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Abstract 

 
The locus coeruleus (LC) responds to salience cues, including novelty, and sends a major 

noradrenergic projection to the hippocampal formation (HF). Novelty-associated LC activation 

may help to sculpt contextual representations in the HF, but modulatory influence of 

norepinephrine (NE) over HF representations remains poorly understood. One possible 

mechanism is that NE provides a “reset” signal causing the HF to recruit distinct neural 

populations, thereby providing a molecular switch to dictate if hippocampal circuits should 

generate new representations or update existing ones to incorporate novel information. This 

hypothesis suggests that NE release should cause the HF to recruit a unique population even in 

the presence of the same stimuli an animal has just experienced, a phenomenon referred to as 

“global remapping”. The compartmental expression of immediate early genes (i.e. arc & zif268) 

allowed us to test this by mapping the activity history of individual neurons as animals engaged in 

spatial processing following LC-NE manipulation.  

Recruitment of new neurons is part of the memory encoding process involved in 

separating memories. Tasks involving memory retrieval require reactivation of representations 

formed during encoding. If those representations “remapped” (i.e. a new cellular ensemble was 

recruited, rather than reactivation of the cells comprising the previously formed representation), 

this should theoretically result in a retrieval error. Therefore, switching the system back to a state 

of encoding would prove maladaptive in situations where retrieval is necessary to perform a task, 

unless new information was at hand. We hypothesize that NE resets the system causing the HF to 

move from a state of retrieval back to encoding when it is necessary, when novel information 

needs to be incorporated. This hypothesis suggests the effect of modulating NE on memory 

critically depends on the stage of training. To further understand how NE modulation of 

hippocampal circuits affects spatial memory, we tested whether infusions of the β-adrenergic 

agonist isoproterenol would impair working and reference memory retrieval (i.e., switching the 
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system back to encoding when it is maladaptive) and in contrast, promote cognitive flexibility 

thus improving reversal learning (i.e., switching the system back to encoding when it is adaptive).  
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“The true art of memory is the art of attention”  

- Samuel Johnson (1709-1784) 
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1.0 General Introduction  

For centuries, in attempts to gain insight to the processes of higher cognition, we have 

been trying to understand how the brain makes sense of the world around us, specifically, how we 

are able to extract meaning from a seemingly chaotic environment. In psychology, Gestalt theory, 

derived primarily from observations regarding the interaction between an organism and its 

environment, approaches “perception” from a perspective where we create global or holistic 

representations of the environment, and holds that these unified representations are distinct from 

the individual sensory inputs from which they are created. The specific way in which the brain 

unifies these sensory inputs remains an open question. One example is how we view and mentally 

represent the space that is all around us to form a coherent layout - one that we are a part of. What 

features of the environment does the human brain attend to (e.g. angles, distance, and position)? 

How is this integrated with movement? We often take for granted the neural sophistication 

necessary simply to avoid collisions during navigation. And yet as sophisticated as animal 

movement is, we sometimes still bump into things. How do these errors arise? The negotiation of 

space, in other words, movement, is often goal-directed; therefore, memory for places associated 

with salient information is adaptive (resulting in place learning). The link between spatial 

learning (and memory) and animal movement has been well established (Collins et al., 2006; 

Mueller and Fagan, 2008; Nathan et al., 2008; Paul et al., 2009; Fagan et al., 2013; Gautestad et 

al., 2013). Given the relatively recent technological advancements in navigational tools (e.g., 

animal tracking), the field of movement ecology has received much attention in recent years.  

1.1 The Negotiation of Space: Movement Ecology & Cognitive Maps  

Borrowed from mathematics, the term isomorphism is used to describe relatedness or 

formal correspondence between systems or entities (Gallistel, 1989). Gallistel (1989) described 

aspects of the environment (e.g. an object in your path), and the neural processes that function to 

direct an organism’s behaviour in such a way that allows the individual to cope with the 
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environment in an adaptive way (e.g. maintaining or changing a course or trajectory to avoid the 

object), as functioning isomorphisms. He made the important assertion that creating 

representations alone is not interesting, what is interesting is how the brain operates in a manner 

of combinatorial processing to give rise to these spatial representations while also integrating 

motivational and attentional states, internal and external sensory information, along with 

movement, to promote adaptive behaviour (Gallistel, 1989; Mizumori et al., 2000).  

How is the space around us represented in the brain? Are the mechanisms that support 

spatial memory innate or does experience play a role? Questions such as these gave rise to the 

“geometric module” (Cheng and Newcombe, 2005) and “cognitive map” theory (Tolman, 1948), 

a notion originating from the ideology that our brains are preconfigured, or at least semi-

preconfigured, with navigational hardware (Ainge and Langston, 2012). The idea of an a priori 

representation of space dates back to Immanuel Kant’s Critique of Pure Reason first published in 

1781 (Kant, 1922; Burnham, 2008; Janiak, 2009), where he theorized upon the metaphysical 

nature of the universe asking himself questions concerning the “problem of space” (Burnham, 

2008). In his writings, Kant rejected philosopher David Hume’s empirical description of space, 

which he first published in A Treatise of Human Nature in 1738 (Hume, 1738). This was partially 

inspired by a feud regarding frames of reference and velocity between “absolutist” Isaac Newton, 

and “relationalist” Gottfried Wilhelm von Leibniz. Newton's understanding of motion was based 

on the idea that space is" absolute" and that the entities (objects, people etc.) occupying and 

moving through that space are separate, existing only in relation to absolute space. If these 

entities suddenly ceased to exist, space would still be space. Contrary to this conceptualization of 

space, von Leibniz believed that the relationship between entities in fact, defined space (Janiak, 

2009). Kant suggested that space was not subject to empirical testing, and surmised that since we 

cannot perceive the “absence of space” we must therefore, have innate “knowledge of space” 

(Burnham, 2008). In other words, space was not a thing to be perceived but instead a way of 

perceiving, and therefore, did not exist without someone to perceive it (O’Keefe & Nadel, 1978). 
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Whether or not we possess the faculties to process our surroundings innately as the nativist 

Kantian perspective would suggest, or whether it is a result of acquired experience as empiricist 

Jean Piaget would argue (Piaget & Inhelder, 1967), we do seem to be able to form coherent 

neural representations of the space we traverse. In fact, there is even evidence to suggest that we 

can form representations of the space we have not yet traversed, but plan to (Maurer & 

McNaughton, 2007; Dragoi & Tonegawa, 2011, 2013; Azizi et al., 2013; Cona & Ursino, 2015; 

Ólafsdóttir et al., 2015). Some have referred to these representations as our "cognitive map" or 

contextual code (Nadel et al., 1985; Teyler & DiScenna, 1986; McNaughton et al., 1996). 

Understanding this code, and what is specifically being encoded within these contextual 

representations (e.g., space and time) has been the goal of many scientists in the last century. And 

while significant progress has been made, there remains much to decipher.  

Based on early work with laboratory rats (Rattus norvegicus) in mazes, it became clear 

that rats could complete certain spatial tasks, not by remembering a series of turns or responses, 

but by somehow orienting themselves with respect to landmarks and cues. This led behaviourist 

Edward Tolman to the conceptualization of the "cognitive map", a term he coined in his 1948 

publication "Cognitive Maps in Rats and Men" (Tolman, 1948). Tolman viewed the cognitive 

map as a mental representation of the environment that functioned somewhat like a paper map 

indicating which routes or paths to take (Bennett, 1996). This map was primarily based on a 

Euclidean metric and the concept of novel shortcutting - flexible rather than inflexible lines of 

movement to goal locations (O’Keefe & Nadel, 1978; Gould, 1986). Since this initial description 

by Tolman, John O'Keefe in the early 1970’s provided a clear neural substrate for this theory with 

the discovery of place cells in the hippocampal formation (HF). Place cells are highly specialized, 

spatially tuned neurons that encode an animal’s location in space (O’Keefe, 1976). Shortly after 

this breakthrough discovery, John O’Keefe & Lynn Nadel published a comprehensive book titled 

"The Hippocampus as a Cognitive Map" (1978) which they dedicated (in part) to Tolman for 

"first dreaming of cognitive maps in rats and men" (O’Keefe & Nadel, 1978). Fittingly, they 
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referred to the concept of a cognitive map as "terra incognita", a phrase used by cartographers to 

mean uncharted territory or "un-mapped land". In this work, they described a neo-Kantian view 

of place representation and presented specific anatomical data to support the theory that the HF is 

critical to spatial cognition and contextual processing.  

Tolman saw the cognitive map as a global representation of the environment. Notably, 

his definition included an element of flexibility in the animal's ability to navigate from unfamiliar 

locations (novel shortcutting). From this perspective, one can consider the cognitive map a 

relational representation. Animals that have sustained damage to the HF are impaired in this type 

of flexible and adaptive navigation, which is consistent with the notion that the cognitive map 

involves creating global representations of the environment, and with the theory that the HF is the 

neural substrate for this type of relational representation. However, other theories also emerged. 

Gallistel (Gallistel, 1989, 1993) defined the cognitive map simply as a record of geometric 

relations, in other words, a utility-based, vector archive or repository of routes; a definition that 

had been heavily criticized for not delineating which specific geometric relations would be 

encoded. Cartwright and Collett's "snapshot model" of the cognitive map described an image-

matching process (Gould, 1986; Cartwright & Collett, 1987) whereby an animal takes a mental 

snapshot (or several) of its panoramic view and stores it in memory. Later, the animal compares 

its current view with the stored view to help orient. Image matching does not require a relational 

representation, as relational representations are defined by their flexibility (Eichenbaum et al., 

1990). Therefore, this type of strategy can be successfully completed without an intact HF. It is 

unlikely that the sophisticated spatial abilities observed in so many animals are subserved by such 

a simple model.   

Unfortunately, the term cognitive map has been used to describe many different concepts 

over the years (Bennett, 1996) and according to O’Keefe & Nadel (1978), is too vague a term to 

be translated into a neural model. Nonetheless, there is evidence that animals possess some type 

of mapping system to account for their complex behaviour in space. And although the 
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organization of this system is still unclear, it is widely accepted that a neural mapping system 

exists, at least in the mammalian brain, and possibly in other species of animals. Despite the 

advances that have been made in this field in the last century or so, we are still wondering if the 

integration of spatial information used when navigating is supported by a neural architecture that 

is modularly connected within a system that is distributed (Gallistel, 1989; Bennett, 1996; 

Bingman & Cheng, 2005; Cruse & Wehner, 2011) or whether spatial information is sent to a 

global “coordinator” (Moser et al., 2008). Undoubtedly, spatial orientation in mammals relies on 

many cortical structures that interact with each other in an integrated framework. For instance, the 

retrosplenial cortex (RSC) encodes sensory input from allocentric frames of reference (Andersen, 

1997; Colby & Goldberg, 1999; Parron & Save, 2004), the perirhinal cortex (PC) is involved in 

cue and object recognition (Mumby and Pinel, 1994), and the thalamus (TH) codes for visual and 

vestibular cues (Shine et al., 2016). However, current models support the theory that the brain is 

not organized in a completely modular fashion as early phrenology charts would suggest, but 

rather, memory involves distributed, but synchronous activation of different regions working 

together, a level of analysis referred to as systems neuroscience. It is these dynamic interactions 

which support a flexible and adaptive navigational system, although, there is much we still do not 

understand in terms of the organizational principles of functional and structural connectivity 

across brain structures involved in mnemonic processing. Scientists use animal models to 

elucidate the patterns of neural processing and circuitry involved in spatial memory in order to 

develop sophisticated computational models and algorithms characterizing these cognitive 

processes.  

Although synchronous communication across brain regions is necessary, converging 

evidence from animals and humans has demonstrated that the HF is centrally involved in the 

formation of episodic, spatiotemporal, context-rich memory (Holland and Bouton, 1999; Burgess 

et al., 2002). Episodic memory refers to our ability to recollect the specific events in our lives in a 

spatiotemporal context (Eichenbaum et al., 2012). It is the difference between remembering and 
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simply knowing (Tulving, 1972). This type of memory has also been referred to as 

autobiographical memory. Not only is the HF critical to the formation of episodic memories but 

it is hypothesized to act as a detector of prediction errors. That is, the HF stores contextual 

representations, and defines the expectations for these contexts. For example, you have a 

representation stored of the coffee shop down the street. You go to get coffee one morning, and 

you find the door is locked. The coffee shop is usually open at this time of day. When the current 

experience doesn’t match the expected, this results in a context prediction error (Mizumori, 

2013). An example of this in a research setting involves fear conditioning. Animals that have 

been fear-conditioned in a particular context form a representation of that context. Upon re-

exposure to the context the following day, these animals “predict” that they will again receive a 

shock in that environment, but during the extinction session this does not occur. In the first 

context presentation, given the association between the shock and the context, they learn to fear 

the context. During the second context presentation, despite that the context itself is the same, the 

absence of the shock suggests that the context is indeed safe. Identification of mismatches 

provides a signal that a new representation is needed, or that the old representation needs 

updating. This process allows for the distinction of memories into separate, meaningful epochs 

(Mizumori, 2013) and most importantly, allows for learning to occur. And indeed, representations 

do change as a result of different stages of learning (Wang et al., 2012b).  

The complexity of this system is extended when you take into consideration that 

contextual representations may be externally or internally driven (Pastalkova et al., 2008). 

Furthermore, the HF contains not only contextually-mediated but also temporally-mediated cells 

(MacDonald et al., 2011) and the fields of these cells may be biased by sensory information  

(Ranck, 1973; O’Keefe., 1976; O’Keefe & Conway, 1978; Olton et al., 1978; Muller & Kubie, 

1987; Gothard et al., 1996; O’Keefe & Burgess, 1996; Wiener, 1996; McEchron & Disterhoft, 

1999; Save et al., 2000) task demands (Markus et al., 1995; Wood et al., 2000; Smith & 

Mizumori, 2006; Satvat et al., 2011), or motivational states (Breese et al., 1989; Kobayashi et al., 
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1997; Fyhn et al., 2002; Hölscher et al., 2003; Tabuchi et al., 2003; Kennedy & Shapiro, 2009). 

In other words, representations can and do change. This process, commonly referred to as 

remapping, is likely involved in the updating of memories, and in new learning, however, the 

mechanism by which remapping occurs is not currently known.  

The following chapters outline a novel hypothesis involving the noradrenergic pathway 

originating in a brain stem structure (locus coeruleus) projecting to the HF, and how this system 

may be able to sculpt contextual HF representations possibly providing insight to mechanisms of 

remapping. The subsequent chapters provide a brief description of the material basis of contextual 

representations as well as the functional properties of the cells and subfields within the HF. This 

is followed by an exploration of how the mutability of memory is conducive to learning and 

evolutionarily advantageous, but more specifically, how neuromodulators such as norepinephrine 

(NE) play a role in altering mnemonic processes at a cellular and behavioural level.  

1.2 Contextual Encoding: Recruitment of Neuronal Ensembles as Representations  

The last 50 years have provided us with compelling evidence that the HF is essential in 

the processing of spatial and contextual information (Hirsh, 1974; O’Keefe, 1976; Phillips & 

LeDoux, 1992; Kim & Fanselow, 1992; Holland & Bouton, 1999; Fanselow, 2000; Burgess et al., 

2001, 2002; Guzowski & Worley, 2001; Schmolck et al., 2002; Anderson et al., 2003; Rudy et 

al., 2004; Vazdarjanova & Guzowski, 2004; Smith & Mizumori, 2006; Acheson et al., 2012; 

Maren et al., 2013; Nees & Pohlack, 2014; Sadeh et al., 2014; Smith & Bulkin, 2014). Lesions to 

the HF produce severe spatial memory impairments in rats (Morris et al., 1982; Sutherland et al., 

1982; Kesner et al., 1989), birds (Colombo et al., 1997; Fremouw et al., 1997), and primates 

(Murray et al., 1998) including humans (Bohbot et al., 1998). These impairments observed after 

damage to the HF are not limited to the spatial domain, as they also produce deficits in episodic 

memory (Sun et al., 2005; Didic et al., 2011). This is obvious in patients with Alzheimer's disease 

which is characterized by progressive degeneration of the HF. In fact, Dr. Alois Alzheimer in his 

initial description of the long-term study of his patient Auguste D and her “peculiar disease” 
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(Hippius and Neundörfer, 2003) mentioned the existence of abnormalities in the cerebral cortex 

were revealed in the autopsy.  

More conclusive evidence linking the HF to spatial, contextual, and episodic memory 

came from studies involving a patient who, in 1953, suffered from severe and intractable epileptic 

seizures. Most first-year psychology textbooks refer to him as patient H.M., but after his recent 

passing in 2008, we now know him as Henry Gustav Molaison. To treat his condition, 

neurosurgeon Dr. William Beecher Scoville performed a bilateral temporal lobotomy on Mr. 

Molaison. Following the removal of his HF and adjacent structures, H.M. suffered severe 

anterograde amnesia; essentially the procedure rendered him unable to acquire new memories 

(Scoville & Milner, 1957). This demonstrated quite convincingly, the involvement of the HF in 

forming episodic memories (procedural memories for things like how to write or how to walk 

remained intact) and spatial memories as he was impaired on many spatial tasks (Corkin, 2002). 

The duality of function with respect to this brain area in processing both spatial and episodic 

memories, is not surprising since episodic memory is spatiotemporal by definition. Since this 

discovery, Brenda Milner a Canadian professor of neurology and neurosurgery at McGill 

University, and Suzanne Corkin, a former student of hers, who conducted most of her research at 

MIT, continued to study H.M. for decades.  

Contextual memory is less easily defined than spatial or episodic memory. Contextual 

memory includes, but is not limited to the inclusion of spatial information and also relies heavily 

on the HF (Holland and Bouton, 1999). It refers to the abstract components of experience 

providing meaning, placing events in time, encompassing perceptions, emotions, socially relevant 

information, and learned contingencies (Maren, Stephen, Phan, & Liberzon, 2013). Therefore, 

contextual information extends beyond spatial information to include other dimensions such as 

the physiological, motivational, social, and cognitive states of the organism. In the learning 

literature, contexts are distinguished from cues and typically refer to the set of circumstances 

surrounding an event or the physical location that an event takes place in. This suggests that 
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contexts can be considered separate from the elements they encompass (Maren et al., 2013) and 

are yet still connected to them. Nadel and Wilner (1980) describe context as being paradoxical for 

this reason (Anderson et al., 2003). No wonder Kant described it as the “problem of space”.  

For contextual learning to occur, a representation of the context must be formed in the 

HF. A widespread hypothesis central to all neurobiological investigations of memory is the 

hypothesis that memory formation should result in a structural, observable memory trace (Hebb, 

1949). Although this idea is often credited to Donald Hebb’s postulate of memory residing in 

specific “cell assemblies”, this notion was inspired by Rafael Lorente de Nó’s (Lorente de Nó, 

1933) reverberating “neural loops”, and is consistent with Richard Wolfgang Semon’s idea of the 

engram as the “enduring though primarily latent modification” of the brain by experience 

(Semon, 1921; Schacter et al., 1982). Semon (1921) coined the term “engram” (p. 12) to refer to 

these putative “memory traces”, or neuronal ensembles (contextual representations), that we 

believe embody our experiences quite literally. These ensembles can be tracked (Guzowski et al., 

1999), tagged, and even reactivated them using optogenetics (Liu et al., 2013; Denny et al., 2014) 

in attempts to recapitulate experiences. Scientists have looked at the manipulation of two separate 

engrams simultaneously (Yokose et al., 2017) and have even been able to investigate how two 

distinct engrams formed at different times interact with each other (Won & Silva, 2008; Rogerson 

et al., 2014; Rashid et al., 2016). Today, we think of memory traces or engrams as the 

biochemical changes occurring following experience, set in a sparse population of neurons. These 

changes, which persist, involve the transcription of genes and the formation of proteins. 

Moreover, these populations of neurons are reactivated when the memory is recalled (Guzowski 

et al., 1999; Reijmers et al., 2007; Han et al., 2009; Silva et al., 2009; Garner et al., 2012; Deng et 

al., 2013; Liu et al., 2013; Ramirez et al., 2013; Taylor et al., 2013; Rogerson et al., 2014). For 

several decades scientists have been trying to study these traces debating about where they may 

be stored (Mayes and Roberts, 2001). The most quintessential example of this being the 

experiments Karl Lashley conducted where he progressively removed more and more of the 
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cortex in famously failed attempts to locate the engram. From this, Lashley argued against the 

functional specialization and modularity of the brain, and concluded that memory could not be 

localized to one structure, but rather it must be distributed throughout the cortex (Lashley, 1950). 

Lashley was correct to conclude that memory is widely distributed, but this does not mean that 

copies of our memories are redundantly stored all over the brain. Lashley tried to locate a 

complex memory (maze running) that likely had different cues which could lead to the memory 

trace. If he eliminated the area involved in vision, the animal could use kinesthetic cues; if he 

removed these cues, the animal could rely on olfaction etc. Lashley wrote:  

“I sometimes feel, in reviewing the evidence on localization of the memory trace, that the 
necessary conclusion is that learning just is not possible. It is difficult to conceive of a mechanism 
which can satisfy the conditions set for it. Nevertheless, in spite of such evidence against it, 
learning does sometimes occur”.  

       (Lashley, 1950, pp.477-478) 

What Lashley could not envision was that the brain engages in a high degree of region 

specificity, yet there are multiple pathways to get to the same place. And despite his failed 

attempts, we now know that the HF is a core brain structure supporting memory (Eichenbaum et 

al., 2012). But prior to any hard evidence that the HF contained memory traces, David Marr 

(1971) proposed in his basic model of simple memory, that pyramidal cells within the HF could 

be regarded as populations of cells in which simple representations of various input events are 

formed. He postulated that the HF acts a temporary storage space for sensory experiences which 

are encoded by specific patterns and that these patterns are retrieved when confronted with a cue. 

He also believed that this information would eventually be transferred to the neocortex (Marr, 

1971). Given the lack of evidence at the time, and the astounding accuracy of his predictions, his 

theory was extremely prescient. Marr was also very much interested in computational modelling; 

thus, it is befitting that computational neuroscience models developed some 20 years later, would 

also predict that representations of the surrounding environment were formed in the HF (Gluck & 

Myers, 1993; Treves & Rolls, 1994). We are now aware that the HF does indeed form contextual 

representations of the surrounding environment (Hirsh, 1974; Fanselow, 2000; Guzowski et al., 
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2001; Rudy et al., 2004; Vazdarjanova and Guzowski, 2004). In fact, contexts can be robustly 

encoded very rapidly (<30s) (Fanselow, 1986; Wiltgen et al., 2001). Moreover, lesions of the HF 

impair contextual learning (Sutherland et al., 1982; Winocur & Gilbert, 1984; Selden et al., 1991; 

Kim & Fanselow, 1992; Phillips & LeDoux, 1992; Young et al., 1994; Chen et al., 1996; Gerlai, 

1998).  

The concept of a memory trace can seem very abstract. Our brief acquaintance with the 

material basis of memory (Tonegawa et al., 2015b) as engram cells has not included a 

specification of what information is encoded. For instance, an animal is placed in an environment 

and undergoes a specific experience (e.g. another mouse is placed in the box) and as a result, a 

distinct set of neurons is recruited in the DG, the activity in which is considered to be a 

component of the distributed memory trace for that experience, encoding what we believe, is at 

least the contextual component of that episodic memory (Gerrard et al., 2001; Fyhn et al., 2007; 

Nalloor et al., 2012; McKenzie et al., 2013; Orsini et al., 2013; Takahashi, 2013; Cai et al., 2016; 

Kelemen & Fenton, 2016). But what does that mean, the contextual component? Different aspects 

of a memory may be encoded in different sub-regions. In the dorsal HF, this includes spatial 

information given that neurons which make up these ensembles are spatially responsive 

(discussed in more detail below) e.g. place cells, and traversing the environment, sampling its 

spatial properties, activates these cells (Chawla et al., 2005; Ramirez-Amaya et al., 2005; 

Vazdarjanova et al., 2006). Information related to the valence of a memory (positive or negative) 

may be encoded in the basolateral amygdala (BLA), social elements may be encoded in the CA2, 

and emotional aspects of a memory in the ventral HF. Therefore, the full context of an experience 

may only be recaptured when all of these populations are reactivated in concert. This can 

potentially increase neural coding space significantly (Holtmaat and Caroni, 2016). It is also 

believed that memories become less dependent on the HF as they become more remote and more 

reliant on engram populations in the prefrontal cortex (PFC). Engram research is in its infancy 

and therefore the answers to these questions are still being teased out and investigated.  
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Contextual information present at the time of memory encoding may be different than 

contextual information present at the time of retrieval. Endel Tulving (1972) described 

remembering as “the joint product of information stored in the past, and information present in 

the immediate cognitive environment of the rememberer” (p. 352). This view emphasizes how 

memory retrieval can be affected by factors present at the time of retrieval e.g. mood, hormones, 

vigilance, stress etc., and that retrieval efficacy depends not only on the integrity of the memory 

trace alone, but also on these relevant contextual circumstances (Sara, 1985; Rimmele et al., 

2016). Contextual cues play an important role in triggering or facilitating memory retrieval 

processes (Sara and Devauges, 1989). This is what Lashley failed to fully appreciate. In addition 

to the term engram, Richard Semon (1921) also coined the term “ecphory” to describe the 

automatic process that occurs during memory retrieval between contextual elements and the 

memory traces they reactivate “. . . the influences which awaken the mnemic trace or engram out 

of its latent state into one of manifested activity...” (p.12). Presentation of contextual cues before a 

test of memory retention can help to mitigate experimentally induced amnesia (Sara, 1974), 

natural time-dependent forgetting (Sara et al., 1980; Sara & Deweer, 1982) and memory deficits 

in rats with lesions to the HF (Winocur & Kinsbourne, 1978). Contextual cues can also elicit 

changes in an individual through an influence on neurophysiological and attentional states and 

can even be conditioned to elicit biological changes that match the internal state of the individual 

during memory acquisition. The arousal experienced at the time of learning is essentially 

recapitulated in the brain during retrieval (Sterpenich et al., 2006) and can influence the retrieval 

process (Rimmele et al., 2016). One of Ivan Pavlov’s students, Pyotyr S. Kupalov first noticed 

this while studying conditioned behaviour in dogs. He noticed that the strength of the dog’s 

conditioned response was greater when the dog was tested under the same conditions of 

illumination and noise that occurred during training (Giurgea, 1989) and posited that the context 

was able to affect his cortical tone such that this tone facilitated memory retrieval. He called this 

the truncated conditioned reflex (Sara, 1985). Other studies have replicated this finding in various 
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circumstances to demonstrate that contextual information not only exerts a powerful influence 

over memory encoding and retrieval, but also over physiological responses that directly influence 

memory.  

1.3 Understanding the Spatial Code: The Hippocampal Formation & Behavioural 

Correlates of Individual Neurons 

In 1894, Santiago Ramón y Cajal (Jones, 1994) first described the relay of unidirectional 

synaptic transmission in the HF commonly referred to as the trisynaptic loop (Andersen, 1975). 

The entorhinal cortex (EC) is considered the main gateway or interface between the HF and the 

neocortex. It is typically subdivided into medial and lateral domains, and is organized into distinct 

layers. The EC is the major source of cortical input to this circuit sending efferent signals to the 

dentate gyrus (fascia dentata, DG) via granule cell fibers known collectively as the perforant path 

(PP). The hippocampus proper, known as the Cornu Ammonis (CA), is divided into different 

subregions (CA1-4). The DG synapses on CA3 (regio inferior) pyramidal cells via mossy cell 

fibers (MF) and pyramidal cells in the CA3 project to the CA1 (regio superior) via Schaffer 

collaterals (SC). Finally, CA1 pyramidal cells send information to the subliculum, which then 

loops back to the EC (Marr, 1971; Andersen, 1975). 

The mammalian HF is characterized by the presence of spatially responsive neurons, 

specifically head direction cells, place cells, grid cells, and boundary vector cells (Barry et al., 

2007; Moser et al., 2008). These cells are highly specialized; for instance, place cells fire when an 

animal visits a particular location in an environment (O’Keefe and Dostrovsky, 1971). The 

activity of these cells encodes the animal’s location in space, each cell with a different place field, 

with activity in local cell populations covering the rat’s entire environment (O’Keefe, 1976). 

These cells are organized in a manner where adjacent place cells do not necessarily give rise to 

adjacent place fields. In fact, neurons adjacent to a place cell are more likely to be silent within a 

given environment (Thompson and Best, 1989). This lack of topographical organization 
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demonstrates that 1) not all HF cells are place cells, 2) inputs are not topographically organized 

and 3) that the lack of firing may be just as important as the presence of firing. This orchestration 

of activity and no-activity has been hypothesized to contribute to the way in which hippocampal 

circuits synchronize frequencies (oscillations such as gamma and theta) (Thompson & Best, 

1989; Mizumori, 2013) and may be related to plasticity within the HF. Interestingly, place fields 

exhibit plasticity in that they can change when alterations in the environment occur. For instance, 

in one environment, a single place cell may become active when the animal visits the left corner 

of the room; in a different environment that same cell does not respond at all when the animal 

visits the left corner, and in a third environment, that cell becomes active in the right corner. This 

phenomenon in which place cells can alter their firing patterns in response to environmental 

changes was discovered by Muller and Kubie (1987) and is referred to as “remapping”. It is 

specifically this property that emphasizes the multi-representational nature of the HF (Colgin et 

al., 2008). Place cells have been shown in numerous studies to remap in response to novel 

environmental stimuli, and although place cells can possess more than one place field within the 

same environment (Maurer et al., 2006), in some instances, they can also remap in the same 

environment as a result of experience (Navratilova et al., 2012). Most of the electrophysiology 

studies conducted to date have identified place cells in the HF but there is some evidence for 

place cells in other brain regions such as the medial entorhinal cortex (mEC) (Quirk et al., 1992; 

Hargreaves et al., 2005; Savelli et al., 2008), the lateral septum (LS) (Nishijo et al., 1997; Zhou et 

al., 1999; Leutgeb & Mizumori, 2002), the TH (Jankowski et al., 2015), the RSC (Tayler and 

Wiltgen, 2013; Cowansage et al., 2014) and the PFC (Zelikowsky et al., 2014). Cells in these 

regions have been identified as having “place-like” properties but typically have a much lower 

spatial resolution (Grieves & Jeffery, 2017). Several studies have also suggested that other types 

of neurons such as granule cells in the DG, which also encode spatial information, may function 

similarly to place cells (Tonegawa et al., 2015a) (figure 1). The formation of contextual 

representations is hypothetically driven by place cell activation, at least in rodents (Chawla et al., 
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2005; Ramirez-Amaya et al., 2005; Vazdarjanova et al., 2006; Rowland et al., 2011), which is 

coupled to the initiation of second messenger systems and gene transcription leading to protein 

synthesis (Miyashita et al., 2008). 

 
Figure 1. Example of spatially responsive neurons and representation of their anatomical distribution in the rat 
brain. Top left: firing rate heat map of a place cell, which was recorded as a rat explored a circular arena. Top 
middle: hypothetical head direction cell firing rate polar plot in which the cell fires at a high rate when facing 
north east. Top right: example firing rate map of a grid cell where multiple firing fields can be seen that form a 
tessellating hexagonal grid covering the environment. Bottom: anatomical distribution these cell types, black 
lines highlight the region where each cell was discovered (however, they are found in other areas as well). Brain 
region abbreviations: HPC = hippocampus; Sub = subiculum, RSC = retrosplenial cortex; PrS = presubiculum; 
PaS = parasubiculum; mEC = medial entorhinal cortex; lEC = lateral entorhinal cortex; PFC = prefrontal 
cortex; OFC = orbitofrontal cortex. Reprinted from Behavioural Processes 135, Grieves RM & Jeffery KJ, The 
representation of space in the brain 113-131., Copyright (2017), reprinted with permission from Elsevier.  
 

Shortly after the discovery of place cells, James B. Ranck, Jr. determined that within the 

presubiculum there were cells that fired in response to the specific direction an animal’s head was 

pointed; cells had different preferences for different orientations (Taube et al., 1990) and he 

called these head-direction (HD) cells. HD cells have since been localized to other regions of the 

brain where the presubiculum projects to (e.g. TH, RSC) (Mizumori & Williams, 1993; Chen et 

al., 1994; Taube, 1995; Sherrill et al., 2013; Shine et al., 2016). The firing rates of both place, and 

HD cells are often coupled, and to some degree controlled by an interaction between external 

landmarks and idiothetic cues (Yoganarasimha & Knierim, 2005), although further research is 

needed to characterize this interaction.  
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In layers II and III of the mEC there are cells that have multiple firing fields arranged in a 

tessellated, grid-like array that covers the surface of the environment, with firing occurring 

maximally for a cell when the animal is at any vertex of a grid of equilateral triangles (Hafting et 

al., 2005; Fyhn et al., 2007; Moser et al., 2008), hence, Edvard & May-Britt Moser named these 

cells grid cells when they discovered them in 2005. The grid fields tend to increase in size from 

the dorsal to ventral regions of the mEC (Hafting et al., 2005). In darkness, and when landmarks 

are removed, the cells maintain their fields suggesting that they may play a prominent role in path 

integration, especially given that their fields are arranged in a way that could theoretically allow 

for vector algebra (Hafting et al., 2005; but also see Barry et al., 2007). Path integration is a 

method of navigating, also called dead reckoning, which involves summing vectors of distance 

and direction as one travels (McNaughton et al., 2006).  

Several studies have shown that place cells can predict an animal’s trajectory or goal 

location, demonstrating anticipatory properties of firing (Johnson & Redish, 2007; Schmidt & 

Redish, 2013), therefore, it is biologically plausible that grid fields contribute to the generation of 

place fields (Moser et al., 2008). Several theoretical models have emerged recently inspired at 

least in part by the recent characterization of the bat HF, hypothesizing the existence of a grid-

like representation of space that includes the vertical as well as the horizontal plane since 

organisms travel in a three-dimensional environment (Jeffery et al., 2013). Three-dimensional 

representation of space by cells in the HF has been examined in flying bats (Yartsev & 

Ulanovsky, 2013; Sarel et al., 2017). The place fields of place cells in the HF of free-flying 

Egyptian fruit bats are spherical volumes (Yartsev & Ulanovsky, 2013), however, others theorize 

that these planes are processed separately i.e. bi-coded system (Phillips & Ogeil, 2013) while 

some predict that it depends on the direction the animal is moving (Jeffery et al., 2013). In deeper 

layers of the EC, conjunctive place and grid cells have also been found (Moser et al., 2008). In 

addition, a fourth type of neuron exhibiting a spatial profile has been discovered in the subiculum 

- boundary-vector cells, also called border cells (Hartley et al., 2000; Lever et al., 2009). These 
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cells are sensitive to geometric properties of the environment, specifically boundaries, and have 

also been proposed as inputs to place cells (Lever et al., 2009).  

Learning more about the way in which these neurons communicate with each other 

would give us a better understanding of how mammals represent space. It is believed that the 

collective firing of such cells, specifically place cells, within a given environment comprises the 

spatial or contextual code for that environment (Pevzner et al., 2012). And we have come to call 

neuronal ensembles comprised of spatially-, temporally-, and contextually-mediated cells – 

engram cells. In fact, current models  provide evidence for the possibility of an associated 

temporal code (Moser et al., 2008). Certain cells in the CA1 and CA3 have been shown to fire at 

specific “times” during a task and have been dubbed time-cells (MacDonald et al., 2011; 

Eichenbaum, 2014, 2017a, 2017b; Salz et al., 2016). Cells in the HF exhibit a strong background 

low frequency (4-8Hz) theta oscillation typically when an animal is engaged in active locomotion 

(e.g. exploration) or during REM sleep (Maurer & McNaughton, 2007), a rhythm that is entrained 

by the medial septum (MS) (Mizumori et al., 1989) and can be measured in the extra-cellular 

space (local field potential). To relate the timing of spikes to the theta frequency, each spike is 

assigned a phase (0-360 degrees, based on when it fires relative to the theta oscillation; 0 degrees 

corresponds to the trough of the oscillation). For a place cell that is anchored to a landmark, the 

phase can theoretically tell how far the landmark is, and whether the animal is entering or exiting 

that place field (Maurer et al., 2006; Moser et al., 2008). As the rat moves through a place field, 

towards or away from the landmark, the phase at which it fires changes from theta cycle to theta 

cycle and therefore spatial information is encoded in the timing of spikes with respect to the theta 

rhythm (negative correlation of spike phase to animal position), a phenomenon called phase 

precession (Mehta et al., 2002). Neural activity across brain regions is thought to be synchronized 

by gamma (~ 40Hz) oscillations (Colgin & Moser, 2010), which occur in a phasic manner 

(grouped bursts) while theta oscillations occur in a tonic (ungrouped, stochastic) pattern (Bragin 

et al., 1995). HD cells may exert control over grid cells to aid in path integration. There is 
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preliminary evidence to show that gamma oscillations can synchronize activity in different cell 

populations (Colgin & Moser, 2010) and may be linking HD to place or grid cell activity in an 

associative “Hebbian” manner (Hebb, 1949). In summary, contextual information encoded as 

representations in the dorsal HF, is multi-sensory, externally- and internally-driven, 

spatiotemporal information (Burgess et al., 2002).   

 

Figure 2. Some of the significant milestones in the last 125 years that have contributed to a greater 
understanding of how the HF process contextual information.  
 
1.4 How Hippocampal Subfields Contribute to the Maintenance of Multiple 

Representations  

Pattern separation was first described as a computational process associated with the 

DG, where the output firing patterns are dissimilar, despite that input patterns (e.g. sensory input) 

may be highly similar (Deng et al., 2010). In other words, the DG is thought to act as a mediator 

of stimulus representations, which can perform stimulus discrimination while reducing 

interference from redundant stimuli by enhancing dissimilarity between representations (Leutgeb 
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et al., 2007; Bakker et al., 2008; Berron et al., 2016; Kesner et al., 2016). This is achieved using a 

sparse coding scheme. The DG receives incoming spatial information via excitatory inputs from 

the EC and must process this information before sending excitatory outputs to the CA3 but this 

structure is also under a high level of inhibitory control due to the presence of inhibitory (GABA-

ergic) interneurons (e.g. basket cells) via feedback and feed-forward inhibition (Ribak, 1992; 

Jonas & Lisman, 2014). Moreover, the DG contains only a small fraction of neurons displaying 

activity at any given time. Therefore, low levels of basal activity combined with a vast number of 

granule cells (~1 million neurons) contribute to a relatively orthogonal coding scheme that can 

support different traces assigned to different memories promoting a reduction in interference from 

similar stimuli. For instance, if you were to vacation at the same resort every year, and some 

years you went with family, and some years you went with friends, it may be difficult to 

remember which years you went with who. This interference can hypothetically be overcome by 

employing a neural system that can maintain different representations for each experience, 

despite the similarity of these experiences (Colgin et al., 2008). The process of orthogonalizing 

output despite similarity in input has been termed pattern separation and the DG is thought to be 

critical to this function (Gilbert et al., 2001; Chawla et al., 2005; Leutgeb et al., 2007) (Figure 3).  

 

Figure 3. Schematic depicting two distinct memory traces after exposure to different contexts. DG granule cells 
represent each context by using non-overlapping orthogonalized sets of neurons.  

Sparse set of neurons 
represent context “A”  

Orthogonal set of neurons 
represent different context “B”  

Context A  Context B  
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Consistent with Marr’s (1971) description of the CA3 as part of an auto-associative 

network that can give rise to recall of complete memories with only partial cues due to a 

relatively high level of interconnectivity there (recurrent collaterals) (Colgin et al., 2008), and the 

notion of Lorente de Nó’s reverberating loops, it has been proposed that the CA3 engages in an 

opposing process called pattern completion (Gluck & Myers, 1993; Treves & Rolls, 1994). It 

may seem intuitive that the ability to reconstruct complete memories from only partial cues would 

promote interference but it has been shown that the CA3 indeed also utilizes a sparse coding 

scheme to form contextual representations and this is supported by lower levels of neuronal 

activity observed in the CA3 compared to the CA1, but a higher degree of overlap when 

comparing ensembles after visiting the same context twice (Vazdarjanova & Guzowski, 2004). 

This is further supported by the fact that the CA3 seems to play an important role in one-trial 

learning; this region is extremely sensitive to environmental changes and can encode contexts 

very rapidly (Cravens et al., 2006; Miyashita et al., 2009).  

Both the DG and the CA3 can engage in pronounced remapping (Leutgeb et al., 2004) 

and the sparse coding scheme allows for similar events to be encoded by distinct populations of 

cells specifically to reduce interference. The generation of multiple contextual representations 

(global remapping) permits the distinction between similar experiences in different environments. 

It is important to note though, that cells can also engage in rate remapping where maintenance of 

the same representation is preserved but the firing rate of the cells within that representation 

changes, theoretically to allow for differentiation of two different experiences in the same spatial 

context (Leutgeb et al., 2005). Neural mechanisms such as remapping are considered to be 

adaptive in an ever-changing environment, where animals must be able to update contextual 

representations to incorporate new information. For example, if an animal learns that a food 

reward is present in a certain location within an environment, this information would theoretically 

be encoded within a specific neuronal ensemble. If the next day, the reward is no longer present 

in that location, but has moved to a different location, then the animal would need to update the 
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representation associated with this experience and this could be achieved via a remapping effect. 

While significant advances have been made in the last 50 years towards a better understanding of 

how representations of the surrounding environment are created and stored, the way in which 

these representations change and are modulated is not well understood.    

To appreciate how contextual representations, change or remap globally, we must 

consider that sensory input is relayed to the DG / CA3 via the EC and that the mEC is also where 

grid cells reside. Therefore, it is plausible that grid cells contribute to global remapping. One 

piece of evidence supporting this hypothesis is the finding that changes in the environment that 

induce rate remapping in the CA3 do not shift grid cell representations whereas changes that 

induce global remapping in the CA3 not only cause grid cells to shift, but do so in a temporally 

synchronous manner (Fyhn et al., 2007; Colgin et al., 2008). Moreover, partial inactivation of the 

mEC causes remapping in the CA3 (Miao et al., 2015). Another possibility is that changes in 

contextual representations are initiated through perturbations in HF theta rhythm, which depend 

on projections from the MS. It is possible that the MS induces synaptic changes in the mEC, 

which are then relayed to place cells in the DG/CA3 resulting in remapping. This may be 

achieved via cholinergic inputs from the MS to the DG (Bergado et al., 2007). Finally, a third 

possibility involves a direct projection from the EC to the CA1 that acts in parallel to the 

traditional monosynaptic pathway (EC àDGàCA3àCA1) which posits the CA1 as a novelty / 

prediction error detector (Basu & Siegelbaum, 2015) that compares stored representations in the 

DG/CA3 with ongoing, direct sensory inputs from the EC. The CA1 sends excitatory projections 

to layer V of the EC, which in turn, loops back to layers II and III (Naber et al., 2001). This 

hypothesis suggests that through this connection the CA1 translates the detected prediction error 

into a signal, which recruits new cells in the DG/CA3 to become active (Lee et al., 2005; Chen et 

al., 2011; Duncan et al., 2012). Interestingly, acute inactivation of the mEC induced remapping in 

the HF (Miao et al., 2015) while bilateral excitotoxic lesions of the mEC had no effect, or could 
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not abolish remapping (Schlesiger et al., 2015) therefore, it is unclear what role the mEC or grid 

cells play in global remapping.  

The mechanisms by which remapping occurs are not fully elucidated. We believe that 

remapping may involve activation of a brain stem structure long implicated in novelty detection 

and the regulation of behavioural flexibility and attention (Aston-Jones et al., 1999), the locus 

coeruleus (LC). The LC sends a major noradrenergic projection to the DG (Jones et al., 1977; 

Loughlin et al., 1986a; Harley, 1987, 2007a; Lee et al., 1993) as well as the MS (Bergado et al., 

2007) and activation of the LC can initiate theta rhythm in the HF (Berridge & Foote, 1991), 

therefore the LC is well positioned to play this role from a theoretical standpoint. Enhanced theta 

following LC activation fits well with the hypothesis that the LC causes a disengagement from 

established representations and an enhancement of processes that promote the incorporation of 

new information (Bouret & Sara, 2005; Harley, 2007). It is also plausible that the LC 

noradrenergic system could theoretically be involved in sculpting HF contextual representations 

since there is a vast literature describing the nature of neuromodulator-induced alterations in 

memory.  

1.5 Mnemonic Processes and The Malleability of Memory   

By virtue of Hebbian plasticity, mnemonic processes are malleable, a property that allows 

for neuromodulators such as catecholamines to play a pivotal role in shaping our memories. To 

understand how catecholamines such as norepinephrine (NE) modulate memory, we must first 

evaluate the basis of mnemonic construction, deconstruction, and reconstruction. A commonly 

purported conjecture regarding memory formation is that it occurs in stages assuming a linear 

direction (e.g. encoding, storage, retrieval), and that with the passage of time, memories become 

more stable [short-term memory, long-term memory (Miyashita et al., 2009) through a process of 

consolidation (Müller & Pilzecker, 1900; Lechner et al., 1999). Consolidation is thought to 

depend on de novo protein synthesis as protein synthesis inhibitors disrupt late-phase long-term 

potentiation (LTP) thus interfering with the expression of long-term memory (Huang et al., 1996; 
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Flexner et al., 1963; Agranoff et al., 1965; Davis & Squire, 1984; Krug et al., 1984; Goelet et al., 

1986; Frey et al., 1988). The molecular mechanisms by which memories become crystalized, 

involving protein synthesis, describe synaptic consolidation (Dudai, 2004; Frankland & 

Bontempi, 2005), a process that allows synapses to retain their strength over time (Clopath, 2012) 

through the growth of new connections, the restructuring of existing ones, the recruitment of 

second messenger systems, and the activation of transcription factors (Frankland & Bontempi, 

2005). This is different than the concept of systems consolidation involving a more prolonged 

process regarding the interaction and reorganization of several brain circuits simultaneously to 

support memory (Frankland & Bontempi, 2005; Nadel et al., 2007). Some of the evidence for this 

theory of memory stabilization and transition from short-term memory to long-term memory 

(Dudai, 2004) came from patients with brain damage such as H.M., who were able to form short-

term memories but could not convert these experiences into long-term memory. We describe 

memory in this organized way because it is easier to comprehend, but in reality, memory is a 

complex construct that is neither unitary nor linear, and is highly malleable.  

Encoding is the first step in memory formation. It is the process that takes place which 

recruits engram cells at the time of learning. Following episodes of learning, different contextual 

elements pertaining to those episodes / experiences are encoded, elements which can later 

facilitate memory retrieval processes. Delineating which specific contextual elements are encoded 

has been the subject of research for many decades. As memories are acquired, they can either last 

a short time where the memory trace is temporary or transient in nature (i.e. short-term or 

working memory), or they can gain permanence through consolidation (Frey et al., 1988; Meiri & 

Rosenblum, 1998; Schafe et al., 1999; Miyashita et al., 2008). After a discovery made by 

Yarmolinksy and de la Haba (1959)  that the antibiotic puromycin produced profound inhibition 

of protein synthesis, Flexner, Flexner, & Steller (1963) reported that hippocampal injections of 

puromycin in mice resulted in memory impairments. These initial findings led researchers to 

establish a clear connection between cellular modifications such as protein synthesis as well as 
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morphological changes at the synapse, and the formation of long-term memories (Bailey & 

Kandel, 1993; Bailey et al., 2008; Mayford et al., 2012). Interestingly, a recent study has 

challenged the canonical nature of this notion. In this study, Ryan et al., (2015) showed that 

memory consolidation was associated with increased synaptic strength and dendritic spine 

density. When they gave mice a protein synthesis inhibitor, which induced amnesia as expected, 

these plasticity-associated changes were not observed. However, using direct optogenetic 

activation of the memory engram cells activated during memory encoding, they could restore 

memory retrieval bypassing protein synthesis and the associated plasticity. It would be incorrect 

to assume that natural memory recall post-consolidation occurs in the absence of protein-

synthesis associated plasticity but studies such as this demonstrate the potential ways in which 

memory systems can be manipulated to function in ways that may be different than the manner in 

which they operate under natural conditions.  

Early research on memory consolidation suggested that memories were time-dependently 

stored in the HF and then later transferred to neocortical sites such as the PFC (Nadel et al., 

2007), an idea first proposed by Theodule A. Ribot (Ribot, 1882) and later by David C. Marr 

(Marr, 1971). Despite the widely-accepted view of systems consolidation, there have been few 

studies conducted to directly test this theory empirically. In support, a recent study using time-

lapse two-photon microendoscopy showed that dendritic spines in the CA1 turnover after 

approximately one month (the hypothesized length of time memory is limited to the HF) (Attardo 

et al., 2015). Additional evidence comes from another recent study that showed that HF (EC) 

engram cells involved in contextual fear conditioning gradually became silent with time, whereas 

BLA engram cells were maintained. They also showed that “immature engram” cells in the PFC 

became gradually active with time consistent with the hypothesis that remote memory is formed 

in the cortex by a slow transfer of HF memory (Kitamura et al., 2017).  Therefore, current models 

describing systems consolidation (Squire & Alvarez, 1995) suggest the HF not only plays an 

integral role in encoding memories, but also in binding associated extra-hippocampal 
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(neocortical) structures in a long-term fashion to promote memory retrieval (Nadel et al., 2007). 

Memories become independent of the HF and rely more so on cortical connections (Yassa & 

Reagh, 2013). This is in contrast to multiple trace theory (Nadel & Moscovitch, 1997), which 

proposes memory retrieval processes always involve the HF despite how recent or remote the 

memory is and that different attributes of a memory (e.g. space, time, valence, salience) may be 

processed and stored in different cortical structures (Yassa & Reagh, 2013). In the first model, 

damage to the HF would only affect recent memories but in the second model more remote 

memories would also be affected. Similarly, to patients like H.M. who have sustained insult to the 

HF, in addition to anterograde amnesia, this type of damage is typically associated with greater 

deficits on more recently acquired memories or temporally-graded retrograde amnesia. This 

suggests a time-dependent process is involved (Frankland & Bontempi, 2005). However, both 

theories are supported in the literature. Although memories do seem to reorganize in the brain 

becoming more dependent on cortical structures and less dependent on the HF with time, it 

appears the HF is always required for rich contextual or spatial detail when retrieving a memory 

(Nadel & Moscovitch, 1997). Many of the memories we recall from the distant past are more 

semantic (and less episodic) than we perceive them to be (Lambon & Patterson, 2008; Yokoyama 

& Matsuo, 2016). In a study by Goshen et al. (2011), where they leveraged the precise temporal 

resolution of optogenetic methods, they were able to interrogate this problem further to try and 

reconcile these two theories of consolidation. Surprisingly, they showed that inhibition of the HF 

(CA1) in a precise manner (for 5 min) during acquisition or recall of a fear conditioned memory 

at a remote time point did result in impairments in freezing. However, when they inhibited the 

CA1 for a prolonged period of time (30 min prior to + acquisition or recall), no impairments were 

observed suggesting that in that 30-minute window, compensatory mechanisms were recruited 

and a reorganization of information took place in the brain (Goshen et al., 2011). They followed 

this up by showing that indeed, neuronal markers of activity were present in the neocortex (c-Fos 

expression in the anterior cingulate cortex). Together these findings suggest that the HF is a 
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“default activator” even for remote memories, but as time goes on dependence on the HF is 

lessened lending credence to both systems consolidation and multiple trace theory. In fact, recent 

findings in the literature call for a reconciliation of these theories and the emergence of a new 

theory. A few years ago, Yassa and Reagh (2013) proposed an integrated theory called the 

competitive trace theory, which suggests there are overlapping traces that compete over 

time - the HF lies at one end of the continuum encoding highly-contextual information 

and the neocortex at the other end as a final storage site of memories that have been 

decontextualized. Reactivation of a memory at any time point will result in a new trace 

that overlaps with other traces to the left and right as these traces compete.  

Memory storage refers to the “maintenance and preservation” of memories (Squire, 

1987; p33) whereby flexible synaptic connections reshaped by learning serve as essential 

components in this process (Ryan et al, 2015). The idea that memories may be stored as synaptic 

“weights” has a long history – for instance, Ramon y Cajal (1894) hypothesized that enhancement 

in synaptic efficacy could be a mechanism of memory storage. However, it is important to note 

that simple enhancement in synaptic efficacy is not sufficient to store a complex memory but that 

these changes must occur in the context of an ensemble of neurons (Mayford et al., 2012). Donald 

Hebb theorized that cells, which were repeatedly active at the same time, would become 

associated with each other calling these neuronal assemblies (Hebb, 1949). We refer to the 

reactivation of a memory trace that has been previously encoded and consolidated, as memory 

retrieval, however, if a memory deficit is observed, how can you deduce whether the deficit is 

one of retrieval or storage? It is especially difficult to differentiate between the true underlying 

neurobiology of memory storage versus memory retrieval since typical conceptualizations of 

memory processes in the literature conflate the two (Tonegawa et al., 2015). In the experiment 

where Ryan et al., (2015) rescued protein synthesis inhibitor-induced retrograde amnesia, 

demonstrating retrieval of an ostensibly lost contextual memory using optogenetic activation of 
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engram cells in the DG, they found that cells in the BLA were also active. They measured the 

“connectivity” between these two neuronal populations following contextual fear conditioning 

(CFC). Despite administration of a protein synthesis inhibitor given after CFC, the downstream 

activity in BLA cells was surprisingly still maintained and so they concluded that the connectivity 

between these populations was resistant to protein synthesis inhibition. This high “preferential 

engram-to-engram cellular connectivity” exists between the DG and the CA3 as well as between 

the DG and the BLA (Ryan et al., 2015; Redondo et al., 2015; Ohkawa et al., 2015) and likely 

between the HF (EC) and the PFC (Kitamura et al., 2017). Optical activation of cells in the DG 

induced plasticity (increased cFos expression) in the downstream BLA engram population 

associated with the CFC memory. This suggests that: a) memory storage is a function of how well 

these connections are established in the hours following an experience and how well they are 

preserved, b) these connections are protein synthesis independent, and c) memory deficits that 

have been deemed a result of a consolidation failure or retrieval failure may in fact be the result 

of a storage failure. It will be interesting to see how future studies investigate the dynamics of 

engram connectivity and plasticity.  

For a long time, memories were considered “static” or “inflexible” and once laid down in 

the neural net of consciousness, there they resided perfect snapshots of the past, filed away for 

later use. But we now know that memories are quite dynamic, malleable in nature, and can be 

modified (Otis, Werner, & Mueller, 2015). For instance, when memories are retrieved, they are 

also reconsolidated. Reconsolidation is the process by which a reactivated memory trace becomes 

transiently susceptible to disruption (Nader, 2015). Theoretically, this change in the mnemonic 

reconstruction process (Reisberg et al., 1988; Rimmele et al., 2016) can result in strengthening, 

weakening, or simply altering the memory trace such that new contextual elements are 

incorporated in a way that may “overwrite” the original memory. This is due to factors present at 

the time of retrieval and their effect on the processes governing the reconsolidation of that 

memory trace. These factors may include internal motivational states, hormonal profile, 
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emotional condition, level of attention etc.  

Why aren’t memories fixed so that you always remember events as perfectly as they 

occurred in real-time? The functional significance of a system where memories can be 

strengthened, weakened, or altered is highly debated and may even seem maladaptive in some 

cases (Rodriguez-Ortiz & Bermúdez-Rattoni, 2007). Despite our proclivity to view memory as an 

accurate depiction of past events (Lee, Nader, Schiller, 2017), mnemonic processes do not 

operate like a recorder that can be played back later for review. For instance, encoding can be 

distorted in such a way that elaborates certain semantic details of an event to achieve a sense of 

coherence (Fairfield, Altamura, Padalino, Balzotti, Di Domenico, & Mammarella, 2016). For this 

reason, eyewitness testimonies can be unreliable (Bartlett, 1932); people fill in gaps with 

imagined elements to create a complete picture in their mind. In these instances, especially if an 

individual is experiencing a highly emotional state, focus tends to be on the emotional content 

rather than neutral contextual details (Fairfield et al., 2016). However, memory doesn’t always 

need to be accurate to be adaptive. Although the flexibility of memories may not bode well in a 

court room, this sort of memory modulation can potentially have survival value in many other 

contexts.  For example, the generalization of fear memories has clear potential to be adaptive: you 

don’t need to know which rattlesnake tried to bite you, but the sound is enough to serve as a 

warning signal and keep you away. Conversely, when fearful memories such as those acquired 

after experiencing a traumatic event become strengthened in a maladaptive way, this can lead to 

disorders such as post-traumatic stress disorder (PTSD). However, from a functional perspective 

this type of system allows for new information to be incorporated into a memory trace since 

memories can be “updated”. Imagine writing a letter. After saving the first draft you later open 

the file and notice several spelling errors, so you edit the document. Subsequently, when you save 

the document, you can either choose to overwrite the old draft with the new edited content or save 

two separate drafts, the old one and the new one. Overwriting allows you to have the most 

updated version stored but you lose the original copy. Saving two drafts allows you to keep the 
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original, but as you continue to edit, and save, and edit, and save, eventually you may have so 

many drafts it will be difficult to figure out which one is the most recent unless you have another 

system in place that can keep track of that. In terms of memory, editing and saving is like learning 

and (re) consolidation, and in some cases, having all these traces would create too much 

“interference” and not being able to update memories could lead to a loss of discrimination and / 

or impairments in learning (e.g., reversal learning). This would be maladaptive. For example, if 

an animal learned to associate the colour red with an aversive stimulus (e.g., a shock) and then 

this contingency was changed such that the colour green now predicted the shock and red was 

deemed safe, a loss of discrimination or an increase in interference could lead to generalized 

behaviour where the animal demonstrated avoidance or fear to both colours. This idea is thought 

to underlie generalized anxiety disorder (Kheirbek, Klemenhagen, Sahay, & Hen, 2012). 

Therefore, when memories become labile upon reactivation, this gives rise to a reduction in 

interference but the consequence is that the original learning trace may be inaccessible over time. 

For this reason, each time you remember an experience, the process of recapitulating that 

experience alters the memory trace so that the memory is in fact a “newly reconstructed” memory 

each time and less of a true representation of the actual events that took place originally. This 

reflects the dynamic nature of the reconsolidation process whereby new information is 

incorporated into existing traces (Nader, Schafe, & LeDoux, 2000). The fact that memories are 

not immutable and that contextual details may be lost or possibly generalized over time, could in 

fact underlie the formation semantic memories or schemas (Lambon, Ralph, & Patterson, 2008; 

Yokoyama & Matsuo, 2016) and govern the transition of memories from the HF to the neocortex 

over time.  

1.6 The Temporal Dynamics of Immediate Early Gene Transcription  

One of the first steps in long-term plasticity is the transcription of immediate early genes 

(IEGs) such as arc (Activity Regulated Cytoskeletal-Associated Protein) also known as arg3.1 

(Link et al., 1995), and zif268 also known as egr1 (Guzowski, 2002). Unlike most genes, these 
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genes do not require de novo protein synthesis to be transcribed as constitutive regulatory 

transcription factors (RTFs) such as cAMP response element binding protein (CREB) and serum-

response factor (SRF) are available in the nucleus and capable of recruiting transcriptional 

machinery (Finkbeiner & Greenberg, 1998; Ginty, 1997). RTFs are activated by second 

messengers such as protein kinase A (PKA), calcium and calmodulin dependent kinase IV 

(CaMK-IV), and mitogen activated protein kinase (MAPK) following NMDA receptor mediated 

synaptic stimulation.  

IEG transcription occurs at low levels under basal conditions (Rao et al., 2006; Miyashita 

et al., 2008) and is highly dependent on synaptic input (Lyford et al., 1995) although once 

initiated, can occur extremely rapidly (Cole, Saffen, Baraban, & Worley, 1989; Guzowski, 

McNaughton, Barnes & Worley, 1999; Vazdarjanova, McNaughton, Barnes, Worley, & 

Guzowski, 2002). Some IEGs regulate the transcription of other genes (RTFs) (e.g. zif268) and 

may play a role in metaplasticity1 (Guzowski, 2002), and other non-RTF IEGs (called effector 

IEGs) such as arc, are involved in a wide range of cellular functions (Miyashita et al., 2008). 

Suggestive of a highly specific function (Miyashita et al., 2008) arc is only found in vertebrates 

(Lyford et al., 1995; Link et al., 1995; Mattaliano, Montana, Parisky, Littleton, & Griffith, 2007) 

and is thought to promote plasticity via synaptic modifications (Rial-Verde, Lee-Osbourne, 

Worley, Manilow, & Cline, 2006) such as the scaling / trafficking of AMPA receptors which 

mediate neuronal transmission (Chowdhury, Shepherd, Okuno, Lyford, Petralia, Plath, Kuhl, 

Huganir, & Worley, 2006; Xiao et al., 2000) and initiating changes in the actin cytoskeleton of 

the cell required for changes in dendritic spine structure and density (Dillon & Goda, 2005).  

Following transcription, arc mRNA is rapidly transported outside of the nucleus to the dendrites 

for local storage, translation, and decay (Steward, Wallace, Lyford, & Worley, 1998). Arc is one 

                                                
1  Metaplasticity: a term originally coined by W.C. Abraham and M.F. Bear - refers to the idea that a synapse's 
previous history of activity determines its current plasticity (Abraham & Bear, 1996). 
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of the most tightly regulated proteins (Bramham, Alme, Bittins, Kuipers, Nair, et al., 2010) with a 

half-life of only 47 minutes (Rao et al., 2006).  

Consequently, IEGs have been widely used as neuronal markers of activity and due to the 

kinetics of IEG mRNA following transcription they can be used to map the activity history of 

individual neurons (Guzowski et al., 1999). A sensitive molecular protocol referred to as cellular 

compartmental analysis of temporal fluorescent in situ hybridization (catFISH) allows for the 

tracking of neuronal populations at two distinct time points by exploiting the distribution 

dynamics of IEG transcription. Following neuronal stimulation, the induction of arc mRNA 

occurs in the nucleus; these transcripts then translocate to the cytoplasm after approximately 15 

minutes targeting the dendrites and return to basal levels after approximately 60 minutes 

(Guzowski et al., 1999).  

In experiments utilizing this protocol, animals are typically placed in an environment that 

they are permitted to explore thus activating place cells, which drives arc transcription. After 5 

minutes of context exploration, animals are placed back in their home cage, where any further 

transcription can be attributed to, and is associated with the context that was just explored 

(Marrone, Schaner, McNaughton, Worley, & Barnes, 2008). Twenty-five minutes later animals 

are given another context exposure for 5 minutes. Given the distribution dynamics of arc 

transcription, cells active during the second exploration will still contain arc mRNA in the 

nucleus but those cells, which were active during the first context exploration, will contain arc 

mRNA in the cytoplasm, and cells that were active in both behavioural epochs, will contain arc in 

both locations. Therefore, the sub-cellular localization of arc visualized via fluorescent confocal 

microscopy allows for the neuronal populations activated by two distinct experiences to be 

discriminated and quantified (Guzowski et al., 1999).  

The catFISH protocol, developed by John Guzowki (1999), allows us to look at large 

numbers of cells, within many different brain regions simultaneously. Furthermore, it has 

demonstrated that arc expression is induced in the CA1 in a context-dependent manner. When 
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animals visit the same context twice, as opposed to two different contexts, this results in a higher 

degree of overlap in the cells being activated across time points. This effect does not disappear or 

habituate following repeated context presentations across days and only after four exposures to 

the same context each separated by 25 minutes does arc induction begin to diminish (Guzowski 

et al., 2006). However, when the animal is presented with a new environment, even after nine 

exposures to the same context, this attenuation in arc transcription is rescued. The fact that arc 

induction is not easily disengaged when an animal is presented with familiar stimuli suggests that 

it does not distinguish between new learning and memory retrieval (Guzowski et al., 2006; 

Miyashita et al., 2008). This effect is also consistent with electrophysiology studies involving 

place cell remapping. Remapping occurs when an animal visits two different contexts in the same 

way different neuronal ensembles are recruited to activate arc in different contexts using the 

catFISH protocol (figures 4-7). The tracking of IEGs in a temporal fashion has also been useful in 

determining the differential contributions of distinct subfields within the HF to contextual coding. 

For instance, novel contexts appear to be encoded more rapidly in the CA3 compared to the CA1 

(Pevzner et al., 2012) and spatially selective IEG expression has been demonstrated in the CA1 

(Guzowski et al., 2006), the CA3 (Vazdarjanova & Guzowski, 2004) and the DG (Marrone et al., 

2011; Schmidt et al., 2012). 

 

Figure 4. Schematic depicting a hypothetical memory trace in the HF.  
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Figure 5. Animals are given two context exposures (5 min) separated by a 25-minute delay. Animals are placed 
in context A twice (A/A) or placed in context A and then context B (A/B).  

 

 

Figure 6. IEG expression is context-dependent. Sample confocal images (scale bar = 50µm) showing intra-
nuclear foci signal (second context exposure, short arrows) (pink dots), and cytoplasmic signal (first context 
exposure, long arrows) (pink ring). Nuclei are counterstained with DAPI. (Grella et al., 2016)  

 

 

Figure 7. Cell nuclei = blue circles. Red dots inside the nuclei represents cellular activity within a 5-minute time 
window (intranuclear foci signal <5min after activation); green ring around the nuclei represent those same cells 
following the translocation of IEG mRNA transcripts to the cytoplasm 30-35 minutes later (cytoplasmic signal ~ 
35 min after activation). Animals that visit the same context twice (AA) will have more cells labeled with both 
intranuclear + cytoplasmic signal while animals that visit two different context (AB) will show these signals 
separately.  
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1.7 The Locus Coeruleus Norepinephrine System  

The release of the neurotransmitter NE throughout the mammalian brain is important for 

modulating attention, arousal, and cognition (Aston-Jones et al., 1991; Sara & Segal, 1991; 

Schwarz & Luo, 2015). Classified as a catecholamine structurally, this chemical is also an 

important mediator of the mammalian stress response. It is generated by the amino acid tyrosine, 

and exerts its effects by binding to adrenoreceptors. Pharmacodynamically, noradrenergic 

receptors are G-protein coupled receptors (GPCRs) and include α and β-subtypes. Found post-

synaptically, α1 receptors are coupled to the guanine nucleotide-binding regulatory protein Gq, 

and when activated, this causes an increase in intracellular levels of Ca2+, and subsequently the 

release of NE. Conversely, α2 receptors are presynaptic, coupled to Gi; activation of these 

receptors inhibits NE release acting as a negative feedback mechanism. β-receptors (1-3) are post-

synaptic and positively coupled to Gs resulting in an increase in NE release when activated. 

Generally, NE release is associated with increased heart rate, and blood glucose levels. In 

preparation for fleeing or fighting, activation of the sympathetic nervous system and the release 

of catecholamines such as NE, occurs in mammals when faced with a threatening situation 

(Jansen et al., 1995). Walter Cannon (1915) coined the term “fight or flight” to describe this 

hyper arousal reaction.  

In 1970, Seymour Kety introduced the idea that biogenic amines such as NE, not only 

have an effect on arousal, but also emotion and learning (Kety, 1970) acting as 

“neuromodulators”.  Neuromodulation is often contrasted with fast synaptic transmission where 

transmission is slow-acting on GPCRs rather than fast-acting on ligand-gated ion channels. 

Rather than initiating spiking, effects can be to modulate ongoing spiking activity, are typically 

long lasting and groups of cells are affected as opposed to one or two cells. Evolutionarily, 

neuromodulators emerged quite early and have been highly conserved. For instance, both 

dopamine and acetylcholine are present in invertebrate species of animals, however, NE is unique 

in that it is only present in vertebrates. Since Vittorio Erspamer (Erspamer & Boretti, 1951) 
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discovered the biogenic amine octopamine in the salivary gland of an octopus and characterized it 

as having NE-like properties affecting physiology and behaviour, it is thought that this chemical 

is the precursor to NE. The similarity between NE and octopamine demonstrate the conservation 

and need for such a molecule. Kety’s hypothesis regarding NE was quite specific; he believed 

that forebrain NE acted to selectively enhance cell firing in neurons receiving inputs during 

affectively important events and that this served to promote memory (Kety, 1967, 1970).  

“The state of arousal by means of adrenergic input to each (cerebral, hippocampal, and 
cerebellar cortices) may serve to concurrently reinforce and to consolidate the significant 
sensory patterns, the affective associations and the motor programs necessary in the learning of a 
new adaptive response”  

       Seymour Kety (1970)  

Kety’s ideas were quite novel given the limited evidence at the time demonstrating that 

neuromodulators could affect more than simply neuronal responses, but could also improve 

cognitive performance (Sara and Segal, 1991). In the brain, NE is produced in a small pontine 

cluster called the locus coeruleus (LC). This bilateral structure contains approximately 1600 

densely packed neurons per nuclei in the rodent brain (Robertson et al., 2013) all which produce 

NE, all which provide a neuromodulatory influence in the brain. Segal and Bloom (1976) showed 

in rats, that electrical stimulation of the LC selectively enhanced hippocampal responses to 

stimuli conditioned with an appetitive reward. Following this study, Sara et al., (1980) showed 

that LC stimulation improved memory retrieval for a spatial task and (Dekeyne et al., (1987) 

replicated this effect. Devauges and Sara, (1991) later discovered that this effect was dependent 

on β-adrenergic receptors (BARs) in the HF. Furthermore, LC activation facilitated memory 

encoding for spatial information and this was also dependent on BARs (Lemon et al., 2009).    

The survival of an organism depends highly on their ability to remember certain 

information; therefore, it is adaptive for that organism to possess a mechanism by which it can 

detect what is important, highlight that information, and filter out what is irrelevant (Berridge, 

2008). Kety believed that the neurotransmission of NE played this role. The ability to 

demonstrate an insensitivity to the environment when rest is required, have a broad “diversive” 
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focus in a manner of reconnaissance exploration when searching for resources, and maintain an 

“inspective” vigilant hold on an identified predator, food source, or potential mate when 

necessary, is key (Berlyne, 1966; Flicker & Geyer, 1982). This great task of processing such a 

wide variety of stimuli in a constantly changing environment is achieved by one of the smallest 

nuclei in the brain (Schwarz & Luo, 2015), the LC.  

1.8 Tonic and Phasic Modes of Discharge: Salience, Novelty, & Reversal Learning  

As the major source of NE in the brain (Tanaka et al., 1976; Foote et al., 1983; Sara et al., 

1994; Kitchigina et al., 1997) and the only source of NE in the HF (Blackstad et al., 1967; Fuxe et 

al., 1968; Ungerstedt, 1971; Lindvall & Björklund, 1974; Pickel et al., 1974; Ross & Reis, 1974; 

Morrison et al., 1978) the LC exhibits distinct modes of output. Neurons in the LC typically 

discharge with phasic burst activity patterns essentially superimposed onto steady, yet stochastic 

tonic discharge rates (Devilbiss & Waterhouse, 2011) that serve as background activity. Tonic LC 

activation can occur in the absence of presynaptic activity to maintain NE levels in the brain 

where inhibition or increases in presynaptic input can be transmitted. In contrast, phasic LC 

activation is driven by presynaptic activity. Importantly, it is thought that these two modes 

differentially modulate information processing in LC targets such as the HF (Devilbiss & 

Waterhouse, 2011).  

At rest, LC neurons exhibit a tonic basal activation pattern characterized by relatively 

slow frequencies (1-5 Hz), roughly correlated with the sleep/wake cycle (e.g. higher levels 

observed when the animal is awake compared to asleep) (Aston-Jones & Bloom, 1981; Harley, 

1987; Aston-Jones et al., 1991; Berridge & Waterhouse, 2003). Typically, LC neurons are 

quiescent and tonus is low when animals are asleep, but also when they are awake but not 

actively engaged in their surrounding environment such as when they are grooming or eating 

(Aston-Jones & Bloom, 1981; Grant et al., 1988; Aston-Jones et al., 1991; Rajkowski et al., 

1994). Michel Jouvet (1969) first observed this tonic variation with behavioural state in his 
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characterization of sleep states. These findings paralleled those seen in cats (Hobson et al., 1975; 

Rasmussen et al., 1986) and monkeys (Foote et al., 1980; Rajkowski et al., 1998).   

In contrast, phasic discharge (5-20 Hz) (Hobson et al., 1975; Foote et al., 1980; Aston-

Jones & Bloom, 1981) consists of short bursts of activity (e.g. typically restricted to 2-3 action 

potentials) followed by a brief pause in firing lasting approximately 200-500 milliseconds (Aston-

Jones & Bloom, 1981b; Harley & Sara, 1992; Klukowski & Harley, 1994; Kitchigina et al., 1997) 

and is typically triggered by surprising, or novel stimuli (bottom up) (Aston-Jones & Bloom, 

1981; Vankov et al., 1995; Berridge & Waterhouse, 2003; Harley, 2007b; Aston-Jones & 

Waterhouse, 2016) that are either appetitive or aversive (Rasmussen et al., 1986; Sara & Segal, 

1991). When stimuli are associated with task-related decision processes (top down), phasic LC 

activation can be driven by outcomes and tied to behavioural responses in a way that helps to 

optimize task performance (Aston-Jones & Cohen, 2005). The computational neuromodulatory 

adaptive gain model of LC-NE activity describes how these different modes can “adaptively 

adjust the gain of these cortical circuits” proposing that phasic LC activation facilitates task 

performance where the organism is namely “exploitive” in its behaviour while tonic LC activation 

promotes the disengagement of task-related behaviour allowing the organism to be more 

“explorative” (Aston-Jones & Cohen, 2005).   

Some evidence for this comes from a study where cynomolgus monkeys (Macaca 

fascicularis) were trained to perform an oddball visual discrimination task while recordings were 

obtained from the LC (Aston-Jones et al., 1991). Monkeys performed for a juice reward where 

they were required first to depress a lever to initiate the task, then to fixate on a spot in the middle 

of a screen. Following this, a target cue was presented on the screen (20% of the time) and the 

monkeys were to release the lever in the presence of the cue, and suppress this response when the 

cue was not present in order to obtain the reward. The researchers found that LC neurons 

selectively responded to the target with relatively short latencies. From this experiment, it was not 

possible to tell if LC responses facilitated performance but it was suggested by the authors that 
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this might be the case; the LC may have been directing behaviour. These findings demonstrated 

that LC neurons are involved in processing salient stimuli. Commensurate with this view, Hervé-

Minvielle and Sara (1995) used the hole board test, which essentially tests exploratory behaviour 

by measuring head dipping, rearing, and locomotor behaviour in rodents as they search and 

discover novel objects within different holes, and found that when the animals encountered a 

novel object, LC neurons responded with a phasic burst. The results of this study were later 

replicated (Kitchigina et al., 1997). When the rats were placed in the novel hole board 

environment, there was a tonic increase in population spike amplitude consistent with an 

exploratory role for this firing pattern. This effect habituated, and was blocked partially when the 

animals were administered the BAR antagonist propranolol. When the animals encountered a 

novel stimulus in one of the holes, there was a strong phasic response in LC neurons lasting 

approximately 50-75 seconds; this effect was completely absent in rats pretreated with 

propranolol.  

Around the same time, (Rajkowski et al., 1994) showed that differences in performance 

on the visual discrimination task were closely associated with rates of tonic discharge. During 

times of behavioural agitation, distractibility, and poor task performance, LC tonus was high 

whereas moderate levels of tonic LC discharge were correlated with optimal task performance. 

NE exerts feedback inhibition of its own release through an interaction with presynaptic α-2 

adrenergic inhibitory autoreceptors in the LC (Washburn & Moises, 1989). Clonidine, which is an 

α-2 adrenoceptor agonist, serves to inhibit LC neurotransmission (Aghajanian, 1978; Aghajanian 

& VanderMaelen, 1982). Administration of clonidine was able to help the animals with high tonic 

LC activity regain focus, direct attention and enhance performance (Ivanova et al., 1997). A 

moderate level of activity in the tonic mode of sustained environmental surveillance allows an 

organism to appropriately and readily responds to salient stimuli (Rajkowski et al., 1994). These 

data suggest that optimal task performance involves phasic LC responding to salient stimuli 

superimposed on a background of moderate, or optimal tonic LC activity to promote focused 
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attention (Aston-Jones & Cohen, 2005). One interesting discrepancy in the literature concerns the 

rate at which these responses habituate. In the studies done in monkeys, LC responses did not 

habituate even after 100 presentations (Aston-Jones et al., 1991; Rajkowski et al., 1994) and were 

greatest when stimuli elicited an orienting response (Aston-Jones & Cohen, 2005). In contrast, in 

the studies conducted in rats, LC neurons did habituate, with different populations of LC neurons 

habituating at different rates (Sara & Segal, 1991), and in some cases, this occurred very rapidly 

(Sara et al., 1994; Hervé-Minvielle & Sara, 1995). Habituation of LC neurons has also been 

shown to occur in mice exposed to a novel environment (Takeuchi et al., 2016). This discrepancy 

has never been resolved in the literature. 

  

Figure 8. Reprinted from: Biological Psychiatry, 46(9), Aston-Jones, Rajkowski, & Cohen, Role of locus 
coeruleus in attention and behavioral flexibility, 1309-1320, Copyright (1999) with permission from Elsevier.  
 

Notably, in the oddball task performed by the monkeys, the LC did not respond to 

distractors but only to the target (Aston-Jones et al., 1994). Furthermore, during reversal training 

when the distractor became the target and vice versa, LC responding switched to the new cue 

(Aston-Jones et al., 1994, 1997; Rajkowski et al., 1994; Aston-Jones & Cohen, 2005). This 

demonstrated importantly that the LC was not responding simply to a set of attributes related to 

the specific cue used but instead to the fact that the cue was meaningful in that it signalled reward 

(Aston-Jones et al., 1999). According to the adaptive gain model, which suggests that tonic LC 

activity facilitates behavioural response disengagement; the switch in phasic LC responding to the 

appropriate target cue must depend on tonic activity in some way. However, this interaction has 

not been elucidated.  
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In the rat, Sara and Segal (1991) also showed that LC neurons exhibit remarkable 

plasticity as a function of environmental contingencies. In a classical conditioning experiment, 

LC neurons responded with a phasic burst when a stimulus was novel, and when it acquired 

salience during conditioning, but also during reversal training and during extinction. The authors 

noted that the most striking and consistent observation in the study was that LC neurons 

responded immediately to any change in stimulus-reinforcement contingency with respect to both 

appetitive and aversive stimuli, and that these responses were even stronger than the initial 

responses to novel stimuli. A separate study was conducted where rats performed a spatial task in 

a radial arm maze using extra-maze cues. 

  

Figure 9. Schematic depicting a 12-arm radial maze with extra-maze cues on the wall which the rat uses to 
navigate the spatial task.  

 

When the cues were removed, or changed, performance dropped significantly. When the rats 

were given a drug that elevated NE levels, their performance recovered more quickly, as they 

were better able to shift their attention to the newly relevant cues which were necessary to 

perform the task well (Sara et al., 1994). Therefore, activation of LC neurons, specifically phasic 

activation, has been demonstrated to occur in association with cognitive shifts in attention 

(Hagena et al., 2016) and likely plays a integral role in reversal learning.  

1.9 Locus Coeruleus Induced Plasticity in the Hippocampus  

Cells in the LC are exquisitely sensitive to changes in stimulus contingencies and phasic 

and tonic modes of LC output have different antecedents but both appear to function in such a 

way that increases the signal to noise ratio (Woodward et al., 1979; Sara, 1985; Servan-Schreiber 
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et al., 1990; Aston-Jones et al., 1991, 1999; Hagena et al., 2016) and both phasic and tonic LC 

activity are equally capable of inducing downstream learning-facilitated plasticity effects such as 

LTP (Bliss et al., 1983; Neuman & Harley, 1983; Gray & Johnston, 1987; Hopkins & Johnston, 

1988; Harley, 1991; Walling et al., 2011, 2004; Almaguer-Melian et al., 2005; Lashgari et al., 

2008; Lim et al., 2010; Hagena et al., 2016) long-term depression (LTD) (Lemon et al., 2009; 

Lemon & Manahan-Vaughan, 2012; Hansen & Manahan-Vaughan, 2015a) and NE release in the 

DG (Dahl & Winson, 1985; Harley & Milway, 1986; Harley et al., 1989; Babstock & Harley, 

1992; Frizzell & Harley, 1994; Klukowski & Harley, 1994; Walling et al., 2004; Lemon et al., 

2009) and CA1 (Lemon et al., 2009). For instance, activation of the LC with glutamate, which 

mimics phasic signalling, results in a ~200% increase in NE in the HF within 20 minutes 

measured by microdialysis (Walling et al., 2004) and electrical simulation also results in stable 

NE signals measured by voltammetry (Yavich et al., 2005). Phasic LC activation has also been 

shown to potentiate LTP at CA3-CA1 synapses (Takeuchi et al., 2014) and elevated levels of NE 

can increase somatic and dendritic excitability in the DG (Lacaille & Harley, 1985; Stanton & 

Sarvey, 1985; Harley, 1991; Hagena et al., 2016) as well as in CA1 and CA3 (Mueller et al., 

1981; Heginbotham & Dunwiddie, 1991; Dunwiddie et al., 1992; Jurgens et al., 2005a, 2005b), 

effects which are mediated by BARs (Kitchigina et al., 1997) and which can persist for 24 hours 

(Walling & Harley, 2004). Therefore, it has been proposed that activation of the LC-NE system 

can induce changes in network dynamics occurring at critical times when learning is necessary to 

promote adaptive behaviour (Sara et al., 1994; Bouret & Sara, 2005). These network 

configurations function to “reset” the system and as such, this hypothesis has been referred to as 

the network-reset hypothesis (Bouret & Sara, 2005).   

1.10 The Network Reset Hypothesis  

A simple invertebrate model inspired this hypothesis. In lobsters, Hooper and Moulins 

(1989) demonstrated that a neuron, which was part of a specific network, could switch its 

functional membership to a different network in certain conditions likely attributed to 
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neuromodulatory inputs. The crustacean stomatogastric nervous system is composed of four 

networks containing distinct neuronal populations that control motor patterns. These networks 

can be simultaneously active. Using in vitro preparations of the lobster (Palinurus vulgaris), 

Hooper and Moulins (1989) demonstrated that a ventricular dialator (VD) neuron, which was part 

of a specific network, could shift, becoming a functional and exclusive member of a different 

network under certain circumstances. The VD neuron demonstrated two different firing patterns 

when spontaneous recordings were taken. When the first network was active (pyloric network) 

the VD neuron exhibited a short, burst firing pattern, but when the second network (caridac sac), 

which was typically quiescent, became active via experimenter-induced stimulation, the VD 

neuron assimilated its firing pattern, exhibiting longer bursts like the other cardiac sac neurons, 

effectively switching networks. What could be the basis for this apparent appropriation of a 

neuronal constituent from one network to another? They investigated this further and found a 

relationship with membrane properties that were likely influenced by neuromodulatory input. 

These findings represent early evidence that neurons could participate in multiple networks 

suggesting these shifts were under neuromodulatory regulation by catecholamines. This 

phenomenon observed in crustacean neural networks, where network dynamics could undergo a 

spontaneous shift, combined with Kety’s ideas regarding how biogenic amines can facilitate 

memory through the enhancement of neuronal activity during affectively important events, led 

Bouret and Sara (2005) to hypothesize that activation of the LC-NE system may be able to induce 

a ‘‘reset’’ in its target structures, by interrupting existing functional networks and facilitating the 

emergence of new ones. Moreover, the LC has vast cortical projections and it is this dense 

innervation of the neuraxis that has fueled the hypotheses presented here (Dahlström & Fuxe, 

1964; Jones & Moore, 1977; Jones et al., 1977) encouraging the view that the NE system is 

implicated in shifting attention to environmental imperatives (Sara, 2009).   

Viewing the LC-NE system as a potential mechanism for network resetting does not 

disentangle phasic from tonic activation, and from the perspective of plasticity promotion, Bouret 
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and Sara (2005) believed both phasic and tonic LC activation could reset a neural network. In our 

own experiments, we have interpreted “resetting of a neural network” to include global 

remapping and hypothesize that both phasic and tonic activation of the LC-NE system may 

underlie the mechanism by which remapping occurs. The main hypothesis of the current work is 

that this system acts as a modulatory switch recruiting new neurons to create new contextual 

representations when necessary and likely updating existing representations in the presence of 

new information. We also hypothesize that the pathway from the LC to the DG is involved in 

shifting attention promoting learning that involves contingency changes in the environment (e.g. 

reversal learning or extinction) and when behavioural changes are necessary.  

1.11 Noradrenergic Modulation of Memory  

According to the network reset hypothesis, activation of the LC-NE system should 

promote adaptive responses during important events and support learning during changes in 

contingency, hypothetically, and mechanistically, by means of increased excitability in the HF 

(Lacaille and Harley, 1985; Stanton and Sarvey, 1985; Harley, 1991) and global remapping of 

hippocampal contextual representations. The highest concentrations of BARs are found in the DG 

compared to the CA1 and CA3 (Booze et al., 1993; Milner et al., 2000), and we propose that the 

LC-NE system via BAR activation in the DG is involved in updating memory traces, specifically 

to incorporate new information. NE theoretically provides a “reset” signal causing the HF to 

recruit distinct populations of neurons, thus, providing a molecular switch to dictate if 

hippocampal circuits should generate new representations or update existing representations to 

incorporate novel information. In this way, the LC-NE system would be considered a 

neuromodulator of memory encoding through BARs, where plasticity promotes the long-term 

storage of salient experiences (Hagena et al., 2016).  

There is an abundance of research to show that the noradrenergic system mediates 

different stages of memory through a neuromodulatory effect (McGaugh et al., 1990; Do Monte 

et al., 2008) but how does this fit with the network reset hypothesis?  
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The majority of studies investigating the role of NE on memory have focused on 

consolidation and reconsolidation, specifically in the context of emotional versus neutral memory 

(van Stegeren et al., 1998; Przybyslawski et al., 1999; Cahill & Alkire, 2003). Most of this work 

was carried using human participants administered drugs that act on the peripheral and / or central 

nervous system (van Stegeren et al., 1998). In humans, activation of BARs results in the 

augmentation of memory consolidation (specifically emotional memory) and this is thought to be 

mediated via receptors in the BLA (Cahill et al., 1994; Cahill & McGaugh, 1998; van Stegeren, 

2008; Chamberlain & Robbins, 2013; Barsegyan et al., 2014; Kuffel et al., 2014; for reviews see 

Ferry et al., 1999; McGaugh, 2000; Roozendaal et al., 2009; Roozendaal & McGaugh, 2011), an 

effect which disappears if participants are pretreated with propranolol (Cahill et al., 1994; van 

Stegeren et al., 1998; Maheu et al., 2004) or if given propranolol post-learning (Sara et al., 1999; 

Tronel et al., 2004; Roozendaal et al., 2008; Barsegyan et al., 2014). In rats, when NE was 

directly infused into the DG, this enhanced memory consolidation while propranolol had the 

opposite effect (Lee et al., 1993). Moreover, NE is required for the strengthening of synaptic 

connections e.g. LTP (Stanton & Sarvey, 1985; Thomas et al., 1996; Katsuki et al., 1997; Gelinas 

& Nguyen, 2005; Tully & Bolshakov, 2010; Qian et al., 2012; Sarabdjitsingh et al., 2012; Hansen 

& Manahan-Vaughan, 2015b) although propranolol (Hagena & Manahan-Vaughan, 2012) and the 

BAR antagonist timolol (Dunwiddie et al., 1982) did not block LTP elicited with electrical 

stimulation.   

Like consolidation (Kobayashi & Kobayashi, 2001), NE has also been shown to enhance 

memories through reconsolidation (Gazarini et al., 2013). When rats were given a single infusion 

of the non-specific BAR agonist isoproterenol following retrieval of a fear memory, this served to 

enhance further retrieval and impair extinction of that memory (Green et al., 1992; Dębiec et al., 

2011). In contrast, BAR antagonists have been shown to impair or disrupt reconsolidation 

(Schwabe et al., 2012). Administration of propranolol induced a long-lasting impairment in the 

subsequent expression of contextual fear memory when administered immediately after retrieval 
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(Przybyslawski et al., 1999; Schneider et al., 2014; Taherian et al., 2014). Given these findings, 

and the fact that oral administration of propranolol impaired reconsolidation of drug-related, 

positive and negative but not neutral, words in abstinent heroin addicts (Zhao et al., 2011), 

clinical interest in the amnesic effect of propranolol on retrieved fear memories as a possible 

treatment for anxiety disorders such as PTSD was prompted (Nader et al., 2000; Debiec & 

Ledoux, 2004; Kindt et al., 2009; Finnie & Nader, 2012; Sevenster et al., 2013; Merlo et al., 

2014, 2015). However, data supporting this intervention as a viable treatment option are still 

lacking (Kroes et al., 2015; Giustino et al., 2016; Steenen et al., 2016; Villain et al., 2016). 

BARs also regulate memory retrieval (Brown & Silva, 2004; Thomas, 2015), but the role 

of the noradrenergic system on memory retrieval is not well understood (Abel & Lattal, 2001; 

Chamberlain et al., 2006). Experimental manipulations that enhance NE activity have been 

typically shown to facilitate memory retrieval, and manipulations that inhibit NE release to impair 

retrieval. These effects were observed when memory retention was tested at least 24 hours after 

learning and drug manipulations were given prior to testing. Mice deficient for dopamine β-

monoxygenase (enzyme which catalyzes the reaction of dopamine to NE) (DBM -/-) showed 

deficits in contextual and spatial memory; these deficits were recovered when mice were 

administered a BAR agonist (Murchison et al., 2004). Researchers also found that temporarily 

depleting NE in a rat’s brain by injecting a DBM inhibitor resulted in impaired memory retention 

in a passive avoidance task when administered 30 minutes prior to test. This occurred after 1, 3, 

5, or 7 days following the initial training (Hamburg & Cohen, 1973). In addition, Cohen and 

Hamburg (1975) were able to replicate their results, again producing amnesia for the passive 

avoidance task using propranolol. Animals were injected with propranolol 1 or 3 days following 

training, and memory retention was impaired when tested 2 hours after the injection. In rats, 

propranolol also led to deficits in spatial reference memory in the water maze (Ji et al., 2003), 

caused the disruption of retrieval of a cocaine-associated memory (Otis & Mueller, 2011), and 

abolished the expression of a cocaine conditioned place preference following co-blockade of β1- 
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and β2-ARs (Fitzgerald et al., 2016). However, in humans, propranolol given prior to a test of 

memory retrieval had no effect (Rimmele et al., 2016) and in rats, reversibly inactivating the LC 

with lidocaine had no effect on spatial reference memory retrieval (Khakpour-Taleghani et al., 

2009). BARs may also mediate the reinstatement of previously extinguished memories since 

activation of BARs by NE has been shown to induce reinstatement of fear memories (Morris et 

al., 2005).  

Relatively few studies have been specifically designed to assess the role of BARs in 

working memory. In rodents, Khakpour-Taleghani et al. (2009) showed that inactivation of the 

LC had no effect on spatial working memory. Administration of propranolol in rats also had no 

effect on working memory (Kobayashi et al., 1995; Ohno et al., 1997). In Rhesus monkeys, 

moderate doses of propranolol (0.01, 0.05 and 0.1 mg/kg) impaired spatial working memory, 

while a low dose (0.005 mg/kg) and high dose (0.5 mg/kg) had no effect (Wang et al., 2012a). In 

humans, a low (25 mg) dose of propranolol impaired numerical working memory in subjects with 

low arousal levels (Müller et al., 2005), and repeated administration of a high (160 mg) dose 

impaired working memory (Frcka & Lader, 1988). However, several other studies utilizing a 

moderate dose (40 mg) found no effect at all of propranolol on working memory in humans 

(Bodner et al., 2012; Becker et al., 2013; Ernst et al., 2016). Therefore, it appears that the role of 

the noradrenergic system on memory that has not been consolidated is still unclear.  

Through the activation of the LC during important events, NE is involved in the 

acquisition of new information and therefore, plays a crucial role in the encoding of new 

memories. We hypothesized that the LC-NE system is involved in the recruitment of new neurons 

during memory encoding whereby post-encoding neuronal activity and plasticity promotes the 

consolidation of hippocampal dependent memory (Takeuchi et al., 2016). The recruitment of new 

neurons is part of the memory encoding process and tasks that involve memory retrieval require 

reactivation of the representations formed during encoding. When new information is 

encountered or contingencies in the environment are detected, these representations require 
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updating. We propose that activation of the LC-NE system, involved in the detection of novel and 

salient environmental imperatives involving spatially relevant information like changes in goal 

locations or reward contingencies in both the appetitive and aversive domain, can drive global 

remapping of these contextual representations in the HF.  

1.12 Preface 

In the first set of experiments we ran we sought to investigate the modulatory role of β-

noradrenergic signalling in the HF on contextual memory representations and hippocampal 

plasticity using a molecular and behavioural approach. We specifically investigated how phasic 

and tonic LC activation could sculpt neuronal ensembles within the HF, which were tied to a 

specific episodic-like memory in rats. We hypothesized that NE release would cause the HF to 

recruit a unique population of neurons even in the presence of the same stimuli an animal had just 

encountered. This hypothesis was tested by examining global remapping in the HF using the 

compartmental expression of IEGs such as arc and zif268 and the catFISH procedure. The 

activity history of individual HF neurons was mapped using this technique as animals engaged in 

spatial processing following manipulation of the LC-NE system.  

In the second set of experiments, we assessed how plasticity associated changes affected 

behaviour following direct infusion of BAR agonists and antagonists into the HF. More 

specifically, if those representations involved in the encoding of an experience “remapped”, 

meaning that rather than the cells that comprise the previously formed trace being reactivated, a 

new cellular ensemble was recruited instead, this should theoretically be detectable at a 

behavioural level e.g. as a memory retrieval error. Consistent with the idea of the LC-NE system 

as a network “reset” generator, one might assume that switching the system back to a state of 

encoding would prove maladaptive in a situation where memory retrieval was necessary to 

complete a task unless new information was at hand. We hypothesized that NE resets the memory 

system in such a way that it causes the HF to move from a state of retrieval back to a state of 

encoding when it is necessary, when novel information needs to be incorporated, an example of 
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this would be during reversal learning. This hypothesis suggests that the effect of modulating NE 

on memory will critically depend on the stage of training. To further understand how NE 

modulation of hippocampal circuits affects spatial working memory, we tested whether infusions 

of the BAR agonist isoproterenol would impair retrieval (i.e. switching the system back to 

encoding when it is maladaptive). We also tested how isoproterenol would affect spatial reference 

memory, hypothesizing that if isoproterenol did impair memory during testing, that the effect of 

activating BARs would subsequently promote cognitive flexibility thus improving reversal 

learning (i.e., switching the system back to encoding when it is adaptive).  

2.0 Norepinephrine as a Memory Reset Signal: Phasic but Not Tonic Activation of 

the Locus Coeruleus Drives Remapping in the Hippocampus    

2.1 Introduction 

The HF is crucial in processing contextual information (Hirsh, 1974; O’Keefe, 1976; 

Phillips & LeDoux, 1992; Kim & Fanselow, 1992; Holland & Bouton, 1999; Fanselow, 2000; 

Burgess et al., 2001, 2002; Guzowski et al., 2001; Schmolck et al., 2002; Anderson et al., 2003; 

Rudy et al., 2004; Vazdarjanova & Guzowski, 2004; Smith & Mizumori, 2006; Acheson et al., 

2012; Maren et al., 2013; Nees & Pohlack, 2014; Sadeh et al., 2014; Smith & Bulkin, 2014). 

Contexts are constantly and very rapidly (<30s) encoded during experience (Fanselow, 1990; 

Wiltgen et al., 2001; Guzowski et al., 2004; McHugh & Tonegawa, 2009; Pevzner et al., 2012) 

and these encoded representations are thought to be crucial to accurate memory and recall of 

information learned within each context. Moreover, although  “context” typically refers to the 

physical location in which an event takes place (Holland & Bouton, 1999; Chawla et al., 2005; 

Maren et al., 2013), contexts relevant for memory can also include abstract components of 

experience that can encompass perceptions, emotions, socially relevant information, and learned 

contingencies related to appetitive or aversive outcomes (Maren et al., 2013).  
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The formation of contextual representations in the HF is driven by place cell activation, 

at least in rodents (Chawla et al., 2005; Ramirez-Amaya et al., 2005; Vazdarjanova et al., 2006; 

Rowland et al., 2011), which is, in turn, coupled to the initiation of second messenger systems 

and gene transcription (Miyashita et al., 2008). One of the first steps in long-term plasticity is the 

transcription of immediate early genes (IEGs) such as arc/arg3.1 (Link et al., 1995), and 

zif268/egr1 (Guzowski, 2002). Following transcription, IEG mRNA is rapidly transported outside 

of the nucleus to the dendrites for local storage, translation, and decay (Steward et al., 1998). 

Consequently, IEGs have been widely used as neuronal markers of activity. Due to the kinetics of 

IEG mRNA following transcription, the activity history of individual neurons can be tracked at 

two distinct time points. This is possible through the use a sensitive molecular protocol referred to 

as cellular compartmental analysis of temporal fluorescent in situ hybridization (catFISH) that 

exploits the distribution dynamics of IEG transcription (Guzowski et al., 1999; Guzowski & 

Worley, 2001).   

The basis of this technique rests on the fact that following neuronal stimulation, the 

induction of IEG mRNA occurs in the nucleus; these transcripts then translocate to the cytoplasm 

after approximately 15 minutes targeting the dendrites and mRNA levels in the peri-nuclear 

cytoplasm subsequently return to basal levels after approximately 60 minutes (Guzowski et al., 

1999, 2001; Guzowski & Worley, 2001). In experiments utilizing this protocol, animals are 

typically placed in an environment they are permitted to explore to activate place cell firing, 

which in turn drives IEG transcription. After 5 minutes of context exploration, animals are placed 

back in their home cage. Twenty-five minutes later, animals are given another context exposure 

for 5 minutes and then immediately sacrificed. Given the distribution dynamics of IEG 

transcription, cells active during the second exploration will still contain mRNA (e.g. arc) in the 

nucleus at the time of sacrifice.  In contrast, cells that were active during the first context 

exploration will contain arc mRNA in the cytoplasm, while any cells that were active in both 

behavioural epochs will contain arc in both locations. Therefore, the sub-cellular localization of 
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arc visualized via fluorescent confocal microscopy allows for the neuronal populations activated 

by two distinct experiences to be discriminated and quantified (Guzowski & Worley, 2001).  

This technique has demonstrated that IEG expression is induced in the HF in a context-

dependent manner (Guzowski et al., 1999, 2001; Guzowski & Worley, 2001). When animals visit 

the same context twice, the vast majority of cells that express arc during the first behavioural 

epoch also express arc during the second exposure. In contrast, if two different locations are 

visited, the same cell is significantly less likely to express arc during both explorations, an 

observation that is consistent with unit recordings showing that each location will recruit a unique 

cell population to express place fields. This effect does not disappear or habituate following 

repeated context presentations when the experiences are sufficiently spaced over time  (Guzowski 

et al., 2006). That is, arc induction begins to diminish only after four exposures to the same 

context in rapid succession (i.e. each separated by 25 minutes). However, when the animal is 

presented with a new environment, even after nine exposures to the same context, arc 

transcription is rescued. The fact that arc induction is not easily disengaged when an animal is 

presented with familiar stimuli suggests that it does not distinguish between new learning and 

memory retrieval (Miyashita et al., 2008). This effect is also consistent with electrophysiology 

studies involving place cell remapping. Remapping describes a phenomenon where place cells 

can alter their firing patterns in response to environmental changes (Muller & Kubie, 1987). 

Global remapping occurs when the positon of place fields shift (e.g. cell fires when animal is in 

location A in context X, same cell does not fire when animal is in location A in context Y, but 

now fires when animal is in location B in context Y). It is specifically this property that 

emphasizes the multi-representational nature of the HF (Colgin et al., 2008). Using the catFISH 

protocol, remapping is observed when an animal visits two different contexts and quantified by 

visualizing two different neuronal ensembles recruited to activate arc in these contexts. Rate 

remapping refers to when places don’t necessarily alter their place fields but instead change their 

rate of firing. In this experiment, remapping refers to “global” rather than “rate” remapping. 
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Figure 10. Examples of remapping from two cells in CA1, as the context was changed from black to white, cell 1 
remapped by changing the location of its firing field, while cell 2 remapped by switching its field from off to 
on. Reprinted from Neural Plasticity 2011:182602, Jeffery KJ, Place cells, grid cells, attractors, and remapping, 
1-11., Copyright (2011), open access article distributed under the Creative Commons Attribution License.  
  

The way in which contextual representations change or remap globally is not well 

understood. We hypothesize that remapping may involve activation of the locus coeruleus (LC), a 

brain stem structure long implicated in novelty detection and the regulation of arousal, 

behavioural flexibility and attention (Aston-Jones et al., 1999). The LC sends a major 

norepinephrine (NE) projection to the HF (Jones et al., 1977; Loughlin et al., 1986a; Harley, 

1987, 2007a; Lee et al., 1993) and activity in LC neurons is associated with cognitive shifts in 

attention (Sara, 2009; Hagena et al., 2016). Furthermore, the LC is exquisitely sensitive to 

changes in both appetitive and aversive stimulus contingencies (Vankov et al., 1995; Berridge & 

Waterhouse, 2003; Harley, 2007a; Aston-Jones & Waterhouse, 2016), and exhibits remarkable 

plasticity as a function of these changes (Sara & Segal, 1991). Surprisingly, no studies that we are 

aware of have examined the properties of place cells in the HF while simultaneously 

manipulating LC neurons. We hypothesize that activation of the LC causes a disengagement from 

established representations and the recruitment of new representations towards an enhancement 

of processes that promote the incorporation of new information (Bouret & Sara, 2005; Harley, 

2007a).   

This hypothesis was inspired by several observations. In 1970, Seymour Kety proposed 

that biogenic amines could facilitate memory through the enhancement of neuronal activity 

during affectively important events (Kety, 1970; Harley, 1987). Twenty years later, in crustacean 
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neural networks, it was observed that network dynamics could undergo a spontaneous shift 

hypothesized to be the result of neurmodulatory influence (Hooper & Moulins, 1989). This 

phenomenon led Bouret & Sara (2005) to hypothesize that activation of the LC-NE system 

induces a “reset” in its target structures, by interrupting existing functional networks and 

facilitating the emergence of new ones. According to the network reset hypothesis, activation of 

the LC-NE system should promote adaptive responses during important events and support 

learning during changes in contingency (Bouret & Sara, 2005). In our own experiments, we have 

interpreted “resetting of a neural network” to include remapping of contextual representations in 

the HF. From a mechanistic standpoint, we hypothesize that this occurs via NE release (Walling 

& Harley, 2004; Walling et al., 2004) and increased excitability (Lacaille & Harley, 1985; Harley 

& Milway, 1986; Stanton & Sarvey, 1987; Harley et al., 1989; Klukowski & Harley, 1994; 

Kitchigina et al., 1997; Brown et al., 2005; Mather et al., 2016) in the HF.  

Evidence for this comes from work demonstrating that LC activation induces plasticity in 

the HF. LC neurons elicit tonic firing patterns (1-5Hz), and also respond with phasic, burst firing 

patterns (2 or 3 spikes, 10-15Hz, followed by a 200-500ms pause) (Aston-Jones & Bloom, 1981) 

which are associated with the detection of environmental stimuli. Activation of LC-NE by novel 

objects or contexts produces brief phasic firing followed by inhibition, which induces transient 

input along the perforant path (PP) from the entorhinal cortex (EC) to the dentate gyrus (DG) of 

the HF thereby enhancing DG synaptic transmission via disinhibition (Harley & Sara, 1992; 

Klukowski & Harley, 1994; Brown et al., 2005). Repeated electrical stimulation of the LC 

resulted in stable NE signals measured by voltammetry (Yavich et al., 2005) and elevated levels 

of NE can increase somatic and dendritic excitability in the DG (Lacaille & Harley, 1985; Stanton 

& Sarvey, 1987; Harley, 1998; Hagena et al., 2016) as well as the CA1 and CA3 regions of the 

HF (Mueller et al., 1981; Heginbotham & Dunwiddie, 1991; Dunwiddie et al., 1992; Jurgens et 

al., 2005b) effects which are all mediated by β-noradrenergic receptors BARs (Kitchigina et al., 

1997) and which can persist for 24 hours (Walling & Harley, 2004).  
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Intra-LC glutamate infusions cause phasic activation (Page & Abercrombie, 1999; 

Palamarchouk et al., 2000, 2002; Dunn & Swiergiel, 2008) producing the same firing pattern 

(brief burst ~200 msec followed by hyperpolarization lasting 200-500msec). Previous work has 

shown that these infusions also produce short and long-lasting potentiation of PP-evoked spike 

amplitude in the DG (Harley & Milway, 1986; Harley & Sara, 1992). The effects in the DG 

observed after LC glutamate resemble those produced by direct application of NE in vitro 

(Lacaille & Harley, 1985; Stanton & Sarvey, 1987) or in vivo (Neuman & Harley, 1983; Winson 

& Dahl, 1985) and depend specifically on BARs. Likewise, glutamatergic activation of the LC 

also potentiates long-term potentiation (LTP) in the DG (Harley & Sara, 1992; Klukowski & 

Harley, 1994) and CA3-CA1 synapses (Takeuchi et al., 2016) via activation of BARs (Walling & 

Harley, 2004). BAR antagonists timolol and propranolol infused locally (Harley and Evans, 

1988) or systemically (Harley & Milway, 1986; Harley et al., 1989; Babstock & Harley, 1992; 

Walling & Harley, 2004; Walling et al., 2004) have been shown to block this potentiation. Both 

phasic and tonic LC activity are equally capable of inducing downstream learning-facilitated 

plasticity effects such as LTP (Bliss et al., 1983; Neuman & Harley, 1983; Gray & Johnston, 

1987; Hopkins & Johnston, 1988; Walling et al., 2004, 2011; Walling & Harley, 2004; 

Almaguer-Melian et al., 2005; Lashgari et al., 2008; Lim et al., 2010; Reid & Harley, 2010; 

Hagena et al., 2016), long-term depression (LTD) (Lemon et al., 2009; Lemon & Manahan-

Vaughan, 2012; Hansen & Manahan-Vaughan, 2015a, 2015b) and NE release in the DG (Dahl & 

Winson, 1985; Harley & Milway, 1986; Harley et al., 1989; Babstock & Harley, 1992; Frizzell & 

Harley, 1994; Klukowski & Harley, 1994; Walling et al., 2004; Lemon et al., 2009). Furthermore, 

other pharmacological agents such as orexin A (Walling et al., 2004), the cholinergic agonist 

carbamyl-β-methyl choline chloride (bethanechol) (Berridge & Foote, 1991; Berridge & 

Abercrombie, 1999), and corticotropin releasing factor (CRF) (Palamarchouk et al., 2000, 2002; 

Curtis et al., 1997; Page & Abercrombie, 1999) mimic tonic activation of the LC lasting up to 30 

minutes, and contribute to increased levels of NE in the HF (Figures 11-13). For instance, intra-
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LC infusions of orexin A resulted in a ~200% increase in NE in the HF (within 20 minutes 

following LC activation) measured by microdialysis (Walling et al., 2004).  

 

Figure 11. Effects of CRF administered by microinfusion into the LC on LC discharge rate. LC discharge rate 
began to increase immediately after the termination of the infusion, peaked at 200 sec after infusion, and 
remained elevated for 30 min. Reprinted from The Journal of Pharmacology and Experimental Therapeutics, 
281, Curtis AL, Lechner SM, Pavcovich LA, & Valentino RJ, Activation of the locus coeruleus noradrenergic 
system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical 
norepinephrine levels and cortical electroencephalographic activity, 163-172, Copyright (1997), with permission 
from Aspet. 
 

  

Figure 12. Summary of the time parameters of the hippocampal NE responses to the LC infusion of CRF and 
glutamate. Reprinted from Brain Research Bulletin 51(4), Palamarchouk VS, Zhang J, Zhou G, Swiergiel AH, 
& Dunn AJ, Hippocampal norepinephrine-like voltammetretic responses following infusion of corticotropic-
releasing-factor into the locus coeruleus, 319-326, Copyright (2000), with permission from Elsevier.  
 

 

Figure 13. Hippocampal noradrenergic chronoamperometric response following infusions of CRF and 
glutamate in anesthetized and un-anesthetized rats. Reprinted from Brain Research 950(1-2), Palamarchouk 
VS, Swiergiel AH, & Dunn AJ, Hippocampal noradrenergic responses to CRF injected into the locus coeruleus 
of unanesthetized rats, 31-38, Copyright (2002), with permission from Elsevier.  

Fig. 1. Effects of CRF administered by microinfusion into the LC vs. i.c.v. on LC discharge rate. A, Recording of mean arterial blood pressure (top) and
LC discharge rate (bottom) before and after microinfusion of CRF (30 ng in 30 nl) into the LC. The time of the infusion is indicated by the bar. The abscissa
indicates time (sec). LC discharge rate began to increase immediately after the termination of the infusion, peaked at 200 sec after infusion, and remained
elevated for 30 min. Blood pressure remained unaltered throughout and after the microinfusion. B, CRF dose-response curves. The abscissa indicates
the dose of CRF (ng, log scale). The ordinate indicates the maximum increase produced by a dose of CRF expressed as a percentage of the mean rate
determined over three 3-min intervals before CRF administration. Open circles represent the dose-response curve generated by intracoerulear infusion
of CRF (n 5 7–16 cells). Closed circles represent the dose-response curve generated by i.c.v. administration using the single-dose method (n 5 4–6
cells). The open diamond on the ordinate indicates the effect produced by local infusion of ACSF (100 nl; n 5 4). Closed triangles represent the mean
effect of CRF (3 or 10 mg, i.c.v.; n 5 11 and n 5 5, respectively) in rats pretreated with DPheCRF12–41 (10 ng) into the LC. Vertical lines represent 6 1
S.E.M. C, Time course of LC activation by i.c.v. administration of 3 mg (circles) or 10 mg (triangles) CRF in rats pretreated with DPheCRF12–41 (10 ng)
microinfused into the LC (open symbols) vs. rats that were not pretreated (closed symbols). The abscissa indicates time in min. The ordinate indicates
LC discharge rate expressed as a percentage of the mean rate determined over three 3-min intervals before injection. Each point is the mean of 4 (solid
triangles), 5 (open triangles), 6 (solid circles) and 11 (open circles) rats. Vertical lines indicate 6 1 S.E.M.
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unlike those observed after infusion of CRF directly into LC. A
fourth rat that had a cannula located in the ventral spinocerebellar
tract just above the lateral parabrachial nucleus exhibited a small
increase much later than those observed after LC infusions. In a
fifth rat, infusion of CRF into the lateral parabrachial nucleus
produced a response similar to those observed after LC infusions.
Because this site was relatively close to the LC, it is possible that
CRF reached the LC, or that some afferents to the LC were
affected.

DISCUSSION
The electrochemical signal recorded from the hippocampus in

vivo could have been generated by oxidation of a number of

readily oxidized chemical compounds other than NE, such as
dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hy-
droxyindoleacetic acid (5-HIAA) or ascorbic acid. Several lines of
evidence suggest that in the present experiments the major con-
tributor to the voltammetric signal was NE. (1) There is little DA
in the hippocampus, and the electrodes were placed in the hilus of
the dentate gyrus, a region where the noradrenergic innervation is
particularly dense [18]. (2) The working electrodes were coated
with a thin layer of Nafion, which enhances the selectivity of the
electrode for DA and NE and minimizes signals from anions such
as ascorbic acid, uric acid, and catabolites like DOPAC and
5-HIAA [14]. (3) We observed small or no responses to LC
infusion of CRF in DSP-4-treated rats. Because DSP-4 depletes
NE by more than 75% in the hippocampus, the results suggest the
measured current results from oxidation of catecholamines. Thus it
seems most likely that the responses observed were caused by
release of NE in the hippocampus. (4) In an earlier in vivo
microdialysis study, we observed that CRF administration into the
LC was followed by increased extracellular concentrations of NE
in the medial prefrontal cortex [25]. The time courses of the
microdialysis and voltammetry responses were comparable, bear-
ing in mind the low temporal resolution of the microdialysis study.
(5) When the rats were pretreated with DMI, the voltammetric
response to glutamate infusion was augmented. DMI is selective
for NE over DA transporters [15].
There is general agreement that i.c.v. administration of CRF

increases the firing rate of LC-NE neurons [3,27,30]. There is also
universal agreement that i.c.v. CRF increases NE release as deter-
mined by measurement of catabolites [8,10,20], as well as in vivo
microdialysis studies [11,16,17,24], and an in vivo voltammetry
study [32]. There is evidence that increases in the firing rate of
LC-NE neurons are associated with increased NE release in the
cortex [2,6,12] and this is reflected in the agreement between the
electrophysiological and neurochemical data. The controversy sur-
rounds the effect of local injections of CRF into the LC. In the
pioneering study of Valentino et al. [30], it was reported that
responses of LC-NE neurons to the direct application of CRF were
quite variable. Nevertheless, it was speculated that the effect of

FIG. 3. Summary of the time parameters of the hippocampal norepineph-
rine (NE) responses to the locus coeruleus (LC) infusion of corticotropin-
releasing factor (CRF) and glutamate. Based on the data presented in Figs.
1 and 2. **Significantly different from glutamate-infused rats, p ! 0.001.

FIG. 4. The effect of infusion of artificial cerebrospinal fluid (aCSF), corticotropin-releasing factor (CRF) and
glutamate (Glu) into locus coeruleus (LC) on the norepinephrine (NE)-like oxidation current recorded in
hippocampus. A voltammogram from a single rat. The time (in seconds) following the initial aCSF infusion
is indicated on the abscissa. Infusions into the LC are indicated by the arrows (aCSF, 100 nl; CRF, 100 ng
in 100 nl; glutamate, 100 nl 0.1 M); the horizontal bars indicate the durations of the infusions. Desmethyli-
mipramine (DMI) was injected 30 min before glutamate.
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Fig. 4. Comparison of the responses to CRF and glutamate in anesthetized and unanesthetized rats. The data have been normalized such that the ordinate
(C /C ) is the mean of the change in concentration at each time (C) divided by the maximal postinfusion change in concentration (C ) for each rat. Themax max

upper panels show the responses to CRF and the lower panels to Glu. The left-hand panels are the data from anesthetized rats (20 CRF; 6 Glu). The data
from CRF-injected rats include the data from 13 rats previously reported [16] combined with 7 additional rats. The right-hand panels are derived from the
data presented in Fig. 2 (8 CRF; 6 Glu).

and 12.4, all P,0.01). However, in anesthetized animals,
the time of the peak responses to glutamate was earlier
than in unanesthetized rats (F 59.5, P,0.01).1,11

4 . Discussion

Several different kinds of studies have indicated that
intracerebral administration of CRF can activate LC-NE
neurons, but the mechanism of this effect is not yet clear.
In an important early study, Valentino et al. reported
increased firing of LC-NE neurons following i.c.v. in-
jection of CRF into anesthetized rats [21]. They speculated
that the effect of CRF was exerted directly on LC-NE
neurons, but in that study, direct injections into the LC did
not consistently increase the firing rate of LC-NE neurons.
Subsequent electrophysiological studies have produced
differing results. Borsody and Weiss [3] obtained evidence

Fig. 5. Summary of the mean times (6S.E.M.) of the initial and peak using ganglionic blockers and peripherally acting b-adren-hippocampal chronoamperometric responses to the LC administration of
ergic blockers that the activation by i.c.v. CRF of LC-NECRF or L-glutamate in unanesthetized and anesthetized rats; based on the

data shown in Figs. 2 and 4. neurons occurred via activation of the sympathetic nervous
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Viewing the LC-NE system as a potential mechanism for resetting cognitive systems 

does not disentangle phasic from tonic activation, and from the perspective of plasticity 

promotion, Bouret & Sara (2005) believed both phasic and tonic LC activation could reset a 

neural network. In each sub-region of the HF, neuronal ensembles are modified by novel input 

and environmental change. Our central hypothesis is that the both phasic and tonic activation of 

the LC-NE system may underlie the mechanism by which remapping occurs. We believe that 

both phasic and tonic activation of the NE pathway from the LC to the DG can act as a 

modulatory switch recruiting new neurons to create new contextual representations when 

necessary and likely updating existing representations in the presence of new information (e.g. 

environmental imperatives, stimulus-contingency changes, reversal learning) promoting learning 

when behavioural changes are necessary. We propose that the LC-NE system underlies these 

modifications in such a way that induces plasticity and supports new successful behaviours. The 

compartmental expression of immediate early genes such as arc and zif268 allowed us to test this 

hypothesis by mapping the activity history of individual HF neurons as animals engaged in spatial 

processing following perturbation of the LC-NE system.  

2.2 Materials & Method 

2.2.1 Subjects & Handling 

The current experiments included a total of 108 rats separated into two groups. The first 

group, used for Experiment 1, consisted of 43 male Sprague Dawley (SD) rats. The second group 

of rats consisted of 65 male Long-Evans (LE) rats and were used for Experiment 2. Both groups 

of rats were approximately two months of age at the start of the experiments weighing in the 

range of 250-300g. SD rats were obtained from the Vivarium Breeding Facility (St. John’s, NL) 

and the LE rats were obtained from Charles River Laboratories (Montreal, QC). All rats were 

socially housed (2 rats per cage) before surgery and individually housed after surgery. They were 

kept in a colony room controlled for humidity and temperature, on a reversed 12:12 hour 
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light/dark cycle with (lights ON 7:00pm). Animals were given ad libitum access to food and 

water and were weighed twice a week. Each rat was handled for 15 minutes a day for 6 days in 

the colony room under a red light. SD rats were handled for 6 days and then underwent surgery 

and allowed to recover relatively undisturbed for 4 days. LE rats were handled for 2 days, then 

underwent surgery, and were handled for an additional 4 days during recovery. All procedures 

were approved by the Memorial University Institutional Animal Care Committee and carried out 

in accordance with the guideline provided by the Canadian Council on Animal Care.   

2.2.2 Surgical Procedure 

Rats underwent implantation of a unilateral (Experiment 1) or bilateral (Experiment 2) 

26-gauge guide cannula (Plastics One, Roanoke, VA). For experiment 1, SD rats were 

anesthetized with a chloral hydrate solution (1ml/100g, PCCA, intraperitoneal). The chloral 

hydrate solution was prepared at a concentration 40mg/ml in sterile saline (0.9% NaCl). 

Following administration, rats were undisturbed until unresponsive to a reflexive tail pinch. For 

experiment 2, LE rats were deeply anesthetized with 5% isoflurane and 70% oxygen (induction) 

and maintained at a level of 2-3% isoflurane for the duration of the surgery. Once anesthetized, 

the rat’s head was shaved and a sub-cutaneous (s.c.) injection of meloxicam (0.2mg/kg, Sigma-

Adrich) was administered at the base of the neck for general analgesia. Meloxicam was prepared 

at a concentration of 0.25 mg/ml in sterile water. The rat was then anchored in a stereotaxic frame 

with ear bars to ensure a flat skull surface and prepped for aseptic surgery. Cannulae and 

obdurators were autoclaved prior to implantation. A midline incision was made on the scalp from 

anterior to bregma to the base of the skull; the periosteum membrane was cleared and then skull 

flat position was confirmed. Each rat was implanted with cannulae (7.7mm in length, Plastics 

One, Roanoke, VA) aimed at the LC (AP -11.8mm, ML +/-1.3mm, DV-5.5 from dura, relative to 

Bregma) angled 20 degrees from the vertical plane, and anchored by four jeweler’s screws and 

dental acrylic cement mixed with gentamycin (Cellgro, Manassas, VA). The angle was important 

to avoid a sinus, which when hit can cause excessive bleeding. At the end of the surgery, 
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obdurators that extended 1mm below the pedestal were screwed into the cannulae to ensure 

patency. Animals that received unilateral implants were implanted only on the left side. Rats were 

allowed 4 days for recovery undisturbed except for weighing and to administer 0.1mg/kg of 

Meloxicam (s.c.) each morning at the base of the neck as an analgesic.  

2.2.3 Experimental Procedure  

            2.2.3.1 Environmental Exploration  

After a 4-day post-surgical rest period, each rat was exposed to environment A - a 63cm 

X 63cm X 35cm box surrounded by black curtains in a dimly lit room (Figure 14). The box 

featured black walls with a white floor divided into 9 equal sections by small black cross marks. 

Each rat was placed in the center section of the box for a 5-minute environmental exposure. At 

15-second intervals, the rats were picked up and placed randomly in different sections (facing 

different directions) of the box to ensure that all sections were sampled equally. This was done to 

maximize the number and consistency of place cells activated driving arc expression (Guzowski 

et al., 1999). Following the first 5-minute exposure, the rats were transported back to the colony 

room for a 20-minute rest period. The rats were then transported back to either environment A if 

they were in the A/A (familiar) groups or environment B if they were in the A/B groups (novel). 

Environment B was a 63cm X 63cm X 35cm box placed within a bright room with no curtains. 

The box featured black walls with a black floor divided into 9 equal sections by small white cross 

marks. On each wall of the box was an 8”x10” sheet of vertical black and white bars (Figure 14). 

The second context exposure also lasted for 5 minutes with random placements every 15 seconds. 

Immediately after exposure, rats were briefly anesthetized with isoflurane, decapitated, and brains 

were quickly extracted (< 2min). Brains were blocked prior to histology such that the brainstem 

was separated from the forebrain. Both sections were flash frozen in isopentane and placed at -

80°C to preserve the integrity of IEG mRNA. Forebrain blocks were then packaged in dry ice and 
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shipped to Wilfrid Laurier University for further processing. Brainstem blocks remained at 

Memorial University for histological verification of LC drug delivery.  

 
Figure 14. Environmental exploration: Animals were placed in context A for 5 minutes and then back in the 
home cage for a 20-minute rest period after which they were either placed back in the familiar context A (A/A 
condition), or in the novel context B (A/B condition) for 5 minutes. Contexts differed in terms of location and 
discrete intra- and extra-box cues. IEG expression in the cytoplasm was matched to Epoch 1 and in the nucleus 
to Epoch 2.  
 
2.2.4 Cage Control and MECS Animals  

To serve as a negative control, cage control (CC) SD rats remained in their home cages in 

the colony room until sacrifice. They received the normal daily handling prior to the sacrifice 

day. For the LE rats a handling CC condition was employed. On the test day, LE rats were picked 

up from their home cages under red light in the colony room every 15 seconds a for 5-minute 

period and this was repeated 20 minutes later to match the experimental open field groups. 

Immediately after the second 5-minute home cage handling event, decapitation and brain 

extraction was performed as it was in the other groups. A group of rats in both experiment 1 

(n=5) and experiment 2 (n=8) received maximal electroconvulsive shock (Cole et al., 1990); data 

for these rats is not reported as their purpose was to serve as a positive control for IEG signalling 

during in situ hybridization and confocal imaging.  
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2.2.5 Infusions  

Immediately prior to the second context exposure animals were either unilaterally 

(Experiment 1) or bilaterally (Experiment 2) infused with a specific drug (see groups below). The 

infusions took place just outside the testing room where the rat was placed in a small bucket on a 

transport cart. Obdurators were removed and the infusion cannula(e) (33 gauge, projecting 1mm 

below the pedestal; Plastics One, Roanoke, VA) connected via PE-50 tubing to two 1-µL gastight 

Hamilton syringes mounted onto a microfluidic infusion pump (New Era Pump Systems Inc., 

Farmingdale, NY, Model: NE-1002X) was inserted into the guide cannula(e). The thin tubing was 

filled with sterile water and a 0.2 µL air bubble was introduced to the tubing and then 

subsequently the drug solution was drawn up to the maximum capacity of the syringe. The 

desired volume of drug was infused over a 30 second period. For example, if 0.5µL of a drug was 

infused, the infusion rate was set to 1µL/min. The infusion cannula was left in place for 1 minute 

post-infusion to ensure that the liquid had diffused from the injection site. Obdurators were then 

replaced and animals were placed in the second environment.  

2.2.6 Drug Treatments and Groups  

Experiment 1. Animals were assigned to either A/A or A/B context exposure conditions 

or remained in their home cages (CC). Rats in both A/A and A/B groups either received an 

infusion of L-glutamate (0.2 µL at a concentration of 500 mM) in the LC or they received no 

infusion. Therefore, there were six groups: GLU-A/A (n=9), NO-GLU-A/A (n=6), GLU-A/B 

(n=8), NO-GLU-A/B (n=6), and CC (n=9) and MECS (n=5). All drugs were mixed to the desired 

concentration with 1% methylene blue to allow for localization of the drug delivery event 

histologically.  

Experiment 2. Given the preliminary data that was obtained from experiment 1, we 

decided to run a second experiment with bilateral infusions to see if our effect would be greater if 

infusions were performed on both hemispheres. In this experiment, we also decided to include 
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more control groups and explore the effects of additional pharmacological treatments. There were 

10 groups. All groups were assigned to the A/A context exposure condition except one group, 

which was assigned to the A/B condition. The 1st group GLU-AA (n=6) received bilateral 

infusions of L-glutamate in the LC. We reduced the dose to 0.2µL of a 200mM solution of 

glutamate from the first experiment. The 2nd group underwent bilateral implantation of guide 

cannulae aimed at the LC but did not receive any drug infusions during testing; this was our 

surgery control group NO-DRUG-A/A (n=6). The 3rd group was a vehicle control group that was 

given an infusion of artificial cerebral spinal fluid aCSF-AA (n=6) since aCSF served as the 

solvent for making the other drug solutions. The 4th group was an additional cage-control group 

that received handling in the home cage similar to the handling that occurred during testing (see 

above) CCH (n=6). The 5th and 6th groups were also control groups that received infusions of 

clonidine (0.2µL of a 3.75mM solution). Since NE exerts feedback inhibition of its own release 

through an interaction with presynaptic α-2 adrenergic inhibitory autoreceptors in the LC (Taylor 

et al., 1988; Washburn & Moises, 1989) clonidine, which is an α-2 adrenoceptor agonist, serves 

to inhibit LC neurotransmission. Clonidine infusions were given to animals in both exploration 

conditions: CLON-AB (n=9) to assess whether we could block remapping and CLON-AA (n=6) 

as a control. Finally, we decided to include three groups that received infusions targeted at 

increasing tonic versus phasic LC discharge. While glutamate simulates phasic activation of the 

LC, orexin A, bethanechol, and CRF increase tonic LC activity (Valentino & Foote, 1988; 

Berridge & Foote, 1991; Berridge & Abercrombie, 1999; Page & Abercrombie, 1999; 

Palamarchouk et al., 2000, 2002; Walling et al., 2004; Jedema & Gracce, 2004; Reyes et al., 

2008; Snyder et al., 2012). The 7th group (ORX-AA, n=6) received infusions of orexin A (Sigma 

Alrdich), a highly excitatory neuropeptide given at a dose of 0.2µL of a 100nM solution. The 8th 

group (BETH-AA, n=6) received infusions of bethanechol (Sigma Aldrich), a drug that 

selectively stimulates muscarinic receptors at a dose of 0.2µL of a 20mM solution. Finally, the 9th 

group (CRF-AA, n=6) received infusions of CRF (Sigma Aldrich), a peptide involved in the 
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mammalian stress response at a dose of 0.3µL of a 100nM. The 10th group consisted of MECS 

animals (n=8). Artificial cerebrospinal fluid (aCSF) was mixed as a solvent (147mM NaCl, 3mM 

KCl, 1mM MgCl2, and 1.3mM CaCl2) in sterile water. All other drugs were dissolved in a 1% 

methylene blue solution made with aCSF to produce a dark blue colour. This was necessary for 

later verification of cannula placements histologically.  

2.2.7 Histological Procedures  

Cannula placements and drug diffusion sites were confirmed histologically at the end of 

the experiment (Figure 16). For the LC, sagittal sections (30µm) were cut on a using a cryostat 

(Leica, CM3050) and mounted to gelatin-subbed slides. Two sets of slides were taken in 

alternation, one to localize the position of the dye and visualize the total area where the drug 

diffused, and the other to Nissl stain using cresyl violet to determine the location of the LC and 

verify cannula placements. It was necessary for the dye and the LC to overlap for the animal to be 

included in the study. If the dye and LC were further than 300µm apart from each other it was 

considered a miss and the animal was removed from the study. For the hippocampus region, 

using Tissue-Tek OCT compound (Fisher Scientific), blocks were created containing one 

hemisphere of 8 brains, including negative and positive controls on each block. Coronal sections 

(20um) were cut using a cryostat (Leica, CM3050), thaw-mounted onto Superfrost-Plus slides 

(VWR) coated with 3-triethoxysilylpropylamine (TESPA), dried, and stored at -80°C until further 

processing.   

 

In mammals, neuromodulatory systems have been

associated with cognition through diverse effects on

complex processes, including attention, motivation,

learning and memory. A re-evaluation of available data

on the LC noradrenergic system in primates and rats

has led us to propose a simplified, overarching theory of

the functional role of this particular neuromodulatory

system.

The LC noradrenergic systemThe first ‘evidence for the existence of monoamine

containing neurons in the central nervous system’ came

from pioneering studies of Dahlstrom and Fuxe [16,17],

and a first description of the cortical distribution of nor-

adrenergic terminals was provided soon after by the

same group [18]. This was followed by a wave of neuro-

anatomical studies using various methods, culminating in

a definitive autoradiographic study by Jones and Moore

[19] describing the extensive projections from a tiny

pontine nucleus to the brainstem, cerebellum, diencephalon

and neocortex (Figure 1). This noradrenergic projection

from the LC to virtually all brain regions (with the

exception of the basal ganglia) incited intense speculation

concerning its functional role in perception, cognition

and memory formation. Taking into consideration this

widespread intrusion into the forebrain and the post-

synaptic actions known at that time, Kety [3] attributed

a dual role to noradrenergic activation associated with

an aroused state. It ‘affects synapses throughout the

central nervous system, suppressing most, but permit-

ting or even accentuating activity in those that are

transmitting novel or significant stimuli’ [3]. These

speculations, clearly suggesting a role in information

selection and processing, subsequently elicited much

experimental interest.A substantial literature was generated, mainly based

on in vivo electrophysiological recording of the effects of

noradrenaline in target regions. Many studies have shown

that noradrenaline modulates the gain of evoked activity,

especially in sensory areas. This has been described in

terms of either improved selectivity or increased magni-

tude of neuronal responses to sensory stimulation [20].

Several in vitro studies point to enhancement of extra-

cortical, relative to intracortical, inputs to cortical neurons

[21,22]. In addition to these data emphasizing its short-

term influence, many studies have shown that noradrena-

line promotes long-term synaptic plasticity [23]. The

functional significance of these multiple neuronal effects

for cognitive functions, such as perception, attention,

learning and memory, have been the focus of much

speculation [5,20,21].Studies of electrophysiological activity of LC neurons

in cats, rats and primates have also contributed to a

theory of the functional role of the LC noradrenergic

system. LC activity varies first and foremost with the

state of vigilance, as first reported in 1969 by Jouvet

[24]. It was later shown in the rat that the rate of firing

of LC units varies according to the level of arousal and

attentiveness: LC neurons show low activity during low

vigilance behavioral states such as grooming and eating,

but respond phasically to stimuli in all sensory

modalities when they are novel and salient [25–27].

Studies in primates showing that neurons respond

selectively to target cues in a vigilance task led their

authors to suggest that the LC is involved in maintain-

ing ongoing focused attention [4,28].
An important feature of LC responses is their rapid

habituation in the absence of reinforcement [6,29,30],

sometimes observed within a few trials. However, when

stimulus-reinforcement contingencies change abruptly,

such as in pairing a stimulus with reinforcement

(conditioning) or withholding of expected reinforcement

(extinction), or when the predictive value of positive and

negative stimuli is reversed, habituated LC neurons begin

anew to respond, signaling the change. This new response

occurs rapidly, many trials before overt behavioral

adaptation can be measured, both in rats [6,31] and

monkeys [32]. This has led to speculation that the released

noradrenaline somehow permits or facilitates the subse-

quent behavioral adaptation [6,7,29,32]. Further support

for the notion that this LC signal is important for learning

and adapting to new contingencies comes from experi-

ments showing that behavioral adaptation to extradimen-

sional shift (a change in modality of the discriminative
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Figure 1. Anatomical interactions between the locus coeruleus (LC) and other brain structures. The LC sends projections to virtually all forebrain structures including the

basolateral nucleus of the amygdala (BLA), the thalamus (Thal), the olfactory system (olfactory bulb, OB and piriform cortex, PCx), the neocortex (Cx), including the frontal

cortex (FCx), and the hippocampus (Hipp). Compared with this highly divergent projection pattern, LC neurons receive projections from a relatively limited set of brain

regions. In addition to excitatory inputs from the paragigantocellularis (PGi) brainstemnucleus, LC neurons receive projections from the frontal cortex and the central nucleus

of the amygdala (CeA).
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Figure 15. Schematic demonstrating cannula placement in the LC (blue circle) and the noradrenergic 
projections to downstream regions in the brain including the hippocampus (blue). Reprinted from Trends in 
Neurosciences 28(11), Bouret S & Sara SJ, Network reset: A simplified overarching theory of locus coeruleus 
noradrenaline function, 574-582., Copyright (2005), with permission from Elsevier.  
 

 

Figure 16. Cannula placements and drug diffusion sites were confirmed histologically A) 1% Methylene blue dye 
was injected into the LC and visualized following sectioning (sagittal sections). B) Sections were mounted to 
gelatin-subbed slides. Two sets of slides were taken in alternation, one to localize the position of the dye and 
visualize the total area (in µm) where the drug diffused, and the other to Nissl stain using cresyl violet to 
determine the location of the LC and verify cannula placements. C-G) It was necessary for the dye and the LC 
to overlap for the animal to be included in the study If the dye and LC were further than 300µm apart from 
each other it was considered a miss and the animal was removed from the study. 

 
2.2.8 Animals Removed  

Experiment 1. Four animals were categorized as misses (two from GLU-AA and two 

from GLU-AB) and removed as a result. One of the GLU-AB animals was also removed due to 

illness. Experiment 2. Two animals from experiment 2 in the CLON-AB group were also 

removed as they were infused with the wrong concentration of clonidine. Due to a freezer 

malfunction the tissue from 1-3 animals was destroyed in each of the following groups BETH-

AA, ORX-AA, CRF-AA, CLON-AA, aCSF-AA, NO-DRUG-AA, and CCH. The final N-values 

for all groups in all brain regions are depicted in Table 1.  
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Table 1.  

 

Experiment 1 & 2: Number of animals in all groups across hippocampal sub-region 

Drug Treatment Context 
Exposure Group 

n-
value 
(DG) 

n-value (CA1/CA3)  
Group Total 

Glutamate 
(Bilateral) 

 
A/A 

 
FPB 

 
6 
 

6 6 

Glutamate 
(Unilateral) 

A/A 
 

FPU 
 7 7 7 

aCSF 
 

A/A 
 

F 5 CA1:4; CA3:3  

NO-DRUG 
(Surgery) 

 
A/A 

 
F 5 4 

 
21 (DG) 

 
16 (CA1/CA3) 

Clonidine 

 
 

A/A 
 

F 5 3  

NO-DRUG 
(No Surgery) 

 
A/A 

 
F 6 6  

Bethanechol 
 

A/A 
 

FT 5 3  

Orexin A 
 

A/A 
 

FT 5 3 
15 (DG) 

 
9 (CA1/CA3) 

CRF 
 

A/A 
 

FT 5 3  

Clonidine A/B NI 7 7 7 

NO-DRUG 
(No Surgery) A/B N 6 6 

 
 

11 
Glutamate 
(Unilateral) A/B N 5 5  

NO DRUG 
(Cage Control - 

Handled) 
HC HF 5 5 5 

NO DRUG 
(Cage Control - 
Undisturbed) 

HC CC 9 9 9 
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2.2.9 Fluorescence in situ Hybridization 

  Fluorescence in situ hybridization was performed as previously described (Guzowski et 

al., 1999). Briefly, full length arc riboprobes were synthesized using a commercial transcription 

kit (MaxiScript; Ambion) and RNA labeling mixes (Roche Molecular Diagnostics), verified by 

electrophoresis. Slides were thawed to -20°C overnight and then to room temperature 1hr before 

processing. They were fixed in 4% paraformaldehyde (5 min), washed in 2x saline-sodium citrate 

(SSC) (2 min), and treated with 0.5% acetic anhydride (10 min). Next, they were dipped in 

deionized water, placed in a methanol / acetone (1:1) solution (5 min), and in 2x SSC (5 min). 

Slides were then incubated with pre-hybridization buffer (Sigma-Aldrich) for 1hr at room 

temperature and then overnight (16-18hrs) at 56°C with riboprobe mixed in hybridization buffer 

(1:50). The following day, the tissue was treated with a series of 2x SSC washes and then in an 

RNase A / 2x SSC solution (10 mg/ml) at 37°C for 30 min. This was followed by a series of 0.5x 

SSC washes including 30 min at 55°C. Endogenous peroxidases were then quenched with a 2% 

H2O2 (in 1xSSC) solution. The tissue was blocked with TSA blocking buffer (Perkin Elmer) 

containing normal sheep serum (0.5%), and incubated with anti-digoxigenin- horseradish 

peroxidase (HRP) antibody (Roche Molecular Diagnostics) in TSA blocking buffer (1:400) for 2 

hours at room temperature. Slides were washed in 0.1M Tris-buffered saline with 0.05% Tween 

20 and HRP antibody conjugates were detected using CY3 (TSA kit, Perkin Elmer). The final 

step involved counterstaining the nuclei with DAPI (Sigma-Adrich), sealing with buffered 

glycerol (with anti-fade) and cover slipping. Slides were then placed in the fridge for storage.  

2.2.10 Image Acquisition and Analysis  

Images were collected from coronal sections of the hippocampus (range: AP: -2.5 to -4.2) 

relative to Bregma, (Paxinos & Watson, 2013), including the suprapyramidal blade of the dentate 

gyrus (DGS), the CA1 medial (CA1distal) and lateral (CA1proximal) regions, and the CA3a, 

CA3b, and CA3c sub regions. (Figures 17A-B), using an Olympus FV1000 confocal microscope 
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at 40x magnification. We decided not to look at the infrapyramidal blade of the DG since several 

studies (e.g., Chawla et al., 2005; Marrone et al., 2012; Gheidi et al., 2013) have previously 

demonstrated sparse, but environmentally-specific, IEG expression following behavioural 

experience is largely restricted to the suprapyramidal blade. For experiment 1, for each animal, 

two z-stacks (~1.0um optical thickness, step size 0.8um) were collected from 2-3 different slides 

yielding 4-6 total stacks per region, and images were collected only from the left hemisphere. For 

experiment 2, one z-stack (~1.0um optical thickness, step size 0.8um) was collected from each 

hemisphere on 2-3 different slides yielding 4-6 total stacks per region. Data from each 

hemisphere was then pooled. For each slide, acquisition parameters were kept constant. The 

median 20% of neurons in each stack was quantified using MetaMorph software (Molecular 

Devices, Sunnyvale, CA). Neurons and glial cells were differentiated by size and patterns of 

chromatin staining, and neurons in the CA1 and CA3 were classified as arc-negative (neg), Arc-

positive within the nucleus (foci), arc-positive within the cytoplasm (cyto), and arc-positive 

within both the nucleus and the cytoplasm (double) (Figure 18). For the DG, zif268 was 

quantified instead of arc because arc undergoes sustained transcription in the DG following 

context exposure (Ramirez-Amaya et al., 2013; Maple et al., 2017). Within each animal, an 

average of 577.44 (SD = 122.72) granule cells were counted in the DG, and 554.19 (SD = 

110.46) / 1299.95 (SD = 341.46) pyramidal cells in the CA1/CA3 respectively. Cells found to be 

arc- or zif268-positive in the cytoplasm were engaged in transcription 30-45 min prior to 

decapitation (first behavioural epoch) while cells found to be arc- or zif268-positive in the 

nucleus were engaged in arc transcription 5 min before (second behavioural epoch).  

 
A 
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B

 
Figure 17. A) Coronal slice of a rat brain showing the location of the hippocampus. B) Close-up of the 
hippocampus demonstrating anatomically how we labeled and counted cells following imaging.  
 

 

Figure 18. Representative image (scale bar 25 m) of the different IEG localization labels. Cell nuclei are 
counterstained with DAPI (blue) providing a histological marker of those neurons that were engaged in 
transcription during Epoch 1 [containing cytoplasmic signal (C, green ring)], Epoch 2 [containing intranuclear 
foci (F, green dot in the center)], or both Epochs (D, green ring plus dots in the center). Granule cells and glial 
cells (G, densely-coloured cell) were differentiated and cells with no IEG expression (N) were also counted.  
 
2.2.11 Statistical Analyses  

Statistical analyses were conducted using SigmaPlotTM version 11.0 (Systat Software, 

San Jose, CA). They consisted of two-way repeated measures (RM) analysis of variance 

(ANOVA), except for total IEG expression which was examined with the use of one-way 

ANOVAs across groups. For all analyses, alpha was set at 0.05, and post-hoc tests (Tukey’s 

HSD) were conducted when necessary. Each brain region was analyzed separately. Experiment 

1&2: Mixed model two-way RM ANOVAs were conducted across groups (between-subject 

factor: GROUP) on the number of cells that were labeled and counted as IEG-positive solely 

within (FOCI), or outside (CYTO) the nucleus, as well as within both the nucleus and the 

c 

Proximal 
(lateral) 

b 
a 

Distal 
(medial) 

Suprapyramidal 

Infrapyramidal 



 
     

 

67 

cytoplasm (DOUBLES) – (within-subject factor: IEG-LOCATION) or on total IEG expression 

within each behavioural epoch (within-subject factor: EPOCH). For experiment 2, several groups 

were combined following two-way RM ANOVAs to determine that these groups were not 

different from each other, followed by additional two-way RM ANOVAs on the resulting groups.  

2.3 Results 

2.3.1 Experiment 1: Unilateral Infusions 

            2.3.1.1 Total IEG Expression & Context Exploration  

Consistent with previous reports (Guzowski et al., 1999; Marrone et al., 2011), we 

observed significantly higher levels of IEG expression in CA1 (M=53.9%, SD=21.58%) 

compared to CA3 (M=26.82%, SD=11.73%), and very low expression in DGS (M=5.79%, 

SD=2.32%; see Figure 19A-F). IEG expression was driven by context exploration (Figure 19A-F) 

and was not influenced by the presence of a novelty given that comparable numbers of cells 

expressed IEGs across behavioural epochs in both A/A and A/B groups (Figure 20A-F; Table 1).  

 

Figure 19. A-F) Total IEG expression across groups for each brain region was driven by context exploration. 
Letters (a,b,c) denote significant differences (p < 0.05) between groups.  
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Figure 20. A-F) Total IEG expression was similar across both behavioural epochs (first and second context 
exposures) in each brain region and higher during context exploration compared to spending the same amount 
of time undisturbed in the home cage. E1 (Epoch 1): proportion of cells labeled as IEG-positive solely within the 
cytoplasm (CYTO) plus the cells labeled within both the nucleus and the cytoplasm (DOUBLES); E2 (Epoch 2): 
proportion of cells labeled as IEG-positive solely within the nucleus (FOCI) plus the cells labeled within both the 
nucleus and the cytoplasm (DOUBLES). Letters (a,b,c) denote significant differences (p < 0.05) between groups. 
Where there is only one group that is significantly different (B-E) an asterix (p < 0.05) is used instead.  
 

            2.3.1.2 Environment-Specific IEG Expression and Remapping in DGS 

To assess whether perturbation of the LC-NE system could alter contextually-mediated 

IEG expression in the HF we examined the differential expression of cells labeled FOCI, CYTO 

and DOUBLES across groups for each HF sub-region. In the DGS, there was a main effect of 

GROUP (F4,28 = 9.626, p < 0.001), a main effect of IEG_LOCATION (F2,56 = 4.534, p = 0.015), 

and a significant GROUP x IEG_LOCATION interaction (F8,56 = 5.362, p < 0.001). Post-hoc 

tests showed that this effect was partially due to differences between the CC group and the GLU-

AA (p < 0.001) group as well as between the CC group and the NO-GLU-AA group (p < 0.001) 

demonstrating simply more cellular activity in animals that explored an environment compared to 



 
     

 

69 

animals that remained in the home cage (Figure 21). This was expected since transcription of 

zif268 is observed in very few cells in rats that remain undisturbed in their home cages (baseline 

cage control). There were also more cells labeled FOCI and CYTO in animals that visited two 

different contexts compared to those that repeatedly visited the same context. Additionally, a 

higher proportion of cells were labeled CYTO and FOCI in the GLU AA group compared to the 

NO GLU AA group suggesting that glutamate is inducing IEG transcription in new cells (FOCI 

signal) while simultaneously affecting the cells in which transcription has already been engaged 

(CYTO signal). This is explored further in experiment 2.  

Unexpectedly, contexts were not well discriminated in the DGS. While there were fewer 

cells labeled as DOUBLES in the groups that visited two different contexts compared to the same 

context twice, there was no statistical difference in the pattern of IEG expression. Because there 

is such sparse firing in the DGS (~2-5%), we expect to find only small differences in a raw 

measure like DOUBLES and in turn, statistically analyzing this measure does not adequately 

convey whether neuronal ensembles activated in epoch 1 are discrete from epoch 2. It is possible 

that this measure is not sensitive enough. Several other studies using the catFISH protocol have 

utilized the calculation of single normalized measures (SIMILARITY & OVERLAP) 

(Vazdarjanova & Guzowski, 2004; Marrone et al., 2011) derived from the raw staining class data 

(FOCI, CYTO and DOUBLES) (Kubik et al., 2007) to assess context-dependent IEG expression 

in the HF. Using these measures, we detected a contextually-mediated pattern of zif268 

expression (Figure 22A-B). We ran two separate one-way ANOVAs and found a main effect of 

GROUP (SIMILARITY: F4,28 = 7.792, p < 0.001; OVERLAP: F4,28 = 7.391, p < 0.001). Post-hoc 

test showed that this effect was due to a difference between the NO GLU AA group and all other 

groups in both cases. Therefore, it is better to use one of these normalized measures in DGS. In 

DGS it does not seem to matter which of the two are used as they produce comparable values 

(Table 2). However, when the disparity in the raw data (DOUBLES) increases as it does in the 
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CA1, or CA3, OVERLAP and SIMILARITY yield less comparable values (Table 2) and 

therefore we decided to continue to use the raw data for these brain regions.  

 

Figure 21. The proportion of granule cells in DGS expressing zif268 solely within (FOCI) or outside (CYTO) the 
nucleus, as well as those containing zif268 mRNA in both cellular compartments (DOUBLES) across groups in 
the DGS. Following a 5-min exploration session in a novel context “A” and a 20-min home cage period, animals 
were given unilateral infusions of glutamate (GLU) or no infusions (NO-GLU) and then either placed back in 
the same context (AA condition) or in a new context “B” (AB condition). Letters (a,b,c) denote significant 
differences (p < 0.05) between groups.  

 

 
Figure 22. A-B. DGS: SIMILARITY and OVERLAP scores. A) SIMILARITY score, calculated using the 
formula: [%DOUBLES-(%E1*E2)] / [MIN (E1, E2)] – [E1*E2] of 1 is indicative of a complete overlap in the 
cellular ensemble activated during the first and second behavioural epochs (E1 & E2). A score of 0 indicates that 
the degree of overlap is not greater than chance. OVERLAP is a similar measure [%DOUBELS / MIN (E1, E2)] 
where 100% indicates complete overlap in the E1 and E2 ensembles and 0% represents completely discrete 
ensembles. * = significant differences (p < 0.05) between groups.  

 
 
 
 
 
 
 
 
 

*	
*	

*	
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Table 2 

 
 
            2.3.1.3 Environment-Specific IEG Expression and Remapping in CA3 

In CA3a there was a significant main effect of GROUP (F4,28 = 7.224, p < 0.001), and a 

significant GROUP x IEG_LOCATION interaction (F8,56 = 11.445, p < 0.001. In CA3b, there 

was a significant main effect of GROUP (F4,28 = 12.315, p < 0.001), main effect of 

IEG_LOCATION (F2,56 = 3.876, p = 0.027), and a significant GROUP x IEG_LOCATION 

interaction (F8,56 = 31.571, p < 0.001). In CA3c, there was also a significant main effect of 

GROUP (F4,28 = 10.168, p < 0.001), and a significant GROUP x IEG_LOCATION interaction 

Sample Raw Staining Class Data: DGS & lateral CA1 (NO-GLU AA & NO-GLU AB groups - 
experiment 1). 

DGS	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A/B	 Raw	Data	 	 	 	 	 Percentages	 	 	 	 Calculations	 	 	 	 	

Animal	 NEGATIVE	 FOCI	 CYTO	 DOUBLES	 TOTAL	 %NEGATIVE	 %FOCI	 %CYTO	 %DOUBLES	 %TOTAL	IEG	 %E1	
(C+D)	

%E2	
(F+D)	

SIMILARITY	 %OVERLAP	

1	 165.84	 2.83	 3.17	 2.33	 174.17	 95.22	 1.63	 1.82	 1.34	 6.12	 3.16	 2.97	 0.43	 45.16	
2	 163.25	 2.25	 2.50	 2.00	 170.00	 96.06	 1.32	 1.47	 1.18	 5.15	 2.65	 2.50	 0.46	 47.06	
3	 214.33	 4.83	 5.00	 4.50	 228.67	 93.73	 2.11	 2.19	 1.97	 8.24	 4.15	 4.08	 0.46	 48.21	
4	 216.33	 3.00	 3.17	 4.00	 226.50	 95.51	 1.32	 1.40	 1.77	 6.25	 3.16	 3.09	 0.56	 57.14	
5	 233.17	 5.83	 5.67	 3.83	 248.50	 93.83	 2.35	 2.28	 1.54	 7.71	 3.82	 3.89	 0.38	 40.35	
6	 236.50	 3.25	 3.50	 2.25	 245.50	 96.33	 1.32	 1.43	 0.92	 4.58	 2.34	 2.24	 0.39	 40.91	
Mean	 204.90	 3.67	 3.83	 3.15	 215.56	 95.11	 1.68	 1.76	 1.45	 6.34	 3.21	 3.13	 0.45	 46.47	
SEM	 13.26	 0.56	 0.50	 0.44	 14.22	 0.45	 0.18	 0.16	 0.16	 0.58	 0.28	 0.30	 0.03	 2.50	

A/A	 Raw	Data	 	 	 	 	 Percentages	 	 	 	 Calculations	 	 	 	 	
Animal	 NEGATIVE	 FOCI	 CYTO	 DOUBLES	 TOTAL	 %NEGATIVE	 %FOCI	 %CYTO	 %DOUBLES	 %TOTAL	IEG	 %E1	

(C+D)	
%E2	
(F+D)	

SIMILARITY	 %OVERLAP	

1	 167.67	 1.00	 1.00	 4.83	 174.50	 96.08	 0.57	 0.57	 2.77	 6.69	 3.34	 3.34	 0.82	 82.86	
2	 181.00	 1.50	 2.00	 3.25	 187.75	 96.40	 0.80	 1.07	 1.73	 5.33	 2.80	 2.53	 0.68	 68.42	
3	 186.75	 1.50	 1.50	 3.25	 193.00	 96.76	 0.78	 0.78	 1.68	 4.92	 2.46	 2.46	 0.68	 68..42	
4	 172.33	 2.00	 2.33	 3.33	 180.00	 95.74	 1.11	 1.30	 1.85	 6.11	 3.15	 2.96	 0.61	 62.50	
5	 228.17	 1.33	 2.00	 6.33	 237.83	 95.94	 0.56	 0.84	 2.66	 6.73	 3.50	 3.22	 0.82	 82.61	
6	 220.40	 1.80	 2.40	 5.80	 230.40	 95.66	 0.78	 1.04	 2.52	 6.86	 3.56	 3.30	 0.75	 76.32	
Mean	 192.72	 1.52	 1.87	 4.47	 200.58	 96.10	 0.77	 0.93	 2.20	 6.11	 3.14	 2.97	 0.73	 73.52	
SEM	 10.39	 0.14	 0.22	 0.57	 10.96	 0.17	 0.08	 0.10	 0.20	 0.33	 0.18	 0.16	 0.04	 3.42	
Lateral	
CA1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

A/B	 Raw	Data	 	 	 	 	 Percentages	 	 	 	 Calculations	 	 	 	 	

Animal	 NEGATIVE	 FOCI	 CYTO	 DOUBLES	 TOTAL	 %NEGATIVE	 %FOCI	 %CYTO	 %DOUBLES	 %TOTAL	IEG	 %E1	
(C+D)	

%E2	
(F+D)	

SIMILARITY	 %OVERLAP	

1	 42.00	 12.00	 9.67	 13.67	 77.33	 54.31	 15.52	 12.50	 17.67	 63.36	 30.17	 33.19	 0.38	 58.57	
2	 51.00	 12.67	 17.00	 10.00	 90.67	 56.25	 13.97	 18.75	 11.03	 54.78	 29.78	 25.00	 0.20	 44.12	
3	 55.00	 21.00	 20.50	 11.00	 107.50	 51.16	 19.53	 19.07	 10.23	 59.07	 29.30	 29.77	 0.07	 34.92	
4	 54.00	 19.00	 21.00	 9.50	 103.50	 52.17	 18.36	 20.29	 9.18	 57.00	 29.47	 27.54	 0.05	 33.33	
5	 67.00	 17.50	 18.50	 11.50	 114.50	 58.52	 15.28	 16.16	 10.04	 51.53	 26.20	 25.33	 0.18	 39.66	
6	 47.67	 14.00	 13.00	 12.67	 87.33	 54.58	 16.03	 14.89	 14.50	 59.92	 29.39	 30.53	 0.27	 49.35	
Mean	 52.78	 16.03	 16.61	 11.39	 96.81	 54.50	 16.45	 16.94	 12.11	 57.61	 29.05	 28.56	 0.19	 43.32	
SEM	 3.44	 1.50	 1.82	 0.65	 5.71	 1.09	 0.85	 1.21	 1.34	 1.69	 0.58	 1.30	 0.05	 3.89	

A/A	 Raw	Data	 	 	 	 	 Percentages	 	 	 	 Calculations	 	 	 	 	
Animal	 NEGATIVE	 FOCI	 CYTO	 DOUBLES	 TOTAL	 %NEGATIVE	 %FOCI	 %CYTO	 %DOUBLES	 %TOTAL	IEG	 %E1	

(C+D)	
%E2	
(F+D)	

SIMILARITY	 %OVERLAP	

1	 57.67	 6.33	 6.00	 19.00	 89.00	 64.79	 7.12	 6.74	 21.35	 56.55	 28.09	 28.46	 0.66	 76.00	
2	 53.25	 10.50	 9.25	 33.00	 106.00	 50.24	 9.91	 8.73	 31.13	 80.90	 39.86	 41.04	 0.63	 78.11	
3	 66.00	 3.33	 4.67	 23.00	 97.00	 68.04	 3.44	 4.81	 23.71	 55.67	 28.52	 27.15	 0.82	 87.34	
4	 60.67	 4.00	 5.00	 14.67	 84.33	 71.94	 4.74	 5.93	 17.39	 45.45	 23.32	 22.13	 0.72	 78.57	
5	 49.00	 6.50	 7.50	 24.50	 87.50	 56.00	 7.43	 8.57	 28.00	 72.00	 36.57	 35.43	 0.67	 79.03	
6	 53.50	 8.75	 7.00	 20.25	 89.50	 59.78	 9.78	 7.82	 22.63	 62.85	 30.45	 32.40	 0.62	 74.31	
Mean	 56.68	 6.57	 6.57	 22.40	 92.22	 61.80	 7.07	 7.10	 24.03	 62.24	 31.13	 31.10	 0.69	 78.89	
SEM	 2.48	 1.16	 0.70	 2.54	 3.24	 3.28	 1.07	 0.63	 2.00	 5.17	 2.47	 2.72	 0l03	 1.84	

Note: In the CA1, group differences in the raw staining class data (FOCI, CYTO & DOUBLES) translate to a 
roughly equal magnitude of difference in normalized measures such as OVERLAP and SIMILARITY scores 
whereas due to the sparse level of firing in DGS, examining a raw measure like DOUBLES is not sensitive enough 
to capture these group differences. Therefore, in DGS, it is better to use a normalized measure to assess context-
dependent IEG expression. 
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(F8,56 = 16.646, p < 0.001). Post hoc tests revealed that in each region, there was higher arc 

expression in groups that explored contexts compared to groups that remained in the home cage 

(Fig 20A-C). The expression of arc was contextually mediated evinced by the finding that the 

NO-GLU-AA and NO-GLU-AB groups differed significantly in the proportion of DOUBLES in 

CA3a (p = 0.02), CA3b (p < 0.001), and the CA3c (p = 0.004). Post-hoc tests also revealed a 

significant difference between the NO-GLU-AA and GLU-AA groups in the CA3b (p = 0.013) 

and the CA3c (p = 0.036) but not the CA3a. Since the proportion of DOUBLES for the GLU-AA 

fell halfway in between the NO-GLU-AA and NO-GLU-AB groups, and was not significantly 

different than either, we interpret this as a partial resetting of representations. Therefore, while 

unilateral infusions of glutamate in the LC caused partial remapping in the CA3a, it induced a full 

resetting of representations in the CA3b and CA3c. Further support for the induction of a full 

reset in CA3b and CA3c is shown by the lack of difference between the NO-GLU-AB and the 

GLU-AA groups in CA3b (p = 0.659) and the CA3c (p = 0.807). Finally, the effects of glutamate 

were limited to the A/A groups; the NO-GLU-AB and GLU-AB groups did not differ in the 

CA3a (p = 1.00), CA3b (p = 1.00), or CA3c (p = 1.00) (Figure 23A-C).  This observation is 

consistent with the hypothesis that activation of the LC by glutamate biases the system to remap.  

That is, under conditions in which you would expect the LC-NE system to be active and for 

remapping to occur, further perturbation of the system has no observable effect. 
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Figure 23. The proportion of pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) the nucleus, 
as well as those containing arc mRNA in both cellular compartments (DOUBLES) across groups in the A) CA3a, 
B) CA3b, and C) CA3c. Following a 5-min exploration session in a novel context “A” and a 20-min home cage 
period, animals were given unilateral infusions of glutamate (GLU) or no infusions (NO-GLU) and then either 
placed back in the same context (AA condition) or in a new context “B” (AB condition). Letters (a,b,c) denote 
significant differences (p < 0.05) between groups.  
 
            2.3.1.4 Environment-Specific IEG Expression and Remapping in CA1 

In lateral CA1 there was a main effect of GROUP (F4,28 = 17.959, p < 0.001), a main 

effect of IEG_LOCATION (F2,56 = 23.177, p < 0.001), and a significant GROUP x 

IEG_LOCATION interaction (F8,56 = 18.954, p < 0.001). Post-hoc tests revealed that these effects 

were attributed in part to differences in the proportion of DOUBLES between the CC group and 

the GLU-AA (p < 0.001) group as well as between the CC group and the NO-GLU-AA group (p 
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< 0.001), again showing the upregulation of IEG expression during exploration (Figure 24A). We 

also found that the NO-GLU-AA and the NO-GLU-AB groups differed significantly (p = 0.001) 

showing that arc expression was contextually mediated in this brain region. However, we did not 

find a difference between the NO-GLU-AA and the GLU-AA groups (p = 0.866), suggesting that 

unilateral infusions of glutamate in the LC did not induce remapping in lateral CA1 (Figure 24A). 

In medial CA1 there was a main effect of GROUP (F4,28 = 32.423, p < 0.001), a main effect of 

IEG_LOCATION (F(2,56) = 49.039, p < 0.001), and a significant GROUP x IEG_LOCATION 

interaction (F8,56 = 43.156, p < 0.001). Post-hoc tests showed a significant difference between all 

groups in the proportion of DOUBLES except the NO-GLU-AB and the GLU-AB groups (p = 

1.00) (Figure 24B). The consistency in the pattern of IEG expression between these two groups 

served as an important control demonstrating that the effect of glutamate was specific to the A/A 

group. Since the proportion of DOUBLES for the GLU-AA group falls in between and both the 

NO GLU A/A and NO GLU A/B group, the effect of unilaterally infusing glutamate into the LC 

is considered a partial remapping effect, or resetting of representations in the medial CA1 (Figure 

24B).   

 

*	
*	*	

*	

*	
*	

*	
*	
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Figure 24. The proportion of pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) the nucleus, 
as well as those containing arc mRNA in both cellular compartments (DOUBLES) across groups in the (A) 
lateral CA1 and (B) medial CA1. Following a 5-min exploration session in a novel context “A” and a 20-min 
home cage period, animals were given unilateral infusions of glutamate (GLU) or no infusions (NO-GLU) and 
then either placed back in the same context (AA condition) or in a new context “B” (AB condition). Letters 
(a,b,c) denote significant differences (p<0.05) between groups. Letters (a,b,c) denote significant differences 
(p<0.05) between groups.  
 

Given the results of this experiment, we thought it was necessary to run a similar 

experiment involving bilateral infusions of the LC. We hypothesized that our effects in the HF 

would be more pronounced. We also employed more controls and utilized additional 

pharmacological treatments to assess the role of both phasic and tonic LC activation on 

hippocampal plasticity.  
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Table 3.  
 

 
 

2.3.2. Experiment 2: Bilateral Infusions   

In this experiment, the large number of groups made data reduction necessary. In 

experiment 2, an additional control group has been added to control for the handling that is 

associated with the LC infusion and spatial exploration protocol. In experiment 1, the only control 

group (caged controls) remained undisturbed in their home cages. From here on in, these animals 

are referred to as “Baseline”. In the second experiment, caged controls were picked up every 15 

Experiment 1: Statistical analyses comparing 1IEG expression across epochs and across groups for each 
hippocampal sub-region and 2total IEG expression across groups for each hippocampal sub-region. 

Brain Region F DF p Test Statistic Result 

1DGS 
 

7.575 
0.252 

 
(4,28) 
(1,28) 

 
<0.001 
0.619 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2DGS  
7.575 

 
(4,28) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3c 
 

8.461 
0.059 

 
(4,28) 
(1,28) 

 
<0.001 

0.81 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2CA3c  
8.461 

 
(4,28) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3b 
 

11.287 
2.480 

 
(4,28) 
(1,28) 

 
<0.001 
0.127 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2CA3b  
11.287 

 
(4,28) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3a 
 

5.993 
3.369 

 
(4,28) 
(1,28) 

 
<0.001 
0.077 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2CA3a  
5.993 

 
(4,28) 

 
0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA1 Lateral 
 

13.793 
1.102 

 
(4,28) 
(1,28) 

 
<0.001 
0.303 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2CA1 Lateral  
13.793 

 
(4,28) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA1 Medial 
 

32.374 
0.817 

 
(4,28) 
(1,28) 

 
<0.001 
0.372 

Two-way RM ANOVA 
Between-subject (Group) 
Within-subject (Epoch) 

 
Main effect of GROUP 
No effect of EPOCH 

2CA1 Medial  
32.374 

 
(4,28) 

 
<0.001 

One-way ANOVA   
 Between-subject (Group) 

 
Main effect of GROUP 

Note: Interactions only reported if significant  
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seconds in the same manner as the remaining groups. Since they differed from the controls in 

experiment 1, and were picked up in their home cages, this control group is referred to as “Highly 

Familiar”. Since there were no differences between the NO-GLU-AA group and the following 

A/A controls: NO-DRUG-AA, aCSF-AA, and CLON-AA, these four groups were combined to 

form a new group called “Familiar”. We also found no differences between the three groups that 

received tonic LC activation: BETH-AA, ORX-AA, and CRF-AA, therefore these groups were 

also combined and called “Familiar Tonic”. The unilateral phasic LC activation group GLU-AA 

(U) is now referred to as “Familiar Phasic Unilateral” and the bilateral phasic LC activation 

group; GLU-AA (B) is called “Familiar Phasic Bilateral”. We attempted to block the natural 

remapping that occurs when animals visit two different contexts using clonidine, therefore, we 

termed the CLON-AB group “Novel Inhibition”. Finally, since there were no differences between 

the NO-GLU-AB group and the important control GLU-AB, these animals that visited two 

different contexts were combined and are referred to simply as “Novel”. These group 

combinations are depicted in Figure 25.  

 

Figure 25. In experiment 2, additional controls pharmacological treatments were added, and several of the 
original groups from experiment 1 (green) and experiment 2 (blue) were combined to form new groups (black).  
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            2.3.2.1 Total IEG Expression & Context Exploration 

Similar to the results from experiment 1, we found significantly higher levels of IEG 

expression in the CA1 (M = 61.64%, SD = 25.83%) compared to the CA3 (M = 28.31%, SD = 

12.86%), and very low expression in the DGS (M = 7.08%, SD = 3.33%) (Figure 26A-F). IEG 

expression was again driven by context exploration and was similar across both behavioural 

epochs (Figure 27A-F; Table 4).  

 

Figure 26. A-F) Total IEG expression across all groups for each brain region. IEG expression was higher in 
animals that explored a context compared to spending the same amount of time undisturbed in the home cage 
(A-F). Animals that remained in the home cage but were picked up every 15 seconds also demonstrated higher 
IEG expression (B-D). Letters (a,b,c) denote significant differences (p < 0.05) between groups.  
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Figure 27. Total IEG expression was similar across both behavioural epochs (first and second context exposures) 
in each brain region.  E1 (Epoch 1): proportion of cells labeled as IEG-positive solely within the cytoplasm 
(CYTO) plus the cells labeled within both the nucleus and the cytoplasm (DOUBLES); E2 (Epoch 2): proportion 
of cells labeled as IEG-positive solely within the nucleus (FOCI) plus the cells labeled within both the nucleus 
and the cytoplasm (DOUBLES). 
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Table 4. 

 
 

            2.3.2.2 Environment-Specific IEG Expression and Remapping in DGS 

To assess whether contexts were contextually-mediated and whether our treatments 

affected remapping in the HF, we examined the differential expression of the proportion of 

CYTO, FOCI, and DOUBLES across groups for each HF sub-region. Using a two-way RM 

ANOVA, we found a main effect of GROUP (F7,146 = 4.046, p < 0.001), a main effect of 

IEG_LOCATION (F2,146 = 5.072, p = 0.007), and a significant interaction (F14,146 = 2.372, p = 

Experiment 2: Statistical analyses comparing 1IEG expression across epochs and across groups for each 
hippocampal sub-region and 2total IEG expression across groups for each hippocampal sub-region.  

Brain Region F DF p Test Statistic Result 

1DGS 
 

339.554 
0.884 

 
(7,73) 
(1,73) 

 
<0.026 

0.35 

 
Two-way RM ANOVA  

Between-subject (Group) 
Within-subject (Epoch) 

 

 
Main effect of GROUP  
No effect of EPOCH 

2DGS  
4.044 

 
(7,73) 

 
0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3c 
 

475.695 
3.817 

 
(7,63) 
(1,63) 

 
<0.001 
0.055 

 
Two-way RM ANOVA 

Between-subject (Group) 
Within-subject (Epoch) 

 

 
Main effect of GROUP; 

No effect of EPOCH 

2CA3c  
5.887 

 
(7,63) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3b 
 

465.000 
0.892 

 
(7,63) 
(1,63) 

 
<0.001 
0.349 

 
Two-way RM ANOVA 

Between-subject (Group) 
Within-subject (Epoch) 

 

 
Main effect of GROUP  
No effect of EPOCH 

2CA3b  
7.342 

 
(7,63) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA3a 

 
 

429.163 
0.671 
2.922 

 
 

(7,63) 
(1,63) 
(7,63) 

 
 

<0.001 
0.416 
0.01 

 
Two-way RM ANOVA 

Between-subject (Group) 
Within-subject (Epoch) 

Group x Epoch  

 
 

Main effect of GROUP  
No effect of EPOCH 

Significant interaction 

2CA3a  
6.463 

 
(7,63) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA1 Lateral 
 

683.444 
3.436 

 
(7,63) 
(1,63) 

 
<0.001 
0.068 

 
Two-way RM ANOVA 

Between-subject (Group) 
Within-subject (Epoch) 

 

 
Main effect of GROUP  
No effect of EPOCH 

2CA1 Lateral  
9.553 

 
(7,63) 

 
<0.001 

One-way ANOVA  
Between-subject (Group) 

 
Main effect of GROUP 

1CA1 Medial 
 

708.470 
2.523 

 
(7,63) 
(1,63) 

 
<0.001 
0.117 

 
Two-way RM ANOVA 

Between-subject (Group) 
Within-subject (Epoch) 

 

 
Main effect of GROUP  
No effect of EPOCH 

2CA1 Medial  
11.557 

 
(7,63) 

 
<0.001 

One-way ANOVA    
Between-subject (Group) 

 
Main effect of GROUP 

Note: Interactions only reported if significant  
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0.005). There was a higher percentage of doubles in the Highly Familiar group compared to 

Baseline (p < 0.001) (Figure 27). These groups were identical with the exception that the 

experimenter picked up the animals in the Highly Familiar group every 15 seconds, therefore, 

this must have driven this effect.  

In the DGS, as before, we did not detect a contextually-mediated pattern of IEG 

expression, as there was no difference in the percentage of doubles between the Familiar and 

Novel groups (Figure 28).  However, administration of pharmacological agents into the LC did 

produce some effects in the DGS. Animals that received drugs targeted at tonic (Familiar Tonic) 

LC activation showed a higher percentage of FOCI-labelled cells compared to Baseline (p = 

0.039) and animals that were bilaterally infused with glutamate in the LC (Familiar Phasic 

Bilateral) showed a higher percentage of cells labelled CYTO compared to the Familiar (p = 

0.03) and Baseline (p = 0.015) groups (Figure 28A-B).  
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Figure 28. DGS: The proportion of granule cells expressing zif268 solely within (FOCI) or outside (CYTO) the 
nucleus, as well as those containing zif268 in both cellular compartments (DOUBLES) is shown. The proportion 
of DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the consolidated 
groups (black bars) are highlighted.  Letters (a,b,c) denote significant differences (p < 0.05) in the proportion of 
DOUBLES between groups. Within-group differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 

 

Figure 29. A-B) DGS: OVERLAP and SIMILARITY scores, alternative measures to the proportion of 
DOUBLES. 100% overlap or a similarity score of 1 indicates a complete overlap in the neuronal ensembles 
active during each behavioural epoch (E1 and E2) whereas 0% overlap or a similarity score of 0 indicates two 
completely discrete cellular populations. When using these normalized measures, zif268 expression in the DGS 
appears to be environment-specific. 
            2.3.2.3 Environment-Specific IEG Expression and Remapping in CA3  

Two-way RM ANOVAs revealed that for each sub-region within the CA3 there was a 

main effect of GROUP: CA3a (F7,62 = 5.439, p < 0.001), CA3b (F7,62 = 9.481, p < 0.001), CA3c 

(F7,62 = 6.603, p < 0.001), and a main effect of IEG_LOCATION: CA3a (F2,62 = 47.333, p < 

0.001), CA3b (F2,62 = 17.983, p < 0.001], CA3c (F2,62 = 27.068, p < 0.001). For each CA3 sub-

region, there was also a significant GROUP by IEG_LOCATION interaction in CA3a (F14,62 = 

11.748, p < 0.001), CA3b (F14,62 =13.068, p < 0.001), and CA3c (F14,62 = 10.007, p < 0.001).  

In the CA3a, there was a contextually-mediated pattern of IEG expression with higher 

percentages of DOUBLES in the Highly Familiar and Familiar groups compared to the Novel 

group (p < 0.001). Moreover, there was a higher percentage of DOUBLES in the Highly 

Familiar, Familiar Tonic, and Familiar group compared to Baseline (p < 0.001) (Figure 30A-B). 

This observation is expected, since these animals visited the same context twice, however, we did 

hypothesize that tonic LC stimulation would perturb this pattern to reset the system and cause the 

recruitment of new cells but this was not the case. Tonic LC activation was not able to induce 

remapping (no significant difference between Familiar Tonic and Familiar, p = 0.51; and 
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significant difference between Familiar Tonic and Novel, p < 0.001). There was a higher 

percentage of DOUBLES in the Familiar Phasic Unilateral group compared to Baseline (p = 

0.06) but not in the comparison between the Familiar Phasic Bilateral group and Baseline (p = 

0.47), suggesting that unilateral infusions were only able to partially reset the system. Essentially, 

unilateral infusions resulted in a proportion of DOUBLE-labeled cells that fell in between levels 

associated with both Familiar and Novel groups; we have interpreted this as a “partial-resetting”. 

Evidence for a partial remap is shown by no significant difference between the Familiar Phasic 

Unilateral and Familiar groups (p = 0.093), and no significant difference between the Familiar 

Phasic Unilateral and Novel groups (p = 0.476). In contrast, bilateral infusions fully reset the 

system demonstrated by no significant difference between the Familiar Phasic Bilateral and 

Novel groups (p = 0.835), and a significant difference between the Familiar Phasic Bilateral and 

Familiar groups (p = 0.006). Clonidine was not able to block remapping, as there was no 

difference in the percentage of DOUBLES between the Novel and Novel Inhibition group (p = 

0.866). 
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Figure 30. The proportion of CA3a pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) the 
nucleus, as well as those containing arc in both cellular compartments (DOUBLES) is shown. The proportion of 
DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the consolidated groups 
(black bars) are highlighted. Animals that visited the same context twice (A/A; Familiar) as opposed to two 
different contexts (A/B; Novel) showed a higher proportion of DOUBLES showing that arc expression in the 
CA3a is contextually-mediated. Bilateral infusions of glutamate in the locus coeruleus (LC), associated with 
phasic activation, induced global remapping fully resetting contextual representations in the CA3a (Familiar 
Phasic Bilateral). Unilateral glutamate LC infusions (Familiar Phasic Unilateral) and tonic LC activation 
(Familiar Tonic) had no effect. Clonidine did not block natural remapping that occurs following exposure to two 
different contexts (Novel Inhibition). Animals that remained undisturbed in the home cage did not show much 
IEG expression (Baseline) until they were picked up by the experimenter (Highly Familiar). Letters (a,b,c) 
denote significant differences (p < 0.05) in the proportion of DOUBLES between groups. Within-group 
differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 
 

In the CA3b (Figure 31A-B) there was a higher percentage of DOUBLES in every group 

except the Familiar Phasic Bilateral and Novel Inhibition groups compared to Baseline 

demonstrating that in animals that explored an environment there was a higher level of cellular 

activity relative to animals that remained in the home cage, consistent with the rest of our results. 

There was a contextually-mediated pattern of IEG expression with a higher percentage of 

DOUBLES in the Familiar, compared to the Novel group (near significant effect, p = 0.065). 

Tonic LC activation was not able to induce remapping (no significant difference between 

Familiar Tonic and Familiar, p = 1.000). Unilateral infusions of glutamate only partially induced 

remapping as there was no significant difference in the percentage of DOUBLES between the 

Familiar Phasic Unilateral group and the Familiar group (p = 0.904) or the Novel group (p = 

0.916). However, bilateral infusions of glutamate in the LC did induce remapping in the CA3b as 

there was a significant difference in the percentage of DOUBLES between the Familiar Phasic 

Bilateral group and the Familiar group (p = 0.009) and no significant difference between the 

Familiar Phasic Bilateral group and the Novel group (p = 0.934). In this sub-region, clonidine 

was also not able to block the natural remapping that occurs when animals visit two distinct 

contexts, as there was no difference in the percentage of DOUBLES between the Novel and Novel 

Inhibition group (p = 0.657).  
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Figure 31. The proportion of CA3b pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) the 
nucleus, as well as those containing arc in both cellular compartments (DOUBLES) is shown. The proportion of 
DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the consolidated groups 
(black bars) are highlighted. Animals that visited the same context twice (A/A; Familiar) as opposed to two 
different contexts (A/B; Novel) showed a higher proportion of DOUBLES showing that arc expression in the 
CA3b is contextually-mediated. Bilateral infusions of glutamate in the locus coeruleus (LC), associated with 
phasic activation, induced global remapping fully resetting contextual representations in the CA3b (Familiar 
Phasic Bilateral). Unilateral glutamate LC infusions (Familiar Phasic Unilateral) only partially reset the system 
while tonic LC activation (Familiar Tonic) had no effect. Clonidine did not block natural remapping that occurs 
following exposure to two different contexts (Novel Inhibition). Animals that remained undisturbed in the home 
cage showed very little IEG expression (Baseline) until they were picked up by the experimenter (Highly 
Familiar). Letters (a,b,c) denote significant differences (p < 0.05) in the proportion of DOUBLES between 
groups. Within-group differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 

 

In the CA3c (Figure 32A-B), exploration compared to remaining in the home cage was 

associated with activity greater number of cells engaging in IEG transcription. Moreover, the 

pattern of IEG expression was contextually-mediated with a higher percentage of DOUBLES in 

the Highly Familiar (p = 0.044) and Familiar (p = 0.06) groups compared to the Novel group. 

Again, tonic LC activation had no effect on remapping with no significant difference between the 
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Familiar Tonic and Familiar groups (p = 0.768) but a significant difference between Familiar 

Tonic and Novel groups (p = 0.003). Unilateral LC glutamate infusions resulted in partially 

induced remapping with no significant difference in the percentage of DOUBLES between the 

Familiar Phasic Unilateral group and the Familiar group (p = 0.734) or the Novel group (p = 

0.981). Bilateral infusions resulted in a full remapping effect given that there was a significant 

difference in the percentage of DOUBLES between the Familiar Phasic Bilateral and the 

Familiar group (p = 0.029) and no significant difference between the Familiar Phasic Bilateral 

group and the Novel group (p = 0.993). Clonidine also had no effect in blocking remapping since 

there was no significant difference in the percentage of DOUBLES between the Novel and Novel 

Inhibition group (p = 1.000).  

 

Figure 32. The proportion of CA3c pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) the 
nucleus, as well as those containing arc in both cellular compartments (DOUBLES) is shown. The proportion of 
DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the consolidated groups 
(black bars) are highlighted. Animals that visited the same context twice (A/A; Familiar) as opposed to two 
different contexts (A/B; Novel) showed a higher proportion of DOUBLES showing that arc expression in the 
CA3c is contextually-mediated. Bilateral infusions of glutamate in the locus coeruleus (LC), associated with 
phasic activation, induced global remapping fully resetting contextual representations in the CA3c (Familiar 
Phasic Bilateral). Unilateral glutamate LC infusions (Familiar Phasic Unilateral) only partially reset the system 
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while tonic LC activation (Familiar Tonic) had no effect. Clonidine did not block natural remapping that occurs 
following exposure to two different contexts (Novel Inhibition). Animals that remained undisturbed in the home 
cage showed very little IEG expression (Baseline) until they were picked up by the experimenter (Highly 
Familiar). Letters (a,b,c) denote significant differences (p < 0.05) in the proportion of DOUBLES between 
groups. Within-group differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 
 

            2.3.2.4 Environment-Specific IEG expression and Remapping in CA1 

In the lateral and medial CA1, separate two-way RM ANOVAs revealed a main effect of 

GROUP (lateral: F7, 63 = 10.294, p < 0.001; medial: F7, 63 = 13.267, p < 0.001), a main effect of 

IEG LOCATION (lateral: F2,63 = 86.688, p < 0.001; medial: F2, 63 = 73.554, p < 0.001), and a 

significant GROUP x IEG LOCATION interaction (lateral: F14,126 = 10.533, p < 0.001; medial: 

F14, 63 = 10.460, p < 0.001). In both CA1 sub-regions (Figures 33A-B; & 34A-B) there was a 

higher percentage of DOUBLES in the A/A groups (except the Familiar Phasic Bilateral group) 

compared to Baseline showing not only that exploration drove IEG expression but that IEG 

expression is context-dependent. Both regions were contextually-mediated revealed by a 

significant difference between the Familiar and Novel groups (lateral: p = 0.014, medial: p = 

0.005). Consistent with our previous results, tonic LC activation in the CA1 did not induce 

remapping. As in the CA3, unilateral glutamate infusions partial reset the system, shown by the 

absence of a significant difference in the percentage of DOUBLES between the Familiar Phasic 

Unilateral group and the Familiar group (lateral: p = 1.000; medial: p = 0.807) and no significant 

difference between the Familiar Phasic Unilateral and the Novel group (lateral: p = 0.118, 

medial: p = 0.638). In contrast, bilateral glutamate infusions had a pronounced effect on 

remapping in the medial CA1. There was a significant difference in the percentage of DOUBLES 

between the Familiar Phasic Bilateral and the Familiar group in the medial CA1 (p = 0.034), 

however, this effect did not reach significance in the lateral CA1 (p = 0.116). Furthermore, there 

was no significant difference between the Familiar Phasic Bilateral group and the Novel group 

(lateral: p = 1.000; medial: p = 1.00). Clonidine was again, unable to block natural remapping 
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(No significant difference between Novel and Novel Inhibition groups - lateral: p = 0.728; medial: 

p = 0.989).   

 

Figure 33. The proportion of lateral CA1 pyramidal cells expressing arc solely within (FOCI) or outside (CYTO) 
the nucleus, as well as those containing arc in both cellular compartments (DOUBLES) is shown. The proportion 
of DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the consolidated 
groups (black bars) are highlighted. Animals that visited the same context twice (A/A; Familiar) as opposed to 
two different contexts (A/B; Novel) showed a higher proportion of DOUBLES showing that arc expression in the 
lateral CA1 is contextually-mediated. Bilateral infusions of glutamate in the locus coeruleus (LC), associated 
with phasic activation, induced global remapping fully resetting contextual representations in the lateral CA1 
(Familiar Phasic Bilateral). Unilateral glutamate LC infusions (Familiar Phasic Unilateral) and tonic LC 
activation (Familiar Tonic) had no effect. Clonidine only partially blocked the natural remapping that occurs 
following exposure to two different contexts (Novel Inhibition). Animals that remained undisturbed in the home 
cage showed very little IEG expression (Baseline) until they were picked up by the experimenter (Highly 
Familiar). Letters (a,b,c) denote significant differences (p < 0.05) in the proportion of DOUBLES between 
groups. Within-group differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 
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Figure 34. The proportion of medial CA1 pyramidal cells expressing arc solely within (FOCI) or outside 
(CYTO) the nucleus, as well as those containing arc in both cellular compartments (DOUBLES) is shown. The 
proportion of DOUBLES for A) experiment 1 (green bars) & experiment 2 (blue bars) and then for B) the 
consolidated groups (black bars) are highlighted. Animals that visited the same context twice (A/A; Familiar) as 
opposed to two different contexts (A/B; Novel) showed a higher proportion of DOUBLES showing that arc 
expression in the medial CA1 is contextually-mediated. Bilateral infusions of glutamate in the locus coeruleus 
(LC), associated with phasic activation, induced global remapping fully resetting contextual representations in 
the medial CA1 (Familiar Phasic Bilateral). Unilateral glutamate LC infusions (Familiar Phasic Unilateral) and 
tonic LC activation (Familiar Tonic) had no effect. Clonidine only partially blocked the natural remapping that 
occurs following exposure to two different contexts (Novel Inhibition). Animals that remained undisturbed in 
the home cage showed very little IEG expression (Baseline) until they were picked up by the experimenter 
(Highly Familiar). Letters (a,b,c) denote significant differences (p < 0.05) in the proportion of DOUBLES 
between groups. Within-group differences in IEG-LOCATION are denoted by an asterix (P < 0.05). 
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Figure 35. The proportion cells expressing IEGs in both cellular compartments (DOUBLES) is shown (white) 
and superimposed is the expected proportion based on random chance with replacement (black). 

            2.3.2.5 Environment-Specific IEG Expression and Remapping in Handled and      

Undisturbed Cage Controls  

The Highly Familiar group and the Baseline group were both home cage-controls 

however, the Highly Familiar group was picked up every 15 seconds in a similar manner to the 

experimental groups while the Baseline group remained undisturbed. Interestingly, these groups 

differed in their IEG expression even though in both groups context exploration occurred in the 

home cage. This was not expected. Although IEG expression does not distinguish between new 

learning and memory retrieval (Chawla et al., 2005) since the level of IEG expression was equal 

across behavioural epochs and this relationship did not differ across brain regions, we decided to 

run a separate analysis that looked specifically at IEG expression during the first context 

exploration only to eliminate any effect of novelty or familiarity. We wanted to examine the 

relationship between spatial exploration and experimenter-handing on IEG expression. We 

compared the Baseline (Home Cage - Not Handled) and Highly Familiar (Home Cage-Handled) 

groups, to animals that had explored an environment but did not receive any drug treatments or 
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surgeries - NO-GLU-AA and NO-GLU-AB combined (these two groups did not differ in levels 

of IEG expression; Figures 26 & 27A-F). Separate one-way ANOVAs were run comparing IEG 

expression during the first behavioural epoch across groups for each hippocampal sub-region. In 

each sub-region, there was a main effect of GROUP (Table 5) and the effect grew stronger as the 

overall level of IEG expression increased (from DGàCA3càCA3b/a & CA1). These results 

suggest that experimenter-handling may indeed play a role in the promotion of IEG expression 

since handled animals showed greater IEG expression than non-handled animals (Figure 36A-F).  

Table 5. 

 

Experiment 2: Statistical analyses comparing 1IEG expression in the first epoch across groups 
for each hippocampal sub-region. 

Brain 
Region F DF p Test Statistic Result 

DGS  
5.773 

 
(2,26) 

 
0.009 

One-way ANOVA  
Between-subject 
(Group) 

 
Main effect of 

GROUP 

CA3c  
10.559 

 
(2,26) 

 
0.001 

One-way ANOVA  
Between-subject 

(Group) 

 
Main effect of 

GROUP 

CA3b  
19.545 

 
(2,26) 

 
<0.001 

One-way ANOVA  
Between-subject 

(Group) 

 
Main effect of 

GROUP 

CA3a  
15.448 

 
(2,26) 

 
<0.001 

One-way ANOVA  
Between-subject 

(Group) 

 
Main effect of 

GROUP 

CA1 
Lateral 

 
21.755 

 
(2,26) 

 
<0.001 

One-way ANOVA  
Between-subject 

(Group) 

 
Main effect of 

GROUP 

CA1 Medial  
40.503 

 
(2,26) 

 
<0.001 

One-way ANOVA    
Between-subject 

(Group) 

 
Main effect of 

GROUP 

Note: Interactions only reported if significant  
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Figure 36. The effect of spatial exploration and experimenter-handing on IEG expression during Epoch 1. 
Animals in the Baseline (Home Cage - Not Handled) and Highly Familiar (Home Cage-Handled) groups were 
compared to animals that had explored an environment but did not receive any drug treatments or surgeries 
(NO-GLU-AA and NO-GLU-AB combined). Experimenter-handling is sufficient to drive IEG expression in the 
home cage. Significant differences are denoted with an asterix (p < 0.05).  

 
2.4 Discussion 

As memory is associated with the formation and modification of neuronal ensembles that 

are thought to encode or represent contextual information and also to mediate memory retrieval 

when reactivated (Holtmaat & Caroni, 2016), it is important to understand how these 

representations are updated. Experience and learning (e.g. exploration of an environment) induces 

plasticity-associated changes such as the transcription of IEGs such as arc and zif268, which is 

necessary for memory consolidation, and which contributes to structural and functional plasticity 
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through the selective strengthening of established synapses and the formation of new synapses 

(Hall et al., 2001; Holtmaat & Caroni, 2016). In line with previous studies, contextually-tuned 

neurons such as place cells respond by remapping when animals visit different environments. 

With the use of a gene-imaging approach, we have found that the noradrenergic pathway from the 

LC to the HF is involved in updating contextual representations through the recruitment of new 

neurons, or in other words, remapping.  

2.4.1 Learning Drives IEG Expression 

In previous studies, experience-dependent expression of arc and zif268 has been shown 

to occur in the HF following spatial exploration (Guzowski et al., 2001, 2006; Vazdarjanova et 

al., 2002; Marrone et al., 2011; Satvat et al., 2011; Gheidi et al., 2013). Our results are consistent 

with these findings given that both arc and zif268 expression were increased following context 

exploration compared to spending the same amount of time in the home cage. This effect was 

evident in all regions of the HF we examined, and with more activity observed in CA1 compared 

to CA3, and very little activity observed in the DG confirming previous indications of sparse 

firing in DG granule cells (Jung & McNaughton, 1993; Chawla et al., 2005; Leutgeb et al., 2007). 

The exception to this was our home cage controls that were picked up in the same manner as the 

experimental animals every 15 seconds. For all A/A and A/B groups this was done to ensure 

thorough sampling of the entire environment upon exploration given that place cell activation is 

thought to facilitate the induction of IEG transcription (Guzowski et al., 1999). However, these 

control animals did not explore environment A or B, yet our results suggest that picking the 

animals up every 15 seconds may be sufficient to drive arc/zif268 expression. It is possible that 

even though IEG expression is contextually-mediated, stress may map onto this effect by 

increasing overall IEG expression. This should be considered in future studies. Animals that 

remained in the home cage showed very little IEG expression and likely experienced low levels 

of stress. Animals in the Familiar Tonic group demonstrated high IEG expression and one of the 

drugs used to induce tonic LC activation in the Familiar Tonic group was CRF which is known to 



 
     

 

94 

affect the mammalian stress response (Abe & Hiroshige, 1974; De Souza et al., 1991; Valentino 

et al., 1993; Turnbull & Rivier, 1997). It is possible that the animals in the Highly Familiar group 

which were picked up every 15 seconds in the home cage also demonstrated high levels of IEG 

expression as a result of stress. However, it is unclear why animals would find it stressful to be 

handled by the experimenter within the home cage but less so when exploring. Therefore, we 

believe it is more likely the result of salience and learning. During context exploration, animals 

are learning. When they are in their home cage and the experimenter is present (handling them 

every 15 seconds), this also involves learning while animals that are left undisturbed in the home 

cage are not undergoing learning. This learning is likely tied to IEG expression in a contextually-

mediated manner. Consistent with the idea that animals in the home cage show low levels of gene 

expression, electrophysiological unit recordings in these animals also demonstrate large irregular 

activity (LIA) rather than theta frequencies typically associated with learning, a state 

characteristic of slow wave sleep (Jarosiewicz et al., 2002). In these animals, handling may 

provide enough of a novel/salient stimulus to give them reason to be vigilant, and thus upregulate 

gene expression. This suggests that in the wild, where there would always be salient/novel 

stimuli, (expect maybe in the nest/home base), that animals would constantly be in a state of 

heightened vigilance, and thus heightened IEG expression, and the low “basal” IEG expression 

that we see in our home cage controls may be a very artificial state that is for the most part 

specific to a sterile and consistent laboratory environment.       

2.4.2 Environment-Specific arc and zif268 Expression 

Consistent with findings from electrophysiology studies (Kubie & Ranck, 1983; 

Thompson & Best, 1989), we demonstrated that IEG expression in the HF was environment-

specific (Guzowski et al., 2004; Chawla et al., 2005; Marrone et al., 2011; Satvat et al., 2011). 

This observation has been reported for arc in CA1 and CA3 (Guzowski et al., 1999, 2004; 

Vazdarjanova & Guzowski, 2004; Marrone et al., 2014) which is consistent with our results. 

However, similar to experiment 1, we did not find contextually-mediated arc expression in the 
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DGS when comparing the proportion of DOUBLES across groups. There are several things to 

consider here. While granule cells do exhibit place fields, most are silent due to the tonic 

inhibition that enables the DG to engage in orthogonal processes of separating memories through 

pattern separation (Engin et al., 2015). Furthermore, in comparison to mossy cells or pyramidal 

cells, granule cells have been shown to have only one place field and to remap less easily (Senzai 

& Buzsáki, 2017). Nevertheless, our results are inconsistent with other researchers such as 

Chawla et al. (2005), Vazdarjanova and Guzowski (2004), and Marrone et al. (2011). As 

mentioned earlier, we believe that these discrepancies result from an artifact of using a raw data 

measure in the DGS where firing is so sparse (Table 2). Although Chawla et al. (2005) reported 

contextually-mediated arc expression based on statistical comparisons across A/A and A/B 

groups on a raw measure as well, they used the proportion of cells labeled with intranuclear foci 

(FOCI) whereas the measure we used was the proportion of DOUBLES, or cells labeled with 

intranuclear foci and cytoplasmic signal. Moreover, we did not measure arc expression in the 

DGS but rather zif268. This is because neurons in the DG express arc mRNA for a sustained 

period of time (~8hr) following a single behavioral experience (Ramirez-Amaya et al., 2005, 

2013; Marrone et al., 2012; Meconi et al., 2015). While this prolonged transcriptional response is 

thought to be important for long-term memory consolidation, for our purposes it obscures the 

temporal specificity of the catFISH technique. To get around this, it is possible to use a different 

method of double labelling for Arc and another IEG homer1, however the protocol we used 

involved single labeling of zif268 which is not transcribed in a sustained manner and is the 

simplest method to use. In 2011, Marrone et al. showed that rats indeed exhibited location-

specific zif268 expression in the DGS. In this study, they used OVERLAP rather than the 

proportion of DOUBLES [and in Vazdarjanova and Guzowski (2004) they used SIMILARITY]. 

If we calculate OVERLAP (Figure 29A) and SIMILARITY (Figure 29B), then statistically 

speaking, we get a near significant effect demonstrating that granule cells in the DGS are in fact 

exhibiting an environment-specific pattern of zif268 expression.  
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Given that there was a location-specific pattern of cellular activity in the HF where more 

neurons were reactivated following exposure to the same context twice as opposed to a dissimilar 

activation profile (Guzowski et al., 1999) in animals that visited distinct contexts, this supports 

the notion that IEG transcription in the HF is tied to processing contextual or spatial information 

rather than simply an artifact of a non-specific response such as stress. One might expect a loss of 

spatial selectivity from CA3 to CA1 which was observed given the increased overall IEG 

expression, however, our effects were equally strong in the CA1 compared to the CA3.  

2.4.3 Phasic LC Activation Induced Global Remapping  

As we are specifically interested in how the LC-NE pathway can serve as a potential 

mechanism involved in the remapping of hippocampal contextual representations, we 

investigated how a previously established representation could remap in a familiar environment. 

We found that bilateral infusions of glutamate, which cause phasic activation of the LC, induced 

a full reset of representations in the CA3 and CA1 (while unilateral infusions only partially reset 

the system). These results are in accordance with previous studies showing that LC activation can 

induce plasticity in the HF (Mueller et al., 1981; Lacaille & Harley, 1985; Stanton & Sarvey, 

1987; Heginbotham & Dunwiddie, 1991; Dunwiddie et al., 1992; Harley & Sara, 1992; 

Klukowski & Harley, 1994; Harley, 1998; Brown et al., 2005; Jurgens et al., 2005), and suggests 

that the LC-NE system is involved in updating or globally remapping contextual representations 

in the HF. Unfortunately, we could not properly assess the role of phasic LC activation on 

remapping in the DGS since IEG expression was not contextually-mediated here (see above). We 

did find a significant difference in the number of cells labeled with cytoplasmic signal between 

the Familiar group and the Familiar Phasic Bilateral group (Figure 28B). Reasonably, we cannot 

interpret this to suggest that the glutamate-induced phasic LC discharge, which caused the release 

of NE, had an effect on IEG transcription that occurred 30 minutes prior, however, this may be 

evidence for the induction of metaplasticity where NE participates in the regulation of synaptic 

plasticity processes (Abraham & Bear, 1996). One possibility is that in addition to causing IEG 
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transcription to occur in different cells than the cells that were previous activated (global 

remapping), NE affected the stability of micro RNAs (miRNAs) that interact with IEG mRNA to 

keep the window of time during which protein can be translated open longer (mRNA stability) as 

miRNAs are one of the most important regulators at the post-transcriptional level (Chen et al., 

2017). Mature miRNAs are short non-coding transcripts (18-25 nucleotides) which can bind to 

target mRNAs to negatively regulate their expression (Sun et al., 2015). A potential candidate 

miRNA is miR-124 which is abundantly found in the mammalian brain (Sun et al., 2015) and 

normally inhibits zif268 (Yang et al., 2012). It is plausible that NE can inhibit miR-124 

expression thereby enhancing the stability of zif268, a relationship yet to be characterized. In 

oysters (Crassostrea gigas), a NE-responsive miRNA has been found (Chen et al., 2017). And 

miR-124 downregulation has been observed following administration of xenobiotic compounds 

such as cocaine, fluoxetine, and methadone (Rodrigues et al., 2011) as well as endogenous 

compounds such as estrogen (Katchy & Williams, 2016), corticosterone (Dwivedi et al., 2015) 

and key biogenesis enzymes such as Dicer and Drosha (Gulyaeva & Kushlinskiy, 2016). Since 

zif268 is an important transcriptional regulator required for the maintenance of LTP and long-

term memory (Hall et al., 2001; Jones et al., 2001), it is possible that NE could facilitate the 

expression of zif268 in this manner. One of the ways to test this would be to examine whether NE 

affects the levels of other genes regulated by mir-124 and / or looking at mir-124 levels directly. 

Furthermore, following memory retrieval, the expression of Zif268 protein in the DG is more 

prolonged compared to Arc (Lee et al., 2004; Besnard et al., 2014). Our manipulation engaging 

noradrenergic circuitry may have enabled some mechanisms related to memory retrieval 

warranting further testing.  

Unilateral infusions of glutamate in the LC were only able to partially reset hippocampal 

representations. This is likely due to the fact that the left and right hippocampi are interconnected 

(Fanselow & Dong, 2010), therefore inconsistency from converging information from each 

hemisphere resulted in only a partial reset. There are contralateral hippocampal projections from 
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the CA3 to the CA1 present (Shinohara et al., 2012) and in the rat (but not in mice) (van Groen et 

al., 2003) these projections also exist from the EC to the DG, CA3, and CA1 (Witter, 2007). 

Computational models of hippocampal function tend to focus on network coherence and partial 

remapping represents a state of incoherence (Jeffery, 2011) or engram-instability. HF 

representations likely transition to a more stable state with time and continued learning until 

consistency is achieved and interference overcome (Colgin et al., 2008). We were unable to 

examine what these representations would have looked like at a future time point, although this 

would have been interesting to investigate.  

2.4.4 Tonic LC Activation Failed to Induce Global Remapping  

Given that both phasic and tonic LC activity can effectively induce plasticity-related 

changes within the HF in a b-adrenergic manner, we hypothesized that infusion of 

pharmacological agents that cause tonic LC discharge would also induce global remapping. 

While phasic LC activation fully reset hippocampal contextual representations, increasing tonic 

LC discharge failed to induce remapping. This is consistent with the fact that detection of novel 

stimuli in the environment is associated with phasic rather than tonic LC activation, and it 

plausible that remapping would occur only when new learning is taking place to promote 

behavioural adaptation. For instance, remapping has been shown to occur in the HF when mice 

are contextually fear-conditioned, and then again during extinction learning (Wang et al., 2012c, 

2015). Furthermore, if phasic LC activity can act as a modulatory switch recruiting new neurons 

to create new contextual representations or update existing ones, then tonic LC discharge may be 

providing a gating mechanism that tunes the phasic LC signal. The interaction between optimal 

responding to salient stimuli (phasic) and moderate LC tonus to promote focused attention has 

already been demonstrated (Aston-Jones and Cohen, 2005). One possible explanation put forth by 

Sebastian Bouret (personal communication) is that an increase in tonic discharge could 

potentially reset the system in a way where it is continuously being reset repeatedly but is not 
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able to settle into a final resting state that drives remapping. This is an interesting hypothesis, if 

this were the case, from a theoretical perspective we could imagine that the subsequent NE 

release that occurs following LC activation is not necessarily driving remapping effects but 

instead, the suppression of discharge that occurs following activation that is only associated with 

phasic responses. However, this is unlikely for two reasons, 1) animals that were given clonidine 

in the LC and placed in the same environment twice experienced a suppression of discharge in the 

LC but no associated remapping; 2) the argument itself is tautological since our operational 

definition of reset is equated with remapping, and therefore a constant stream of network-reset 

activity would hypothetically involve the recruitment of many different cells and the subsequent 

transcription of IEGs in these cells which we did not detect. If the brain were indeed a computer 

we could easily define what resetting the system means but in terms of neural coding, this has 

proven a challenging task.  

2.4.5 Clonidine Failed to Block Remapping  

We were able to partially block novelty-induced remapping in the CA1, but not the CA3, 

by administration of clonidine in the LC. The LC responds to sudden changes in the environment 

and is thought to promote adaptive behaviour in the face of these changes. Changes in the 

environment are associated with increased arousal and NE release, and these effects are opposed / 

regulated by presynaptic α-2 adrenergic receptors which exert tonic inhibitory control over NE 

release (Langer, 1981; Schoffelmeer & Mulder, 1983; Quintin et al., 1986; Washburn & Moises, 

1989; Berridge et al., 1993; Sara et al., 1993; Kawahara et al., 1999) yet few studies have 

explored the topic of autoreceptor-mediated inhibition of NE-mediated synaptic plasticity in the 

brain (Washburn & Moises, 1989; Jedema et al., 2008). If remapping can be induced by 

activation of the LC-NE system then it stands to reason that suppression of LC firing using the α-

2 adrenergic agonist clonidine should be able to block this effect (Svensson et al., 1975; Warsh et 

al., 1981). Surprisingly, our results do not support this.  
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At low doses, clonidine diminishes NE levels (Svensson et al., 1975) but at higher doses, 

clonidine can increase NE by producing agonist effects at post-synaptic α-1 adrenergic receptors 

(Andén et al., 1970; Svensson et al., 1975; Grant & Redmond, 1981). In rabbits, intracerebral 

ventricular administration of a low dose (0.5ug) of clonidine reduced theta rhythmicity in the MS 

and hippocampal electroencephalographic (EEG) (Kitchigina & Kutyreva, 2002; Kitchigina et al., 

2003) whereas a higher dose (5ug) had the opposite effect (Kitchigina and Kutyreva, 2002). It is 

possible that we used a dose that was too high to inactivate the LC. Berridge et al. (1993) showed 

that unilateral inactivation of the LC with clonidine did not affect hippocampal EEG activity, but 

bilateral clonidine infusions were able to fully suppress neuronal discharge in the LC and EEG 

activity. In this study, they used a molar concentration of 4.35mM and 35-150nl of infusate. This 

is very close the concentration (3.75mM) and volume we used (200nl) therefore it is unlikely that 

the reason we were not able to block remapping was due to the dose we used. Another possibility 

why clonidine failed to block remapping may be that inhibition of spatial or contextual inputs 

does not simply promote the strengthening of connections that expressed the original place map 

(Schoenenberger et al., 2016). Inhibition may induce desynchronization which in turn, could 

promote the assembly of new maps. For instance, inhibitory neurons show stronger firing when 

an animal is first presented with a new environment and less firing later on suggesting that 

inhibition is a critical first component of the remapping process (Wilson & McNaughton, 1993; 

Schoenenberger et al., 2016). However, clonidine administered to the A/A group did not induce 

remapping. We believe the most parsimonious explanation may be that clonidine abolishes tonic 

LC activity (not associated with remapping), but not necessarily phasic LC activity (which drives 

remapping). More specifically, clonidine has a global inhibitory effect on LC firing but if the 

animal is stimulated (e.g. loud sound), LC neurons can still be activated transiently (Saunier et al., 

1993). Therefore, exposure to a new context can still be processed by the LC even after clonidine 

administration. It is also possible that contextual / spatial changes were likely detected through 

parallel inputs such as sensory pathways that can potentially shape HF representations despite 
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inhibitory influence from the LC.  Our results regarding clonidine are not entirely surprising since 

it is notoriously difficult to block remapping (personal communication with Jill Leutgeb). 

Muscimol inactivation of the MS failed to prevent the emergence of new spatial representations 

which suggests that the persistence of new place fields can occur despite aberrations in theta. Our 

findings add to this, demonstrating that new contextual representations can emerge after 

inactivation of the LC.  

Interestingly, impairments in rate remapping, where place fields are retained but cells 

alter their firing properties in response to small changes in the environment (e.g. color / shape) 

(Fyhn et al., 2007), have been observed ipsilaterally following lesions to the lEC (Lu et al., 2013). 

If global remapping is largely driven in a feed forward manner from grid cell inputs originating in 

the mEC (Brandon et al., 2014), then hypothetically, reduced input via inactivation of the mEC 

may be able to disrupt global remapping. However, Miao et al. (2015) and Rueckemann et al. 

(2016) recently showed that inactivation of the mEC induced place cell remapping rather than 

blocking it. It has also been found that NE can facilitate GABAergic transmission in the EC. 

Together these findings suggest that phasic activation of the LC appears to contribute to inactivity 

in the mEC possibly driving a desynchronization effect in the CA3 and CA1 through direct 

projections from the mEC to both these regions (van Groen et al., 2003) and causes the release of 

NE in the DG, in both cases promoting global changes in map stability. Future experiments will 

be focused on verifying that this is indeed a BAR-dependent effect with the use of drugs such as 

propranolol, to block the recruitment of new neurons.   

2.5 Summary  

Through the activation of the LC during important events, NE is involved in the 

acquisition of new information and therefore, plays a crucial role in the encoding of new 

memories. The current study shows that the LC-NE system is involved in the recruitment of new 

neurons during memory encoding whereby post-encoding neuronal activity and plasticity 

promotes the consolidation of hippocampal-dependent memory (Takeuchi et al., 2016) and the 
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stabilization of hippocampal contextual representations. When new information is encountered or 

contingencies in the environment are detected, these representations require updating through 

global remapping of these contextual representations in the HF. As the mechanisms by which 

remapping occurs remain elusive, we have shown that phasic activation of the LC can induce 

plasticity in the HF resulting in the recruitment of new neurons and a global reorganization of 

hippocampal representations. Several recent studies have shown that structures within the brain 

such as the HF are heterogeneous in nature comprised of many subpopulations of cells projecting 

to different regions, supporting different faculties. For instance, cells within the CA1 that project 

to layer V of the EC are involved in memory encoding while those projecting from CA1 to the 

subiculum are involved in retrieval (Ritchey, 2017). Our results show a relationship between 

phasic, bilateral LC activation and the recruitment of new neurons; it is possible that activation of 

the LC-NE system does this in such a way where it directs activity away from the CA1-subiculum 

pathway implicated in retrieval and instead along this CA1-EC pathway thought to support 

encoding. Our results are in accordance with Seymour Kety’s hypothesis (1970) regarding 

biogenic amine-facilitated memory through the enhancement of neuronal activity during 

affectively important events, and Bouret & Sara’s (2005) network-reset hypothesis which 

suggests that the LC-NE system induces a ‘‘reset’’ in its target structures, by interrupting existing 

functional networks and facilitating the emergence of new ones. We have demonstrated that the 

LC-NE system, implicated in shifting attention to environmental imperatives (Sara, 2009), is a 

potential mechanism for global remapping through the promotion of plasticity acting as a 

modulatory switch recruiting new neurons to create new contextual representations when 

necessary and likely updating existing representations in the presence of new information.  
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3.0 Norepinephrine as a Memory Reset Signal: Switching the System from Retrieval 

Back to Encoding During a Spatial Memory Task can be Both Adaptive and 

Maladaptive 

3.1 Introduction 

The LC responds to a number of salience cues, including novelty in the environment, and 

sends a major noradrenergic projection to the HF (Aston-Jones & Bloom, 1981; Vankov et al., 

1995; Berridge & Waterhouse, 2003; Harley, 2007b; Aston-Jones & Waterhouse, 2016). 

Activation of the LC causes the release of NE (Blackstad et al., 1967; Fuxe et al., 1968; 

Ungerstedt, 1971; Pickel et al., 1974; Ross & Reis, 1974; Lindvall & Björklund, 1974; Morrison 

et al., 1978; Dahl & Winson, 1985; Harley & Milway, 1986; Harley et al., 1989; Babstock & 

Harley, 1992; Frizzell & Harley, 1994; Klukowski & Harley, 1994; Walling & Harley, 2004; 

Lemon et al., 2009) and induces downstream plasticity effects in the HF resulting in increased 

excitability (Lacaille and Harley, 1985; Stanton and Sarvey, 1985; Harley, 1991; Hagena et al., 

2016) and LTP (Bliss et al., 1983; Neuman & Harley, 1983; Gray & Johnston, 1987; Hopkins & 

Johnston, 1988; Walling & Harley, 2004; Almaguer-Melian et al., 2005; Lashgari et al., 2008; 

Lim et al., 2010; Walling et al., 2011; Hagena et al., 2016) both of which are BAR-dependent in 

these circumstances (Kitchigina et al., 1997). It has been proposed that activation of the LC-NE 

system induces changes in network dynamics occurring at critical times when learning is 

necessary to promote adaptive behaviour (Sara et al., 1994; Bouret & Sara, 2005; Hagena et al., 

2016). These network configurations function to “reset” the system and as such, this hypothesis 

has been referred to as the network-reset hypothesis (Bouret & Sara, 2005).  Given the direct 

projections from the LC to the HF, and the abundance of BARs in the HF, we are interested in 

how the LC-NE system exerts modulatory influence over hippocampal contextual 

representations. More specifically, to what degree is the LC-NE system involved in the formation 

of new episodic memories, and in updating existing memories to incorporate new information? 
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We hypothesize that the LC-NE system can bias the memory system towards the process 

encoding. Encoding is the first step in memory formation. It is the process that takes place 

following episodes of learning, which recruits populations of neurons in the HF that form 

representations of the contextual elements pertaining to those episodes, that can later facilitate 

memory retrieval processes (Guzowski et al., 1999; Chawla et al., 2005; Ramirez-Amaya et al., 

2005; Vazdarjanova et al., 2006; Rowland et al., 2011; Pevzner et al., 2012; Josselyn et al., 2015; 

Tonegawa et al., 2015a, 2015b; Eichenbaum, 2016). As memories are acquired, they can either 

last a short time (i.e. short-term memory or working memory), or they can gain permanence 

through consolidation (Frey et al., 1988; Meiri & Rosenblum, 1998; Schafe et al., 1999; 

Miyashita et al., 2008). Tasks that involve memory retrieval require reactivation of the 

representations formed during encoding (Garner et al., 2012; Liu et al., 2012, 2013, 2014; 

Ramirez et al., 2013). 

Novelty-associated activation of the LC can induce alterations in hippocampal contextual 

representations. We recently showed that following placement in a familiar environment, a 

situation in which established representations are nearly always reactivated, phasic activation of 

the LC via bilateral glutamatergic infusions can fully remap these representations. This 

observation is consistent with the idea that NE provides a “reset” signal causing the HF to recruit 

distinct populations of neurons in the presence of new information suggesting that the LC-NE 

system is involved in the mechanism by which global remapping occurs. The way in which this 

“switch” between encoding and retrieval may separate memories and promote adaptive behaviour 

remains poorly understood. This is particularly true since a dysregulation in memory “updating” 

may underlie the pathology of anxiety disorders such as PTSD (Maren et al., 2013; Morrison & 

Ressler, 2014; Giustino et al., 2016; Liberzon & Abelson, 2016; Elsey & Kindt, 2017; Lee et al., 

2017; Sheynin & Liberzon, 2017). 

In the current study, we sought to investigate the role of NE in encoding and retrieval 

processes of the HF. There is an abundance of research to show that the NE system mediates 
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different stages of memory through a neuromodulatory effect (McGaugh et al., 1990; Do Monte 

et al., 2008) but how does this fit with the network reset hypothesis? We hypothesize that NE 

resets the memory system in such a way that it causes the HF to move from a state of retrieval 

back to a state of encoding when it is necessary, when novel information needs to be 

incorporated. This hypothesis suggests that the effect of modulating NE on memory will critically 

depend on the stage of training. To further understand how NE modulation of hippocampal 

circuits affects spatial memory, we tested whether infusions of the BAR-agonist isoproterenol 

would impair working and reference memory retrieval (i.e. switching the system back to 

encoding when it is maladaptive) and whether infusions of the BAR-antagonist propranolol 

would have the opposite effect. Given that LC neurons exhibit plasticity as a function of 

environmental contingency changes (Sara & Segal, 1991) to promote adaptive behaviour, we also 

tested whether isoproterenol could, in contrast, enhance cognitive flexibility thus improving 

reversal learning (i.e., switching the system back to encoding when it is adaptive).  

3.2 Materials and Method 

3.2.1 Animals 

Experiments included 98 adult, male Fischer-344 rats (Harlan Indianapolis, IN). Sixty-

seven of these rats were 16 weeks old at the start of the study and weighed in the range of 325-

375g.  Fifty-two of these animals were tested on Delayed Non-Match to Positon (DNMP), while 

15 animals were tested on the Elevated Plus Maze (EPM). A further 21 were ten weeks old at the 

start of the study weighing in the range of 300-350g which were tested on the Barnes Maze 

(Barnes, 1979). Rats were housed in standard transparent Plexiglas cages (47.6cm L x 26.0cm W 

x 20.3cm H), pair-housed initially and then single-housed after surgery. They were kept on a 

12:12hr reverse light cycle (lights ON at 7pm) and were provided with food and water ad libitum 

until they recovered from surgery after which the animals in experiment 3 were food restricted to 

90% of their free fed body weight and the animals in experiments 4 & 5 remained on an ad 



 
     

 

106 

libitum diet. All procedures were approved by the Wilfrid Laurier University Animal Care 

Committee in accordance with the guidelines of the Canadian Council on Animal Care.  

3.2.2 Apparatuses  

           3.2.2.1 Delayed Non-Match to Position (DNMP) Task  

For the DNMP task, we used a radial arm maze (122cm in diameter; Stoelting Co., Wood 

Dale, IL), which consisted of 12 grey, equidistantly spaced, polyethylene arms (50cm L x 10cm 

W x 13cm H) that radiated from a small circular rotating central platform. The maze rested on a 

table, elevated 84cm from the ground, located in the center of the room (2.44m L x 2.24m W x 

2.95m H) and extra-visual cues (geometric shapes) were positioned on the walls. Other visual 

cues included a computer in one corner of the room. 

            3.2.2.2 Elevated Plus Maze (EPM)  

Anxiety and locomotor activity was measured using a grey polyethylene EPM (Stoelting 

Co., Wood Dale, IL) consisting of two open and two closed runways (50cm L x 10cm W x 40cm 

H) elevated 40cm from the ground. EPM testing took place in a smaller room (1.83m L x 1.78m 

W x 2.95m H) where the maze was positioned in the center. 

             3.2.2.3 Barnes Maze  

The Barnes maze consisted of a grey circular polyethylene disk (122cm in diameter) with 

20 circular equidistant holes (10cm in diameter; 9.65cm between holes) located around the 

perimeter of the maze (1.3cm from the edge). The maze was elevated 90cm from the ground and 

beneath each hole was a slot where an escape box (35.56 L x 13.34cm W x 10.16cm H) or a 

“false” escape box (11.43cm L x 13.34cm W x1.9cm H) could be inserted. For any given trial 

19/20 holes were connected to a false escape box and only 1 hole lead to the true escape box. The 

false escape boxes were significantly smaller than the true escape box; therefore, rats could not 

escape the maze via these boxes. Their main purpose was to conceal any visual cues that may be 

apparent from a distance or through an open hole. Four bright white lights (150W) were mounted 
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above the maze, which illuminated the entire maze area. The rest of the room was dark when 

testing. The maze was located in the center of a larger room (4.5m L x 3.35m W x 2.95m H) and 

extra-visual cues (geometric shapes) were positioned on the walls. Other visual cues included 

several desks and cabinets. To record behaviour in all three testing rooms, a webcam connected to 

a computer running ANY-maze tracking software (Stoelting Co., Wood Dale, IL) was mounted 

above each apparatus on the ceiling and behaviour was tracked using ANY-maze software 

(Stoelting Co., Wood Dale, IL). 

3.2.3 Surgery 

For four consecutive days prior to surgery animals were weighed, handled for 15 

minutes, and given 20g of a nutritionally complete dietary supplement containing trimethoprim / 

sulfamethoxazole antibiotic (MediGel® TMS; ClearH20, Westbrook, ME) in addition to their 

regular diet in their home cage. On the following day, rats underwent implantation of a bilateral 

guide cannula. Several days prior to surgery, two 22-gauge stainless steel guide cannulas (Plastics 

One, Roanoke, VA) were cemented together to form a bilateral cannula and then left to dry. The 

next day they were autoclaved and again left to dry. At the start of surgery, rats were deeply 

anesthetized with 5% isoflurane and 70% oxygen, (induction) and maintained at a level of 2-3% 

isoflurane for the duration of the surgery. They were anchored in a stereotaxic frame with ear bars 

to ensure a flat skull surface and prepped for aseptic surgery. Rats were administered a sub-

cutaneous (s.c.) injection of ketoprofen (Anafen®; Sigma Aldrich, Oakville, ON; 0.15ml of a 10 

mg/mL solution) for general analgesia, and 3ml of sterile physiological saline (0.9%; s.c.) for 

fluid replacement in case of blood loss. A midline incision was made on the scalp and six holes 

were drilled. Each rat was implanted with the bilateral cannula (8mm in length, Plastics One, 

Roanoke, VA) aimed at the dentate gyrus with the coordinates: AP -3.3mm, ML +/-2.1mm, DV -

4.2mm (from skull) relative to Bregma (Paxinos & Watson, 2005). Cannulae were anchored to 

the skull with four skull screws (0-80, Plastics One, Roanoke, VA) and dental acrylic. At the end 

of surgery stainless steel stylets (flush with guide) were screwed into the cannulae to ensure 
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patency and rats were placed on a heating pad for 1 hour. They were given an additional 0.15ml 

injection (s.c.) of ketoprofen 24 hours later and allowed 7 days for recovery undisturbed except 

for daily weighing. During the first four days of recovery rats continued to receive 20g of TMS in 

their home cage and were given their regular diet mixed with water in mashed form in addition to 

regular chow pellets.   

3.2.4 Drugs and Infusions  

Rats received either (-)-isoproterenol bitartrate (ISO; 10ug/ul dissolved in sterile saline; 

Sigma Aldrich, Oakville, ON) or (+/-) -propranolol hydrochloride (DL) (PRO; 3ug/ul dissolved 

in sterile saline; Sigma Aldrich, Oakville, ON). Given that few experiments have targeted the DG 

with these specific drugs in awake, freely-moving animals, the doses we chose were based on an 

exhaustive literature search (Table 6). We decided to infuse 5ug in the DG of each hemisphere 

since Geyer and Masten, (1989) found that infusion of a similar amount resulted in an increase in 

diversive exploration. For PRO, no studies had targeted the DG specifically. Ji et al. (2003) and 

Chai et al. (2014) found impaired memory consolidation and a blockade of NE-facilitated 

memory enhancements when they targeted the CA1 (5ug per side), however, Hatfield and 

McGaugh (1999) and Barsegyan et al., (2014) found spatial memory impairments and diminished 

NE-facilitated memory enhancements with smaller amounts (0.3, and 1ug) when targeting the 

BLA. Therefore, we decided to use 1.5ug for PRO. For each infusion, stylets were unscrewed 

from each rat’s cannulae and a 30-gauge infusion cannula (1mm below pedestal) connected via 

polyethylene tubing (PE-10) to a 10-µL Hamilton syringe mounted onto a microfluidic infusion 

pump (Harvard Apparatus, model: 70 -2000, Holliston, MA) was inserted into the guide 

cannulae. Rats were infused with 0.5µL on either side of the brain at a rate of 0.5µL/min and the 

infusion cannula was left in place for 1 minute post-infusion to ensure that the liquid had diffused 

from the injection site.  
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Table 6. 

 

(Geyer & Masten, 1989; Hatfield & McGaugh, 1999; Straube et al., 2003; Ji et al., 2003; Walling & Harley, 2004; Sun et al., 2005; Berlau & McGaugh, 
2006; Qi et al., 2008; Alsene et al., 2011; Barsegyan et al., 2014; Lethbridge et al., 2014; Hansen & Manahan-Vaughan, 2015b; Garrido Zinn et al., 2016) 
 

3.2.5 Experiment 3: DNMP Procedure 

The DNMP task consisted of four stages: (1) Habituation (2) Pre-training (3) Acquisition-

training and (4) Testing. A timeline of the procedure is outlined in Figure 36.  

 

Figure 37. Schematic depicting the experimental timeline of the DNMP study. There were four major stages: (1) 
Habituation (2) Pre-training (3) Acquisition training and (4) Testing 3.2.5.1 Habituation. Habituation lasted for 
4 days. On day 1, rats were given one 20-minute habituation trial where they freely explored the maze. All 12 
arms were open and baited with a reward placed in a small plastic grey cup at the end of the arm. The next day 
rats were given two 10-minute trials (inter-trial interval = 1 hr) in the maze with 6 arms open and baited. For 
the next two days, they were given two 5-minutes trials a day with 3 arms open and baited. On day 5 rats began 
Pre-training.  

Authors	 Drug	 Manufacturer	

Concentration	

(mM)

Concentration	

(ug/uL)

volume	infused	

(per	side,	uL)

infusion	rate	

(ul/min)

Duration	

(min)

Total	mass	(per	

side;	ug) Target

Geyer	&	Masten,	1989 L-isoproterenol	hydrochloride Sigma	 0.4 0.1 20 0.333 60 2 DG	(bilateral)

Geyer	&	Masten,	1989 L-isoproterenol	hydrochloride Sigma	 1.2 0.3 20 0.333 60 6 DG	(bilateral)

Sun	et	al.,	2006 L-isoproterenol	hydrochloride Sigma	 400 99.088 2 0.0667 30 198.176 CA1	(bilateral)	

Qi	et	al.,	2008 L-isoproterenol	hydrochloride Sigma	 40.3682 10 1 0.5 2 10 CA1	(bilateral)	

Alsene	et	al.,	2011 L-isoproterenol	hydrochloride Sigma	 12.1104 3 0.5 0.5 1 1.5 dorsal	HF	(bilateral)

Alsene	et	al.,	2011 L-isoproterenol	hydrochloride Sigma	 40.3682 10 0.5 0.5 1 5 dorsal	HF	(bilateral)

Alsene	et	al.,	2011 L-isoproterenol	hydrochloride Sigma	 121.1045 30 0.5 0.5 1 15 dorsal	HF	(bilateral)

Lethbridge	et	al.,	2014 L-isoproterenol	hydrochloride Sigma	 0.0001 0.0000247 1 0.08 12 0.0000247 DG	(bilateral)

Lethbridge	et	al.,	2014 L-isoproterenol	hydrochloride Sigma	 0.001 0.000247 1 0.08 12 0.000247 DG	(bilateral)

Lethbridge	et	al.,	2014 L-isoproterenol	hydrochloride Sigma	 0.01 0.00247 1 0.08 12 0.00247 DG	(bilateral)

Lethbridge	et	al.,	2014 L-isoproterenol	hydrochloride Sigma	 0.1 0.0247 1 0.08 12 0.0247 DG	(bilateral)

Hansen	&	Manahan-

Vaughan,	2015 L-isoproterenol	hydrochloride Tocris 16.1473 4 5 1 5 20 ICV	(single	injection)

Garrido	Zinn	et	al.,	2016 L-isoproterenol	hydrochloride Sigma	 80.7363 20 0.5 0.5 1 10 BLA	(bilateral)	

Garrido	Zinn	et	al.,	2016 L-isoproterenol	hydrochloride Sigma	 40.3682 10 1 1 1 10 CA1	(bilateral)	

Current	Study	 isoproterenol-bitartrate	 Sigma	 47.335 10 0.5 0.5 1 5 DG	(bilateral)

Hatfield	&	McGaugh,	1999 propranolol	hydrochloride Sigma	 5.0708 1.5 0.2 0.5 0.4 0.3 BLA	(bilateral)

Ji	et	al.,	2003 propranolol	hydrochloride Sigma	 16.9027 5 1 0.5 2 5 CA1	(bilateral)	

Straube	et	al.,	2003 propranolol	hydrochloride Sigma	 0.00676 0.0019996 5 1.25 4 0.009998 ICV	(single	injection)

Walling	&	Harley,	2004 propranolol	hydrochloride Sigma	 20.284 6 5 1 5 30 ICV	(single	injection)

Berlau	&	McGaugh,	2006 propranolol	hydrochloride Sigma	 8.4517 2.5 0.2 0.38 0.5333 0.5 BLA	(unilateral)

Qi	et	al.,	2008 propranolol	hydrochloride Sigma	 50.7082 15 1 0.5 2 15 CA1	(bilateral)	

Barsegyan	et	al.,	2014 propranolol	hydrochloride Sigma	 1.6903 0.5 0.2 0.4 0.5 0.1 BLA	(bilateral)

Barsegyan	et	al.,	2014 propranolol	hydrochloride Sigma	 5.071 1.5 0.2 0.4 0.5 0.3 BLA	(bilateral)

Barsegyan	et	al.,	2014 propranolol	hydrochloride Sigma	 16.9033 5 0.2 0.4 0.5 1 BLA	(bilateral)

Chai	et	al.,	2014 propranolol	hydrochloride Sigma	 33.8055 10 0.5 0.5 1 5 CA1	(bilateral)	

Hansen	&	Manahan-

Vaughan,	2015 propranolol	hydrochloride Tocris	 1.3522 0.4 5 1 5 2 ICV	(single	injection)

Current	Study	 propranolol	hydrochloride Sigma	 10.142 3 0.5 0.5 1 1.5 DG	(bilateral)
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           3.2.5.1 Pre-Training 

Pre-training lasted for 10 days. During this phase rats were given two trials a day with 

only one arm open and baited. The goal was to train the rats to retrieve the reward in less than 2 

minutes. By the tenth day all rats were able to do this. On day 14, rats began acquisition training.  

            3.2.5.2 Acquisition Training 

During acquisition, animals received 4 trials a day. Each trial consisted of two phases: the 

sample phase and the choice phase, which were separated by a 10-minute delay. During the 

sample phase, all arms except the sample arm were blocked off. The rat was placed in the center 

of the maze and permitted to visit the sample arm and obtain half a Froot Loop®. The time it took 

to obtain the reward was recorded. Once the animal retrieved the reward, he was left in the maze 

for an additional 10 seconds to promote memory for the sample arm location using extra-maze 

cues. The rat was then placed back in his home cage and 10 minutes later tested on the choice 

phase. During the 10-minute delay, the maze was rotated to eliminate the possibility of odour 

being used as an intra-maze cue. This rotation allowed the preservation of the arm location but 

the arm itself was a different arm.  

During the choice phase, the previously rewarded sample arm was now “unrewarded”. 

An additional correct arm was open and “rewarded”. The cups in each of the two arms appeared 

identical from afar and in fact they both contained half a Froot Loop®, but the cup in the 

unrewarded arm contained a mesh overlay that did not allow the rat access to the reward. When a 

rat chose the incorrect arm (i.e., entered the sample/unrewarded arm), he was permitted to self-

correct this behaviour. If the rat re-entered the incorrect arm it was considered an additional error. 

When a rat made a correct choice, he was given an additional full Froot Loop® in the home cage 

immediately after the trial ended. Correct arms varied in distance from the sample arm by a 

spatial separation of 2 (S2, Low), or 5(S5, High) arms (Figure 37 schematic), see section below 

entitled: 3.2.6 Pilot Experiments. For the choice phase, the time it took to reach the reward was 
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recorded along with whether the animal made the correct choice and if not, how many errors were 

made.  

 

Figure 38. Schematic showing the DNMP task in the radial arm maze. In the Sample phase one arm is open and 
baited and animals are trained to obtain a reward from this arm. After a delay of 10 minutes, in the Choice 
phase, animals are placed back in the maze and presented with a choice between the previously rewarded arm 
and the new arm. These two arms are separated by either 2 (low separation, difficult, DG-dependent) or 5 (high 
separation, easy, DG-independent) arms. For successful performance, animals must remember the location of 
the previously rewarded arm, and instead enter the new arm to receive a reward.  
 

Rats were given 4 trials (sample + choice phases) per day (2 Low & 2 High) of pseudo-

randomly presented combinations of sample + correct arms (counter balanced for clockwise and 

counter clockwise permutations) (Tables 7 & 8). All rats were tested on trial 1 before trial 2 

began with an inter-trial interval of 90 minutes. They were trained until a criterion of 4/6 correct 

choices were made on S5 trials across 3 consecutive days, with rats reaching this criterion within 

6-7 days of acquisition training. 

One hour after the last acquisition training trial, stylets were unscrewed from each rat’s 

cannulae, and the infusion cannula was inserted to make sure that the cannula was not blocked. 

The infuser was left in the cannula for two minutes on each side of the brain to simulate what 

would occur during testing but no fluid was delivered. This was done in attempts to reduce the 

elicitation of a nonspecific stress response on test day. Following this, the dust caps were screwed 

back in and then animals were returned to their home cage.  The following day testing began.  
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Table 7 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Combinations of Arm Separations used for Acquisition and Washout  

5	CW	 5	CCW	 2	CW	 2	CCW	 	

Sample	
Arm	

Choice	
Arm	

Sample	
Arm	

Choice	
Arm	

Sample	
Arm	

Choice	
Arm	

Sample	
Arm	

Choice	
Arm	

Day		

	

2	 7	 11	 6	 3	 5	 12	 10	 A1	

11	 4	 8	 3	 7	 9	 6	 4	 A2	

6	 11	 9	 4	 12	 2	 5	 3	 A3	

7	 12	 10	 5	 6	 8	 11	 9	 A4	

9	 2	 4	 11	 8	 10	 7	 5	 A5	

3	 8	 12	 7	 9	 11	 4	 2	 A6	

12	 5	 3	 10	 5	 7	 2	 12	 W1	

4	 9	 7	 2	 10	 12	 9	 7	 W2	

10	 3	 5	 12	 4	 6	 10	 8	 W3	

5	 10	 2	 9	 2	 4	 8	 6	 W4	

Note: Animals were tested with an arm separation of 2 or 5 counterbalanced for clockwise and counter-
clockwise directions. (define abbrevs) The testing order is shown in Table 8.  
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Table 8.  

 

 
 
 
 
 

Training Schedule: Order of S2 and S5 Trials During Acquisition and Washout  

	

Note: Rats received 4 trials / day. R = Clockwise, L = Counter-clockwise 

 

Rat		 Trial	1	 Trial	2	 Trial	3	 Trial	4	

1	 5R	 2L	 2R	 5L	

5	 5R	 2L	 5L	 2R	

9	 5R	 2R	 2L	 5L	

13	 5R	 2R	 5L	 2L	

17	 5R	 5L	 2R	 2L	

21	 5R	 5L	 2L	 2R	

2	 5L	 2L	 2R	 5R	

6	 5L	 2L	 5R	 2R	

10	 5L	 2R	 2L	 5R	

14	 5L	 2R	 5R	 2L	

18	 5L	 5R	 2L	 2R	

22	 5L	 5R	 2R	 2L	

3	 2R	 2L	 5R	 5L	

7	 2R	 2L	 5L	 5R	

11	 2R	 5L	 2L	 5R	

15	 2R	 5L	 5R	 2L	

19	 2R	 5R	 2L	 5L	

23	 2R	 5R	 5L	 2L	

4	 2L	 2R	 5R	 5L	

8	 2L	 2R	 5R	 5L	

12	 2L	 5R	 2R	 5L	

16	 2L	 5R	 5L	 2R	

20	 2L	 5L	 2R	 5R	

24	 2L	 5L	 5R	 2R	
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Table 9.  

 

 

 

Balanced Latin Square Design Used for Testing Schedule  

Rat	 Test	1	 Test	2	 Test	3	 Test	4	 Pattern	

1	 PS5	 PC5	 PS2	 PC2	 	DCBA	

2	 PC5	 PS2	 PC2	 PS5	 CBAD	

3	 PS2	 PC2	 PS5	 PC5	 BADC	

4	 PC2	 PS5	 PC5	 PS2	 ADCB	

5	 PC2	 PS2	 PC5	 PS5	 ABCD	

6	 PS2	 PC5	 PS5	 PC2	 BCDA	

7	 PC5	 PS5	 PC2	 PS2	 CDAB	

8	 PS5	 PC2	 PS2	 PC5	 DABC	

9	 PS2	 PS5	 PC2	 PC5	 BDAC	

10	 PS5	 PC2	 PC5	 PS2	 DACB	

11	 PC2	 PC5	 PS2	 PS5	 ACDB	

12	 PC5	 PS2	 PS5	 PC2	 CBDA	

13	 PC5	 PC2	 PS5	 PS2	 CADB	

14	 PC2	 PS5	 PS2	 PC5	 ADBC	

15	 PS5	 PS2	 PC5	 PC2	 DBCA	

16	 PS2	 PC5	 PC2	 PS5	 BCAD	

17	 PC5	 PS5	 PS2	 PC2	 CDBA	

18	 PS5	 PS2	 PC2	 PC5	 DBAC	

19	 PS2	 PC2	 PC5	 PS5	 BACD	

20	 PC2	 PC5	 PS5	 PS2	 ACDB	

Note: PC2=A; PS2=B; PC5=C; PS5=D. Infusions made Pre-Choice = PC, infusions made Pre-Sample = PS. 
Animals were tested with an arm separation of 2 or 5.  
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            3.2.5.3 Test Day  

Using a counterbalanced Latin Square design (Table 9), animals were tested on four 

different conditions on four different days with each test day separated by a washout period of 

one day (Figure 36). We used a 2x2x2 design with a between-subject factor of DRUG treatment, 

a within-subject factor of INFUSION TIME, and a within-subject factor of ARM-

SEPARATION. Rats received either ISO, (n=16) or PRO, (n=17). Rats were assigned to a drug 

treatment following acquisition, and this remained constant throughout testing. On test day, rats 

were infused 3 minutes prior to either the sample phase (Pre-Sample, PS) or the choice phase 

(Pre-Choice, PC) and were tested with an arm separation of 2 (S2, Low) or 5 (S5, High). 

Therefore, the four conditions tested were as follows: PS-S2, PS-S5, PC-S2, and PC-S5. In 

contrast to acquisition training, on each test day, instead of receiving two S2 and two S5 trials, 

animals received all four trials in the condition they were being tested (all S2 or all S5). This 

allowed us to include TRIAL as an additional within-subject factor making the design a 2x2x2x4 

design. Trial 1 was considered a habituation trial where, like the previous day, stylets were 

removed and the infusion cannula was inserted but no fluid was infused. Trial 2 served as a 

baseline trial where animals were infused with sterile saline (0.9%NaCl) and trial 3 was the test 

trial where animals received the drug treatment they were assigned to. Stylets were then replaced 

and animals were placed back in their home cages. Trial 4 was a 90-minute post-test trial. The 

next day after the final test day, rats were given one more washout session and the day after that 

they received a curtain probe test.  

            3.2.5.4 Washout Sessions and Curtain Probe  

The procedure for both the washout sessions and the curtain probe were identical to 

acquisition training. For the curtain probe, the exception was that a curtain was placed around the 

maze to obscure visual access to any extra-maze cues. The purpose of the curtain probe was to 
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demonstrate that the rats were relying on extra-maze cues to complete the DNMP task rather than 

intra-maze or interoceptive cues.  

3.2.6 Pilot Experiments 

The DNMP procedure used was adapted from Clelland et al. (2009) and Morris et al. 

(2012). In their study, it was determined that spatial discrimination was dependent on the DG 

when stimuli were presented with little separation in an eight-arm radial maze but not when 

stimuli were presented more widely apart. Therefore, we ran a pilot study in rats that did not 

undergo surgery (n=12) to specifically determine which arm separations in a twelve-arm radial 

maze would yield the most comparable results. Animals received habituation and pre-training 

trials and then 6 acquisition-training sessions. Each acquisition-training session consisted of 6 

trials (sample + choice) a day to assess performance on arm separations 1-6 (order 

counterbalanced). Given the results of our pilot experiments (Figure 41B-C), we decided to use a 

separation of 2 arms (S2, Low, 60 degrees) as the difficult, DG-dependent separation, and 5 arms 

(S5, High, 150 degrees) as the less difficult separation (Figure 37). We found that these 

separations were comparable to those used in the Clelland et al. (2009) study in terms of angular 

distance. Furthermore, Clelland et al. (2009) found that during their pilot experiments, mice were 

performing at chance levels when a one-arm separation was used (45 degrees) and the use of a 

six-arm separation (180 degrees) in our maze would not allow us to control for clockwise and 

counter clockwise permutations. 

3.2.7 Experiment 4: Elevated Plus Maze 

To assess the effects of ISO and PRO on locomotion and anxiety, a separate group of rats 

were tested in the EPM. A separate group of animals was used since there were no drug-naïve 

animals in the DNMP experiment to serve as the vehicle group for EPM testing. Rats underwent 

similar handling and surgical procedures as above. Following recovery, rats were split into 3 

groups: ISO (n=5), PRO (n=5), and vehicle (n=5). Using the same doses as above, rats were 
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given a bilateral intra-DG infusion of either ISO, PRO, or vehicle and then 3 minutes later tested 

in the EPM. Rats were placed at the junction of the four arms at the beginning of the session. 

Their behaviour was monitored for 5 minutes. Anxiety-like behaviour was assessed by measuring 

the percentage of time spent in the open arms of the maze compared to the closed arms and the 

number of entries into the open and closed arms. General locomotor activity was assessed by 

measuring the total number of arm entries (Figure 38A). 

 

Figure 39. Depiction of the (A) Elevated Plus Maze and the (B) Barnes Maze.  
 

 

Figure 40. Schematic depicting the experimental timeline of the Barnes Maze study. There were nine major 
stages: (1) Habituation (2) Acquisition training (3) Acquisition probe (4) Retraining I (5) Curtain probe (6) 
Retraining II (7) Reversal training I (8) Reversal training II-V and (9) Reversal probe.   
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3.2.8 Experiment 5: Barnes Maze  

Before testing began rats were pseudo-randomly assigned to one of four possible escape 

locations. These locations were equidistant positioned at 90-degree intervals (North, West, South, 

East). This was to prevent odour cues from becoming saturated around any one hole, although the 

maze was cleaned with 10% ethanol between trials to eliminate any odours (Figure 38B). The 

experiment consisted of nine distinct phases: (1) Habituation (2) Acquisition Training (3) 

Acquisition Probe Test (4) Retraining (5) Curtain Probe Test (6) Retraining II (7) Reversal 

Training I (8) Reversal Training II-V and (9) Reversal Probe Test (see experimental timeline Fig 

36). For all training trials, rats were grouped into squads of 3-4 where all members of a squad 

completed a given trial before subsequent trials were run. Each trial (except habituation) began 

with a 5-second acclimatization period during which the rat was being held in the start box in the 

center of the maze. Trials began automatically after the 5-second delay and the start box was 

lifted. Animals were motivated to escape from the brightly lit, open platform into the dark, 

recessed escape box due to their natural tendency to seek out dark, closed spaces. 

            3.2.8.1 Habituation 

Rats were given one 5-minute habituation trial where they freely explored the maze and 

could descend into the escape box. Once they entered the escape box, they were permitted to stay 

in the box for 30 seconds and were then removed and placed back into the center of the maze 

until the end of the 5-minutes period.  

            3.2.8.2 Acquisition Training 

During acquisition training the animal learned the spatial location of the escape box, as 

this was consistent from trial to trial. Acquisition training lasted for 12 days. For the first 4 days 

(A1-A4), rats were given three trials per day and during the following 8 days (A5-A12) this was 

reduced to two trials per day for a total of 28 trials with an inter-trial-interval (ITI) of 2 hours on 

all days. Including the habituation trial animals received a total of 29 trials prior to the 
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Acquisition Probe Test. Since each trial began with the rat in the start box, it was not possible to 

choose which direction the rat would be facing at the start of the trial. For this reason, we scored 

all the videos afterwards to determine if the direction the rats were facing at the start of the trial 

was counterbalanced. This was necessary to assess whether the rats were using a fixed motor 

response to find the escape hole.  

Each trial lasted up to 5 minutes. If the rat did not find the escape hole in that time, it was 

gently guided to the escape box. Once the rat was inside the escape box, it was left there for 30 

seconds before removing the rat and returning it to its home cage. During each trial, ANY-maze 

software recorded the rat’s latency to reach the escape hole (seconds), total distance travelled 

(cm), and path efficiency. Path efficiency is represented as an index of the efficiency of the path 

taken by the rat to get from the first position in the test (start) to the last position (escape hole). A 

value of 1 is indicative of perfect efficiency (e.g. the animal moved in a straight line from the start 

to the escape hole). It is calculated by dividing the straight-line distance between the first and the 

last position by the total distance traveled by the rat. This measure was not used during probe 

sessions, as it cannot be analyzed across time. The experimenter recorded the number of reference 

errors the animal made prior to reaching the escape hole and the number of hole-deviations there 

were between the first hole the animal visited and the escape hole. Reference errors were 

recorded as a rat dipping its head into any hole other than the escape hole. Repeated dips into the 

same hole were considered a single error. Hole deviations were quantified as the number of 

escape holes (10 maximum) between the true escape hole and the location in which the animal’s 

head first entered a false escape hole. This ranged between 0-10. The experimenter also measured 

the search strategy that was used to find the escape hole. There were three possible search 

strategies: (1) Random (RD) – this occurred when the animal moved about the maze in a random, 

un-systematic manner, searching the same hole more than once and moving into the center of the 

maze often. (2) Serial (SE) – Animals that used a serial search strategy first visited a hole more 

than two hole deviations away from the escape hole and then in a serial fashion systematically 



 
     

 

120 

checked adjacent holes until reaching the escape hole. The animals search path was classified as 

serial even if he did not make any errors but visited a location at the edge of the maze more than 

two holes away. (3) Spatial (SP) This search strategy occurred when a rat moved directly from 

the center of the maze to the correct escape hole or any hole within two hole deviations away on 

either the left or right side of the escape hole.  

One hour after the last acquisition training trial stylets were unscrewed from each rat’s 

cannulae, and the infusion cannula was inserted to make sure that the cannula was not blocked. 

The infuser was left in the cannula for two minutes on each side of the brain to simulate what 

would occur during testing but no fluid was delivered. This was done in attempts to reduce the 

elicitation of a nonspecific stress response during the acquisition probe test. Following this, the 

stylets were screwed back in and the animals were returned to their home cage.   

            3.2.8.3 Acquisition Probe 

The day following acquisition training rats were given a 5-minute probe test where the 

escape box was removed and replaced with a false escape box. The maze was rotated to ensure 

that the animals were using extra-maze visuospatial cues to find the escape hole instead of relying 

on any intra-maze cues. The maze was divided into 20 zones and the time spent in each zone was 

recorded. Other measures included latency to reach the escape hole, number of reference errors, 

hole deviations, spatial strategy, and distance traveled.  

Fifteen minutes prior to the test, rats were given an infusion of either sterile physiological 

saline or PRO and then placed back in their home cages. Seven minutes prior to the test rats were 

given another infusion of either vehicle (saline) or ISO. Infusion volume, rate, and procedure 

were the same as the previous infusion. Rats were then placed back in the home cage and tested 3 

minutes later. This resulted in four groups: vehicle-vehicle (VV; n=6), vehicle-ISO (VI; n=5) 

PRO-vehicle (PV; n=3), PRO-ISO (PI; n=3). Following the acquisition probe animals received 

two days of retraining (2 trials per day, ITI = 2hrs) to reduce any extinction learning that may 

have occurred during the acquisition probe trial.  
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            3.2.8.4 Curtain Probe 

The purpose of the curtain probe was to assess whether rats were using intra or extra-

maze cues to locate the escape box. The procedure for this test was identical to the acquisition 

probe except that animals did not receive any infusions and a brown plastic curtain was hung 

around the maze from the ceiling effectively blocking all visual access to the rest of the room. 

After this test animals received an additional two days of retraining (2 trials per day; ITI = 2hrs) 

to reduce any extinction learning that may have occurred during the curtain probe trial. 

            3.2.8.5 Reversal Training 

Reversal training was similar to acquisition training with the same dependent measures 

except that the location of the escape box was moved to the opposite side of the maze (180-

degree rotation). Rats were given 5 days of reversal training with one trial on the first day and 

two trials per day (ITI = 2hrs) after that. Similar to the acquisition probe, one hour after the last 

retraining trial stylets were unscrewed from each rat’s cannulae, and the infusion cannula was 

inserted and left in the guide cannula for two minutes on each side of the brain, stylets were then 

screwed back in and the animals were returned to their home cage.  The following day animals 

received their first reversal training trial. Fifteen minutes prior to the first reversal training trial 

rats were given an infusion of either saline or PRO. Seven minutes prior to the test rats were 

given another infusion of either saline or ISO. Rats were then placed back in the home cage and 3 

minutes later given the first reversal training trial. The groups were the same as the acquisition 

probe test (VV, n=6; VI, n=5; PV, n=3; PI, n=3). Therefore, if a rat was in a specific group during 

the acquisition probe test then that rat remained in that group for the reversal training trial. One 

hour later, rats in the VV group were split in half and were either returned to their home cages 

(VV; n=3) or given an infusion of ISO (VVI; n=3) and then returned to their cages. The 

remainder of the reversal training trials occurred in the absence of any infusions.  
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            3.2.8.6 Reversal Probe 

Following reversal training, a probe trial was given to measure how well animals 

remembered the new location of the escape hole or if perseveration of the previous response 

would occur due to the older memory of the previous escape location. The procedure for the 

reversal probe was the same as the curtain probe but without a curtain. The same measures were 

recorded.  

3.3 Histology  

Cannula placements were confirmed histologically at the end of the experiments. Rats 

were infused bilaterally with 1% methylene blue (0.5µL per side; 0.5µL/min) and the infusion 

cannula was left in place for 1 minute post-infusion to ensure that the liquid had diffused from the 

injection site. Rats were then decapitated under isofluorane anesthesia. Brains were removed and 

flash-frozen in a beaker of 2-methyl butane bathed in dry ice/ethanol and then placed at -80 

degrees. Coronal sections (35 µm) were cut on a cryostat and mounted to gelatin-subbed slides. 

Two sets of slides were taken for each brain with every other slice mounted onto slides labeled 

“A” and the next slice onto slides labeled “B”. Sections labeled “A” were left unstained and 

showed the blue dye to visualize the total area (in µm) where the drug diffused to whereas the 

corresponding slides labeled “B” were stained with nuclear fast red to visualize the cannula 

tracks. Slides were then imaged under a microscope at 4x and images from the A slides were 

superimposed onto the images of the B slides to confirm placement and diffusion site. In the 

DNMP experiment four animals in the ISO group and three animals from the PRO group were 

excluded because one or more of the cannulae were not in the correct position. For the Barnes 

Maze experiment four animals were excluded due to incorrect cannula placements in the DG.  

3.4 Data Analysis  

Statistical analyses were conducted using SigmaPlotTM version 11.0 (Systat Software, 

San Jose, CA). For the DNMP task, the dependent measures were: latency to obtain reward, 
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number of errors, and the percentage of trials where a correct choice was made. Latencies were 

collected using a timer, and the experimenter recorded the number errors, which was later used to 

calculate the percentage of correct trials. Pilot data were analyzed using one-way analysis of 

variance (ANOVA) to compare arm separations 1 through 6. Body weights, habituation, and pre-

training data were analyzed using two-way (GROUP x DAY) repeated measures (RM) ANOVAs. 

Acquisition data was analyzed using two-way (ARM-SEPARATION x DAY) RM ANOVAs. 

Test data were analyzed using three-way (GROUP x ARM-SEPARATION x TRIAL) ANOVAs 

and washout, and curtain probe data were analyzed using three-way (GROUP x ARM-

SEPARATION x DAY) ANOVAs. Pairwise comparisons were made when necessary using 

Tukey’s HSD test. In all cases, p<0.05 was accepted as significant. Error bars in graphs represent 

+/- sem; *p < 0.05. 

In quantifying the EPM data we measured distance traveled, mean speed, time spent 

immobile, line crossings, time spent in each zone of the maze, and the number of entries into the 

zones. The locomotor measures (distance, speed, line crossings, and immobility) were analyzed 

one-way ANOVAs, and the time spent in each zone, as well as the number of entries, were 

analyzed using two-way (GROUP x ZONE) RM ANOVAs. Pairwise comparisons were made 

when necessary using Holm-Sidak tests. In all cases, p < 0.05 was accepted as significant. Error 

bars in graphs represent +/- sem; *p < 0.05.  

For the Barnes maze data, we measured path efficiency, total distance traveled, latency to 

reach the escape hole, the number of hole deviations, reference errors, and characterization of the 

search path used to find the escape hole. Using a one-way analysis of variance (ANOVA) these 

data were compared across days during acquisition training. Difference scores in these measures 

were calculated between the acquisition probe and the last day of acquisition training. For each 

measure, one-way ANOVAs were then conducted to measure group differences. During each of 

the probe sessions the maze was divided into 20 equal zones and the time spent in each zone was 

recorded. Group differences in the time spent in the escape zone, and the escape quadrant (which 
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included the escape zone as well as the two zones to the left and right of the escape zone) were 

compared using a one-way ANOVA. To demonstrate whether differences in performance existed 

between the acquisition probe and the curtain probe a two-way repeated measures (RM) ANOVA 

with the between-subject factor of GROUP and the within-subject factor of SESSION was 

conducted. On the first day of reversal training group comparisons in latency to reach the escape 

hole, hole deviations, and reference errors were calculated using a one-way ANOVA. 

Performance across the rest of the reversal training days was assessed with a two-way RM 

ANOVA (GROUP by DAY). During the reversal probe, behaviour across groups was analyzed 

with a one-way ANOVA. Pairwise comparisons were made when necessary using Tukeys HSD 

test. In all cases, p < 0.05 was accepted as significant. Error bars in graphs represent +/- sem; *p < 

0.05.  

3.3 Experiment 3 (DNMP): Results 

3.3.1 Body Weight  

Using a two-way RM ANOVA with the between-subject factor of GROUP and the 

within-subject factor of DAY we saw a significant interaction (F1,44 = 2.145, p < 0.001). Rats 

gained weight throughout the experiment (data not shown).  

3.3.2 Habituation & Pre-Training  

During habituation, animals were permitted to obtain a reward in each of the arms that 

were open. Initially, all 12 arms were open, and this was gradually reduced to 3 arms across the 4 

days of habituation. Using a two-way RM ANOVA, we found that the percentage of Froot 

Loops® collected increased across days, with no group differences observed (main effect of 

DAY: F3,93 = 9.421, p < 0.001) (Figure 40A).  
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Figure 41. A) Habituation lasted for 4 days. On day 1, rats were given one 20-minute habituation trial where 
they freely explored the maze with all 12 arms open and baited. On day 2, rats were given two 10-minute trials 
(inter-trial interval = 1 hr) in the maze with 6 arms open and baited. Days 3 and 4 they were given two 5-minutes 
trials with 3 arms open and baited. On day 5 rats began Pre-training. B) Pre-training lasted for 10 days. During 
this phase rats were given two trials a day with only one arm open and baited. The goal was to train the rats to 
retrieve the reward in less than two minutes. By the tenth day all rats could do this. On day 14 rats began 
Acquisition training.  
 
 

During the pre-training phase only one arm of the maze was open and baited and the time 

it took to obtain this reward was measured. Rats were given two trials per day; a two-way RM 

ANOVA revealed that there were no group differences in the time it took to learn this behavioural 

response and that over the course of this training period, animals were able to obtain the reward 

more quickly with significantly shorter latencies emerging by pre-training day 3 (P3) [main effect 

of DAY: (F9,279 = 17.446, p < 0.001) (Figure 40B).  

3.3.3 Pilot Experiments  

To determine what number of arm separations should be used for the highly similar 

(difficult, DG-dependent) and widely separated (easy, DG-independent) low similarity conditions 

(in terms of the visual cues that would be used to discriminate them) we ran a pilot study. 

Animals in this study received habituation and pre-training, and then 6 days of acquisition 

training. We measured latency to obtain the reward, the number of errors made and the 

percentage of trials where a correct response was made. Three separate one-way ANOVAs were 

conducted on the means of the last 3 days. Animals learned to obtain the reward more quickly 
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across time (data not shown). On the last 3 days of training, there were no differences in the time 

it took to obtain the reward across all arm separations (Figure 41A). However, there were 

differences in terms of the number of errors made and the percent of correct trials. A main effect 

of ARM SEPARATION (F5,66 = 3.498, p = 0.007) showed that rats in the 2-arm separation group 

made significantly more errors compared to when the separation was 5 and 6 arms (Figure 41B). 

Likewise, a main effect of ARM SEPARATION F5,66 = 3.178, p = 0.012) also showed that rats in 

the 2-arm separation group had the lowest percentage of correct trials, which differed 

significantly from the 5-arm separation group (Figure 41C). Based on the fact that the mice in the 

Clelland et al., (2009) study were performing at chance levels when a 1-arm separation was used 

and the fact that clockwise and counter-clockwise permutations cannot be counter-balanced for a 

6-arm separation in a 12-arm radial maze we decided to use the 2-arm separation for the difficult, 

DG-dependent high similarity condition (S2, high) and the 5-arm separation for the easy, DG-

independent, low similarity condition (S5, low).  

 

Figure 42. A pilot study was run to determine which arm separations in a 12-arm radial maze would yield the 
most comparable results to Clelland et al. (2009) from which the DNMP task was adapted. Animals received 
habituation and pre-training trials and 6 acquisition-training sessions. Each acquisition-training session 
consisted of 6 trials (sample + choice) a day to assess performance on arm separations 1-6 (order 
counterbalanced). We assessed A) Latency to obtain the reward B) Number of errors made, and C) Percentage 
of correct trials. Given that animals made the most errors, and the least percentage of correct trials, in the 2-
arm separation when compared to the 5-arm separation, we decided to use these: 2-arm separation (S2, Low, 60 
degrees, difficult, DG-dependent) and 5-arm separation (S5, High, 150 degrees, less difficult separation, DG-
independent). These separations were also comparable to those used in Clelland et al. (2009) in terms of angular 
distance.  
 
3.3.4 Acquisition Training  

During acquisition, animals were given 4 trials/day (sample + choice), two S2 and two 

S5. To reach criterion, animals were required to make a correct choice on 4 out of 6 easy (S5) 



 
     

 

127 

trials over a period of 3 consecutive days.  By the 6th day of acquisition training 62.5% of the rats 

reached this criterion; the other 37.5% reached this criterion by day 7. For the analysis, we 

included the first 3 days and the last 3 days of training data for a total of 6 training days. 

Therefore, the data is inclusive for rats that took 6 days to reach criterion, and for the rats that 

took 7 days, the set excludes the data from acquisition day 4.  

A two-way RM ANOVA (ARM SEPARATION x DAY) was conducted on the latency 

to obtain the reward in the choice phase. A main effect of DAY demonstrated that animals were 

able to complete the trials more quickly across acquisition (F5,159 = 8.582, p < 0.001). Post hoc 

tests revealed that significantly lower latencies began to emerge by acquisition day 3 (A3). There 

was also a significant main effect of ARM SEPARATION (F1,159 = 13.186, p < 0.001) with 

animals taking longer to complete the trial when faced with a closer arm separation (S2) (Figure 

42A). A two-way RM ANOVA (ARM SEPARATION x DAY) was also conducted to assess 

differences in the percentage of trials where a correct choice was made. There was a significant 

main effect of DAY (F5,159 = 9.035, p < 0.001) and a significant main effect of ARM 

SEPARATION (F1,159 = 10.368, p = 0.003) (Figure 42B). At the start of acquisition training all 

rats were performing at approximately 50% error rate. As they learned the DNMP task, a 

difference in performance emerged by acquisition day 5 (A5) with rats improving in the S5 

condition to 94% by day 6 and only 65% in the S2 condition. A similar pattern emerged when we 

ran a two-way RM ANOVA on the number of errors made in the choice trials. There was a 

significant main effect of DAY (F5,159 = 8.928, p < 0.001) and ARM SEPARATION (F1,195 = 

14.144, p < 0.001) (Figure 42C). Toward the end of acquisition training (A5), rats in the S5 

condition performed the task with very few errors while rats in the S2 condition continued to find 

the task difficult.  
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Figure 43. Acquisition Training (A1-A6). Rats took 6-7 days to reach criterion. For rats that took 7 days, the set 
excludes the data from acquisition day 4. During acquisition animals received 4 trials a day, each data point 
represents the mean for those 4 trials. A) By A3, animals took significantly less time to obtain the reward, with 
rats in the 5-arm separation (S5) condition (red) outperforming the rats in the 2-arm separation (S2) condition 
(blue). All animals began training performing successfully in approximately 50% of the trials. B) By A5, animals 
in the S5 condition were demonstrating successful performance on 95% of the trials whereas animals in the S2 
condition remained at 65% demonstrating that the task is more difficult in the S2 condition. C) This same 
pattern was also evident in the number of errors made. Significant differences are denoted with an asterix (p < 
0.05).  
 
3.3.5 Test Day  

Rats were either assigned to the ISO group or the PRO group. This remained constant 

throughout testing. All rats were tested on 4 conditions: PS-S2, PS-S5, PC-S2, and PC-S5, which 

took place across four test-days (each separated by a washout day). During testing, the latency to 

obtain the reward, the number of errors, and the percent correct trials were measured. PS and PC 

data were analyzed separately. Separate three-way ANOVAs (GROUP x ARM-SEPARATION x 

TRIAL) were conducted for each dependent measure.  

            3.3.5.1 Pre-Sample Infusions  

Latency to obtain the reward. For the trials where the drug was infused 3 minutes prior to 

sample (PS) (Figure 43A), there were no significant main effects or interactions.  

Errors and percent correct trials. A three-way ANOVA revealed that rats tested in the PS 

condition made more errors (fewer correct choices) when they were administered PRO compared 

to ISO on both easy (S5) and difficult (S2) trials demonstrated by a significant main effect of 

DRUG on the number of errors (F1,248 = 4.56, p = 0.034) and percent correct trials (F1,248 = 6.486, 

p = 0.011) (Figure 43 B-C).  
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           3.3.5.2 Pre-Choice Infusions  

Latency to obtain the reward. For the trials where the drug was infused 3 minutes prior to 

the choice phase (PC) (Figure 43D), there was a main effect of ARM SEPARATION (F1,248 = 

4.947, p = 0.027) with S2 trials taking longer than S5 trials, and a significant TRIAL x DRUG 

interaction (F3,248 = 3.192, p = 0.024). Post hoc tests revealed that animals in the ISO group 

demonstrated longer latencies to obtain the reward on the test trial compared to baseline (p = 

0.008) and compared to PRO animals (p = 0.022) in the difficult (S2) condition. In the easy (S5) 

condition, post hoc analyses showed that ISO animals did not exhibit longer latencies during the 

test, but took significantly longer during the post-test compared to baseline (p = 0.002) and the 

test (p = 0.034) and that during the post-test there was a significant difference between ISO and 

PRO animals (p = 0.006).  

Errors and percent correct trials. When the same analysis was conducted on the number 

of errors made during the choice phase, there was a main effect of DRUG (F1,248 = 4.609, p = 

0.033). Animals made more errors when they were administered ISO in both S2 and S5 trials, 

however, this effect was more pronounced in the difficult (S2) condition. For percent correct 

trials, there were no significant main effects or interactions however, there was a parallel trend 

observed (Figure 43 E-F).    
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Figure 44. Animals were tested on conditions on 4 different days with each test day separated by a washout 
period. Rats were assigned to either the ISO, (n=16) or PRO (n=17) group. They received a drug infusion either 
3 minutes prior to the sample phase (Pre-Sample, PS) or the choice phase (Pre-Choice, PC) and were tested in 
the 2-arm separation (S2) or 5-arm separation (S5) condition. The 4 conditions were as follows: PS-S2, PS-S5, 
PC-S2, and PC-S5. In contrast to acquisition training, on each test day, instead of receiving two S2 and two S5 
trials, animals received all four trials in the condition they were being tested (all S2 or all S5). This allowed us to 
include trial as an additional within-subject factor. Trial 1 was a habituation trial (HAB) where, like the 
previous day, stylets were removed and the infusion cannula was inserted but no fluid was infused. Trial 2 
served as a baseline trial (BASE) where animals were infused with saline and trial 3 was the test trial (TEST) 
where animals received the drug treatment they were assigned to. Stylets were replaced and animals were 
placed back in their home cages. Trial 4 was a 90-minute post-test trial (POST). We measured A&D) Latency to 
obtain the reward B&E) Percent correct trials and C&F) Number of errors. Data from the PS condition (A-C) 
shows that PRO given PS (B) causes a reduction in the percentage of correct trials. Data from the PC condition 
(D-F) shows that ISO given PC causes D) an increase in latency during the test and this carries over to the post-
test as well as, F) an increase in the number of errors which also carries over and is more pronounced in the S2 
condition. Significant differences are denoted with an asterix (p < 0.05). 
 
3.3.6 Washout  

Between each test day, animals were given a washout day that was identical to 

acquisition training to allow the drug to clear before recommencing testing.  Using a three-way 

ANOVA (GROUP x ARM SEPARATION x DAY) across all four washout days on the latency 

to obtain the reward, we found a main effect of ARM SEPARATION (F1,249 = 17.333, p < 0.001). 

Like acquisition, rats took longer in the S2 trials compared to the S5 trials (Figure 44 A-B). The 

latencies were also similar. The same analysis yielded a significant main effect of ARM 

SEPARATION on the number of errors (F1,249 = 16.882, p < 0.001) and the percent correct trials 
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(F1,249 = 13.522, p < 0.001) with animals in the difficult (S2) condition making more errors than 

those in the easy (S5) condition (Figure 44 C-F).  

 

Figure 45. Washout Days (W1-W4). Between each test day rats were given a washout day to ensure there were 
no carry over effects from drug infusions (left=ISO, right=PRO). In all measures (A-B) Latency to obtain 
reward, (C-D) Percent correct trials and (E-F) Number of errors, performance was similar to acquisition and 
consistent across all washout days. Consistent with acquisition training, animals performed better in the S5 
condition (red) compared to the S2 condition (blue).  
 
3.3.7 Curtain Probe  

To ensure that animals were using extra-maze cues rather than intra-maze or 

interoceptive cues to complete the DNMP task, following the last washout day animals were 

given a curtain probe. This day was identical to acquisition training and washout except that a 

blue curtain was hung from the ceiling in a circular fashion, surrounding the maze such that 

animals could not see any of the cues in the room except for the webcam above and a partial view 

of a few ceiling tiles. We compared the data from the curtain probe to the data from the previous 
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washout day. Using a three-way ANOVA (GROUP x ARM SEPARATION x DAY) run on 

latency to obtain the reward, errors and percent correct trials, we found a main effect of DAY on 

latency (F1,124 = 15.170, p < 0.001), errors (F1,124 = 31.703, p < 0.001), and on the percent correct 

trials (F1,124 = 31.391, p < 0.001) with rats taking much longer to complete the trials, and making 

significantly more errors in both drug conditions on both S2 and S5 trials during the curtain probe 

(Figure 45 A-B).  

 

Figure 46. To ensure that rats were using extra-maze cues, we gave them a curtain probe trial where a curtain 
was placed around the maze so that the cues on the wall were no longer visible. We compared performance on 
this test to the previous washout session. As expected, there were no group differences and all animals 
preformed worse on the curtain probe compared to washout. A) Rats took longer to obtain the reward and 
demonstrated B) fewer percent correct trials during the curtain probe test. Significant differences are denoted 
with an asterix (p < 0.05). 
 

3.4 Experiment 4 (EPM): Results  

To determine whether the aforementioned effects were related to any possible anxiolytic / 

anxiogenic or locomotor properties of the drugs used, we ran a separate experiment using the 

elevated plus maze.  Dependent measures related to locomotor activity included distance traveled, 

mean speed, number of line crossings, and time spent immobile. For each of these measures 

separate one-way ANOVAs were conducted. There were no group differences (Figure 46 A-D). 

We also measured time spent in the open arms, closed arms, and start area for each rat, as well as 

the number of entries made into the open and closed arms. Using two-way RM ANOVAs with 

the between-subject factor of GROUP and the within-subject factor of ZONE, we found a main 



 
     

 

133 

effect of ZONE. All animals spent more time in the open arms compared to the closed arms or the 

start area of the maze (F2,47 =28.043, p < 0.001) (Fig 10A) and there were significantly more 

entries into the open arms compared to the closed arms (F2,47 =14.758, p = 0.002) (Figure 47A-B).  

 

Figure 47. Rats were tested in the elevated plus maze to determine if either ISO or PRO affected locomotor 
behaviour. We measured A) Total distance traveled B) Speed C) Number of line crossings and D) Time spent 
immobile and found no effect of either ISO (blue) or PRO (red) on locomotion.   
 

 

Figure 48. Rats were tested in the elevated plus maze to determine if either ISO or PRO affected anxiety-like 
behaviour. We measured A) Percentage of time the animals spent in the open arms, closed arms, and the start 
area. We also measured B) the number of arm entries into the open and closed arms. We found no group 
differences and no effect of ISO (blue) or PRO (red) on anxiety-like behaviour. All animals spent more time in 
the open arms. Significant differences are denoted with an asterix (p < 0.05). 
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3.5 Experiment 5 (Barnes Maze): Results  

 3.5.1 Body Weight  

A two-way RM ANOVA was run with the between-subject factor GROUP and the 

within-subject factor DAY to assess if there were any differences in body weight. There were no 

group differences, and as expected, a main effect of day as rats gained weight throughout the 

experiment (F23,276 = 17.489, p < 0.001) (data not shown).  

3.5.2 Cardinal Direction at Start   

Given that each rat was placed in a holding box for a 5-second acclimatization period at 

the start of each trial, we could not choose the direction the rat would be facing when the trial 

began. To ensure that this was counterbalanced for north, west, south and east directions, the 

videos were scored (n = 850) by a researcher blind to the conditions of the experiment. The 

results are listed in Table 10. 

 
Table 10. 

 

3.5.3 Acquisition Training  

 During the 12 days of acquisition training (A1-12) animals learned the location of the 

escape hole. Compared to the first day of acquisition, latency to reach the escape hole was 

significantly lower by day 9 (Figure 48A). By this day, animals also traversed less distance in the 

maze per trial (Figure 48F) as they exhibited a more direct heading towards the escape hole and 

spent less time exploring the maze. This was further demonstrated by a significant increase in the 

Cardinal Direction Rat Faced at Start of Trial  

Direction	 Number	of	Trials	 Percentage	of	Trials	(%)	

North	 236	 27.76	

West	 227	 26.71	

South	 191	 22.47	

East	 196	 23.06	

	

Note: Total number of trials=850 (does not including habituation trial). 
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percentage of animals using a spatial search strategy compared to a serial search strategy (very 

few animals used a random strategy at any point in the experiment) (Figure 48B), and by the 

significant increase in path efficiency (Figure 48D), both responses emerging by day 7. Rats also 

made significantly fewer reference and hole deviation errors by day 7 (Figures 48C & 48E).  

 

Figure 49. During the 12 days of acquisition training (A1-A12) rats learned the spatial location of the escape box, 
which was consistent from trial to trial. For the first 4days (A1-A4) rats were given three trials per day and 
during the following 8 days (A5-A12) this was reduced to two trials per day for a total of 28 trials with an inter-
trial-interval (ITI) of 2 hours on all days. During each trial, ANY-maze software recorded the rat’s A) latency to 
reach the escape hole, F) total distance travelled, and D) path efficiency. Path efficiency is represented as an 
index of the efficiency of the path taken by the rat to get from the first position in the test (start) to the last 
position (escape hole). A value of 1 is indicative of perfect efficiency (e.g. the animal moved in a straight line 
from the start to the escape hole). It is calculated by dividing the straight-line distance between the first and the 
last position by the total distance traveled by the rat. This measure was not used during probe sessions, as it 
cannot be analyzed across time. The experimenter recorded E) the number of reference errors the animal made 
prior to reaching the escape hole and the C) number of hole-deviations there were between the first hole the 
animal visited and the escape hole. Reference errors were recorded as a rat dipping its head into any hole other 
than the escape hole. Repeated dips into the same hole were considered a single error. Hole deviations were 
quantified as the number of escape holes (10 maximum) between the true escape hole and the location in which 
the animal’s head first entered a false escape hole. This ranged between 0-10. B) The experimenter also 
measured the search strategy that was used to find the escape hole. There were three possible search strategies: 
(1) Random (RD) – this occurred when the animal moved about the maze in a random, un-systematic manner, 
searching the same hole more than once and moving into the center of the maze often. (2) Serial (SE) – Animals 
that used a serial search strategy first visited a hole more than two hole deviations away from the escape hole 
and then in a serial fashion systematically checked adjacent holes until reaching the escape hole. The animals 
search path was classified as serial even if he did not make any errors but visited a location at the edge of the 
maze more than two holes away. (3) Spatial (SP) This search strategy occurred when a rat moved directly from 
the center of the maze to the correct escape hole or any hole within two hole deviations away on either the left or 
right side of the escape hole. By A7, all animals were demonstrating better performance than on the first day 
(A1). Significant differences are denoted with an asterix (p < 0.05). 
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3.5.4 Acquisition Probe Test 

We compared the last day of acquisition training to performance during the acquisition 

probe (AP) across groups using a difference score for latency (Figure 49A), search strategy 

(Figure 49B), hole deviations (Figure 49C), and reference errors (Figure 49D). A one-way 

ANOVA showed a main effect of GROUP on latency to reach the escape hole (F3,13 = 4.041, p = 

0.031). Post hoc analyses revealed that this effect was attributed to an increase in the latency to 

reach the escape hole during the AP in the group that received ISO (VI). While the VI group also 

made more reference errors, larger hole deviations, and fewer of these animals used a spatial 

search strategy, these effects were not significant.  

 

Figure 50. Animals were given a 5-minute acquisition probe test where the escape box was removed and 
replaced with a false escape box. The maze was rotated to ensure that the animals were using extra-maze 
visuospatial cues to find the escape hole instead of relying on any intra-maze cues. 15 min prior to the test, rats 
were given an infusion of either saline (V) or PRO and then placed back in their home cages. 5 min prior to the 
test rats were given another infusion of either saline (V) or ISO. Therefore, there were 4 groups: VV (black), VI 
(blue), PV (red), and PI (grey). We compared the last day of acquisition training (A12) to performance during 
the acquisition probe (AP) across groups using a difference score for A) latency to reach the escape hole, B) 
percentage of animals using a search strategy, C) hole deviations, and D) reference errors made. While the VI 
group showed the greatest reference memory impairments compared to the other groups, the only measure that 
was significant was latency. Significant differences are denoted with an asterix (p < 0.05). 
 
 

During the probe trials, the maze was divided into 20 equal zones. The escape zone (ZC) 

contained the escape hole, and the escape quadrant (ZC, ZQ-2, ZQ-1, ZQ+1, ZQ+2) contained 
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the escape zone plus the two zones to the left and right of the escape zone. The amount of time 

spent in the escape zone the escape quadrant was calculated, and compared across groups (Figure 

50). Animals in the VI group spent greater than chance levels of time in the escape zone but less 

time compared to the other groups (F3,13 = 3.128, p = 0.062). These animals also spent 

significantly less time in the escape quadrant (F3,13 = 3.8, p = 0.037). These results demonstrate 

that the ISO infusion given 3 minutes prior to the AP trial, impaired spatial performance in the 

maze. This effect was not observed in the other groups.  

 

Figure 51. Acquisition probe: During the probe trials, the maze was divided into 20 equal zones. The escape zone 
(ZC) contained the escape hole, and the escape quadrant (ZC, ZQ-2, ZQ-1, ZQ+1, ZQ+2) contained the escape 
zone plus the two zones to the left and right of the escape zone. The amount of time spent in the escape zone the 
escape quadrant was calculated, and compared across groups. Animals in the VI (blue) group spent greater than 
chance levels (dotted line) of time in the escape zone but less time compared to the other groups (VV=black, 
PV=red, PI=grey). These animals also spent significantly less time in the escape quadrant. These results 
demonstrate that the ISO infusion given 3 minutes prior to the AP trial, impaired spatial performance in the 
maze. This effect was not observed in the other groups.  
 
3.5.5 Curtain Probe Test  

Animals were retrained following the AP and then given a curtain probe trial (CP) to 

determine if they were indeed using extra-maze cues to locate the escape hole. We compared the 

previous trial (RT2) to the CP for latency, search strategy, reference errors, and hole deviation 

(Figure 51) and calculated a difference score. Separate one-way ANOVAs were conducted across 

groups. As expected, there were no group differences, but all groups showed impaired 
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performance including increased latency (F3,13 = 14.851, p = 0.002), hole deviation (F3,13 = 

16.916, p = 0.001), and reference errors (F3,13 = 14.031, p = 0.002), as well as a significant 

decrease in the percentage of animals using a spatial search strategy (F3,13 = 21.994, p < 0.001) on 

the CP compared to the previous training day (Figure 51A-D).   

 

Figure 52. Animals were given a curtain probe trial CP to ensure that they were using extra-maze cues to locate 
the escape hole. We compared the previous retraining trial (RT2) to the curtain probe trial and calculated a 
difference score for A) latency to reach the escape hole, B) percentage of animals using a spatial search strategy, 
C) hole deviations and D) number of reference errors. All animals showed impaired performance including 
increased latency, hole deviations, and reference errors, as well as a decrease in the percentage of animals using 
a spatial search strategy demonstrating that they were using extra-maze cues to solve the task.  
 
 

The time spent in each zone during the CP is shown in Figure 52. We compared the time 

spent in the escape zone across groups during the CP and the AP using a two-way RM ANOVA 

and found a significant GROUP x DAY interaction (F3,13 = 3.869, p < 0.001). Post hoc analyses 

revealed that this effect was due to rats spending less time in the escape zone during the CP 

compared to the AP, except the rats in the VI group, which showed impaired performance on this 

measure during both probe tests (Figure 53A). We also conducted a two-way RM ANOVA 

looking at the time spent in the escape quadrant; there was a main effect of GROUP (F3,13 = 

5.103, p = 0.015) driven by the difference between the VI and PI group, and a main effect of 

DAY (F3,13 = 40.809, p < 0.001). All rats spent significantly more time in the escape quadrant 
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during the AP compared to the CP (Figure 53B). From these results, we can infer that the rats 

were relying on extra-maze cues, rather than interoceptive or intra-maze cues to locate the escape 

hole.  

 

Figure 53. Curtain probe: During the probe trials, the maze was divided into 20 equal zones. The escape zone 
(ZC) contained the escape hole, and the escape quadrant (ZC, ZQ-2, ZQ-1, ZQ+1, ZQ+2) contained the escape 
zone plus the two zones to the left and right of the escape zone. The amount of time spent in the escape zone the 
escape quadrant was calculated, and compared across groups. Animals were equally impaired and spent the 
same amount of time in all zones of the maze. Time spent in the escape zone or quadrant was not greater than 
chance (dotted line) suggesting that animals use extra-maze cues to locate the escape hole.  
 

 

Figure 54. The time spent in the A) escape zone and the B) escape quadrant was compared across group during 
the acquisition probe (AP) and the curtain probe (CP) to show that the level of impairment induced following 
administration of ISO (VI, blue) during the acquisition probe, was equal in magnitude to the impairment 
induced if there were no extra-maze cues present to successfully perform the task. In both cases, the animal’s 
“map” needed to solve the task was compromised. Significant differences are denoted with an asterix (p < 0.05). 
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 3.5.6 Reversal Training  

We assessed the effect of moving the location of the escape hole to the opposite side of 

the maze during reversal training. To investigate group differences during the first reversal trial 

where animals received another drug treatment prior to the trial, we used separate one-way 

ANOVAs to examine latency, hole deviation and reference errors. Search strategy was not 

analyzed, as all animals on this trial used a serial search strategy. The one-way ANOVA on 

latency showed a main effect of GROUP (F3,13 = 5.48, p = 0.012) (Figure 54A), and no group 

differences in reference errors (Figure 54B) or hole deviation (Figure 54C).  

 

Figure 55. Reversal Training Day 1(RV1): We assessed the effect of moving the location of the escape hole to the 
opposite side of the maze during reversal training. 15 minutes prior to the first reversal training trial rats were 
given an infusion of either saline (V) or PRO. 5 min prior to the test rats were given another infusion of either 
saline or ISO. Rats were then placed back in the home cage and 3 minutes later given the first reversal training 
trial. The groups were the same as the acquisition probe test (VV= black, VI=blue, PV=red, PI=grey). We 
calculated A) latency to, B) hole deviations from, and C) reference errors for both the old and new escape holes. 
Animals in the VI group tool the longest to find the new escape hole. Significant differences are denoted with an 
asterix (p < 0.05). 
 

For the remainder of the reversal training days (RV2-RV5), rats received two trials per 

day. We took the mean of the two trials and analyzed learning for the new location of the escape 

by comparing performance across days. Using a two-way RM ANOVA with the between-subject 
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factor of GROUP and the within-subject factor of DAY we looked at latency (Figure 55A), 

search strategy (Figure 55B), hole deviation (Figure 55C), and reference errors (Figure 55E). In 

addition, similar to acquisition training, we looked at total path efficiency (Figure 55D) and 

distance traveled (Figure 55F). For all analyses, we did not find any group differences but found a 

main effect of DAY for each measure. Overall, animals took less time to find the new escape hole 

on RV3-5 compared to RV2 (F3,36 = 6.669, p = 0.001) and began using a spatial search strategy 

by RV4 (F3,36 = 5.533, p = 0.003). The number of hole deviations (F3,36 = 11.948, p < 0.001) and 

reference errors (F3,36 = 13.64, p < 0.001) made on RV4-5 were significantly lower than RV2-3. 

Moreover, animals became more efficient in the path they took to reach the escape hole by RV4 

(F3,36 = 7.731, p < 0.001) and traveled less distance by RV4 compared to RV2-3 (F3,36 = 10.097, p 

< 0.001).  

 

Figure 56. Reversal Training Days 2-5 (RV2-5): For the subsequent reversal training days’ animals received two 
trials a day (mean of both trials reported) and six measures were taken with respect to the new escape hole A) 
Latency to reach the escape hole B) Percentage of animals using a spatial search strategy, C) Hole deviations D) 
Path efficiency, E) Reference errors, and F) Total distance traveled. No group differences were found, but all 
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animals performed better on the last two reversal training days compared to the first two. Significant 
differences are denoted with an asterix (p < 0.05). 
 
3.5.7 Reversal Probe Test   

To assess memory for the new escape hole location, as well as investigate whether 

activation of BARs in the DG immediately prior to reversal training, conferred any mnemonic 

advantage we used separate one-way ANOVAs to compare groups on latency, search strategy, 

hole deviation, and reference errors in the reversal probe (RP). There were no group differences 

in latency (Figure 56A), search strategy used (Figure 56B), or reference errors made (Figure 

56D). In terms of hole deviation (Figure 56C) there was a main effect of GROUP (F4,12 = 4.828, p 

= 0.015). Post hoc tests showed that this effect was attributed to a difference between the VI 

group and the PV and VVI groups.  

 

Figure 57. Animals were given a 5-minute reversal probe test where the escape box was removed and replaced 
with a false escape box. The maze was rotated to ensure that the animals were using extra-maze visuospatial 
cues to find the escape hole instead of relying on any intra-maze cues. 15 minutes prior to the test, rats were 
given an infusion of either saline (V) or PRO and then placed back in their home cages. Five minutes prior to the 
test rats were given another infusion of either saline (V) or ISO. Therefore, there were 4 groups: VV (black), VI 
(blue), PV (red), and PI (grey). We measured A) latency to reach the escape hole, B) percentage of animals using 
a search strategy, C) hole deviations, and D) reference errors made. The VI group demonstrated the greatest 
cognitive flexibility compared to the other groups, however, the only measure that was significant was hole 
deviations. Significant differences are denoted with an asterix (p < 0.05). 
 

The distribution of time spent in each of the 20 zones during the RP test is shown in 

Figure 57. For the time spent in the escape zone across groups, Levene’s test for homogeneity of 

variance revealed unequal variances (p = 0.007) and thus we ran a nonparametric Kruskal-Wallis 

one-way ANOVA on ranks and found no significant group differences. For the time spent in the 
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escape quadrant, we ran a one-way ANOVA and found a near significant main effect of GROUP 

(F3,13 = 3.319, p = 0.054). From the trend of these data we can infer that animals in the VI group 

showed enhanced performance compared to the other groups, when tested in the RP. This may be 

the result of enhanced cognitive flexibility imparted via the activation of BARs in the HF, 

immediately prior to learning a new escape hole location.  

 

Figure 58. Reversal probe: During the probe trials, the maze was divided into 20 equal zones. The escape zone 
(ZC) contained the escape hole, and the escape quadrant (ZC, ZQ-2, ZQ-1, ZQ+1, ZQ+2) contained the escape 
zone plus the two zones to the left and right of the escape zone. The amount of time spent in the escape zone the 
escape quadrant was calculated, and compared across groups. All animals spent greater than chance levels 
(dotted line) of time in the escape zone but the VI (blue) spent more time compared to the other groups 
(VV=black, PV=red, PI=grey). These results demonstrate that the ISO infusion given 3 minutes prior to the first 
reversal training trial, promoted cognitive flexibility and improved spatial performance in the maze.  
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3.5.8 Locomotion  

To ensure that the drug treatments we administered did not have any effect on locomotor 

behaviour, we compared the total distanced traversed in the maze during each of the probe 

sessions. Using a two-way RM ANOVA with the between-subject factor of GROUP and the 

within-subject factor of DAY, we found no differences in any of the means compared (Figure 

58).  

 

Figure 59. Total distance was measured in each of the probe tests A) Acquisition probe B) Curtain probe and C) 
Reversal probe. There were no group differences and the distance traveled was consistent across each trial.  
 
3.4. Discussion 

In the Chapter 2, we demonstrated that phasic activation of the LC was associated with 

hippocampal plasticity involving the recruitment of new neurons and a global reorganization of 

hippocampal representations. This is in line with the fact that phasic LC activity, and subsequent 

NE release is associated with the detection of novelty. Given that our previous study implicates 

the LC-NE system in the remapping of contextual representations, we ran the current set of 

experiments to assess whether behavioural evidence for this could be obtained via activation of 
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BARs in the DG. These data complement the IEG expression data in Chapter 2 to show that 

activation of BARs in the DG may facilitate remapping of contextual representations. Together, 

these data suggest that the presence of this molecular switch biases the memory system towards 

encoding, while its absence promotes retrieval. Here we show intra-DG infusions of ISO given 

prior to retrieval (when theoretically a contextual map formed during encoding needs to be 

reactivated) caused deficits in working and reference memory retrieval, an effect blocked by pre-

treatment with PRO.  

Consistent with the results of Clelland et al. (2009), animals performed better when the 

distance between the arms in the radial maze was greater. Curtain probe trials demonstrated that 

animals relied on extra-maze cues to complete the task and these cues tend to be more disparate 

when the distance between arms is greater. In contrast, when the arms are closer together in 

space, the distal cues used to orient potentially overlap causing interference in the representations 

for the arms. The DG is considered a pattern separator and can orthogonolize these 

representations even when the arms are close, thus the closer the sample and choice arm are in the 

task, the more the task becomes dependent on the DG for processing. Pre-choice administration 

of ISO resulted in greater impairments in the S2 condition compared to the S5 condition, 

consistent with the role of the DG in pattern separation. Given the effects of ISO on latency, it is 

possible that ISO caused an increase in exploratory behaviour, which is in line with previous 

research demonstrating the involvement of NE in exploration (Flicker & Geyer, 1982) and more 

specifically, the ability of ISO to promote diversive exploration (Geyer & Masten, 1989). 

Accuracy was only affected in the S2 condition; therefore, it is possible that HF-dependent 

recollection processes were impaired and performance in this condition relied solely on HF-

independent familiarity mechanisms (Eichenbaum et al., 2012).  

Importantly, these effects were not due to changes in locomotor activity as there were no 

group differences in the total distance travelled, the mean speed, or the number of line crossings 

in the EPM. Similarly, these effects were not the result of changes in anxiety-related behaviour 
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since there were no group differences in the time spent in the open or closed arms of the EPM. 

All animals spent more time in the open arms of the maze, suggesting that these drugs do not 

impart anxiogenic effects.  

PRO given prior to the choice phase had no effect. We were unable to find a study done 

in rats in which PRO was infused into the DG to establish an effective dose. Therefore, it is 

possible that the dose we used was too low. However, Qi et al. (2008) used a high dose of PRO 

(15ug) in the CA1 to assess whether BARs played a role in contextual fear memory retrieval. 

They found that that PRO produced no effect on retrieval after 1 or 7 days after contextual fear 

learning occurred. Interestingly, they also found that ISO (10ug) infused 30min before the 

retention test severely disrupted retrieval of 7-day contextual fear memory, which is consistent 

with our findings. It is also important to note that during the choice phase in the current study, 

animals were required to reactivate a previously formed representation. Since the task did not 

require the recruitment of a new ensemble, our hypothesis in fact predicts that infusion of PRO 

prior to the choice phase would not impair this ability. Thus, it is not surprising that we did not 

find an effect with PRO, consistent with the findings of Qi et al. (2008).   

Many studies investigating the role of NE on memory have focused on mechanisms of 

consolidation and reconsolidation. More specifically, these studies largely focus on the emotional 

modulation of memory due to the potential application to understanding PTSD (van Stegeren et 

al., 1998; Przybyslawski et al., 1999; Cahill & Alkire, 2003). In humans, activation of BARs 

results in the augmentation of memory consolidation (specifically emotional memory) and this is 

thought to be mediated via receptors in the BLA (Cahill et al., 1994; Cahill & McGaugh, 1998; 

van Stegeren, 2008; Chamberlain & Robbins, 2013; Barsegyan et al., 2014; Kuffel et al., 2014; 

for reviews see Ferry et al., 1999; McGaugh, 2000; Roozendaal et al., 2009; Roozendaal & 

McGaugh, 2011), an effect which disappears if participants are pretreated with PRO (Cahill et al., 

1994; van Stegeren et al., 1998; Maheu et al., 2004) or if given PRO post-learning (Sara et al., 

1999; Tronel et al., 2004; Roozendaal et al., 2008; Barsegyan et al., 2014). This has greatly 
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expanded our understanding of the pathogenesis of anxiety disorders such as PTSD. However, 

fewer studies have examined the role of NE on mechanisms of encoding. Although NE is 

generally thought to enhance encoding, it is difficult to differentiate whether activation of the 

noradrenergic system is affecting encoding or consolidation per se in situations where emotional 

memories are remembered better than neutral memories.  Furthermore, these effects have been 

typically shown to be dependent on the BLA and are not necessarily mediated by the HF.  

While many studies have been conducted to assess the role of NE in consolidation and 

reconsolidation, fewer studies have examined the way in which BARs regulate memory retrieval 

(Brown & Silva, 2004; Chamberlain et al., 2006; Thomas, 2015). Experimental manipulations 

that enhance NE activity have been typically shown to facilitate memory retrieval, and 

manipulations that inhibit NE release to impair retrieval. These effects were observed when 

memory retention was tested at least 24 hours after learning and drug manipulations were given 

prior to testing. Mice deficient for dopamine β-monoxygenase (enzyme which catalyzes the 

reaction of dopamine to NE) (DBM -/-) showed deficits in contextual and spatial memory; these 

deficits were recovered when mice were administered a BAR agonist (Murchison et al., 2004). 

Researchers also found that temporarily depleting NE in a rat’s brain by injecting a DBM 

inhibitor resulted in impaired memory retention in a passive avoidance task when administered 30 

minutes prior to test. This occurred after 1, 3, 5, or 7 days following the initial training (Hamburg 

and Cohen, 1973). In addition, Cohen and Hamburg (1975) were able to replicate their results, 

again producing amnesia for the passive avoidance task using PRO. Animals were injected with 

PRO 1 or 3 days following training, and memory retention was impaired when tested 2 hours 

after the injection. In rats, PRO also led to deficits in spatial reference memory in the water maze 

(Ji et al., 2003), caused the disruption of retrieval of a cocaine-associated memory (Otis & 

Mueller, 2011), and abolished the expression of a cocaine conditioned place preference following 

co-blockade of β1- and β2-ARs (Fitzgerald et al., 2016). However, in humans, PRO given prior to 

a test of memory retrieval had no effect (Rimmele et al., 2016) and in rats, reversibly inactivating 
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the LC with lidocaine had no effect on spatial reference memory retrieval (Khakpour-Taleghani 

et al., 2009). BARs may also mediate the reinstatement of previously extinguished memories 

since activation of BARs by NE has been shown to induce reinstatement of fear memories 

(Morris et al., 2005). Here, we report that PRO had no effect on memory retrieval, suggesting that 

activation of BARs may not be necessary for retrieval. However, one important difference 

between these studies and ours is that we did not look at memory retrieval post-consolidation but 

instead examined the role of BARs on working memory.  

The literature with respect to working memory is much less consistent. In rodents, 

Khakpour-Taleghani et al. (2009) showed that inactivation of the LC had no effect on spatial 

working memory. Administration of PRO in rats also had no effect on working memory 

(Kobayashi et al., 1995; Ohno et al., 1997). In Rhesus monkeys, moderate doses of PRO (0.01, 

0.05 and 0.1 mg/kg) impaired spatial working memory, while a low dose (0.005 mg/kg) and high 

dose (0.5 mg/kg) had no effect (Wang et al., 2012a). In humans, a low (25 mg) dose of PRO 

impaired numerical working memory in subjects with low arousal levels (Müller et al., 2005), and 

repeated administration of a high (160 mg) dose impaired working memory (Frcka & Lader, 

1988). However, several other studies utilizing a moderate dose (40 mg) found no effect at all of 

PRO on working memory in humans (Bodner et al., 2012; Becker et al., 2013; Ernst et al., 2016). 

Therefore, it appears that the role of the noradrenergic system on memory that has not been 

consolidated is still unclear. Here we show that inactivating BARs prior to encoding, and 

activating BARs prior to retrieval can impair spatial working memory. If NE promotes the 

recruitment of new neurons to form contextual representations then, it follows that PRO given 

prior to encoding would disrupt this process and that when these representations must be 

reactivated upon memory retrieval, that perturbing the system in a bias towards encoding 

mechanisms that involve recruiting new neurons following administration of ISO would also 

impair memory.  

In the Barnes maze, we tested reference memory during the acquisition probe. ISO 
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infusions administered prior to this test resulted in longer latencies to reach the location of the 

escape hole, as well as less time spent in the escape quadrant and zone. Animals in the ISO group 

also made more errors and the number of hole deviations was greater, however, given the high 

variability in our data, we did not see a significant effect for these measures. These effects were 

blocked by PRO. During the curtain probe, performance was impaired across groups on all 

measures demonstrating that animals were using extra-maze cues to orient themselves. These 

results are consistent with the DNMP data suggesting that BAR activation in the DG immediately 

prior to a test of memory retrieval impairs memory. Together with the results from the IEG data 

in Chapter 2, these findings suggest that BAR activation in the HF facilitates the recruitment of 

new neurons biasing the system towards encoding rather than retrieval. When animals were 

infused with ISO a second time immediately prior to reversal training, although it was not a 

significant effect, they exhibited longer latencies to reach the new escape hole. This may be 

attributed to an increase in exploratory behaviour. 

In contrast, ISO administered prior to reversal learning led to improved performance 

during the reversal probe, specifically in terms of the number of hole deviations, and the time 

spent in the new escape zone. In reversal training days following, there was also a trend in the 

direction that demonstrated these animals were learning more quickly. These effects were 

blocked by administration of PRO and were not due to differences in locomotor activity given 

there were no group differences in the total distance travelled across all probe tests. This is 

consistent with previous work (Segal & Edelson, 1978) and the hypothesis that the modulating 

effect of NE depends on the stage of training where NE may serve as a novelty signal involved in 

updating contextual representations, promoting cognitive flexibility. The LC-NE system has been 

previously implicated in reversal learning. For instance, in a cognitive-behavioural task called the 

oddball-task, performed by monkeys, Aston-Jones et al. (1994) showed that the LC neurons 

selectively responded to a cue when it was the target and not when it was the distractor. They also 

showed that during reversal training when the distractor became the target and vice versa, LC 
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responding switched to the new cue (Aston-Jones et al., 1994, 1997; Rajkowski et al., 1994; 

Aston-Jones & Cohen, 2005). Sara et al., (1994) also showed that neurons in the LC were 

responsive to a stimulus when it was novel, and when it acquired salience during conditioning, 

but also during reversal training and during extinction. The authors noted that the most striking 

and consistent observation in the study was that LC neurons responded immediately to any 

change in stimulus-reinforcement contingency with respect to both appetitive and aversive 

stimuli, and that these responses were even stronger than the initial responses to novel stimuli 

encouraging the view that the NE system is implicated in shifting attention to environmental 

imperatives (Sara, 2009). Reversal training constitutes a situation where there is a contingency 

change and remapping is likely necessary. Therefore, it is reasonable to assume that activation of 

BARs during this type of learning would confer an advantage to the animal promoting a 

disengagement from established representations and the recruitment of new representations 

towards an enhancement of processes that promote the incorporation of new information (Bouret 

& Sara, 2005; Harley, 2007a).  

This work highlights the involvement of hippocampal BARs in the process of remapping 

contextual representations to promote new learning in a way that supports flexible and adaptive 

behaviour. It is well-established that the pathophysiology of anxiety disorders such as PTSD are 

characterized by noradrenergic dysregulation (Hendrickson & Raskind, 2016). Furthermore, it is 

hypothesized that PTSD also involves impairments in memory “updating” mechanisms where the 

incorporation of new information (e.g. safety signals) is not effectively encoded at a functional 

level that may represent an inability to remap (i.e. patients bringing up trauma-related 

representations rather than incorporating safety signals into existing memories through remapping 

processes) (Maren et al., 2013; Morrison & Ressler, 2014; Giustino et al., 2016; Liberzon & 

Abelson, 2016; Elsey & Kindt, 2017; Lee et al., 2017; Sheynin & Liberzon, 2017). A more 

extensive understanding of the underlying neurobiological mechanisms involved in updating 
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memories, or in learning new contingencies may provide insight into target systems, and novel 

drug and intervention strategies for treatment.  

4.0 General Discussion  

Fifty years ago, Seymour Kety introduced the idea that NE could act as a neuromodulator 

to promote memory, specifically during affectively important events (Kety, 1967, 1970). Since 

then, several studies have shown that NE facilitates memory consolidation and retention for 

emotional memory (McGaugh et al., 1990; Do Monte et al., 2008), effects which are realized over 

the span of hours to days given the time frame of the consolidation process, and have been shown 

to be dependent on BARs (Devauges & Sara, 1991; Lemon et al., 2009). Post-encoding activation 

of the LC, which is the major source of NE in the brain, also promotes plasticity (Harley & Sara, 

1992; Klukowski & Harley, 1994) and the consolidation of hippocampal dependent memory 

(Takeuchi et al., 2016). Fewer studies have investigated whether NE plays a role in the encoding 

of new memories, updating existing memories, or the modulation of memory over shorter time 

scales such as in working memory. Here we asked these questions, and consistent with Kety’s 

hypothesis, proposed that through the activation of the LC during important events, that NE is 

involved in the acquisition of new information and therefore, plays a crucial role in the encoding 

of new memories. We sought to determine whether the noradrenergic pathway from the LC to the 

DG is involved in modulating memory in a way that it helps to sculpt hippocampal contextual 

representations. We proposed that activation of the LC-NE system would cause a disengagement 

from established representations and an enhancement of processes that promote the incorporation 

of new information (Bouret & Sara, 2005; Harley, 2007a), with the hopes of possibly elucidating 

a mechanism by which place cell remapping occurs. Based on the network reset hypothesis, we 

extended this to include a behavioural component suggesting that LC activation would bias the 

memory system towards encoding rather than retrieval when adaptive, promoting cognitive and 

behavioural flexibility (Devauges & Sara, 1991; Sara et al., 1994; Aston-Jones & Cohen, 2005; 

Bouret & Sara, 2005; Yu & Dayan, 2005; McGaughy et al., 2008).  
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The data presented here support these hypotheses. In experiments 1 and 2, using the 

catFISH protocol, we showed that animals create distinct hippocampal representations when 

exposed to two different environments while reactivating a previously formed representation 

when presented with the same environment twice. This is consistent with previous findings 

(Guzowski et al., 1999; Marrone et al., 2011). We manipulated the LC-NE system 

pharmacologically to induce tonic and phasic LC discharge. In animals that visited the same 

environment twice, phasic but not tonic LC activation fully reset the animal’s representation of 

that environment causing the recruitment of new neurons rather than reactivation of the 

previously formed representation. These animals possessed a cellular profile that was 

indistinguishable from the animals that had visited two different contexts. This implicates the LC-

NE system in memory encoding processes which include the formation of new memories and the 

updating of existing memories through mechanisms of remapping. In experiments 3 and 4, we 

also showed that NE release in the DG can cause impairments in spatial working and reference 

memory. We argue that the infusions of the BAR-agonist ISO, caused a similar (artificial and 

experimenter-induced) reset of representations and since performance on the task is dependent on 

the reactivation of previously formed representations, the animal’s performance was 

compromised. This is a situation where a reset of representations would be considered 

maladaptive. In a situation where the recruitment of new neurons would instead be adaptive, such 

as in reversal learning, we hypothesized that NE release in the DG would, in contrast, impart an 

advantage to the animal and improve this type of learning and memory. We showed that 

administration of ISO prior to reversal learning did in fact improve cognitive flexibility and 

promoted adaptive behaviour as animals performed better during the reversal probe.  

One theoretical consideration relates to the distinction between tonic and phasic LC 

firing. We know that the LC is important for regulating arousal, mediating responses to stress, as 

well as attention and flexible behaviour. We also know that the LC responds to infrequent, novel, 

and salient (e.g. conditioned) stimuli. In fact, a recent, high-resolution fMRI study conducted in 
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humans demonstrated that the LC codes for relative saliency, and prioritizes its responses towards 

novel or unexpected information with no additional modulatory effect of emotional content 

(Krebs et al., 2017). So how does the LC coordinate different firing patterns to subserve all these 

roles? We have been operating under the assumption, mainly adopted from previous papers that 

two modes of LC discharge exist. The tonic mode: The LC exhibits higher, sustained discharge 

when an animal is awake, and even more so when an animal is stressed. The phasic mode: The 

LC exhibits a brief train of action potentials in a burst, followed by a period of hyperpolarization 

or suppression in response to novel or salient stimuli. In our first experiment, we used different 

pharmacological agents to mimic these firing patterns based on previous studies that recorded 

from the LC with simultaneous application of these drugs. Based on the network reset hypothesis 

by Bouret & Sara (2005), and the fact that both phasic and tonic activation of the LC cause 

downstream plasticity effects to occur (Mueller et al., 1981; Lacaille & Harley, 1985; Stanton & 

Sarvey, 1987; Heginbotham & Dunwiddie, 1991; Dunwiddie et al., 1992; Harley & Sara, 1992; 

Klukowski & Harley, 1994; Harley, 1998; Brown et al., 2005; Jurgens et al., 2005a, 2005b) and 

the release of NE (Dahl & Winson, 1985; Harley & Milway, 1986; Harley et al., 1989; Babstock 

& Harley, 1992; Frizzell & Harley, 1994; Klukowski & Harley, 1994; Walling et al., 2004; 

Lemon et al., 2009) we originally hypothesized that both phasic and tonic manipulations would 

induce a reset. We found that only phasic LC activation induced a reset of representations and 

concluded that this was likely attributed to the fact the LC responds in phasic bursts to novel 

stimuli and that increases in tonic discharge are not necessarily associated with the detection of 

novelty, therefore only a phasic signal would induce a reorganization of the memory system. 

Recently, there has been some debate in the literature as to what exactly constitutes these two 

modes, and whether they should be considered “distinct modes” per se?  

 The theoretical construct of LC output and attention put forth in Aston-Jones and 

Cohen's (2005) computational adaptive gain model, suggests that performance on a task is 

optimal when tonic discharge is moderate which allows for phasic LC responses to occur in 
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response to behaviourally relevant stimuli. One potential problem with this theory relates to a 

principle characteristic of LC firing whereby previous spontaneous activity affects the probability 

that subsequent firing will occur. Therefore, one would predict that higher tonic discharge would 

be optimal and higher tonic discharge is associated with more NE release in terminals (Chandler, 

2016). However, if we consider phasic LC responses to salient events (that may require a shift in 

behavioral strategy) to be our “signal”, and basal LC activity, or tonic discharge to be “noise”, 

then lower tonic discharge would be optimal in achieving a high signal to noise ratio and may be 

particularly important when it is necessary to filter out irrelevant information (Bremner et al., 

1996; Berridge, 2008). Aston-Jones and Cohen (2005) suggest that moderate tonic LC discharge 

is optimal based on the fact that monkeys in their oddball study performed best when this was the 

case. However, it is currently unclear whether high, moderate, or low tonic discharge facilitates 

attention, novelty-detection or cognitive shifts.  

What is a cognitive shift? Hypothetically this would occur during a change in 

contingency when a relevant stimulus becomes no longer relevant or vice versa. We tested 

reversal learning where an animal was required to shift its attention from one location (or 

stimulus) to another. This can be considered a cognitive shift (Sara, 2009; Hagena et al., 2016). 

However, any situation where an animal goes from being focused on a task, to less focused and 

more exploratory, or vice versa, is also considered a cognitive shift. Berlyne (1966) used the 

terms diversive to describe when an animal is in an exploratory-state and inspective to describe 

when the animal is focused on a task. In the adaptive gain model (Aston-Jones & Cohen, 2005), 

they correlate phasic LC signaling with exploitive, inspective, task-oriented behaviour and 

suggest that high tonic LC firing causes a shift in that the animal loses focus for the task at hand 

and switches to an exploratory behavioural state. However, phasic to tonic shifts during changes 

in task contingencies have not always been reported (Kalwani et al., 2014). In the current set of 

experiments, we found that administration of ISO in the DG promoted exploratory behaviour. We 

inferred this given the increased latency to make a correct choice in the DNMP task and to find 
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the escape hole in the Barnes Maze. We assumed that our infusion was comparable to what would 

have been observed following phasic LC activation and thus, would reset the system. However, 

we did not measure the amount of NE that was released following our intra-LC glutamate 

infusions nor did we measure the amount of NE that was released following our intra-LC ORX, 

BETH or CRF infusions in both experiments 1 and 2. Therefore, it is possible that the ISO 

infusions we delivered were in fact more comparable to the level of BAR activation that would 

occur following tonic LC firing rather than phasic. If so, our results would in fact be in 

accordance with the adaptive gain model given that our infusions induced an exploratory state.  

In the DNMP task, the increase in latency was accompanied by an increase in the number 

of errors; this suggests that ISO may have caused animals to perseverate and one could argue that 

this is what may occur following a very large phasic burst (McGaughy et al., 2008; Chandler, 

2016) where the animal would be hyper-focused on a task or stimulus. In the Barnes Maze 

however, ISO infusions during the first reversal training session did not cause animals to 

perseverate. While they were impaired, they spent an equal amount of time exploring all the holes 

(data not shown) but made more reference errors and took longer to find the new escape hole 

suggesting they were in a true state of exploration. During the acquisition probe, we saw a similar 

trend where animals tended to explore their environment following the infusion of ISO. Since 

there were only two arms open in the DNMP task, it is possible that we could not accurately 

measure exploratory behaviour in this task. Future experiments should involve phasic activation 

of the LC followed by behavioural testing to adequately answer these questions.  

It may be more accurate to view LC firing in terms of temporal windows rather than 

distinct modes. Imagine an animal is placed in an environment where it quickly makes a 

contextual hippocampal representation of its surroundings. The animal may be mildly stressed, 

the environment is novel. There will likely be moderate to high tonic discharge with 

superimposed phasic responses to the novelty of the context that quickly habituate. Sometime into 

the session, the animal receives a foot shock. This activates the LC, causing a large phasic burst 
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in relation to the shock. The animal must quickly update the hippocampal contextual 

representation of the environment with the newly learned information that this location now poses 

a threat. This is followed by sustained high tonic activation because the animal is now more 

stressed. Since these things are happening simultaneously, it seems that referring to them as 

modes or states may be misleading. LC discharge is characterized by the level of firing that 

occurs over a given period. Phasic firing can only be examined in short time frames and tonic 

firing can only be viewed over longer temporal windows. But within any given time-frame, an 

animal possesses a certain sensitivity to novel or salient stimuli and it is this sensitivity that we 

are concerned with. Therefore, when we talk about phasic and tonic firing in the LC, we should 

strive to include a measure that speaks to the interaction between them.  

One thing that has been consistently reported is that the LC exhibits phasic responses to 

task-related stimuli, and in particular, to rule changes during reversal learning (Sara & Segal, 

1991; Aston-Jones et al., 1994, 1997; Rajkowski et al., 1994; Sara et al., 1994; Aston-Jones & 

Cohen, 2005; Bouret & Sara, 2005; Bouret & Richmond, 2009). These data prompted Bouret and 

Sara (2005) to propose the network reset model where cognitive shifts are under the influence of 

NE and its ability to interrupt neural network activity (Chandler, 2016). We specifically looked at 

whether phasic LC activation could reset hippocampal networks, however, there is evidence to 

suggest that contextual representations are also formed in the PFC and it is reasonable to assume 

that phasic LC activation could also perturb network dynamics in this region as well. LC neurons 

send direct projections to the PFC (Arnsten, 2000) and NE is released in the PFC following LC 

activation. Impairments in the Attentional Set Shifting Task, which is a measure of attention and 

cognitive flexibility (Heisler et al., 2015) are typically associated with deficits in the PFC. 

However, previous research shows that it is LC-NE afferents to the PFC that are implicated 

(McGaughy et al., 2008). The ability to detect and ultimately to react in a behaviourally adaptive 

manner to salient stimuli is critical to survival, especially in circumstances that deliver a certain 

degree of uncertainty. Our data supports a role of the LC in reversal learning and cognitive shifts 
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in attention. Given the involvement of the LC in shifting attention, and its ability to filter out 

relevant information, it is not surprising that many studies are now focusing on LC target 

projections in models of Attention Deficit / Hyperactivity Disorder (ADHD) (Brennan & Arnsten, 

2008; Arnsten & Pliszka, 2011; Berridge & Devilbiss, 2011; Darcq & Kieffer, 2015). A better 

understanding of LC network dynamics and projections could potentially reveal mechanisms to 

counteract pathological conditions such as ADHD (Chandler, 2016).   

One interesting discrepancy in the literature concerns the rate at which phasic LC 

responses habituate. The discrepancy arises when comparing results from rodents to primates. In 

primates, responses to target stimuli did not habituate even after 100 presentations (Aston-Jones 

et al., 1991; Rajkowski et al., 1994; personal communication with Sebaestien Bouret) and were 

greatest when stimuli elicited an orienting response (Aston-Jones & Cohen, 2005; Sara & Bouret, 

2012). In contrast, LC responses did habituate when observed in rats, with different populations 

of LC neurons habituating at different rates (Sara & Segal, 1991), and in some cases, this 

occurred very rapidly (Sara et al., 1994; Vankov et al., 1995). Habituation of LC neurons has also 

been shown to occur in mice exposed to a novel environment (Takeuchi et al., 2016). This 

discrepancy has never been resolved in the literature. The LC codes for relative saliency for 

instance, a target that is presented infrequently does not elicit a response from the LC if it 

presented along with many novel or other task-related stimuli. However, if presented without 

those competing stimuli, LC responses may be observed (Krebs et al., 2017). Therefore, this 

discrepancy in habituation may be explained in terms of relative saliency. When a tone stimulus 

preceded a shock, LC cells responded when the tone was novel, but these responses habituated 

rapidly when the tone was no longer followed by shock. Similarly, in the holeboard task 

performed by rats, LC responses habituated rapidly when they were not reinforced. In monkeys 

(Aston-Jones et al., 1991; Rajkowski et al., 1994), the target stimulus was associated with a 

reward. Therefore, this discrepancy may be attributed to stimulus context and reinforcement, as 

well as relative saliency (Krebs et al., 2017).  
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One of the reasons it is difficult to resolve this issue is that very few people record from 

the LC in the first place. This is due to the fact that the LC is a small structure and somewhat 

difficult to target (George et al., 2013). Given how small it is, it has previously been assumed that 

the populations of cells within are homogenous, yet in fact, it is quite a heterogenous structure 

(Loughlin et al., 1986; Sara and Bouret, 2012; Schwarz & Luo, 2015; Schwarz et al., 2015) 

(Figure 59). One potential methodological consideration of this work is that activation of LC 

projects to many areas, many of which are projecting back onto the LC and may also project to 

the HF. Moreover, we are stimulating different subpopulations of neurons that may possess 

divergent functions (Schwarz & Luo, 2015; Schwarz et al., 2015). Previous studies have also 

shown that atrophy in the LC is ubiquitous in Alzheimer’s and Parkingson’s disease (Mann et al., 

1980; Haglund et al., 2006; Isaias et al., 2012; Hammerschmidt et al., 2013). In aging 

populations, memory disorders such as Alzheimer’s disease and Dementia are prevalent and the 

LC-NE system is clearly implicated, therefore, a greater understanding of the anatomical 

distribution of LC neurons could help elucidate the mechanisms by which the LC-NE system 

interacts with memory which offers therapeutic value to the study of neuropsychiatric and 

neurodegenerative disease states (Chandler, 2016). 

 

Figure 60. Sagittal schematic of the rodent LC. Subdivisions and legend proposed by Loughlin, Foote, & 
Grzanna (1986) from which the figure has been adapted. Reprinted from Neuron 76(1), Sara SJ & Bouret S, 
Orienting and reorienting: the locus coeruleus mediates cognition through arousal. 130-141., Copyright (2012), 
with permission from Elsevier.  
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As the field continues to advance technologically, more effective ways of targeting the 

LC have become available. Selectively inhibiting or activating LC neurons can be achieved using 

combinatorial, synergistic chemogenic and optogenetic strategies. These techniques involve the 

delivery of site specific adeno associated viruses (AAV) viruses containing Cre-recombinase 

under the control of a cell type-specific promoters enabling the expression of a Cre-dependent 

transgene in a cell-type (e.g. TH+) specific manner. The delivery of Cre-dependent vectors in 

local and retrograde projecting populations of neurons (Oyibo et al., 2014; Gompf et al., 2015; 

McCall et al., 2017) allows for the isolation and manipulation of specific pathways. For example, 

to inhibit the entire LC for a sustained period of time, A Cre-dependent adeno-associated virus 

(AAV) containing the Gαi-coupled hM4Di DREADD (Armbruster et al., 2007) can be infused 

directly into the LC of Cre driver lines such tyrosine-hydroxylase (Th) or DBH-Cre mice where 

LC inhibition can be induced chemogenically using clozapine-N-oxide (Figure 60). To inhibit the 

LC for a shorter period, the green light-sensitive opsin archaerhodopsin-3 (Arch) can be 

substituted for hM4Di and the LC can be inhibited using pulses of light at a wavelength of 

542nm. Similarly, to activate LC neurons for a sustained period, the excitatory hM3Dq DREADD 

can be used, or more precise temporal targeting can be achieved by selectively targeting the blue 

light-sensitive opsin channelrhodopsin-2 (ChR2) to LC-NE neurons of Th-Cre mice which can 

later be activated by pulses of light at a wavelength of 473nm. Cell body photostimulation can be 

applied in the LC itself, or light can be applied to the terminals in the HF depending on the 

specific question we are trying to answer. Moreover, if we are interested in a specific 

subpopulation of cells such as those active during a particular experience, we can tag specific 

neurons in the LC or the HF and later reactivate only those cells using inducible tamoxifen- or 

tetracycline-controlled systems (Garner et al., 2012).  
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Figure 61. LC-NE neurons selectively targeted with the inhibitory designer receptor exclusively activated by 
designer drug (DREADD) via injection of a Cre-dependent AAV into the LC of tyrosine hydroxylase-IRES-Cre 
mice (Th-Cre). Reprinted from: Neuron, 87(3), McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford 
CP, & Bruchas MR, CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced 
anxiety. 605-620, Copyright (2015) with permission from Elsevier.  

 

Future experiments should also include a design where we activate the LC either 

pharmacologically or optogenetically, to emit a phasic burst and simultaneously record 

electrophysiologically, in the HF to replicate our findings that phasic LC discharge can remap 

hippocampal representations while examining activity in place cells. In addition, given that we 

were unable to block remapping using clonidine, we should attempt to block remapping using a 

BAR antagonist such as PRO to assess if remapping is indeed dependent on BAR activation. 

Employing technologies such as the use of in vivo calcium imaging would also afford the 

opportunity to view remapping effects in real time. Other methodological factors that we should 

also take into consideration include the fact that our n-values for experiment 5 are quite low and 

another cohort should be run.  

In the past 15 years, we have seen an explosion in the number of papers investigating 

pattern separation. And while there is evidence to show that the DG subserves this function, there 

is much we do not understand regarding the way in which memories are separated, and even less 

concerning how they are updated. For this reason, the work presented here is highly novel. Few 

studies have examined the role of the LC-NE system on memory encoding and to date no studies 
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that we are aware of have looked at the role of the LC-NE system in remapping. From a clinical 

perspective, the current experiments are particularly significant with respect to gaining insight to 

the etiology of anxiety disorders such as PTSD. The LC is particularly vulnerable to stress 

(Bremner et al., 1996) and NE is involved in the neural mechanisms of conditioned fear (Davis, 

1986; Bremner et al., 1996). Conditioned-fear is the process that occurs when an organism learns 

to fear a specific stimulus within its environment (Pavlov, 1927).  The contextual element of fear 

conditioning is also dependent on the HF (Gewirtz et al., 2000; Anagnostaras et al., 2001; Maren 

et al., 2013). PTSD involves the recall of traumatic events in a way that seems to dominate over 

other types of memories and this may involve the release of NE in the HF (Bremner et al., 1996). 

In animals, models of PTSD are typically associated with impairments in extinction learning 

which involves a cognitive shift (Bremner et al., 1996; Yamamoto et al., 2008; Knox et al., 2012; 

VanElzakker et al., 2014). We hypothesize that individuals with PTSD may be impaired in their 

ability to engage in cognitive shifts, and rather than remapping contextual representations in the 

presence of new information (e.g. safety signals), they reactivate old (fear-related) representations 

thus interfering with their ability to demonstrate adaptive behaviour (Strawn & Geracioti, 2008; 

Sara, 2016). Given that PTSD is characterized by a sensitization to stress (George et al., 2013) 

and a dysregulated LC-NE system (George et al., 2013; Pietrzak et al., 2013), extending this work 

to include animal models of PTSD could be useful. For instance, animals that have undergone 

single prolonged stress (SPS) which is considered to model PTSD in rodents, show significantly 

lower baseline levels of tonic LC discharge, but in response to paw compression, their evoked 

responses are significantly higher than animals which did not receive SPS (George et al., 2013). 

Furthermore, anxiety disorders are more prevalent in females (Freedman et al., 2002; Kessler et 

al., 2005, 2012; Tolin & Foa, 2006; Breslau et al., 2017), and sex differences in the LC-NE 

system have been shown to emerge during development (Guillamón et al., 1988; Luque et al., 

1992; Pinos et al., 2001; Bangasser et al., 2016; Bangasser & Wicks, 2017).  Given that the LC 

has been identified as a candidate region of interest in anxiety disorders and depression (Austin et 
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al., 2003), it would be beneficial to assess sex differences and include both male and female 

subjects in prospective studies (Beery & Zucker, 2011; Bangasser et al., 2016). Understanding the 

interaction between stress-induced LC-NE activation and memory is also important for the 

development of treatment interventions for anxiety disorders such as PTSD and panic disorder 

(Bremner et al., 1993). 

In summary, there has been an interest in the relationship between the LC-NE system and 

memory for many years (Bremner et al., 1996; Harley, 2007b; Sara, 2009, 2016). The LC 

responds to salient and novel cues and innervates a vast number of brain regions. Early brain slice 

electrophysiology studies demonstrated that LC-induced NE release in these regions, specifically 

the HF, caused plasticity-associated effects. These effects were later shown to occur in vivo and 

were also correlated with changes in learning and behaviour. Changes that have been associated 

with the enhancement of consolidation and retrieval, especially when memories were emotional 

in content (Tully & Bolshakov, 2010) and can be considered somewhat global in the sense that 

neuromodulation occurs over longer time scales rather than fast-acting, small molecule 

neurotransmitters (e.g., glutamate and g-Aminobutyric acid). Here, we probed the brain in a way 

that examined the role of NE in a targeted fashion, on the micro-circuitry of mnemonic processes 

such as encoding and retrieval over shorter time scales. Combining the use of genetic and 

molecular technologies we examined different subpopulations of HF cells across time to 

demonstrate that NE not only plays a crucial role in memory encoding, but is implicated in 

mechanisms underlying memory-updating and network remapping. NE provides a “reset” signal 

causing the HF to recruit distinct neural populations, thereby providing a molecular switch to 

dictate if hippocampal circuits should generate new representations or update existing ones to 

incorporate novel information. We have shown that novelty-associated LC activation helps to 

sculpt contextual representations in the HF in an adaptive manner, causing the HF to move from a 

state of retrieval back to encoding when novel information needs to be incorporated and can 

promote cognitive flexibility thus improving reversal learning (i.e., switching the system back to 



 
     

 

163 

encoding when it is adaptive). Understanding how this system becomes dysregulated, either when 

the system switches from retrieval to encoding when it is maladaptive (e.g., in situations where 

retrieval is necessary to perform a task, or when irrelevant information should be filtered out) or 

when NE is unable to act as a reset switch in the presence of novel information, may be 

implicated in disorders of attention and anxiety respectively. To this end, our goal is to further 

illuminate the relationship between the LC-NE and systems of memory through an understanding 

of the network resetting in hippocampal cell populations.  
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