilX): estimates soil moisture, groundwater flow, and interactions 

between groundwater and surface water (Leavesley et al., 1983; Fang et al., 2010). Interacts 

with XG module to account for permafrost. 

15. Muskingum Distributed Routing (Netroute_M_D): routes runoff between HRUs and to the 

sub-basin outlet using Muskingum method (Chow, 1964). The routing does not have to be 

linear; one HRU can contribute to multiple HRUs (Fang et al., 2010). 



71 
 

 
Figure 11. Cold Regions Hydrological Modelling platform (CRHM) modules used to model physical processes of the sub-arctic muskeg. 
Lines indicate workflow. 
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5.3 CRHM Module Parameters and Sources 

Module Parameter Name HRU 1 HRU 2 HRU 3 HRU 4 Source 
Shared basin_area 0.4496       ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM 

  gw_K 0 0 0 0   
  hru_area 0.2 0.05215 0.08488 0.1126 ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM, (Chasmer et al., 
2011) land classification 

  hru_ASL 0 90 0 0 ArcMap 10.4 spatial 
analysis of 2010 LiDAR 
DEM 

  hru_elev 269.5 270.9 270.5 271.4 ArcMap 10.4 spatial 
analysis of 2010 LiDAR 
DEM 

  gru_GSL 0.0262 0.03 0.15 2.09 ArcMap 10.4 spatial 
analysis of 2010 LiDAR 
DEM 

  hru_lat 61.3 61.3 61.3 61.3 ArcMap 10.4 spatial 
analysis of 2010 LiDAR 
DEM 

  Ht 0.001 0.05 0.1 3.1 (Wright et al., 2008) 
  inhibit_evap 0 0 0 0   
  lower_ssr_K 0 0 0 0   
  rechr_ssr_K 0 0 0 0   



73 
 

  Sdmax 1000 150 280 0 Lake: estimated lake depth, 
Bog: Max level of water in 
old camp bog water table, 
Fen: Average maximum 
reading of fen WLRs in 
2015 

  Sd_gw_K 0 0 0 0   
  Sd_ssr_K 0 0 0 0   
  Si 0 0.6 0.6 0.5   
  soil_Depth 0 0.25 0.25 0.7 Modeled soil depth above 

groundwater layer. For 
Bogs and Fens modeled 
maximum evap depth plus 
5cm buffer. Max evap depth 
in northern sphagnum 
peatland is 20cm (Nichols 
& Brown 1980; Kim & 
Verma 1996). In plateau 
model depth to permafrost 
table. 

  soil_gw_K 0 0 0 0   
  soil_moist_max 0 213 213 408 depth of modelled soil layer 

* porosity 

  soil_rechr_max 0 173 173 133 depth of modelled upper 
soil layer in which ET 
occurs * porosity 

  soil_type 10 10 10 10   
  Zwind 2 2 2 2.1 installation height of 

measured wind speed 

albedo_Richard a1 1.08E+07 1.08E+07 1.08E+07 1.08E+07   
  a2 7.20E+05 7.20E+05 7.20E+05 7.20E+05   



74 
 

  Albedo_Bare 0.1 0.17 0.17 0.137 Bog/Fen albedo calculated 
from measured SW in/out 
between June 1st and Sept 
30 from input bog tripod 
data. Plateau same dates 
measured SW in/out from 
plateau tripod. 

  Albedo_Snow 0.85 0.85 0.85 0.85   
  amax 0.84 0.84 0.84 0.82   
  amin 0.5 0.5 0.5 0.5   
  smin 1 1 1 3   
basin basin_name FenWatershed         
  hru_names Lake Bog Fen Plateau   
  INIT_STATE           
  Loop_to           
  RapidAdvance_to           
  RUN_END 0         
  RUN_ID 1         
  RUN_START 0         
  StaeVars_to_Update           
  TraceVars           
CanopyClearingGap Alpha_c 0.1 0.1 0.1 0.1   
  B_canopy 0.038 0.038 0.038 0.038   
  CanopyClearing 1 2 1 0   
  Gap_diameter 565 41 150 100 ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM 

  LAI 0 0 0 0.9 (Baltzer et al., 2014). 
  sBar 0 0 0.5 3.3   
  Surrounding_Ht 3.1 3.1 3.1 3.1 (Wright et al., 2008) 
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  unload_t 1 1 1 -3   
  unload_t_water 6 4 6 6   
  Z0snow 0.01 0.01 0.01 0.01   
  Zref 1.9 1.9 1.9 2.15 Bog and Plateau tripod 

instrument heights 
measured when installed. 

  Zvent 0.75 0.75 0.75 0.75   
ebsm daily_melt 0 0 0 0   
  Qe_subl_from_SWE 0 0 0 0   
evap_Resist evap_type 2 2 2 0   
  F_Qg 0.75 0.3 0.3 0.2 (Hayashi et al., 2007) 
  Htmax 0.1 0.1 0.5 3.1 (Wright et al., 2008) 
  LAImax 0.1 0.1 0.2 0.9 (Baltzer et al., 2014). 
  LAImin 0.1 0.1 0.2 0.9 (Baltzer et al., 2014). 
  Pmmethod 1 1 1 1   
  rcs 25 200 200 223 (Kellner, 2001; 

Zha et al., 2010) 

  s 1 0 1 1   
frozenAyers C 1 1 1 1   
  groundcover 1 3 5 6   
  hru_tsoil 269.1 269.1 269.1 269.1 (Quinton & Hayashi, 2008) 
  S0 1 0.8 0.8 0.8 (Quinton & Hayashi, 2008) 
  t0 0 0 0 0   
  t0_julian 0         
  texture 1 1 1 1   
  t_ice_lens -20 -20 -20 -20   
global Time_Offset 1.09 1.09 1.09 1.09 (Cornwall et al., 2015) 

K_estimate Inhibit_K_set 0 0 0 0   
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  Ks_gw 1.74E-07 2.11E-08 2.11E-08 1.74E-05 (Christensen 2014) 
  Ks_lower 3.68E-05 7.57E-08 7.57E-08 1.74E-05 (Christensen 2014;  

Quinton et al., 2008) 

  Ks_upper 0.002683 0.000121 0.000121 0.003606 (Quinton et al., 2008) 
  PSD 5.6 5.6 5.6 5.6 (Zhang et al., 2010) 
longVT epsilon_s 0.98 0.98 0.98 0.98   
  Vt 0 0 0 0   
Netroute_M_D Channel_sho 0 0 0 0   
  distrib_Basin 0 0 1 0   
  distrib_Route[1] 0 0 1 0 (Fang et al., 2010) 
  distrib_Route[2] 0 0 1 0 (Fang et al., 2010) 
  distrib_Route[3] 0 0 0 0 (Fang et al., 2010) 
  distrib_Route[4] 0 0.4194 0.5806 0 (Fang et al., 2010) 
  gwKstorage 20 5 20 0   
  gwLag 0 0 0 0   
  gwwhereto -3 -3 0 -2 (Quinton et al., 2009) 
  Lag 0 0 0 0   
  order 1 3 4 2   
  route_L 250 27 313.5 37.5 ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM 

  route_n 0.016 0.03 0.07 0.2 (Chow, 1959) 
  route_R 0.5 0.075 0.25 0.03 Water level recorder data 
  route_S0 0.000457 0.000524 0.002618 0.03649 ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM 

  route_X_M 0.25 0.25 0.25 0.25   
  runKstorage 0 0.0014 1 0.0028   
  runLag 0 0 0 0   
  scaling_factor 1 1 1 1   
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  Sd_ByPass 0 0 0 0   
  soil_rechr_ByPass 0 0 0 0   
  ssrKstorage 1.1 2.6 30 0.12   
  ssrLag 0 0 0 0   
obs catchadjust 0 0 0 0   
  ClimChng_flag 0 0 0 0   
  ClimChng_precip 1 1 1 1   
  ClimChng_t 0 0 0 0   
  ElevChng_flag 0 0 0 0   
  HRU_OBS[1] 2 2 2 1   
  HRU_OBS[2] 1 1 1 1   
  HRU_OBS[3] 2 2 2 1   
  HRU_OBS[4] 2 2 2 1   
  HRU_OBS[5] 2 2 2 1   
  lapse_rate 0.75 0.75 0.75 0.75   
  obs_elev 269.7 270.9 270.5 271.4 ArcMap 10.4 spatial 

analysis of 2010 LiDAR 
DEM 

  ppt_daily_distrib 1 1 1 1   
  precip_elev_adj 0 0 0 0   
  snow_rain_determination 2 2 2 2   
  tmax_allrain 4 4 4 4   
  tmax_allsnow 0 0 0 0   
pbsm A_S 0 0.003 0.003 0.1   
  distrib 1 1 3 10   
  fetch 300 300 300 300   
  inhibit_bs 0 0 0 0   
  inhibit_subl 0 0 0 0   
  N_S 1 75 75 1 (Wright et al., 2008) 
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SoilX cov_type 2 2 2 2   
  Dts_organic_init 0 0 0 0   
  Dts_organic_max 0 0 0 0   
  Dts_organic_runoff_K 0 0 0 0   
  Dts_snow_init 0 0 0 0   
  Dts_snow_max 0 0 0 0   
  Dts_snow_runoff_K 0 0 0 0   
  evap_from_runoff 1 1 1 1   
  gw_init 1596 1554 1554 0 Depth between mineral 

layer and modeled upper 
soil layer (4.0m-
0.25m=3.75m) * lower 
porosity. No groundwater 
under modeled soil layer for 
Plateau because it's 
permafrost/frozen. 

  gw_max 1596 1554 1554 0   
  NO_Freeze 1 1 1 0   
  porosity_lower 0.42 0.8 0.8 0.55 (Quinton et al., 2008; 

Zhang et al., 2010) 

  porosity_upper 0.53 0.865 0.865 0.665 (Quinton et al., 2008; 
Zhang et al., 2010) 

  Sdinit 900 0 0 0   
  soil_moist_init 0 127.8 127.8 204   
  soil_rechr_init 0 103.8 103.8 66.5   
  soil_ssr_runoff 0 1 1 1   
  soil_withdrawal 2 1 1 4   
  transp_limited 0 1 1 0   
tsurface W_a 0.77 0.77 0.77 0.77   
  W_b 0.02 0.02 0.02 0.02   
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  W_c 7 7 7 7   
  W_d 0.03 0.03 0.03 0.03   
Volumetric fallstat 0 0 0 0   
  set_fallstat 305 305 305 305   
  Si_correction 0 0 0 0   
XG calc_conductivity 1 1 1 1   
  depths[1:4] 0.05 0.05 0.05 0.05   
  depths[5:18] 0.1 0.1 0.1 0.1   
  freeze_kw_ki_update 1 1 1 1   
  k_update 2 2 2 2   
  N_Soil_layers 18 18 18 18   
  por[1:5] 0.53 0.865 0.865 0.665 (Quinton et al., 2008; 

Zhang et al., 2010) 

  por[5:18] 0.42 0.8 0.8 0.55 (Quinton et al., 2008; 
Zhang et al., 2010) 

  soil_solid_km[1:18] 0.05 0.05 0.05 0.05 (O'Donnell et al., 2009) 
  soil_solid_ki[1:18] 1.9 1.9 1.9 1.9 (Woo 2012) 
  soil_soild_kw[1:18] 0.58 0.58 0.58 0.58 (O'Donnell et al., 2009) 
  SWE_k 0.35 0.35 0.35 0.35   
  thaw_ki_kw_update 1 1 1 1   
  theta_default[1:4] 1 0.2 0.2 0.2 (Quinton et al., 2005) 
  theta_default[5:7] 1 1 1 0.2 (Quinton et al., 2005) 
  theta_default[8:18] 1 1 1 0.7 (Quinton et al., 2005) 
  theta_min 0.1 0.1 0.1 0.1 (Quinton et al., 2005) 
  Trigthrhld 100 100 100 100   
  Zdf_init 0 0 0 0   
  Zdt_init 2 3 3 2   
  Zpf_init 2 3 3 2   
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