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Abstract 

We study the motion of a secondary celestial body under the influence of the logarithmic corrected 

gravitational force of a primary one. This kind of correction was introduced by Fabris et al. (2009). We derive 

two equations to compute the rate of change of the periastron w.r.t. the eccentric anomaly and its total 

variation over one revolution, In a kinematical sense, this influence produces an apsidal motion. We perform 

numerical estimations for Mercury and for the companion star of the pulsar PSR 1913+16. We also consider 

the case of the artificial Earth satellite GRACE-A, but the results present a low degree of reliability from a 

practical standpoint. 

 

Key words: Logarithmic potential, Gauss’ planetary equations, periastron time, anomalistic period, Keplerian 

period. 

 

1 Introduction 

In order to explain the difference between the theoretically predicted and the observed position of Mercury’s 

perihelion and its rate of precession, several theories have been proposed. These theories are related to 

modified versions of the Newtonian potential. Following this direction, Mücket and Treder (1977) introduced 

a logarithmic correction to the gravitational potential per unit mass. Various authors considered the same 

potential. Mioc et al. (1991) adopted it in order to estimate the difference between the nodal and Keplerian 

periods, as well as the changes of the orbital elements over a nodal period. Next, Diacu (1992) examined the 

validity of the Mücket–Treder gravitational law in the case of a three-body problem. Mioc (2004) has worked 

out the symmetries of the Mücket–Treder’s two-body problem. 

In more recent works logarithmic potentials have been used by various researches in investigating the motion 

of galaxies, the existence and influence of dark matter and the applicability of long-range modified gravity 

models on the motion of the planets of our solar system. Van Moorsel (1987) found that the data obtained from 

the observation of the motion of some binary galaxies indicate the presence of dark matter. The influence of 

this matter can be approximated by a logarithmic potential. Kinney et al. (2001) studied the consequences of 
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adopting the existence of a non-gravitational logarithmic potential instead of that of dark matter in order to 

explain the discrepancies between the dynamical mass measures of objects such as galaxies and clusters and 

the observed distribution of luminous matter. Kirillov (2006), while studying the bias relation between visible 

and dark matter in the case that the structure of the universe does not match that of the Friedman space, he 

justified that, when a galaxy is near a dark matter point source, a logarithmic-like term should be added to the 

Newton’s potential. Iorio et al. (2008a) worked on the secular precessions of the longitudes of the perihelia of 

some planets of our solar system and examined if they are compatible with those predicted by long-range 

modified gravity models. Among others, they studied the results of adopting a logarithmic-type correction to 

the gravitational potential instead of considering the effect of dark matter. Fabris et al. (2009) analyzed the 

rotation curves of some spiral galaxies moving within a logarithmically corrected Newtonian potential. 

On the other hand, many contributions have been published either on studying the perturbations that affect the 

orbital elements of celestial bodies or on explaining and modeling the discrepancies between the predictions of 

the Newton’s and/or Einstein’s gravitation theory and the available observations on these elements. See, for 

example, Iorio (2005 ; 2007a), Adkins et al. (2007), Schmidt (2008), Ruggiero (2010), Xu (2011) and Haranas 

et al. (2011a). Post-Newtonian effects on the anomalistic period have been investigated, too. Iorio (2007b) 

considered a two-body system in eccentric orbits and examined the post-Newtonian relativistic gravitoelectric 

part of the precession of the mean anomaly which is not produced by the variation of the orbital period. Li 

(2010) studied the results of applying three relativity gravitation theories in expressing the post-Newtonian 

effects in the variation of the periastron passage time for binary stars. Later (2011), he examined the influence 

of the gravitational radiation damping on this time. Haranas et al (2011b) worked on the effects of a Yukawa-

type potential in the anomalistic period of celestial bodies. Last, we must mention that general relativity also 

predicts the well known gravitomagnetic clock effect in the anomalistic period of a particle orbiting a (slow) 

spinning main body. This relative literature is certainly too vast to be cited. So, we quote just a review paper 

written by Iorio et al. (2011a). 

 In the present work we opt to use a logarithmic correction to the gravitational Newtonian potential in 

order to calculate the anomalistic time of a secondary body orbiting a primary one. This correction can be 

expressed as a modification of the Newtonian potential energy per unit mass by the term: 

 ln
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ln
r
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r

 
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(Fabris et al. 2009; Iorio et al. 2008a) where M  is the mass of the primary, G  is the Newtonian gravitational 

constant, r  is the radial distance of the secondary body from the primary one,   is a parameter with 

dimension of inverse length (
1L
) and 0r  is an arbitrary parameter with dimension of length ( L ). It has been 

found that a “concordance” value for this parameter is 1.0 Kpc
-1

. The total acceleration acting on the 

secondary is: 
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where  1rG G r  . Therefore, the presence of the non-Newtonian term can be considered as converting G  

into a space-varying Newtonian gravitational constant (Iorio 2011b; Haranas et al. 2011a). In this paper we 

evaluate our findings using the planet Mercury, the companion star of the pulsar PSR 1913+16, and the 

artificial satellite GRACE-A. Finally, we compare our results to those obtained by applying a 

Yukawa-type correction in Haranas et al. (2011b). 

 

2 Rate of change and variation per revolution of the periastron time 

We consider the unperturbed relative orbit of the secondary body, a Keplerian ellipse. Let a  be the semimajor 

axis, e  the eccentricity, n  the mean motion, and M  the mean anomaly of this orbit. First, we will express the 

rate of change of the periastron time 0  in terms of the true anomaly f . The mean anomaly is defined by 

  0M n t T             (3) 

where t  is  the time variable. We differentiate Eq. (3) with respect to t  and obtain: 
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Using also that, on the unperturbed Keplerian orbit of the secondary, Kepler’s third law is given by 

2 3G n aM , the time rate of change of the mean motion is found to be: 
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In the presence of a perturbation, the rates of change of the orbital elements can be expressed by 

means of Gauss’ planetary equations: For the semimajor axis and the mean anomaly they read: 
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where R  and T  are the radial and transverse components of the perturbing acceleration. In our case, ln 0T   

while  
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Substituting Eqs. (5)–(7) into (4) we obtain that, for 0 1e  : 
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where 
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Then, we use the well known relations (see, e.g., Murray and Dermott, 1999) 
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to express Eqs. (8)-(9) in terms of the eccentric anomaly E  We obtain that: 
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The logarithmic correction effect on 0T  over a whole revolution of the secondary is obtained by integrating 

0 /dT dE  over the interval [0,2 ] . Then, the change of the anomalistic period per revolution: 
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If we can measure the change in the anomalistic period per revolution for a given body in an elliptical orbit, 

we can then write that the coupling constant   is given by the following expression: 
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3 Numerical results 

First, we proceed with the calculation of the variation of the anomalistic period of SIRIUS companion 

CMaB: Mass of primary = 2.02 Msun, semimajor axis of companion aB = 19.80 AU, (Skemer and Close, 

2011)  e = 0.5923, n = 3.0  10
-9

 rad/s, we obtain that: 

 7698.99CMaBT s/rev  

TYuk for Sirius companion 

 0.28935  ,271634.0  ,00248014.0YukT s/rev 

We use lamda and alpha 151094.4  m, and  = 101012 109.4,106.4,102.4   . First, we proceed 

with the calculation of the variation of the anomalistic period of Mercury. For this planet, we have used the 

following orbital parameters: 57909083a  km, 0.205e  , 
78.07 10n   rad/s. For the primary, 

301.99 10  M M kg. Applying 1.0 Kpc
-1

 to Eq. (18), we obtain that: 

 3

0 Mer 4.683 10T   s/rev         (20) 

Next, we estimate the change of the anomalistic period of the companion star of the pulsar PSR 1913+16. The 

orbital parameters for this star are 
61.9501 10a   km, 0.617,e   and 

41.575 10n   rad/s. The primary’s 

mass is 1.387 .M M  Then: 

 6

0 PSRc 1.394 10T   s/rev         (21) 

Finally, we calculate the variation of the perigee passage time of the artificial Earth satellite GRACE-A. We 

have used that, for this satellite, 6876.4816a  km, 0.00040989e   and 0.001100118n  rad/s 

(http://www.csr.utexas.edu/grace/) and, for the primary, 245.9722 10  M M kg. Using Eq. (18) we find 

that: 

 10

0 GRACE-A 3.184 10T   s/rev         (22) 

We should note here that the degree of reliability of the results concerning GRACE-A is low from a practical 

standpoint, because of the very small eccentricity. It is known that, for quasicircular orbits, the position of the 

periastron (hence the periastron time) cannot be accurately determined. However, our results are still of some 

interest as regards the order of the perigee time variation. A sensitivity analysis for post-Newtonian effects on 

the GRACE-A and B spacecrafts was worked out by Iorio (2012). 

In Figures 1, 2 and 3, we present the variation of rate of change of the anomalistic time w.r.t to the 

eccentric anomaly E  of Mercury, the companion star of the pulsar PSR 1913+16 and GRACE-A. Figure 1 for 

Mercury indicates that there exist two values of the eccentric anomaly for which this rate is zero. Solving 

numerically the equation: 

http://www.csr.utexas.edu/grace/
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that results from the R.H.S. of Eq. (17), we obtain that these values are 63.293899E   and 330.688702E  . 

The maximum of 0 /dT dE  can be found by solving: 

   
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2 2 4 3 4

2

6 cos( ) 2 6 5 10 cos( ) cos(2 ) sin
0

2 1 cos

e E e E e e e E e E E

e e E
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


    (24) 

that comes from the derivative of the L.H.S. of Eq. (23). This maximum is at 215.422386 .E   Similarly, for 

the pulsar PSR 1913+16, 0 /dT dE  is zero at 32.773697E   and 359.551488E   while its maximum is 

achieved at 306.101830 .E    Finally, for GRACE-A, 0 /dT dE  is zero at 89.929590E   and 

270.070591E  , while its maximum occurs at 180.000091 .E   Figures 4 and 5 present the variation of the 

anomalistic periods of Mercury and the companion star of the pulsar PSR 1913+16 as functions of the 

eccentric anomaly E  and the radial orbital distance .r   

 Several works concerning the effects of Yukawa-type potentials on orbital elements have been 

published (see, for example, Kokubun 2004; Iorio 2008b). In Haranas et al. (2011), the authors dealt with the 

anomalistic time change due to such a correction to the Newtonian potential. Comparing the results of the 

present work with those of the aforementioned publication, we see the following: For Mercury, the change of 

the anomalistic period because of the logarithmic correction and that by the Yukawa correction with a 

coupling constant 10

Yuk 3.57 10    are connected through the relation 0 ln 0 Yuk2.220 .T T   In the case of 

the companion star of the pulsar PSR 1913+16 and for 11

Yuk 6.409 10 ,    the corresponding relation is 

0 ln 0 Yuk0.544T T   For GRACE-A and a Yukawa coupling constant in the range 

12 10

Yuk4.2 10 3.184 10     , we obtain that 0 Yuk 0 ln 0 Yuk0.000155 0.0180 .T T T     



     

Fig. 1 Companion of Sirius CMaB: The variation of the rate of change of  

the anomalistic period 0d /dT E  versus the eccentric anomaly E  along a full 

rotation. 

 
 

          
Fig. 2 Companion star of PSR 1913+16: The variation of the rate of  

change of the anomalistic period 0d /dT E  versus the eccentric anomaly 

E  along a full rotation. 

 

 



         

 
Fig. 3 Earth’s satellite GRACE-A: The variation of the rate of change 

of the anomalistic period 0d /dT E  versus the eccentric anomaly E  

along a full rotation. 

 

 

    
Fig. 4 Companion of Sirius CMaB: The variation of the anomalistic  

period change 0ΔT  versus the eccentric anomaly E  and the radial orbital 

distance r  along a full revolution. 

 



   

   
   

Fig. 4 Planet Mercury: The variation of the anomalistic period change  

0ΔT  versus the eccentric anomaly E  and the radial orbital distance 

r  along a full revolution. 

 

 



 
 

Fig. 5 Companion star of PSR 1913+16:: The variation of the anomalistic 

period change 0ΔT  versus the eccentric anomaly E  and the radial orbital 

distance r  along a full revolution. 

 

 

4 Summary and concluding remarks 

Using a logarithmic correction to the Newtonian gravitational potential as in Fabris et al. (2009) and Iorio et 

al. (2008a), we derive an eccentric anomaly-dependent equation that estimates rate of change of the 

anomalistic period of a secondary body orbiting a primary one. By using the integral of this equation over a 

whole revolution, the contribution of the logarithmic correction to the change of the periastron time can be 

calculated. This variation was estimated for some concrete astronomical cases. Its observational detection can 

constitute a possible test for the action of post-Newtonian type forces on the solar system bodies or on other 

celestial objects. A logarithmic correction is by no means the only kind of correction to be considered in the 

modification of the Newtonian gravitational potential. For example, general relativistic corrections as well as 

quantum corrections can be also examined but that is another topic that we are going to deal with in the 

nearest future. 
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