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Abstract

Part-of-speech (PoS) taggers are an important processing component in many Natural
Language Processing (NLP) applications, which led to a variety of taggers for tackling
this task. Recent work in this field showed that tagging accuracy on informal text
domains is poor in comparison to formal text domains. In particular, social media
text, which is inherently different from formal standard text, leads to a drastically
increased error rate. These arising challenges originate in a lack of robustness of
taggers towards domain transfers. This increased error rate has an impact on NLP
applications that depend on PoS information.

The main contribution of this thesis is the exploration of the concept of robustness
under the following three aspects: (i) domain robustness, (ii) language robustness and
(iii) long tail robustness. Regarding (i), we start with an analysis of the phenomena
found in informal text that make tagging this kind of text challenging. Furthermore,
we conduct a comprehensive robustness comparison of many commonly used taggers
for English and German by evaluating them on the text of several text domains. We
find that the tagging of informal text is poorly supported by available taggers. A re-
view and analysis of currently used methods to adapt taggers to informal text showed
that these methods improve tagging accuracy but offer no satisfactory solution. We
propose an alternative tagging approach that reaches an increased multi-domain tag-
ging robustness. This approach is based on tagging in two steps. The first step tags
on a coarse-grained level and the second step refines the tags to the fine-grained tags.
Regarding (ii), we investigate whether each language requires a language-tailored PoS
tagger or if the construction of a competitive language independent tagger is feasible.
We explore the technical details that contribute to a tagger’s language robustness by
comparing taggers based on different algorithms to learn models of 21 languages. We
find that language robustness is a less severe issue and that the impact of the tagger
choice depends more on the granularity of the tagset that shall be learned than on the
language. Regarding (iii), we investigate methods to improve tagging of infrequent
phenomena of which no sufficient amount of annotated training data is available,
which is a common challenge in the social media domain. We propose a new method
to overcome this lack of data that offers an inexpensive way of producing more train-
ing data. In a field study, we show that the quality of the produced data suffices to
train tagger models that can recognize these under-represented phenomena.

Furthermore, we present two software tools, FlexTag and DeepTC, which we
developed in the course of this thesis. These tools provide the necessary flexibility
for conducting all the experiments in this thesis and ensure their reproducibility.
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Zusammenfassung

Part-of-Speech (PoS) tagging (Wortklassenerkennung) ist ein wichtiger Verarbeitungs-
schritt in vielen sprachverarbeitenden Anwendungen. Heute gibt es daher viele PoS
Tagger, die diese wichtige Aufgabe automatisiert erledigen. Es hat sich gezeigt, dass
PoS tagging auf informellen Texten oft nur mit unzureichender Genauigkeit möglich
ist. Insbesondere Texte aus sozialen Medien sind eine große Herausforderung. Die er-
höhte Fehlerrate, welche auf mangelnde Robustheit zurückgeführt werden kann, hat
schwere Folgen für Anwendungen die auf PoS Informationen angewiesen sind.

Diese Arbeit untersucht daher Tagger-Robustheit unter den drei Gesichtspunk-
ten der (i) Domänenrobustheit, (ii) Sprachrobustheit und (iii) Robustheit gegenüber
seltenen linguistischen Phänomene. Für (i) beginnen wir mit einer Analyse der Phä-
nomene, die in informellen Texten häufig anzutreffen sind, aber in formalen Texten
nur selten bis gar keine Verwendung finden. Damit schaffen wir einen Überblick über
die Art der Phänomene die das Tagging von informellen Texten so schwierig machen.
Wir evaluieren viele der üblicherweise benutzen Tagger für die englische und deutsche
Sprache auf Texten aus verschiedenen Domänen, um einen umfassenden Überblick
über die derzeitige Robustheit der verfügbaren Tagger zu bieten. Die Untersuchung
ergab im Wesentlichen, dass alle Tagger auf informellen Texten große Schwächen zei-
gen. Methoden, um die Robustheit für domänenübergreifendes Tagging zu verbessern,
sind prinzipiell hilfreich, lösen aber das grundlegende Robustheitsproblem nicht. Als
neuen Lösungsansatz stellen wir Tagging in zwei Schritten vor, welches eine erhöh-
te Robustheit gegenüber domänenübergreifenden Tagging bietet. Im ersten Schritt
wird nur grob-granular getaggt und im zweiten Schritt wird dieses Tagging dann auf
das fein-granulare Level verfeinert. Für (ii) untersuchen wir Sprachrobustheit und
ob jede Sprache einen zugeschnittenen Tagger benötigt, oder ob es möglich ist einen
sprach-unabhängigen Tagger zu konstruieren, der für mehrere Sprachen funktioniert.
Dazu vergleichen wir Tagger basierend auf verschiedenen Algorithmen auf 21 Spra-
chen und analysieren die notwendigen technischen Eigenschaften für einen Tagger,
der auf mehreren Sprachen akkurate Modelle lernen kann. Die Untersuchung ergibt,
dass Sprachrobustheit an für sich kein schwerwiegendes Problem ist und, dass die
Tagsetgröße des Trainingskorpus ein wesentlich stärkerer Einflussfaktor für die Eig-
nung eines Taggers ist als die Zugehörigkeit zu einer gewissen Sprache. Bezüglich (iii)
untersuchen wir, wie man mit seltenen Phänomenen umgehen kann, für die nicht
genug Trainingsdaten verfügbar sind. Dazu stellen wir eine neue kostengünstige Me-
thode vor, die nur einen minimalen Aufwand an manueller Annotation erwartet, um
zusätzliche Daten für solche seltenen Phänomene zu produzieren. Ein Feldversuch
hat gezeigt, dass die produzierten Daten ausreichen um das Tagging von seltenen
Phänomenen deutlich zu verbessern.

Abschließend präsentieren wir zwei Software-Werkzeuge, FlexTag und DeepTC,
die wir im Rahmen dieser Arbeit entwickelt haben. Diese Werkzeuge bieten die not-
wendige Flexibilität und Reproduzierbarkeit für die Experimente in dieser Arbeit.





vii

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 7
2.1 Part-of-Speech Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Tagsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Domain Robustness - Challenges 33
3.1 The Social Media Domain . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Theoretical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Practical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Domain Robustness - Existing Approaches 51
4.1 More Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 More Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Combining Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Transferability to Other Languages . . . . . . . . . . . . . . . . . . . . 63
4.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Domain Robustness - Two-Step Tagging 73
5.1 Potential of Coarse-grained Tagging . . . . . . . . . . . . . . . . . . . 74
5.2 Coarse-grained Cross-Domain Robustness . . . . . . . . . . . . . . . . 76
5.3 Tagging in Two-steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Language Robustness 89
6.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Tagger Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 92



viii

6.3 Direct Comparison of Taggers . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Comparison to State-of-the-art Taggers . . . . . . . . . . . . . . . . . 97
6.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Long Tail Robustness 101
7.1 Fitting Towards a Phenomenon . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Generalization of the Approach . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Technical Prerequisites 119
8.1 FlexTag – A Flexible PoS Tagger . . . . . . . . . . . . . . . . . . . . . 119
8.2 Extending DKPro Text Classification . . . . . . . . . . . . . . . . . . . 123
8.3 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9 Conclusion 131
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Limitations and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Language Robustness - Results per Corpus 135



ix

List of Figures

1.1 Example of a PoS tagged sentence . . . . . . . . . . . . . . . . . . . . 1
1.2 Social media posting with non-standard language use . . . . . . . . . . 2
1.3 Robustness scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example of a Part-of-Speech tagged sentence . . . . . . . . . . . . . . 7
2.2 PoS tagger model training process with prediction . . . . . . . . . . . 9
2.3 Example of generalizing, over- and underfitting classifier . . . . . . . . 10
2.4 Categorization of PoS tagging related concepts . . . . . . . . . . . . . 11
2.5 Support Vector Machine example . . . . . . . . . . . . . . . . . . . . . 16
2.6 Trigram Hidden Markov Model as directed graph . . . . . . . . . . . . 17
2.7 Conditional Random Field as undirected graph . . . . . . . . . . . . . 18
2.8 Basic neural network with one hidden layer . . . . . . . . . . . . . . . 19
2.9 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Structure of a plain LSTM cell . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Example of words in embedding space . . . . . . . . . . . . . . . . . . 22
2.12 Example of mapping language dependent tags to the Universal tagset 25

3.1 Tagging a non-standard Twitter message with the Stanford tagger . . 35
3.2 Comparison of PoS distribution between text domains . . . . . . . . . 38
3.3 Type/token ratio for the written, social and the spoken domain . . . . 39
3.4 Domain robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Overall macro-averaged results for each English and German model . . 45
3.6 Results of the English models per text domain . . . . . . . . . . . . . 46
3.7 Results of the German models per text domain . . . . . . . . . . . . . 47

4.1 PoS tagging by normalization versus domain adaptation . . . . . . . . 52
4.2 Overview of domain adaptation approaches . . . . . . . . . . . . . . . 53
4.3 Re-training learning curve . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Results of mixed re-training . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Results of oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Voting vs. mixed-retraining . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Results of using PoS dictionaries . . . . . . . . . . . . . . . . . . . . . 59
4.8 Enhancing tagging by cluster knowledge . . . . . . . . . . . . . . . . . 59
4.9 Improvements by using Brown and LDA clusters . . . . . . . . . . . . 60
4.10 Results for each approach on the English dataset . . . . . . . . . . . . 62
4.11 Results for each approach on the German dataset . . . . . . . . . . . . 66



x

4.12 Results for each approach on the Italian dataset . . . . . . . . . . . . 70

5.1 PoS tagging in two steps . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Learning curves for the News and the Twitter dataset . . . . . . . . . 77
5.3 Cross-domain learning curves for News dataset vs. Twitter dataset . . 78
5.4 Implementation of two-step tagging . . . . . . . . . . . . . . . . . . . . 81
5.5 Two stacked CRF taggers as baseline . . . . . . . . . . . . . . . . . . . 82
5.6 Decreasing fine-grained accuracy by error propagation . . . . . . . . . 84

6.1 Evaluation for language robustness . . . . . . . . . . . . . . . . . . . . 89
6.2 LSTM architectures in our replication setup . . . . . . . . . . . . . . . 92
6.3 Results of LSTM architectures per language group . . . . . . . . . . . 93
6.4 Averaged results of CRF feature set parametrizations . . . . . . . . . . 95
6.5 Effect of tagset size on accuracy for a HMM, CRF and LSTM tagger . 96
6.6 Results of a HMM, CRF and LSTM tagger on multilingual corpora . . 97
6.7 Reproduction of best results for selected languages . . . . . . . . . . . 98

7.1 Long tail robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Producing more training data of under-resourced phenomena . . . . . 104
7.3 Results of tagging OOV instances of VVPPER . . . . . . . . . . . . . 107
7.4 Evaluation of tagging VVPPER instances in plain text . . . . . . . . . 110
7.5 Evaluation of tagging ADVART instances in plain text . . . . . . . . . 113
7.6 Evaluation of tagging APPRART instances in plain text . . . . . . . . 116

8.1 Flexibility levels of PoS taggers . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Feature extractor that detects user mentions in Twitter . . . . . . . . 122
8.3 Processing schema for experiments in DKPro TC . . . . . . . . . . . . 125
8.4 Vectorization N-to-1, N-to-M and N-to-N . . . . . . . . . . . . . . . . 127

A.1 Results of CRF feature set parameterizations on multi-lingual corpora 136
A.2 Results of LSTM architectures on multilingual corpora . . . . . . . . . 137
A.3 Results of a HMM, CRF and LSTM tagger on multilingual corpora . . 139



xi

List of Tables

2.1 Confusion matrix example . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Calculation example of Precision, Recall and F-Score . . . . . . . . . . 26

3.1 Examples of non-standard language use in social media . . . . . . . . 36
3.2 English and German tagger models that are evaluated for robustness . 42
3.3 Corpora selection to evaluate domain transfer robustness of models . . 44
3.4 Accuracy and execution time per text domain of the English models . 47
3.5 Accuracy and execution time per text domain of the German models . 47
3.6 Examples of the English and German spoken corpora . . . . . . . . . . 48

4.2 Frequency of the newly introduced tags in the German dataset . . . . 64
4.3 Results on German test data subsets per approach . . . . . . . . . . . 67
4.4 Official results of the German Empirikom shared task . . . . . . . . . 67
4.5 Results on the German test data per tag for each approach . . . . . . 68
4.6 Results on the Italian test data per tag for each approach . . . . . . . 71
4.7 Official results of the Italian shared task . . . . . . . . . . . . . . . . . 72

5.1 Tagging accuracy for fine-mapped and coarse-grained tagging . . . . . 76
5.2 Cross-domain tagging accuracy of fine- and coarse-grained models . . 80
5.3 F-Score for coarse-grained CRF taggers . . . . . . . . . . . . . . . . . 81
5.4 Results of tagging in two steps . . . . . . . . . . . . . . . . . . . . . . 83
5.5 F-Score of fine-grained tags for two-step tagging under oracle condition 85

6.1 The replication setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Multilingual corpora collection for comparing PoS taggers robustness . 91

7.1 Example of full-verb with personal pronoun contractions (VVPPER) . 103
7.2 F-Score results on VVPPER instances . . . . . . . . . . . . . . . . . . 106
7.3 Improvements of the contextualised two-step tagging on VVPPER . . 108
7.4 Twitter postings that have been tagged as VVPPER . . . . . . . . . . 111
7.5 Example of adverb with article contractions (ADVART) . . . . . . . . 112
7.6 F-Score results on ADVART instances . . . . . . . . . . . . . . . . . . 112
7.7 Twitter postings that have been tagged as ADVART . . . . . . . . . . 114
7.8 Example of preposition with article contractions (APPRART) . . . . . 115
7.9 F-Score results on APPRART instances . . . . . . . . . . . . . . . . . 115
7.10 Twitter postings that have been tagged as APPRART . . . . . . . . . 117



xii

A.1 Accuracy of CRF tagger configurations on multi-lingual corpora . . . . 135
A.2 Accuracy of LSTM taggers on multi-lingual corpora . . . . . . . . . . 138



1

Chapter 1

Introduction

The increasing amount of digitalization in daily life has led to a ubiquitous exposure
to information. A large part of this information is consumed as text, e.g. we read for
instance news articles and product reviews, and communicate with friends on social
media websites. Humans are intuitively able to find information on involved actors
and their actions. The sentence construction and the way in which nouns, verbs,
adverbs or adjectives occur allow humans to understand a text. The word classes
or the parts of speech (PoS) are thus an information of essential importance to text
comprehension.

PoS taggers are tools that belong to the group of Natural Language Processing
(NLP) applications and automatically perform the task of PoS recognition. Taggers
are used standalone, for instance by linguists, but also as component in more complex
NLP setups. In many processing setups, knowing the word’s PoS is similarly valuable
as to humans. An example of a PoS tagged sentence is shown in Figure 1.1. Many
words can occur with more than just one PoS. The example contains, for instance, an
ambiguity of the word “can” that was successfully resolved, the first time as a verb
and the second time as a noun. Resolving such ambiguities requires analyzing the
surrounding word context; for instance, the article the before the second “can” is a
strong evidence that this occurrence of “can” is a noun.

The usefulness of PoS information depends on its quality, i.e. correct tagging. In
the worst case, poor tagging results degenerates to a point at which the application
is rendered inoperable. Tagging results on English and German usually reach an
accuracy of 97% (Manning, 2011; Giesbrecht and Evert, 2009), which creates the im-
pression that tagging performs satisfactorily. However, such accurate tagging results
are only achievable on highly formal text such as newswire. When tagging less formal
text domains, for instance social media, the same taggers reach only between 70%

VERB PRON DETVERB NOUN PREP PRON PUNCT

Can you theopen can for me ?

Figure 1.1: Example of a PoS tagged sentence in which a label is assigned to each
word that specifies the syntactical function of the word in the sentence
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Contraction
(gonaà going	to)

Slang	/	Abbreviation
(tfà the	fuck)

Contraction
(outtaà out	of)

Hashtag

im gona missss tf outta them
#classof2017

Character	repetition

Figure 1.2: Social media posting with non-standard language use

to 80% accuracy (Beißwenger et al., 2016; Ritter et al., 2011). Such a severe drop in
accuracy is certainly surprising but also indicates a lack of robustness of these taggers
against text domain shifts.

To improve the understanding of the peculiarities of social media, Figure 1.2
shows an example message taken from the social media platform Twitter. The key
differences to formal text are for instance word contractions, repetition of characters,
slang expressions, abbreviations and hashtags that can be composed of multiple words
(Eisenstein, 2013; Baldwin et al., 2013). Such phenomena are not part of the standard
language and usually do not occur in formal text. However, formal text, i.e. newswire
text, is most commonly used as training data for these taggers. Thus, taggers trained
on formal text perform well on formal text but not on less formal text. The preferred
use of formal text for model training might explain this lacking robustness. Solving
this robustness challenge by simply training a new model on social media data is not
possible, either. There are only a few PoS annotated social media corpora available
that are too small in size for model training.

Hence, in this thesis, we investigate the robustness of PoS taggers. In Figure 1.3,
we show the three robustness scenarios on which we focus. Domain robustness in-
vestigates the robustness problem that we described above. We evaluate English and
German taggers on same domain text as the training data and on foreign domain text.
In a same domain evaluation, a tagger model trained on newswire text is applied to
text coming from the same domain as the model’s training data, for instance another
newswire corpus. In this case, the model will barely encounter any unknown linguistic
phenomena because the model has been trained on this domain. Thus, an accurate
tagging should be possible. In a foreign domain evaluation, the model is applied to
text from a different text domain, for instance social media. The model will encounter
linguistic phenomena that did not occur in the newswire training data. Depending
on the number and frequency of unknown linguistic phenomena, the model will be
challenged to assign the correct tag. This provides a more complete picture of the
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TaggerTaggerTagger Tagger

In-domain Out-of-domain

A B

EN DE

…

FR
HUSK FI

Language	RobustnessDomain	Robustness Long	Tail	Robustness

DEEN
DE

Chapters 3, 4 and 5 Chapter 6 Chapter 7

Figure 1.3: Robustness scenarios

robustness currently available taggers offer. Furthermore, we explore common strate-
gies to improve robustness of models, in particular for the social media domain, and
additionally propose a new tagging method to increase general cross-domain tagging
robustness. Language robustness investigates if tagger implementations are able to
learn and predict the PoS for more than just one language. More specifically, we in-
vestigate if each language requires a language-tailored tagger implementation or if it is
possible to construct a tagger that works equally well for a variety of languages. Long
tail robustness focuses on dealing with sparseness of training samples when training
a model. On low-resourced domains, such as the social media domain, many phe-
nomena are often under-represented in the nevertheless small training datasets. This
prevents robust tagging of these phenomena due to their infrequency. We investigate
methods of dealing with these rare phenomena.

1.1 Main Contributions

The main contributions of this thesis are summarized as follows:

Domain Robustness: We provide a comprehensive overview over the offered ro-
bustness of currently available off-the-shelf tagger models by evaluating them on three
different text domains. We discuss existing strategies to improve tagger model robust-
ness and analyze them in detail to learn which word classes (or tags) they improve.
We analyze the effect of each strategy alone and in combination and confirm their
effectiveness on three languages, namely English, German and Italian. Furthermore,
we introduce a new tagging approach that is based on tagging in two steps that
achieves a better multi-domain robustness than the baseline taggers.
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Language Robustness: We investigate the requirements for constructing a
language-independent tagger. We experimenting with different tagger algorithms and
architectures to find a setup that can learn accurate models of 21 languages. We also
investigate the accuracy trade-off between language-independent and language-fitted
taggers by comparing the results to reference values that we find in the literature.

Long Tail Robustness: We propose a new method to fit a PoS tagger towards
phenomena that occur only infrequently in the training data. This method requires
only a minimal amount of manual annotation and allows an inexpensive production of
additional annotated training instances for such infrequent phenomena. We confirm
the usefulness of this method by adapting taggers to three infrequent phenomena.

Software Tools: We developed two software tools in the course of this thesis on
which we based the conducted experiments. The first one is FlexTag, which is a
highly flexible PoS tagger that grants researchers a high flexibility in experimenting
with feature configurations. The second one is DeepTC, which provides reproducibil-
ity of deep learning experiments by embedding them into an end-to-end shareable
environment. Both tools have been publicly released to the researcher community.

1.2 Organization of Thesis

In the remainder of this chapter, we provide an overview of the thesis and the publi-
cations in which the chapter content was originally published:

Chapter 2 In this chapter, we introduce the basic concepts of PoS tagging that we
will use in this thesis. Furthermore, we discuss the notion of robustness for classifi-
cation tasks in general.

Chapter 3 This chapter deals with the challenges of domain robustness with re-
spect to PoS tagging. Using the social media domain as an example of text domains
inherently different from standard text, we start with a theoretical analysis of social
media corpora. This provides an overview of distinctive properties found in informal
text domains and clarifies the differences to standard language. Furthermore, in an
empirical evaluation of many commonly used taggers, we analyze the practical impact
of these differences by comparing tagging results within and outside the text domain
on which the tagger models have been trained originally.

Published:
Tobias Horsmann, Nicolai Erbs, and Torsten Zesch (2015). Fast or Ac-
curate? - A Comparative Evaluation of PoS Tagging Models. In: Proceed-
ings of the International Conference of the German Society for Compu-
tational Linguistics and Language Technology (GSCL). Essen, Germany,
pp. 22 – 30.
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Chapter 4 In this chapter, we analyze methods that have been proposed in liter-
ature to construct a PoS tagger that tags social media text more robustly and more
accurately. Each method is evaluated alone and in combination to find the most
promising combination. The general applicability of the approaches is confirmed by
constructing social media taggers for English, German and Italian.

Published:
Tobias Horsmann and Torsten Zesch (2015). Effectiveness of Domain
Adaptation Approaches for Social Media PoS Tagging. In: Proceeding of
the Italian Conference on Computational Linguistics. Trento, Italy: Ac-
cademia University Press, pp. 166 – 170.

Tobias Horsmann and Torsten Zesch (2016b). Building a Social Media
Adapted PoS Tagger Using FlexTag – A Case Study on Italian Tweets.
In: Fifth Evaluation Campaign of Natural Language Processing and Speech
Tools for Italian (EVALITA). Naples, Italy, pp. 95 – 98.
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Chapter 2

Theoretical Background

In this chapter, we introduce the theoretical background necessary for understanding
the following chapters. Furthermore, we will provide an overview of work related to
Part-of-Speech (PoS) tagging.

2.1 Part-of-Speech Tagging

PoS tagging is the process of determining a word’s syntactical category, e.g. if a word
is a noun, adposition, pronoun, etc. Figure 2.1 shows an example sentence with the
part of speeches of the occurring words. The words are annotated with a label, the
PoS tag, which describes the syntactic function of the word in the sentence. The
assignment of PoS tags is either done manually by humans or in an automatized
fashion by tools. To avoid labor- and time-intensive manual annotation, PoS taggers
are frequently used to automatically annotate large collections of plain text.

Automatized assignment of PoS tags, i.e. tagging, is a difficult task as language
is ambiguous, for instance in Figure 2.1 the word “back” occurs two times: The
first time it is an adverb, the second time it is a noun. Language ambiguity is a
frequent phenomenon and there are many words that can take on different syntactic
functions within in a sentence. Only when considering the surrounding words is a
disambiguation possible. In this case, the word my that occurs right before the second
“back” allows us to disambiguate this word’s tag to be a noun.

PoS tags are used by linguists but also for building applications. Linguists might,
for instance, use PoS sequences to find instances of interesting syntactic patterns they
want to study. Natural Language Processing (NLP) applications that use PoS are,
for instance, sentiment classification (Agarwal et al., 2011), machine translation (Ueff-
ing and Ney, 2003) or authorship attribution (Stamatatos, 2009). If automatically-
assigned PoS information is used, already small tagging errors might have a huge

PRON

I went becauseback my back hurts .

VERB ADV PREP PRON NOUN VERB PUNCT

Figure 2.1: Example of a Part-of-Speech tagged sentence
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impact on such applications. The accuracy of tagging varies strongly by the kind of
text that is being tagged. For instance, the Stanford tagger (Toutanova et al., 2003)
reaches 97% accuracy on a newswire corpus (Manning, 2011) but drops to 80% on a
Twitter corpus (Ritter et al., 2011). This tagging error propagates through the fol-
lowing processing steps in the NLP application and harm its performance. Thus, due
to its fundamental importance, even minor PoS tagging improvements will benefit
the overall performance of an application.

In this chapter, we will introduce the concepts used to perform automatic PoS
tagging and provide an overview about related work in this field. The existing ap-
proaches are most easily distinguished based on the requirement for annotated train-
ing data. Approaches that require annotated training data belong to the supervised
approaches; if they learn from plain text they belong to the unsupervised approaches.
We will mostly focus on supervised tagging. Therefore, we will discuss first the gen-
eral procedure of training a supervised model and using it to make predictions before
we discuss (mostly supervised) approaches for PoS tagging.

2.1.1 Supervised Machine Learning

In this section, we briefly discuss the procedure of supervised machine learning for
the application of training a PoS tagging model and using this model for predicting
tags. A PoS tagger compose of two essential components, the tagger itself i.e. the
software implementation, and the model which stores the model parametrization i.e.
feature weights (more to the weights below). The model is the result of the training
process and is used for making PoS tag predictions. Thus, when training a tagger, one
actually trains a model for this tagger. Some taggers, for instance the TreeTagger
(Schmid, 1994b), offer more than just one model. Offering more than one model
provides the flexibility to pick a more suited model for a certain task. Models can
differ, for instance, by the used features or training data (more on that further below).
It is therefore misleading to say a tagger performs poorly. It would be more accurate
to say that a tagger with a certain model performs poorly.

Model Training and Prediction of Tags PoS tagging distinguishes between two
phases, training and prediction. In Figure 2.2, we show the basic process of training
a supervised PoS tagger model and using it for predicting the tags on plain text.
Text annotated with PoS tags is provided to the tagger as training data. This an-
notated training data is usually created by human expert-annotators, which makes
annotated data an extremely expensive resource. This text runs through a feature
extraction step which extracts an input representation that is provided to the ma-
chine learning algorithm. The feature extractors are defined by humans and extract
properties relevant to solving a particular classification task. The algorithm learns a
function that maps certain feature values to a PoS tag. During model training feature
weights are learned, i.e. features that receive a high weight are highly discriminative
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Figure 2.2: PoS tagger model training process with prediction

for distinguishing the PoS tags of the training data (if the training data are repre-
sentative for the problem, the same feature should also be discriminative for unseen
data). These learned feature weights are stored in the model. The feature extraction
step can be enriched by providing additional knowledge from external resources that
helps to create distinctive features. During a prediction step, assuming plain text as
input, the text is first tokenized and then passed through the feature extraction step.
It is crucial that the feature extraction step between model training and prediction
is exactly the same. Only if the feature values encountered during training are also
found in the prediction phase, is a successful tagging possible. The machine learning
algorithm uses the trained feature weights in the model and the extracted feature
values to predict the PoS tags. If during training a resource was used, that same
resource has to be used during prediction as well. In case of Deep Learning neural
networks (which we discuss in more detail further below), this feature extraction step
is done implicitly by the network itself and requires no human-defined features.

Generalization A key requirement for a trained classifier is its ability to generalize
to unseen samples and avoid over- and underfitting. The differences are shown in Fig-
ure 2.3, which we briefly discuss. Generalization finds a reasonable decision boundary
to distinguish the two classes even if this means allowing some errors. In this case,
a good generalization would allow a miss-classified sample (circle). A classifier that
overfits to the training data might be able to accurately recognize the values in the
training data but fitted unreasonably strong to this information. In this case, the clas-
sifier overfitted to the triangle samples, this separation achieves a perfect separation
of the training samples but will certainly lead to an increased number of errors when
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OverfittingGeneralization Underfitting

Figure 2.3: Example of a generalizing, overfitting and underfitting classifier. The
overfitting led to a decision boundary that exactly models the training data

distribution, while underfitting does not respect the distribution enough. A generalizing
classifier learns a decision boundary that is generally valid even if it has to allow some
classification error in the training data (circle) (figure adapted from (Patterson and

Gibson, p.27, Figure 1.7))

unseen data are provided to the classifier. A classifier that underfits to the training
data fails to learn how to distinguish the training data. In practice, overfitting is the
more severe problem.

Significance Tests Significance tests are a tool for investigating if the superior
performance of one classifier over another one is coincidental or is substantial, i.e.
statistically significant. When comparing the raw score between two classifiers, for
instance accuracy (discussed further below), one can easily answer the question which
of the two classifiers works better. However, the question one tries to answer is actu-
ally a different one. The objective lies in answering if the classifier can be considered
to be in general superior or not.

A significance test is based on the null hypothesis that two classifiers perform
not differently or equivalently. A statistical test is not concerned with notions of
superiority or inferiority but simply measures the difference between two results and
estimates whether a found difference is due to chance or not. If the difference between
two classification results are larger than chance, the null hypothesis is rejected and one
can conclude that there is a high likelihood that the difference (i.e. the improvement)
can also be found on other datasets with the same properties (Berg-Kirkpatrick et al.,
2012). Alternatively, one can say that the test tries to answer the question if the
results of both classifiers are drawn from two differ populations (the null hypothesis
tests if they are from the same population). If both classifier drew their results from
the same population they perform equivalent, even if raw scores might differ to some
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Figure 2.4: Categorization of PoS tagging related concepts that are relevant for this
thesis into supervised and unsupervised approaches and whether they use a generative
or discriminative model. MaxEnt=Maximum Entropy, HMM=Hidden Markov Model,
Transf.=Transformation Rule, Lookup=PoS dictionary, CRF=Conditional Random
Fields, LSTM=Long-Short-Term-Memory neural network, LDA=Latent Dirichlet

Allocation, Brown=Brown Clustering

extent. If a significance is found, the classifiers drew from different populations and,
thus, the better performance (in raw score) of one classifier can be expected to hold
also on other datasets.

We will use in this thesis the McNemar (McNemar, 1947) test when comparing
tagger results for statistically significant improvements. A McNemar test assumes as
null hypothesis that two classifiers have the same error rate (Japkowicz and Shah,
2011, pp. 226–228). The test considers only error cases in which either of the two
classifiers made a classification error, let AE be classification errors of classifier A and
BE classification errors of classifier B. The difference between classification results is
significant if the obtained X2 equals or exceeds the values in a chi-square distribution.

X2 = (|AE −BE | − 1)2

AE +BE
(2.1)

An important value when working with significance tests is the p-value. The p-
value is the probability for the null hypothesis to be true. Thus, the probability of
getting a better result with one classifier without being significantly better. A p-value
of 0.05 would mean that 95% of the results are significantly better, i.e. there is only
a chance of 5% that classifier A performs like classifier B (null hypothesis), in the
remaining cases classifier A is (statistically significantly) better than B.

2.1.2 Generative and Discriminative Models

We categorize the PoS tagging approaches as shown in Figure 2.4. For its mostly sta-
tistical nature, PoS tagging is sometimes categorized as using generative or discrim-
inative model (Bishop, 2011, pp. 196–217). The tagging problem is formulated that
for a sequence of words x = (x1, ..., xn) a fitting sequence of PoS tags y = (y1, ..., yn)



12 Chapter 2. Theoretical Background

has to be determined. This is done by finding a function f : x→ y that maps a word
to its tag.

Generative models aim at learning an approximation of the joint probability p(x, y)
from the training data. A direct prediction of a tag for a word is not possible. By
applying Bayes’ rules, the conditional or posteriori probability is derived for making
a prediction or classifying an instance of x with the most probable tag y:

f(x) = argmax
y∈Y

p(y|x) = argmax
y∈Y

p(y)p(x|y)
p(x) (2.2)

with p(x|y) being the probability of generating x given y as label and p(y) being
the prior probabilities over labels y. The denominator p(x) can be omitted as constant
value which simplifies the equation to:

f(x) = argmax
y∈Y

p(y)p(x|y) (2.3)

The usage of generative models extends beyond the use case of prediction as they
try to approximate the true label distribution. The modeling of the joint probability
allows the model to also generate or simulate new data samples, which gives the model
its name. In our use case the generative property is irrelevant as we are interested
in prediction in this thesis. Thus, the generative model essentially tries to solve a
more general problem by starting to estimate the joint distribution and computes the
conditional probability based on this approximation (Sutton and McCallum, 2012).

Discriminative models do not try to model the joint distribution p(x, y). Instead,
they learn the decision boundary between label classes enabling a direct computation
of p(y|x) (Ng and Jordan, 2002). This direct computation of the discriminative model
limits its use to prediction tasks i.e. discrimination between label classes. A further
difference between the two models is that learning the generative model requires nec-
essarily large amounts of training data in order to approximate the true distribution
p(x, y). The discriminative model is less demanding as the focus lies on learning label
boundaries and does not try to approximate p(x, y).

Both kinds of models, generative and discriminative, are found in supervised and
unsupervised PoS tagging.

2.1.3 Unsupervised Tagging

In unsupervised PoS tagging (Brown et al., 1992; Biemann, 2006; Goldwater and
Griffiths, 2007; Christodoulopoulos et al., 2010; Das and Petrov, 2011) no human
annotated training data is required. Instead of annotated training data, a similarity
function is used that groups words together that are similar according to this similarity
function. The underlying idea is to group words together when they tend to occur
in similar word contexts. For PoS tagging, the implication is that similar words also
share similar syntactical properties i.e. have the same word class. The advantage is the
low threshold for using these taggers as plain text is often more easily available than
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annotated data. The drawback is that the word groups, i.e. clusters, that are created
in the clustering process are difficult to interpret. The word clusters are usually
identified by randomly assigned identification numbers. Furthermore, the number of
created clusters is often much higher than the number of classes in a human defined
tagset (discussed in Section 2.2) that are used in supervised tagging.

A common strategy to include unsupervised knowledge in supervised tagging is to
provide the cluster id as feature information into the model training process (Ritter
et al., 2011; Owoputi et al., 2013). In the following paragraphs, we introduce Brown
clustering (Brown et al., 1992) and Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), which we will use in this thesis in the just described fashion.

Brown Clustering Brown clustering is a hierarchical agglomerative hard clus-
tering algorithm. As a result, words are associated with exactly one cluster. For
utilizing Brown clustering for PoS tagging it is important to note again that lan-
guage is ambiguous and a single word might have more than just one possible PoS.
Brown clustering is, hence, not able to account for this ambiguity of words we find
in language.

The clustering approach starts by assigning a separate cluster to each word in a
corpus. Usually a frequency cut-off is used for reasons of computational efficiency
to consider only frequent words. At the beginning, there are as many words as
there are clusters. The words in the individual clusters are then iteratively merged
so that a function F is learned, which assigns the vocabulary V into k classes, i.e.
F : V → {1, 2, .., k}. The number of k classes that are being created is a parameter
that is set before execution to achieve a runtime behavior that is practically feasible.
Finding a suited k for a task requires experimenting (Derczynski et al., 2015).

The vocabulary of the corpus is then merged into the k clusters by computing the
similarity function SF also known as mutual information metric (Liang, 2005):

SF =
∑
c,c′

p(c, c′) p(c, c′)
p(c)p(c′) +

∑
w

p(w)log(p(w)) (2.4)

with c and c′ being clusters and w a word belonging to a cluster. This results in the
vocabulary being categorized in the k clusters. Ideally, words that are semantically
similar to a human intuition are merged into the same cluster i.e. the words dog, cat,
mouse would be expected to be placed into the same cluster, which are all nouns.
Finally, after all vocabulary has been assigned to one of the clusters, k − 1 merges
are performed that create a hierarchy of similarity between clusters. This hierarchy
is encoded as bit string that expresses the degree in similarity between the words in
the k clusters. For using a bi-gram language model in the similarity function, we
consider Brown clustering to be a generative model.

Latent Dirichlet Allocation (LDA) Clustering LDA clustering (Blei et al.,
2003; Chrupala, 2011) is a soft clustering algorithm. Unlike Brown clustering this
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allows a single word to be member of several clusters. LDA clustering computes for a
word the probability of belonging to a certain cluster. This accounts for the language
ambiguity with respect to PoS tagging (Rehbein, 2013), i.e. a word has not necessarily
a single pre-determined PoS tag. However, no information about cluster similarity is
provided as in Brown clustering.

LDA was originally introduced for topic modeling to find related topics within
document collections. The assumption is that each document contains latent topics
of which each has a typical word distribution that characterizes this topic (Blei et al.,
2003). To utilize LDA for PoS tagging, a word form is the equivalent to a document,
the words are context features and the topic is the cluster in which we are interested
(Chrupala, 2011). As a result, one retrieves a probability distribution of a word form
belonging to a certain cluster. For a discussion of the mathematical details of LDA
see Blei et al. (2003). LDA belongs to the generative models.

2.1.4 Supervised Tagging

In supervised PoS tagging, a machine learning algorithm learns from a PoS annotated
training data set to assign a word its PoS. The possible PoS are defined in the tagset
that has been used to annotate the training data. These tagsets are human-defined
and are discussed further below in detail. The most salient difference to unsupervised
tagging is the requirement for a gold standard, i.e. annotated training data, from
which the tagger can learn from. Furthermore, the number of possible PoS tags
is fixed by the tagset and correspond to a human-intuition of PoS categories. PoS
tagging is sometimes also called a sequence classification task. This name originates
from the circumstance that determining a word’s PoS depends on the surrounding
words. Sequential patterns in the occurrence can be easily exploited for making
more informed label predictions. For instance, some words occur usually in a close
proximity to each other when they have a certain PoS and thus, have a certain
correlation to occur together.

There is a rich variety of approaches that have been used for PoS tagging. We
will subsequently discuss machine learning algorithms used for tackling PoS tagging.

Lookup (Baseline) Tagger The most simplistic form of a supervised tagger com-
poses of a simple lookup mechanism which stores the most frequent tag for a word
in a dictionary. This approach belongs to the discriminative models as the decision
boundary between tags is approximated by relying on a frequency bias learned from
the corpus. This rather basic approach might be additionally improved by using
morphological clues such as typical pre-, in- or suffixes for certain word classes. Fur-
thermore, a default tag is assigned in case a word is not contained in the dictionary.

Transformation Rule Taggers This approach also assigns the most frequent tag
from a PoS dictionary and applies afterwards a set of correction rules. Assigning
the most frequent tag from a dictionary will be correct in many cases but will still
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make many errors. Taggers based on transformation rules apply a set of correction
rules learned from the training corpus after assigning the most frequent tag. Possible
correction rules are tested during rule learning and permanently stored if conditions
are found in which assigning a different tag than the most frequent one accounts for
more improvements than newly introduced errors. The taggers by Brill (1992) and
by Hepple (2000) follow this approach.

Support Vector Machine (SVM) SVMs (Vapnik and Lerner, 1963) also belong
to the discriminative models. SVMs distinguishes between two classes by focusing
on learning a decision boundary between these classes, i.e. a hyperplane. How to
apply a two-class classifier to PoS tagging is discussed further below. This separating
hyperplane maximizes the distance to the vectors at the decision boundary, which
results in only a few data points being located at the decision boundary, i.e. the name
providing support vectors as shown in Figure 2.5. This makes SVMs a highly robust
method when the amount of available training data is limited as the SVM focuses on
learning this hyperplane, which depends on only few data points. The optimization
problem that is solved to determine this hyperplane is (Bishop, 2011, pp. 326–331):

minw
1
2 ||w||

2 (2.5)

s.t. ∀i yi(wTxi + b) ≥ 1 ; yi ∈ {1,−1} (2.6)

With w being the normal vector to the hyperplane, yi(·) describing the margin and
b being a bias term. SVMs can also be trained to allow for a certain margin of error
by introducing a slack variable which changes the formula to:

minw
1
2 ||w||

2 + C(
∑

i

ξi)k (2.7)

s.t. ∀i yi(wTxi + b) ≥ 1− ξi ; yi ∈ {1,−1} (2.8)

The newly introduced variable ξ allows for a classification error for data points that
violate the margin. C is a regularization term that can be used to additionally control
for over-/ underfitting of the SVM. The SVM using a slack variable is sometimes called
a soft margin SVM compared to the one without that is called a hard margin SVM.

Most classification problems (including PoS tagging) require distinctions of more
than two classes, which goes beyond the number of classes a SVM can distinguish.
Several strategies exist to tackle classification problems with K > 2 classes (Bishop,
2011, 338–339). For instance, training several SVMs and applying them after each
other, i.e. one-versus-the-rest classification. Alternatively, one can use a voting ap-
proach in which K(K − 1)/2 SVMs are trained. The prediction of the SVMs are
considered as votes to assign a sample to a certain class, also called one-versus-one
classification. A commonly used concept used with SVMs is the Kernel trick (Good-
fellow et al., 2016, pp. 137–139). By applying a kernel-based transformation, the
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highlights the support vectors that define the boundaries of the margin (figure adapted

from (Flach, 2012, p.212, Figure 7.7))

data vectors are transformed into a higher dimensional space. This enables a linear
separation of problems that are in their original form not linearly separable by using
convex optimization techniques.

SVMs are no sequence classifier and do not make use of the word order in a
sentence. This makes SVMs an untypical choice for tackling sequence classification
problems. SVMs have yet been successfully applied to PoS tagging (Giménez and
Màrquez, 2004). Today, SVMs are mostly used for PoS tagging when dealing with
under-resourced languages where only small annotated corpora are available (Ekbal
and Bandyopadhyay, 2008; Das et al., 2015; Behera et al., 2015). When a large amount
of training data is available, approaches based on a HMM, CRF or LSTM neural
network (all subsequently discussed) are the preferred choice.

Hidden Markov Model (HMM) A prominent example for PoS tagging of the
generative models is the Hidden Markov Model. In a HMM, the words in a sequence
are considered as observations. Each observation relates to a hidden event, which is
in the case of PoS tagging the PoS tag associated with the word in this sequence. A
HMM is formally described by a five-tupel of {Q,O,Π, A,B}. Q = q1, .., qn is a set
of N states, a set of observations in the sequences O = o1, ..., on which are part of a
vocabulary V i.e. on ∈ v1, .., vn, Π are probabilities of the initial states, a matrix A
holding transition probabilities of one state moving into another state and emission
probabilities B = bi(on) that an observation on is generated from state i (Jurafsky
and Martin, 2009, p. 179).
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Figure 2.6: Trigram Hidden Markov Model as directed graph in which prediction of
t0 considers the two previously predicted tags t−1 and t−2

An assumption of the basic HMM, the Markov assumption, is that the probability
to reach a certain state is only depending on the current state. This most basic HMM
is also called a first order HMM. For PoS tagging this means that the word appearance
depends only on its tag which ignores surrounding words. To utilize also the sequence
information, higher orders HMMs that consider the previous n predicted tags in their
decision process are used for PoS tagging. The probability function of a third order
HMM model is:

t = argmax
tn

=
n∏
i

p(wi|ti)p(ti|ti−1, ti−2) (2.9)

This is also shown in Figure 2.6 where the prediction of y0 considers the two pre-
ceding predictions. Well-known HMM PoS tagger implementations based on such
a third-order HMM are the taggers by Brants (2000) and by Halácsy et al. (2007).
While higher order HMMs are basically possible they also complicate the calculation
of probabilities as parameters in this model grow exponentially with the order. Fur-
thermore, the higher the order of an HMM is, the stronger the model is challenged
with data sparsity as longer sequences will inevitably also contain more observations
that did not occur in the training data. Third order HMMs are thus found to be
a reasonable trade-off between contextual information won by considering sequential
information and increasing data sparsity.

The HMM can be easily represented as a directed graph. During prediction, the
most probably sequence of states, which is the most probable path in the graph, has
to be determined to arrive at the most probable tagging for a sequence. Finding
this most probable path in such a graph is frequently done using the greedy Viterbi
(Viterbi, 1967) algorithm to tackle the computational complexity of this task. This
algorithm is also known as max-sum algorithm (Bishop, 2011, pp. 411–416).

Maximum Entropy (MaxEnt) A further kind of generative, statistical model
is the maximum entropy model (Ratnaparkhi, 1996; Toutanova and Manning, 2000;
Dandapat et al., 2007). The general MaxEnt model for PoS tagging is described as
follows (Ratnaparkhi, 1996):

p(h, t) = πµ
k∏
j

a
fj(h,t)
j (2.10)
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Figure 2.7: Conditional Random Field as undirected graph in which the prediction of
t0 is conditioned on the entire sequence

with π being a normalizing constant value, {µ, a1, .., an} being model parameters and
fj(·) being a feature function of features that evaluate to a boolean {0, 1}. Given the
words {w1, ..., wn} from the training data with the labels {l1, ..., ln} one tries to find
the model p that maximizes the likelihood of the model for the data by solving:

p =
n∏

i=1
πµ

k∏
j

a
fj(hi,ti)
j (2.11)

Active features i.e. f(ht, ti) = 1 contribute to the joint probability p(hi, ti) while
constraining ti to be limited to certain tags.

Conditional Random Fields (CRF) Conditional Random Fields (Lafferty et al.,
2001) are descriptive models and, unlike the HMM which model p(x, y), CRFs model
the conditional probability p(y|x) directly. While HMMs are based on the Markov
assumption, CRFs can operate on all states in a sequence instead of only the preceding
N states as in HMMs. If one assumes a graphical representation, CRFs are modeled
as undirected graph, as shown in Figure 2.7, in contrast to the directed graph in a
HMM representation. The formula to predict the most likely tag is:

p(y|x;w) =
exp(

∑
i

∑
j wjfj(yi−1, yi, x, i))∑

y∈Y exp(
∑

i

∑
j wjfj(yi−1, yi, x, i))

(2.12)

The most distinctive difference to the HMMs is a weighted (w) feature function
(f) that operates on all observations of a sequence. Several CRF based PoS tagger
implementations are available (Schmid and Laws, 2008) but are also frequently used
in other areas, for instance named entity recognition (McCallum and Li, 2003; Ritter
et al., 2011), syntactical parsing (Sha and Pereira, 2003) or relation extraction from
text (Bundschus et al., 2008).

Neural Networks A more recent approach to PoS tagging is using neural networks
(Collobert et al., 2011; Goodfellow et al., 2016), which are discriminative models.

A fundamental neural network composes of at least three layers, an input layer,
a hidden layer and an output layer. The number of hidden layer might vary, for this
introduction we assume a single hidden layer with four neurons as shown in Figure 2.8.
The neurons of each layer are connected to neurons in preceding or following layers.
The input variables represent an information useful to determine the output. During
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Layers

Input Hidden Output

Figure 2.8: Basic neural network with one hidden layer

network training, the neurons in a layer learn weights for each feature to predict
the correct output. The higher the weight, the more the feature contributes in the
prediction. The neurons located in the hidden and output layer has an activation
function. This activation function maps the weighted output of a neuron into a fixed
numeric range depending on the used activation function. Common activations are
Sigmoid (sig(x) = ex

ex+1) that map values in a range of [0, 1] or the hyperbolic tangent
(tanh(x) = ex−e−x

ex+e−x ) that maps values to [−1, 1]. The resulting value of the activation
function is passed to the next layer as input.

Network training composes of a forward and a backward step. In the forward step,
the current network weights are used to predict the output, i.e. the gold labels. Based
on the occurring error the gap towards the gold labels is computed. The backward
step passes the error in the reversed direction through the network and updates the
weights. The most commonly used method is the back-propagation algorithm that
uses gradient decent to perform this weight adjustment. During back-propagation, the
gradient is computed and the weights are in- or decreased according to the gradient.
The intuition is that when all weights are updated according to the gradient, the
network approximates the point of “no error”. During training, the weights in the
layers adjust and eventually determine a function that is able to predict the output
value for a given input.

There are no best practices for how many network layers and how many hidden
neurons are advisable for a certain task. The example shown in Figure 2.8 assumes
a single output neuron which is suited for binary predictions. If more than two
output states shall be distinguished an accordingly higher number of output neurons
is necessary. For computing the most likely label, algorithms such as Softmax are
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Figure 2.9: A recurrent neural network shown as time-unfolded graph with three time
steps t. A weight matrix W is passed between the hidden states h to carry sequential

knowledge from previous time steps into the next step. U is a weight matrix of
input-to-hidden weights. x are training samples and y the corresponding gold labels
(figure adapted and simplified from (Goodfellow et al., 2016, p.369, Figure 10.3))

applied that transform a multi-dimensional vector to a real valued vector in the
range of [0, 1]. This allows determining the most likely label in classification tasks
with more than two labels.

Recurrent Neural Networks (RNN) RNNs are a kind of neural network suited
for sequence labeling tasks. In a non-sequential neural network it is assumed that
the inputs are independent of each other. Thus, the basic difference is the idea
of sharing information between the neurons. We show in Figure 2.9 such a RNN
as time-unfolded graph. The weight matrix W represents the shared information
between time steps. This allows a time step t to also consider information of earlier
time steps t−n. Hence, RNNs hold a memory of previously processed inputs (or words
in our case). The formula for a hidden state at the time step ht for a sample xt is:

ht = (Wh−1xt + Uxt) (2.13)

The general issue with RNNs is the challenge to model long-range dependencies that
might or might not be of relevance. The weight matrix W is not able to account for
a varying importance of earlier information. The larger the distance in time steps
between two neurons, the weaker the information of earlier time steps becomes. This
is also known as the vanishing or exploding gradient problem (Hochreiter, 1998),
respectively, because all sequential information is carried by a single weight matrix.

To account for this problem, the concept of gated cells has been introduced that
allow preserving such long-distance information.

Long Short Term Memory (LSTM) Neural Networks LSTMs (Hochreiter
and Schmidhuber, 1997) are a kind of recurrent neural network that tackles the van-
ishing or exploding gradient problem by using a gated cell mechanism. Distinctive
difference to normal RNNs is a self-loop within an LSTM cell that adds an additional
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Figure 2.10: Structure of a plain LSTM cell with three additional sigmoidal (S) gates
and a state with a weighted self-loop controlled by the forget gate, black square
indicates a time step delay (from (Goodfellow et al., 2016, p.398 Figure 10.16))

“internal” recurrence to a cell on top of the “outer” network recurrence (Goodfellow
et al., 2016, p. 399). A plain LSTM cell has three gates: input, forget and output
gate that contribute to the hidden state at a time step as shown in Figure 2.10. The
contribution of the gates is determined by a function such as sigmoid or the hyper-
bolic tangent to compute the current cell state. The computation of the hidden state
in an LSTM at a given time step is as follows (◦ is an element-wise multiplication):

(Forget Gate) ft = σ(Wfxt + Ufhh−1 + bf ) (2.14)

(Input Gate) it = σ(Wixt + Uihh−1 + bi) (2.15)

(Output Gate) ot = tanh(Woxt + Uohh−1 + bo) (2.16)

(Cell State) ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Uchh−1 + bc) (2.17)

(Hidden State) ht = ot ◦ tanh(ct) (2.18)

This more complex cell management lead to situations in which a cell is not updating
at all and, thus, allowing to carrying unaltered information to future time-steps.

LSTMs have been frequently used for a variety of sequence labeling tasks including
PoS tagging (Plank et al., 2016; Cimino and Dell’Orletta, 2016; Yasunaga et al., 2017).
While the idea of using neural networks for PoS tagging is not new (Schmid, 1994a),
recent advances led to a resurfacing of neural networks for a variety of NLP tasks.
There are variations of LSTMs such as the peephole LSTMs (Gers and Schmidhuber,
2000) or other gating-related units (Cho et al., 2014). With respect to PoS tagging, the
plain LSTM variant is most commonly used. To leverage all sequential information
contained in sentences, it is wide-spread to use bi-directional LSTMs (Graves et al.,
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frog

birddog
cat
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truck

Figure 2.11: Example of words in embedding space with semantically similar words
being located more closely to each other such as animals or vehicles (adapted from

(Socher et al., 2013) Figure 2)

2005) that use an additional LSTM to process the sequence or input sentence in
reverted order. This allows using sequential information of a right-to-left and left-to-
right pass over a sequence. The output of both LSTMs is then concatenated for the
following processing steps.

Word Embeddings Neural networks are frequently initialized with distributional
word knowledge that is provided by word embeddings. This is also sometimes called
unsupervised pre-training. In a word embedding, each word is represented by an
N -dimensional dense vector. These dense vectors inform the neural network about
higher or lower (semantic) similarity between the words (Mikolov et al., 2013; Pen-
nington et al., 2014) by lower or higher proximity of the words in this embedding
space (Goodfellow et al., 2016, p. 452). Figure 2.11 shows an example in which se-
mantically related words are more closely located to each other in the embedding
space. This word embedding initialization provides an informed network state which
usually leads to better results than a pure random initialization (Erhan et al., 2010).

Word embeddings are trained over large collections of plain text. For its ease of
access, the most available embeddings today are created from web-published resourced
such as Wikipedia text or social media websites (Al-Rfou et al., 2013; Pennington
et al., 2014). It is quite common to train word embeddings with a neural-network-
based language model (Bengio et al., 2006; Collobert and Weston, 2008; Mikolov et al.,
2013) or factorization of co-occurrences as in Pennington et al. (2014). While the
early word embeddings focused only on word-level information more recent work also
incorporates sub-word information that also capture morphological information in
the embeddings (Bojanowski et al., 2017).

2.2 Tagsets

Tagsets define a number of PoS tags that are used to annotate a corpus. Supervised
PoS taggers are trained on data that are annotated with such a human-defined PoS
tagset. Tagsets find their origin in linguistic theory and vary in granularity. Most
tagsets are fine-grained and tailored to a particular language. For a language, several
competing tagsets might be available.
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English Language For English, the following tagsets exist: C5 (Leech et al., 1994)
and C7 (Garside et al., 1997) tagset with 61 and 137 tags, the Brown (Nelson Francis
and Kuçera, 1964) tagset with 871 tags and the Penn Treebank (PTB) (Marcus et al.,
1993) tagset with 45 tags. The number of tagsets is a result of experimenting with
different granularities and methods. For instance, the Brown and C5/C7 tagsets
are considerably more fine-grained than the PTB tagset. In the Brown tagset one
finds tags that are unique to certain lexical items, which results in many sparse tags.
Furthermore, some cases allow a combination of tags, for instance a non-English
foreign word that functions as preposition would receive a combined tag marking it
as both, a foreign word but also a preposition. This can lead to a drastically increasing
number of tags that are extremely sparse and extend far beyond the 87 base tags. In
the C5/C7 tagset a running number is added to the tag of a group of words when
they serve the same grammatical purpose, for instance for prepositions composing of
several words such as in terms of (Jurafsky and Martin, 2017). This numbering adds
an additional layer of annotation and is not purely syntactical anymore and extends
beyond the scope of a pure PoS tagset.

The PTB tagset originated from concerns with the Brown and C5/C7 tagset and
aimed at reducing the tagset sizes drastically. Lexical and syntactical redundancies
have been removed but also the problem of infrequency of tags in the Brown tagset
has been tackled (Taylor et al., 2003, pp. 6–7). Some of these reductions have been
undone in a modified PTB tagset used for instance in Zeldes (2016) re-introducing
the dedicated tags for the verb forms have, be and do, and their inflection forms.
These tags existed in the Brown and C5/C7 tagset but have been collapsed to fewer
tags in the PTB tagset.

The usefulness of a tagset depends on the task. The many fine-grained distinctions
in the Brown and C5/C7 are useful for a detailed linguistically analysis of text. To
enable a comparison between languages, considerably less fine-grained and language
independent tagsets surfaced, for instance the Universal tagset (Petrov et al., 2012)
(12 tags) or the Universal Dependency tagset (17 tags) (Nivre et al., 2016) (which we
discuss further below separately). Today, the PTB tagset is the de-facto standard
for English that is occasionally used in a refined version for annotation of corpora
(Zeldes, 2016) but also for PoS taggers (Schmid, 1995).

Morphologically Fine-grained Tagsets Morphologically complex languages re-
quire often tagsets that are much more fine-grained than the tagsets that we just
discussed for English. Morphologically fine-grained tagsets exist in particular for
Slavic languages such as Czech or Slovene (Erjavec and Krek, 2008; Jakubíček et al.,
2011). On top of the basic syntactical category, these tagsets also distinguish the
grammatical case of a word (for instance accusative, dative, genitive), the grammat-
ical gender (for instance masculine, feminine, neuter) or the grammatical person (for

1without combined or negated tags
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instance first, second, third person). If for each morpho-syntactical combination a
dedicated tag is created, tagset sizes of thousand and more tags are easily reached.

Proper Nouns Many PoS tagsets contain additionally to tags for (common) nouns
also tags for proper nouns. However, this frequently found distinction between nouns
and proper nouns is strictly speaking not a syntactical distinction. A side effect of
this non-syntactical distinction is a high number of PoS tagging errors, which are
confusions of nouns with proper nouns and the other way around. Finding proper
nouns is a rather straight-forward task in standard English as proper nouns are all
capitalized. Such a simple distinction by just looking at the first letter is often not
possible for other languages. For instance, in German, all nouns - not just proper
nouns - are written with a capital letter. Thus, for focusing on a strictly syntactical
task it is reasonable to treat proper nouns as common nouns. Furthermore, determin-
ing proper nouns is tackled as an own NLP task, named entity recognition (Cucerzan
and Yarowsky, 1999; Tjong Kim Sang and De Meulder, 2003).

Language Independence Recently, language independent tagsets surfaced, which
are considerably more coarse-grained than the language-dependent ones we discussed
so far. Most prominent examples are the Universal PoS tagset with 12 tags and
the Universal Dependencies tagset with 17 tags. While language dependent tagsets
usually distinguish between common inflection forms found in a language, the coarse-
grained language independent tagsets do not. In the Universal PoS tagset or the
Universal Dependencies tagset nouns, verbs, adjectives, etc. are all represented by
a single PoS tag. Figure 2.12 shows an example of how fine-grained tags of the
English PTB tagset are mapped to the coarse-grained Universal PoS tagset. These
more coarse-grained tagsets surfaced to enable cross-language comparison between
languages by making the PoS annotation comparable. Similar to the tagsets in En-
glish that we discussed above, determining a suited granularity for a coarse-grained
tagset is a time-consuming task. The 17 tag Universal Dependencies tagset resulted
from the lessons learned with the 12 tag Universal PoS tagset. The latter one did
allow for cross-lingual PoS comparisons but was too coarse-grained for constructing
dependency trees of multiple languages. This led to the 17-tag Universal Depen-
dencies tagset, which introduced additional tags for instance for proper nouns or
subordinating and coordinating conjunctions.

Consequently, the choice of the tagset depends on the task. Tasks such as linguistic
analyses that compare sentence compositions and alike usually require fine-grained
PoS distinctions to study these properties. When morphological details are not of
primary importance and comparisons across languages are needed, coarse-grained
tagsets are sufficient.
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Noun

NN NNS NNP NNPS

Verb

MD VB VBD VBG VBN VBP VBZ

Figure 2.12: Example of mapping fine-grained tags of the English Penn Treebank
tagset (bottom row) to the corresponding single tag of the Universal tagset

2.3 Evaluation Metrics

Evaluation of PoS tagging results is usually done using either Accuracy or F-Score as
metric, which we introduce here.

2.3.1 Accuracy

This metric is computed over all tokens. It computes the number of correctly classified
token instances in comparison to all token instances. The result is a single value that
expresses the quality of the tagging computed over all PoS tags. Drawback of this
metric is that the frequency of PoS tags is not equally distributed. A high correctness
on a frequent tag might conceal that infrequent tags are often tagged wrongly. For
instance, assuming we have two tags, one occurs 98% of the time and the other one
only 2% of the time. If one evaluates a tagger that always assigns the former tag,
accuracy would report a stunningly high result of 98% correct tagging. The zero
performance on the second tag might not be noticed at all. Nonetheless, this metric
is often used to express the overall quality of a tagger.

Out-of-vocabulary Words An important criterion that distinguishes the overall
quality of a tagger is the performance on words that are out-of-vocabulary (OOV).
PoS taggers tend to perform well on words that occurred in the training data while
performance drops, sometimes considerably, when OOV words have to be tagged. It
is, hence, common to compare the overall accuracy to the accuracy on OOV words
to learn how well the tagger generalizes to unseen words.

Micro vs. Macro Average: Accuracy can be computed as micro or macro average
over (i) all tags within a corpus or (ii) as averaged value over several tagged corpora.
Micro takes the frequency of a tag or the size of a corpus into consideration. Thus,
tags that occur only infrequently or corpora that are small have only a small impact
on the overall accuracy while frequent tags or large corpora have a large impact on
the accuracy. Macro ignores the frequency or size of a corpus and weights all tags
and corpora equally important.



26 Chapter 2. Theoretical Background

Gold
A B

Prediction A 45 25
B 10 20

Accuracy 65%

Table 2.1: Confusion
matrix with fictive

results for a two class
classification example

Label Class
A B

C
ou

nt
s TP 45 20

FP 10 25
FN 25 10

Precision 45
45+10 = .82 20

20+25 = .44

Recall 45
45+25 = .64 20

20+10 = .67

F-Score (F1) 2·.82·.64
.82+.64 = .72 2·.44·.67

.44+.67 = .53

F
1 Micro .72·70

100 + .53·30
100 = .66

Macro .72+.53
2 = .63

Table 2.2: Calculation example of Precision,
Recall and F-Score for the results in the confusion

matrix shown in Table 2.1

2.3.2 F-Score

This metric computes a score with respect to a single tag instead of using all tags
as accuracy. F-Score (F1 = 2 · P ·R

P +R) is computed from two other metrics, namely
Precision (P = T P

T P +F P ) and Recall (R = T P
T P +F N ) which are in turn computed from

counts how often a tag was tagged correctly and confused with other tags. TP=True
Positives are words for which the tag in focus was predicted correctly, FN=False
Negatives are words for which the tag in focus was erroneously not assigned and
FP=False Positives are words for which the tag in focus was erroneously assigned but
should have been tagged with another tag. The F-Score allows more detailed insights
on assigning a certain tag and is helpful to determine strengths and weaknesses of a
tagger with respect to that tag.

2.3.3 Calculation Example

In Table 2.2, we show a calculation example of computing accuracy and F-Score for
the fictive example shown in Table 2.1 as confusion matrix. By looking separately on
the F-Score for each class, we gain additional insights that were not visible by looking
only at the accuracy metrics. The tagging performance for label B is considerable
lower than for label A. For applications in which certain tags are of an increased
importance, computing F-Score offers valuable information that are concealed in less
sophisticated metrics such as accuracy.

2.4 Robustness

While controlled conditions in experimental setups often allow to achieve encouraging
results, the robustness for usage in a real-world scenario is often not in the focus of
experiments. As soon as method leaves the laboratory environment, a large variety
of additional factors come into play, which adds to the difficulty of solving a task.
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This is a rather general problem for all kind of classification tasks which have to be
able to deal with many conditions, i.e. require a certain robustness.

Definition When we talk about robustness, we use the following definition (Huber
and Ronchetti, 2009, pp. 1–2): Robustness is the insensitivity of a model to deviations
from an assumption. With the three requirements that (a) the model should be
efficiently able to represent the assumption, (b) small deviations of the assumption
should lead to small impairment of the performance and (c) large deviations should
not lead to a model breakdown, i.e. catastrophic results (Huber and Ronchetti, 2009,
p. 5). Similar definitions describe robustness as a property which maintains a service
under conditions unforeseeable during development that are harmful for achieving
the objective (Kitano, 2004; Li et al., 2016; Vacavant, 2017).

In the context of supervised machine learning, the assumption is essentially the set
of labeled data in the training dataset. It is assumed that these data fully represent a
domain or the problem that should be solved by training a classifier. Insensitivity to
deviations is the delta of new unlabeled data that shall be classified based on the used
training data. One can think of the training data coming from a distribution A while
the new data are being drawn from a different distribution B. A robust, insensitive
classifier is supposed to deal with the samples from B equally well as those from
A, despite of some differences between the distributions. The criterions (b) and (c)
are certainly difficult to quantify and are usually task dependent. If one thinks of
a safety critical task, for instance autonomously driving vehicles, an increased error
rate of a few percent points in the image processing might be fatal and be considered
as a model break down. In other tasks, for instance automatic quality assessment of
manufactured parts, an increased error of a few points due to poor lighting conditions
might still be considered as acceptable.

Hereinafter, we discuss robustness challenges and counter measures to learn more
about the challenge of robustness for classification tasks in general.

Image Classification Image classification is the task of recognizing if an object of
a pre-defined category is present in an image. In this field, deep neural networks have
reached stunning results with a high accuracy in determining the correct category of
images (He et al., 2015). The challenge of robustness when working with images has a
variety of dimensions. The training data of an image processing classifier are images
of a certain size and resolution. This classifier is expected to perform equally well
even under conditions such as changes in illumination, orientation, scaling, etc. In
other words, an image classifier should be able to classify an image correctly even if
it has half the resolution of the original training data, is upside-down and taken in a
(slightly) dimmed room. Further robustness challenges arise from natural noise and
the technical limitations of the recording camera or compression artifacts that add a
layer of noise to each photo. Robustness is only achievable with a sufficient amount
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of such noisy data samples for model training to inform the classifier about these phe-
nomena (Vacavant, 2017). Consequently, strategies for improving robustness entail
duplicating samples from the training data and add variations of the image containing
such minor variations (Zheng et al., 2016; Uličný et al., 2016). Alternatively, gener-
ative adversarial networks (Goodfellow et al., 2014) are used for de-noising images
(Yang et al., 2017) or to generate corrupted versions of clean training samples (Den-
ton et al., 2015) to provide noisy variants of images from which the model learns to
cope with such variations.

The textual domain in which we are working here is quite different from images.
One cannot easily create text samples that are identical to human perception and
only differ in an amount of (non-visible) noise. Li et al. (2017) experimented with
different ways to adapt the idea of adding noise to textual data by adding syntactical
or semantical noise without changing the data too much.

Automatic Speech Recognition Automatic speech recognition (ASR) is the task
of converting an audio signal of human speech into a sequence of words. In ASR, deep
neural network approaches have been applied successfully, too (Deng et al., 2013).
Similar to the image classification field, naturally occurring noise poses one of the
biggest challenges to ASR. The dimensions of noise are similar to the one discussed
for image processing. Most comparable to image processing is the device variations
of microphones that are comparable to the noise added by cameras. Additionally,
background noise such as traffic noise might occur but also variations among the
speakers such as mumbling, dialects or pitches in the voice are common challenges.
As the result of ASR is plain text, which we require as input for PoS tagging, it
could be a preprocessing step from the viewpoint of our use case. While we assume
to work with written discourse most of the time, errors of an imperfect ASR are
certainly a robustness challenge to PoS tagging and other downstream applications.
Similar techniques as for image processing have been proposed, i.e. modifying training
data and producing noise-added versions of this clean samples (Ebrahim Kafoori and
Ahadi, 2017) by using generative adversarial networks (Serdyuk et al., 2016). An
alternative approach we will pick up later for PoS tagging is multi-style training by
mixing up data originating from various conditions (or text domains in our case) to
achieve an increased robustness.

PoS Tagging Robustness in PoS tagging has also received some attention. An issue
that has some mentions in the literature, for instance Ritter et al. (2011), finds that
tagger models trained on formal text domains perform only poorly on informal text.
By combining knowledge obtained from clustering over Twitter plain text and using
a mixture of training data from similar and foreign text domains, Ritter et al. (2011)
construct a new tagger to deal with this robustness issue. Müller and Schuetze (2015)
experiment with various kinds of distributional representation to increase robustness
when tagging foreign text domains on a morphologically fine-grained level. Tsuruoka
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et al. (2005) train a more robust tagger model suited for medical text by training
a model on formal news and medical text. While the model trained on a mixture
of text corpora reaches never the best performance its average accuracy across the
text domains improve considerably i.e. multi-style training. Choi and Palmer (2012)
tackled robustness by switching between a general and a specific model for tagging a
sentence depending on the similarity of an input sentence to the training data of the
two models. Generative adversarial models have also been used in PoS tagging (Gui
et al., 2017; Yasunaga et al., 2017).

Lacking Data Variety Thus, there is a general gap between the laboratory con-
ditions and the real world conditions, which shows that robustness is a general chal-
lenge for classifiers of various kind. The datasets for training a classifier are usually
clean datasets that do not contain many of the real-world conditions that might be
encountered outside the laboratory. Images are taken for instance under good light-
ing conditions with high quality cameras, audio data is well articulated while being
recorded with fidelity equipment or textual data is often limited to be highly formal
in its nature. It is, hence, not surprising that classifiers trained on such datasets do
not necessarily generalize well to a hardly predictable number of conditions in the
real world. Many datasets simply do not contain suited training instances to cover
these conditions. Working with such clean datasets has the merit of eliminating vari-
ables in an experimental setup that are not necessary in order to show that a certain
approach works. From a research perspective it, hence, is absolutely reasonable to
work under such conditions. As consequence, classifier trained on such clean datasets
often lack robustness.

We distinguish in total three research areas that all tackle the lack of sufficient
domain data but still avoid manual annotation of more data: normalization, domain
adaptation and generation of annotated data.

Normalization Normalization tries to restore a sample to its original unaltered
state. When operating on images or audio samples, this original noise-free state is
unknown. Such algorithms have no valid stopping criterion and de-noising is there-
fore also considered as an ill-posed problem (Gong et al., 2016) i.e. de-noising might
remove information that is no noise. In case of text, an underlying vocabulary of
standard words exist and it is a valid assumption that the most non-standard word
forms do have a standard word form counterpart. Some exceptions might exist, for
instance word creations that are only used within certain social peer-groups but for
the most non-standard word forms, such a standard language counterpart is available.
A frequent observation in social media are, for instance, shortening of words. The
standard word form “tomorrow” might occur as “tumr’ or “2morrow” (Ritter et al.,
2011). Normalization aims at mapping such non-standard forms to their canonical
standard form. The idea is to bring the text closer to the training data of the (PoS)
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model. This eases the classification task for the model by normalizing the unknown
domain-specific linguistic phenomena to their standard word forms before the tagging.

Normalization of non-standard text, as it is found today in social media, has a long
history and started to shift into the research focus when working with SMS (short
message services) text (Choudhury et al., 2007). Normalization entails two steps, first
to determine that a non-standard word form is present and second, to determine the
canonical word form. The most straightforward approach to normalization is to create
hand-crafted rules or a dictionary that defines substitutions of non-standard to stan-
dard word forms (Sproat et al., 2001). Normalization is sometimes treated as machine
translation task in which the unnormalized non-standard text is the source language
that is translated into the target standard language (Aw et al., 2006; Kaufmann and
Kalita, 2010). Pennell and Liu (2011) uses a character-level machine translation sys-
tem to find substitution candidates and afterwards ranks them by using an ngram
language model to determine the most likely substitution. Han and Baldwin (2011)
uses an SVM-based approach by training on a mixture of standard and non-standard
training samples. The non-standard training samples are automatically created by
substituting a word in a context window with high ranked candidates. These can-
didates have been determined based on a character- and phone-based edit distance.
Zhang et al. (2013) builds a weighted normalization graph based on an input sequence
and a set normalization functions that substitute words. The normalization functions
are created from annotated training data. The weights are learned during a train-
ing phase in which a token-wise edit distance metric is used to measure the similarity
between input and expected output sequence. Jin (2015) uses additionally to a dictio-
nary created form labeled data the Jaccard Index (Levandowsky and Winter, 1971) to
measure the similarity between feature sets extracted over candidate words. van der
Goot (2016) performs a module-wise candidate generation by creating features from
several information sources such as word embeddings, a spell checker, prefix matches
of a word form in a dictionary and a brute-force splitting of words to check if a word
might be the result of omitting a whitespace. Generated features are then provided
to a random forest classifier and the results of the trees are averaged. van der Goot
et al. (2017) showed that social media PoS tagging improves by applying normaliza-
tion but also finds that using a social media embeddings for a neural network PoS
tagger on social media text is more effective. Training new embedding belongs to the
approaches we discuss next.

Domain Adaptation Instead of bringing the text closer to the model training data
(by normalization), one can also try to bring to the model closer to the text i.e. adapt
the model to another text domain.

This assumes that at least some annotated training data is available from the tar-
get domain to which the model is adapted. A typical situation is the availability of
larger amounts of annotated data from another text domain, for instance newswire,
and only a small amount of annotated data from the target domain, for instance social
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media. The first and obvious approach is to combine both datasets (Hara et al., 2005)
(assuming the annotation is compatible i.e. same tagset) and train a model on both
domain data. If the amount of data from foreign and target domain is very imbal-
anced, the larger foreign domain corpus will dominate over the actual more accurate
information from the smaller target domain corpus. Daumé III (2007) proposed to
apply a weighting approach that adds the smaller target domain data multiple times
to artificially increase the weight of the target domain data. Jiang and Zhai (2007) re-
weights training instances of a foreign domain training dataset to remove the domain
bias and increase the usefulness of the learned information for the target domain.
Plank et al. (2014) experimented with weighting instances without having any target
domain data finding no significant improvements for PoS tagging. Blitzer et al. (2011)
investigates how to deal with situations in which the target domain contains highly
discriminative information that do not occur in the source data by creating a shared
feature subspace between both domains. A combination of unsupervised with super-
vised machine learning applies word clustering to plain text and provides these cluster
ids as additional features in the supervised machine learning process (Gimpel et al.,
2011; Ritter et al., 2011; Owoputi et al., 2013; Rehbein, 2013). Including knowledge
from external resources such as word clusters or PoS dictionaries improved handling of
common spelling variations of canonical word forms. In particular, the already above
discussed clustering approaches, LDA and Brown clustering, have been reported to
improve tagging performance (not just on social media) on a variety of languages
(Chrupala, 2011; Rehbein, 2013; Owoputi et al., 2013; Mueller et al., 2013). Yang and
Eisenstein (2015) create feature embeddings with domain attributes to create more
robust features in an unsupervised setting to learn from unlabeled foreign domain
data. Peng and Dredze (2017) formulates the domain adaptation task as multi-task
learning (Caruana, 1997) problem and uses a neural network based approach that
creates a shared representation and learns task specific models from projections of
the individual domains.

Generative Adversarial Networks (GANs) GANs involves two neural net-
works, one network is the generator (G) that produces samples and a discriminator
(D) that tries to recognize if a sample was produced by the generator or is a gen-
uine sample from the training data (Goodfellow, 2017). These two roles stand in an
adversarial relationship and try to defeat each other. The basic idea is that the gen-
erator tries to create samples from the same distribution as the clean training data.
During training, the generator tries to generate fake samples that are good enough to
deceive the discriminator in believing it is a genuine sample of the distribution. The
discriminator tries consequently to perfect its ability to recognize produced samples.
This is accomplished by letting both actors use the same loss function that depends
on both actors in which each actor controls only the own parameters that they try to
optimize. The discriminator determines suited parameters by minimizes L(θD, θG)
with respect to θD and the generator with respect to θG. The discriminator aims
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at maximizes the success rate of recognizing produced samples and the generator
minimizes the chance that the discriminator recognizes the produced sample.

g = arg minG maxD L(D,G) (2.19)

The objective to use GANs for creating more data is, thus, to reach a balance
between the two parties where the generator manages to create instances the discrim-
inator can no longer recognize as being produced. Thus, the generator has learned to
generate new training data.

For improving robustness, this approach offers opportunities to produce inexpen-
sively data samples that are close enough to the original distribution but are flawed
to some extent. This provides variations of the clean data samples and enriches the
training data pool. However, the created variations might not necessarily be suitable
to improve robustness towards real world conditions.

With respect to PoS tagging, GANs provide only a limited amount of help to the
robustness challenge we face. The generator assumes that a sufficiently large amount
of data is available from which one can learn how to generate good samples. While
it has been shown that on well-resourced languages and text domain this does offer
benefits also for PoS tagging (Yasunaga et al., 2017) the use of GANs is questionable
for low-resourced areas. The improvements achieved by GANs trained on formal
text to tackle social media are only minor (Gui et al., 2017) and do not change the
principle robustness problem. In order to use GANs effectively for PoS tagging, one
would need sufficient training data from various text domains but this lack in data
diversity is exactly what makes PoS tagging robustness a challenge in the first place.

2.5 Chapter Conclusion

In this chapter, we provided the theoretical foundations forming the basis of the
remainder of this thesis. We provided an overview of the field of PoS tagging and the
approaches used to tackle this task. An emphasis lay on supervised PoS tagging that
is occasionally extended with knowledge obtained from the area of clustering using
unsupervised approaches. We discussed the basic training mechanism of supervised
PoS taggers and talked about the differences between tagset sizes that are commonly
used for various languages. The metrics accuracy and F-Score have been introduced
as primary evaluation tool for the quality of tagging results. Lastly, we provided an
overview about the notion of robustness with respect to PoS tagging but also in the
image and audio processing field. We arrived at the conclusion that robustness is a
challenge that originates from working in simplified laboratory conditions that often
do not have robustness as focus of research. The general solution to robustness related
issues are furthermore strategies that aim at enriching the training data pool with
additional samples. Preferably, this enhancement is automatized to avoid manual
effort. While these approaches work reasonably well for areas such as image or audio
processing, their applicability to text or specifically PoS tagging is only limited.
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Chapter 3

Domain Robustness - Challenges

In this chapter, we will discuss the challenges that arise when working with several text
domains that are inherently different to each other. When using a tagger, an implicit
expectation is that the tagger’s performance should not change much between text
domains. This, however, is not necessarily true as each text domain has properties
not found in other text domains. One such an example is social media text, which is
considerably different to the formal newswire text that is often used to train tagger
models. We find many mentions in the literature about poor tagging performance
when applying models trained on formal text to social media text (Ritter et al., 2011;
Foster et al., 2011; Owoputi et al., 2013; Rehbein, 2013; Neunerdt et al., 2013). Hence,
the domain robustness of these models seems to be poor. In order to better understand
which differences between text domains cause these challenges, we investigate these
differences in more detail.

First, we conduct a series of corpus analyses on the lexical and syntactical level
between text domains. We use texts of the formal, spoken and social media domain as
prototypical example cases to learn more about the differences between text domains.
Second, we investigate performance of available off-the-shelf taggers on these three
text domains to learn how well todays tools can cope with text of different domains.

3.1 The Social Media Domain

We begin with providing an overview of the social media domain before we analyze
the properties of this text domain. Social media is a general term which describes
Internet services that allow users to interconnect and share information with each
other (Kaplan and Haenlein, 2010). Information is exchanged in the form of text,
audio, video or images. Information exchange takes place in a one-to-one fashion as
in a private conversion but might also be broad- or multicasts to two or more users.
Each user can respond to shared information and engage in discussions with other
users. For this thesis, the textual information created in social media is in the focus
of our interest.

User-generated Content An important aspect of social media is user-generated
content. Before surfacing of social media, users had been in a passive role and only
consumed (mostly professionally created) content provided in the Internet. Described
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by the term Web 2.0, which summarizes the change of the user to a prosumer (pro-
ducer and consumer), the user was offered a more active role and started to create
own content, for instance web blogs (Obar and Wildman, 2015; Farzindar and Inkpen,
2015). Social network platforms, e.g. Twitter1 or Facebook2, provide an infrastruc-
ture for users to easily interconnect. This simplified sharing content about daily life
experiences, opinions or alike with other users (Java et al., 2007). The strong pri-
vate use of these platforms also led to rather informal written interactions between
users. This social media discourse has often more similarities in common with spo-
ken discourse than classical formally written one (Beißwenger et al., 2015; Eisenstein,
2013).

Computer Mediated Communication As communication takes place by tech-
nical means, such as smartphones or home computers, the term Computer Mediated
Communication (CMC) is strongly related to social media. CMC describes communi-
cation between people using a technical device as medium (Herring, 1996). The term
CMC originated in the 1960s and has been in use long before social media surfaced
(Thurlow et al., 2004). As using social media requires using a technical device, it is
often also CMC, i.e. both terms have a substantial overlap. In contrast, a service
that allows one to chat with friends and enables invitation of additional people is
not a classical social media platform but certainly is CMC. For this thesis, with the
focus on non-standard text with respect to PoS tagging, we will use the term “social
media” as an umbrella term that entails all kind of CMC and social media text.

Example of Tagging Twitter Figure 3.1 shows an example of a PoS-tagged Twit-
ter posting that contains informal utterances using the Stanford (Toutanova et al.,
2003) tagger with a model trained on formal text. We show the original PTB tags
that have been predicted by the Stanford tagger and their mapping to the correspond-
ing coarse-grained word class for improved readability. We see that the model assigns
the tag for noun to almost all non-standard word forms. While it is hard to argue
which tag would be appropriate, the tag for noun seems inappropriate. Only the two
words that are part of the standard language dictionary, miss and them, have been
predicted correctly. Thus, we find plenty of evidence that tagging social media can
be a challenging task. In the remainder of this chapter, we explore these challenges
from the theoretical and practical side to learn how well the currently available PoS
taggers are equipped to deal with the challenges of informal utterances.

3.2 Theoretical Challenges

Social media text contains a rich variety of non-standard utterances that would not
occur in formal text. When a PoS tagger is trained on standard text, many unknown

1www.twitter.com, last access 30 August 2017
2www.facebook.com, last access 30 August 2017

www.twitter.com
www.facebook.com
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Contraction
(gonaà going	to)

Slang	/	Abbreviation
(tfà the	fuck)

Contraction
(outtaà out	of)

Hashtag

im gona missss tf outta them
#classof2017

Character	repetition

(a) Example of a Twitter message with non-standard language

NN NN NNVBP NN PRP VBP

im gona tfmiss outta them #classof2017

NOUN NOUN NOUNVERB NOUN PRON VERB

(b) Manual evaluation the PoS tags assigned by the Stanford tagger

Figure 3.1: Example of non-standard language use on Twitter and the result of
tagging this example with the Stanford tagger

phenomena of the social media domain pose serious challenges. For instance, Ritter
et al. (2011) report an accuracy of 80.1% using the Stanford (Toutanova et al., 2003)
tagger, which is a huge drop in accuracy to compared to 97.3% (Manning, 2011)
reported on newswire text. Likewise, we tagged a German CMC dataset with the
TreeTagger and reach an accuracy of 73.8% (Horsmann and Zesch, 2016b) in contrast
to the 97.5% reported by Schmid (1995) on standard text. Thus, to better understand
the characteristics of social media text, we will have a closer look on the challenges
of this domain.

Lexical Phenomena We show in Table 3.1 an overview of frequent phenomena
collected from the micro-blogging service Twitter. We also show the counterpart in
the standard-language (if existent) and a brief description of the phenomenon. Each
phenomenon might occur in isolation or in combination. We find a frequent use of
acronyms, word contractions and (intentional) use of alternative word spellings, non-
standard capitalization and use of emoticons or emojis. The use of non-standard
language can have various reasons such as restrictions in message length, lack of
language command, typing errors or social factors to express, for instance, the mem-
bership to a particular social group (Bartz et al., 2013; Eisenstein, 2013). Eisenstein
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Phenomenon Description

Acronym
laugh out loud → lol Frequently used phrases are abbrevi-

ated to acronymsbe right back → brb
are you → r u

Contraction
give me → gimme
I am going to → imma contraction of two or more words
going to → gonna

Shortening
tomorrow → 2mr shortening of a word that might con-

tain digits with similar phoneticsgood night → gn8
for ever → 4ever

Repetition
go → goooo lengthening of a word that might ex-

press a pitch in the voice (Brody and
Diakopoulos, 2011)

no → noooo
haha → haaaaha

Capitalization
hello → heLLo, hElLo Non-standard capitalizationhey → HEY, hEY

Markup
@User Platform mark-up#Hashtag

Emoticons & Emojis
:-P xD

Substitute for facial expressions(ˆoˆ) (–_–)

Table 3.1: Examples of non-standard language use in social media

(2013) sees especially the social factors as reasons for using non-standard language
intentionally, i.e. the language-use is part of the user’s identity.

Syntactic Phenomena Social media postings might also have a poor syntax, i.e.
intended or unintended grammatical errors. In posting such as “not going out tonight”
the personal pronoun, e.g. “I am”, might be implied and textually omitted. A
posting might contain a random number of emojis or emoticons that compose of
punctuation marks, which also makes the full stop unreliable for finding sentence
boundaries (Rudrapal et al., 2015). Thus, the syntactic structure of social media
posting might also vary from formal sentences with a high syntactical quality.
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3.2.1 Statistics on Text Domains

We now turn to comparing the lexical diversity and the distribution of PoS tags
between formal, spoken and social media discourse to learn about the quantitative
differences between these text domains.

Corpora We need reasonably large corpora of all three text domains to conduct
such a comparison. For social media, no single, large, PoS annotated corpus exists.
Therefore, we construct a larger social media corpus by combining three PoS anno-
tated Twitter corpora (Gimpel et al., 2011; Ritter et al., 2011; Jørgensen et al., 2016)
and an IRC chat corpus (Forsyth and Martell, 2007). The combined social media
corpus has 78k tokens. We use the Wall-Street-Journal (WSJ) (Marcus et al., 1993)
as formally written corpus and the Switchboard corpus for transcripts of speech. We
select from the WSJ and Switchboard a random sample of sentences accounting for
78k tokens each, to reach a comparable corpus size between all corpora. The indi-
vidual corpora use tagsets that are not directly comparable, which would complicate
a comparison on PoS level. We, hence, harmonize the tagsets by mapping all tags to
the Universal PoS tagset (Petrov et al., 2012) to obtain a comparable PoS annotation
between the corpora.

PoS Distribution We start with an analysis of the PoS tag distribution between
the three text domains. Social media platforms provide platform-specific features
such as referencing other users or using hashtags, e.g. “@user1234 this was a punny
day #Yolo #Vacation”. Furthermore, users make rather frequent use of emojis or
emoticons. We annotate all emojis and emoticons in the social media corpus with the
tag EMO, while the tag PLAT marks words which carry a special platform-specific
meaning, i.e. user-mention, hashtag and retweets.

Figure 3.2 shows the results. The order of the domains is from formal, well-
written to spoken language with the social media domain being placed in the middle
as containing phenomena of written and spoken language. We see several stair-case
effects in which the frequency of a PoS tag shrinks or increases between the three
domains. Nouns are highly frequent in formal text but decrease in less formal text
domains. At the same time, interjections that usually don’t occur at all in formal text,
account for three percent points in social and even five points in spoken language.
Also, pronouns and adverbs become more important in less formal domains and five
percent of all tokens in social media carry a domain-specific functionality. The emoji
and emoticon class is in relation rather small with barely more than 0.5 points of the
total distribution mass.

Lexical Diversity Now, we turn to the variety in the used lexical forms. We
compare again text of the three domains formal writing, social media and transcripts
of speech to each other. Figure 3.3 shows the type/token ratio of the four major
open word-classes, i.e. noun, verb, adjective and adverb, in the three domains. All
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Figure 3.2: Comparison of PoS distribution between text domains

tokens have been lowercased for computing the type/token ratio. In social media, the
variety in nouns is highest (high number of distinct nouns) followed by the spoken
domain, and with the formal domain as having the lowest variety in nouns. This is
explainable by the topical bias formal domains usually have. In our case, this bias is
economical business English while the social media domain has no fixed topic. For
verbs, we see that the domain of formal writing has more verb forms than the social
media or spoken domain. While we find a higher number of verbs in Figure 3.2 for
social media, we see now that those verbs are a composed of few verb forms which
are frequently repeated. For adjectives and adverbs, we see a similar distribution as
for the verbs with minor differences between the domains.

Lexical Alterations When taking the standard language form of a word as ref-
erence and map all word variations to this standard form, we might have a lot less
types in social media than the previous analyses allowed us to see.

We find in total 2,215 verb types (lowercased) in our social media corpus. A rather
frequent phenomenon is to omit the final letter ’g’ of gerund verbs e.g. “walking”
becomes “walkin”. When applying a simple correction rule that attaches this final
letter, the number of verb types decreases to 2,132 - almost one hundred types less.
We do not have such a correction rule for the other word classes. We, thus, manually
screen the nouns in our social media corpus. We find many instances of the same
standard-language type in which letters have been swapped, omitted or inserted. For
instance, “weekend’ occurs also as “weekenddd’, in “line-up” the hyphen is omitted
or in “guys” the last letter is substituted with the letter “z”. For adjectives and
adverbs, we find similar variations of the same standard language type. Thus, the
number of types in social media is considerably inflated by spelling variations. When
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Figure 3.3: Type/token ratio for written, social and the spoken domain for the four
major word classes

taking those variations into account, the type/token ratio of the word classes will
be considerably lower than the pure quantitative analysis based on word forms in
Figure 3.3 allows us to see.

3.3 Practical Challenges

We will now take a closer look on the performance of common PoS taggers on these
three text domains. The decision for using a tagger or tagger model is often not
just influenced by the expected tagging accuracy but also by speed. Many taggers
come with several models that are optimized for different domains or offer trade-offs
between accuracy and speed. Thus, instead of treating taggers as monolithic unit i.e.
Tagger X performs well, we make a more fine-grained distinction and investigate the
performance of taggers using a certain model on a certain text domain i.e. Tagger X
using model Y performs well on domain Z.

Evaluation Domain We distinguish the two evaluation domains to evaluate do-
main robustness, which are shown in Figure 3.4. In-domain evaluation tests a model
on text of the same domain as the training data of a model. Out-of-domain evaluation
tests the domain transfer robustness by evaluating a model on foreign-domain text.

During model training, the model learns a weighted mapping from extracted fea-
ture values to a tag, i.e. a high weight means a feature value is highly discriminative
for assign a certain tag. During tag prediction, the same features are extracted from
the input text, the learned weighting from the model is applied and the most likely tag
is predicted. The more similar the text is to the model training data, the more similar
will be the extracted feature values to the values extracted during model training,
which leads to a high accuracy. This also means that with growing dissimilarity of
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TaggerTagger

In-domain Out-of-domain

A B

Domain	Robustness

EN
DE

Figure 3.4: Evaluation for domain robustness

the input text to the training data, the larger the dissimilarity of extracted feature
values will be, which challenges the model to make a correct prediction.

We use the following three text domains for this evaluation: written, which is
orthographically correct text, spoken transcripts, which are conversations or monologs
that might contain utterances of spontaneous speech and social media text, which is
a mixture of text that ranges from formal to informal language use.

3.3.1 Experimental Setup

A large challenge for comparing a number of taggers is how to conduct this com-
parison in a feasible way. Manually installing each tagger is a time-consuming task.
Furthermore, such a manual installation of each tagger places a high threshold on
reproducibility. To solve this challenge, we use DKPro Core (Eckart de Castilho and
Gurevych, 2014). DKPro Core is a Java-based project that uses the UIMA (Ferrucci
and Lally, 2004) framework in its backend. DKPro Core provides wrappers for a wide
range of taggers shielding the user from the details of installation and invocation of
the taggers. The taggers are all installed as Maven artifacts, which requires no user-
interaction and, hence, allows an easy replication on other computer systems. DKPro
Core takes care that the taggers and their models are automatically installed on the
user’s computer. Furthermore, all taggers in DKPro Core are operated via a unified
interface, which eases such a multi-tagger comparison.

Processing Pipeline In our setup, each corpus is read and transformed into the
internal representation of DKPro Core, which is based on stand-off annotations. The
wrapper transforms the internal representation of the text into the format which the
tagger requires and transforms the tagged text back into the internal representation
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for further processing. A final evaluation component compares the assigned tags to
the gold tags from the corpus.

Directly before and after the tagger is invoked, we measure the time spent for
tagging. This time measuring includes the time that the wrapper needs to provide the
data to the underlying tagger implementation. In case of Java taggers, this is usually
just a method call, but in case of wrapped C binaries there might be a considerable
overhead. Thus, the runtime reported in this experiment might differ from running a
tagger without the wrapper. A further issue that might affect the time measurement
is document size. Some taggers are fastest when provided with small data chunks,
while others are optimized for processing large chunks. In order to account for this
difference, we run all experiments twice: (i) providing the corpus sentence-wise to the
tagger, and (ii) providing all sentences at once. We then report the run that takes
less time. Our interest lies in determining the relative time difference between tagger
models. The absolute time differences are not of importance in this case. Thus, even
when running this experiment on a faster computer, which will lead to a generally
faster tagging, the relative difference between the models will still be the same. We
conduct the experiments in an evaluation framework which is publicly available3.

Taggers and Models We now describe the PoS taggers and the models that we
use (see Table 3.2 for an overview). If available, we provide information about the
domain of the training data that is used to train the models.

Arktools (Owoputi et al., 2013). A tagger tailored to tagging social media text.
Three models are available of which we use the one trained on annotated Tweets by
Ritter et al. (2011), which uses an extended PTB tagset. The remaining two models
are omitted as their training data are part of our evaluation set (which we discuss in
the following section) i.e. a model trained on the data by Gimpel et al. (2011) and
IRC chat data by Forsyth and Martell (2007);

Baseline Tagger A self-implemented baseline tagger which assigns the most
frequent tag of a word according to the training corpus. Unknown word forms are
tagged as noun. The English model is trained on section 0-18 of the WSJ, the German
model uses the Tiger (Brants et al., 2004) corpus.

ClearNLP (Choi and Palmer, 2012). Two English models are provided. One
trained on medical text and one trained on a mixture of text from various genres that
are mostly news-related.

Hepple (Hepple, 2000). A rule-based tagger similar to the Brill-Tagger (Brill,
1992) for which an English model is available.

HunPos (Halácsy et al., 2007). An open-source reimplementation of the TNT
tagger (Brants, 2000). Newswire models are available for English, trained on the
WSJ and for German, trained on the Tiger corpus.

3https://github.com/zesch/pos-tagger-evaluation.git, last accessed 29 May 2017

https://github.com/zesch/pos-tagger-evaluation.git
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Tagger Lang. Trained on Modelname Tagset Domain Abbr.

Ark en Ritter ritter PTB-RIT social Ark

Baseline en WSJ wsj0-18 PTB news BaseTagger de Tiger tiger STTS news

ClearNLP en Medical text mayo PTB clinical C-1
OntoNotes ontonotes PTB news C-2

Hepple en rule-based PTB - Hepple

HunPos en WSJ wsj PTB news Hunde Tiger tiger STTS news

Mate en CoNLL2009 conll2009 PTB mixed Matede Tiger tiger STTS news

LSTM en WSJ wsj0-18 PTB news LSTMde Tiger - STTS news

OpenNLP

en unknown maxent PTB unknown O-1
unknown perceptron PTB unknown O-2

de Tiger maxent STTS news O-3
Tiger perceptron STTS news O-4

RfTagger de Tiger tiger Tiger news Rf

Stanford

en

WSJ bidirectional-distsim PTB news St-1
WSJ casel.-left3w.-distsim PTB news St-2
unknown fast PTB unknown St-3
WSJ wsj.-casel.-left3.-dis. PTB news St-4

de

Negra dewac STTS news St-5
unknown fast-caseless STTS news St-6
Negra fast STTS news St-7
Negra hgc STTS news St-8

TreeTagger en unknown le PTB-TT news Treede unknown le STTS news

Table 3.2: English and German tagger models that we evaluate in our experiments
for domain transfer robustness

LSTM Tagger4 (Plank et al., 2016). A PoS tagger based on Long-Short-Term-
Memory (Hochreiter and Schmidhuber, 1997) neural networks. We train a model for
English on WSJ section 0-18 and a German model on the Tiger corpus. We use the
settings described in Plank et al. (2016) to train the models and use the pre-trained
word embeddings by Al-Rfou et al. (2013).

Mate (Björkelund et al., 2010). Two models are provided. An English model
trained on the CoNLL2009 (Hajič et al., 2009) dataset and a German model trained
on the Tiger corpus.

OpenNLP. An Apache project that provides a wide range of NLP tools including
a tagger.5 Two models for English and German are provided based on the algorithm
Maximum Entropy and Perceptron. The German models are trained on the Tiger

4The tagger is implemented in Python and not easy to integrate into DKPro Core. Due to the
good results reported for this tagger in the literature (Plank et al., 2016), we yet decided to add it to
this evaluation. The time measurement is, thus, to be taken with caution as this tagger might have
a speed advantage over the other taggers in our setup due to a direct execution without wrapper.

5https://opennlp.apache.org, last accessed 12 September 2017

https://opennlp.apache.org
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corpus. The training data of the English models are unknown.
RFTagger (Schmid and Laws, 2008). A tagger for assigning morphologically

fine-grained tags. We use the German model that is provided, which was trained on
the Tiger Treebank (Brants et al., 2002).

Stanford (Toutanova et al., 2003). A popular tagger choice. Several models are
provided for English and German. The models differ with respect to lowercasing of all
tokens, adding distributional knowledge, or using a bidirectional model. We excluded
two social media models trained by Derczynski et al. (2013)6 as they use training data
which is part of our evaluation set.

TreeTagger (Schmid, 1994b, 1995). A tagger with a good reputation for German.
Two models are provided, an English model trained on the Penn Treebank, and a
German model trained on unknown proprietary training data.

Tagsets The tagsets assigned by the models and the tagsets used in the evaluation
corpora are often not compatible. This mismatch will result in an artificially low
accuracy. Many English models are trained on corpora annotated with the PTB
tagset. Other English tagsets used by the models or the evaluation corpora are Brown
(Nelson Francis and Kuçera, 1964), C5 (Leech et al., 1994) or the coarse-grained
Gimpel (Gimpel et al., 2011) tagset. Furthermore, some of the PTB models use an
extended PTB tagset. For instance, the English model by Schmid (1994b) assigns the
inflection forms of the words be, do, have an own tag instead of the default verb tags.
Ritter et al. (2011) added four additional tags to label the phenomena that frequently
occur in Twitter messages such as hashtags or URLs, or Forsyth and Martell (2007)
prefixed PTB tags with an extra character if the word-form is misspelled. In German,
the Stuttgart-Tübingen-TagSet (Schiller et al., 1999) (STTS) with 54 tags is used for
the corpora of written language. The corpora of the social and spoken domain use
independent extensions of the STTS tagsets (Beißwenger et al., 2015; Rehbein, 2013)
to account for domain properties not covered by the canonical STTS.

To harmonize the different tagsets, we map the fine-grained tags to the coarse-
grained universal tagset (Petrov et al., 2012). Obviously, subtle distinctions between
similar tags will be lost in the process, but for many downstream applications fine-
grained distinctions between sub-tags of the same word class are not important any-
way. The coarse-grained accuracy will provide a good approximation of the expected
tagging quality and enable a direct comparison of the various tagger models on dif-
ferent corpora. Furthermore, it is more interesting to see if taggers are able to distin-
guish the main word classes such as adjective, adverbs, etc. on different text domains.
Comparing on a coarse-grained tagset allows a comparison that has the principle dis-
tinctions between major word classes in the focus.

6https://gate.ac.uk/wiki/twitter-postagger.html, last accessed 12 September 2017

https://gate.ac.uk/wiki/twitter-postagger.html
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Tokens
Lang. Domain Corpus in (103) Tagset

en

written

BNC-News 100 C5
Brown 1,100 Brown
GUM-News 9 PTB-TT
GUM-Voyage 9 PTB-TT
GUM-HowTo 13 PTB-TT

spoken

BNC-Conversation 100 C5
GUM-Inverview 13 PTB-TT
Switchboard 2,100 PTB
Ted Talk 23 PTB

social
Gimpel 27 Gimpel
NPS-Chat 32 PTB
Twitter-AAVE 5 UT

de

written Tüba-DZ 1,500 STTS
Hamburg-DTB 3,800 STTS

spoken Folk 100 STTS-EX-A

social

EmpiriST-CMC 10 STTS-EX-B
EmpiriST-Web 12 STTS-EX-B
Twitter-Reh 20 STTS-EX-C
Web-Comments 36 STTS

Table 3.3: Evaluation corpora of three text domains for English and German that are
used in our experiments to evaluate the tagger models for domain transfer robustness

Corpora Table 3.3 gives an overview of the corpora used in our evaluation. We
partitioned the evaluation corpora again into three domains: (i) formal writing, (ii)
speech transcripts, and (iii) social media.

English The first set of corpora contains formal writing, e.g. news articles, travel
reports and how to’s. We use a subset of the newswire text from the British National
Corpus (Leech et al., 1994) (BNC), the Brown corpus (Nelson Francis and Kuçera,
1964) containing American English of the 1960’s and three subsections of the GUM
(Zeldes, 2016) corpus. The second set contains transcripts of spoken language. We use
the Switchboard (Marcus et al., 1993) corpus (telephone conversations), a subset of
the British National Corpus with spoken language, one section with interviews taken
from the GUM corpus and TED Talk (Neubig et al., 2014) presentation transcripts.
The third set contains social media text. We use the IRC Chat corpus by Forsyth and
Martell (2007), the Twitter corpus by Gimpel et al. (2011) and the African-American
Vernacular English (AAVE) Twitter messages by Jørgensen et al. (2016).

In order to avoid testing on the training data, we exclude other available PoS
annotated corpora such as the WSJ corpus (Marcus et al., 1993) or the Twitter corpus
by Ritter et al. (2011), as many of the models have been trained using these corpora.
As the provenance of some models is unknown, their results should still be treated
with caution as we might accidentally be testing on training data.

German We use the STTS-annotated Tüba-DZ corpus by Telljohann et al. (2004)
for the written domain based on the German newspaper Die Tageszeitung and the
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(b) German

Figure 3.5: Macro-averaged results for each English and German model over all
corpora and text domains

Hamburg Dependency Treebank by Foth et al. (2014a) with text from the technical
news website Heise.de. For the spoken domain, we use the Folk corpus of spoken
German by Westpfahl and Schmidt (2016). For the social media domain, we use the
Twitter corpus Twitter-Reh by Rehbein (2013), the corpus of web comments on web
articles by Neunerdt et al. (2013) and the Empiri corpus by Beißwenger et al. (2016)
with a text mixture of various social media domains. We exclude the Tiger and the
Negra (Skut et al., 1998) corpus as all German models are trained on one of the two.

3.3.2 Results

Figure 3.5a shows the English results over all corpora and Figure 3.5b shows the
German results. The x-axis shows the macro-averaged tagging accuracy based on the
coarse-grained universal tagset. The y-axis shows the normalized processing time in
seconds per million tokens.

The average tagging accuracy fails to reach the high accuracy results reported in
the literature of around 97% on formal corpora. In particular, the performance on the
German corpora show an extremely large accuracy drop. This drop results from the
spoken domain corpus which we discuss in more detail later on. A surprising finding
is that the taggers and models differ more on the time-axis than on the accuracy axis.
Thus, researchers need to choose according to their needs. When the focus lies only
on the quality of the tagging, taking a slower model which is a bit more accurate is
a reasonable decision. When working in large scale data processing setups one might
chose a faster but less accurate model as trade-offs between speed and accuracy.

So far, we have only considered the macro-averaged performance over all corpora.
This simulates the usage scenario in which the tagger is treated as a black-box and
applied to all sorts of data without caring much about the domain. Next, we compare
the tagger performance per domain.
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Figure 3.6: Results of English tagger models on formal text, transcripts of spoken
language and social media text. Red circles show the Baseline tagger’s performance

English: Domain-specific Results Figure 3.6 shows the English evaluation re-
sults per domain, Table 3.4 shows the exact values. We see that the in-domain eval-
uated models perform considerably better than when evaluating on out-of-domain
data. With most English models being trained on newswire data, these models per-
form best on formally written corpora. However, even in an in-domain evaluation no
model reaches the 97% accuracy reported in the literature when testing on data from
the same corpus as the training data. On social media, the tagging accuracy of some
taggers drop to such an extreme extent that they degenerate almost to the baseline
tagger’s performance. A surprising finding is that tagging spoken transcripts does
not seem to differ much from tagging written language corpora. One would expect
that transcripts of spoken language are considerably more difficult to tag than formal
text. A manual screening of the corpora confirmed only a low number of informal ut-
terances, which makes these corpora rather similar to formal text (we show examples
further below when comparing the English results to the German results).

Hence, tagging formal, written discourse is supported best by tagger models. Al-
most all models are not equipped to deal with non-standard language, except models
which have been already adapted to informal domains.

German: Domain-specific Results Figure 3.7 and Table 3.5 show the German
results. The most models perform well on the written domain but have substantial
loses in accuracy on other domains. All German models have been trained on formal
text. Unlike for English, the German models perform rather close the 97% accu-
racy reported in the literature. We see that the spoken domain is by far the most
challenging one in the German setup. Many taggers drop below the baseline tagger.
The spoken evaluation dataset composes of a single corpus, the Folk corpus. The
Folk corpus contains many colloquial and slang expressions which make this corpus
particularly difficult to tag. Table 3.6 shows examples from the German Folk corpus
compared to the English corpora to highlight the differences between the corpora in
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Written Speech transcripts Social media Macro-average
accuracy time accuracy time accuracy time accuracy time

∅ % ∅ ( seconds
106 token ) ∅ % ∅ ( seconds

106 token ) ∅ % ∅ ( seconds
106 token ) ∅ ∅ ( seconds

106 token )

Ark 89.2 58 89.6 27 80.7 86 87.2 81
Base 81.5 1 78.9 1 65.7 2 76.7 2
C-1 88.5 59 87.2 27 72.5 77 84.1 59
C-2 90.5 102 91.0 43 75.2 149 86.9 102
Hepple 88.4 3 88.3 2 67.1 5 83.0 4
Hun 88.8 18 89.3 11 69.9 37 84.2 24
LSTM 88.9 137 89.6 16 66.5 16 83.5 151
Mate 88.8 270 89.5 111 71.7 386 84.8 274
O-1 90.0 45 90.1 20 72.0 68 85.5 47
O-2 88.2 34 89.3 15 68.7 51 83.7 35
St-1 90.4 485 89.9 148 71.1 10040 85.4 2788
St-2 90.3 43 89.7 17 72.9 111 85.8 55
St-3 89.5 85 89.6 29 81.9 220 87.6 107
St-4 90.0 40 89.7 17 72.2 119 85.4 56
Tree 91.2 37 89.8 17 70.0 72 85.4 42

Table 3.4: Tagging accuracy and execution time of the English models as averaged
values per text domain. Best accuracy values are highlighted in bold face
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Figure 3.7: Results of German tagger models on formal text, transcripts of spoken
language and social media text. Red circles show the Baseline tagger’s performance

Written Speech transcripts Social media Macro-Average
accuracy time accuracy time accuracy time accuracy time

∅ % ∅ ( seconds
106 token ) ∅ % ∅ ( seconds

106 token ) ∅ % ∅ ( seconds
106 token ) ∅ ∅ ( seconds

106 token )

Base 85.4 2 57.9 4 71.0 1 64.1 2
Hun 96.1 15 54.2 33 77.7 18 69.6 19
LSTM 96.6 1623 56.6 58 77.7 14 70.1 422
Mate 95.3 173 58.9 293 79.0 286 70.7 258
O-1 95.6 21 52.1 26 78.0 37 69.4 32
O-2 95.3 21 53.1 21 77.7 31 69.3 27
Rf 92.2 274 53.7 398 77.5 495 68.5 428
St-5 93.7 533 59.9 784 75.9 900 68.8 794
St-7 93.5 49 59.8 64 75.9 57 68.8 56
St-6 92.7 48 66.3 46 76.4 55 69.7 52
St-8 93.7 532 59.9 743 76.1 960 69.0 826
Tree 96.9 6 60.5 30 80.0 77 71.8 53

Table 3.5: Tagging accuracy and execution time of the German models as averaged
values per text domains. Best accuracy values are highlighted in bold face
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German examples of spoken language

Folk
nu kuck ma da hinten trinken se tee
Standard: nun, guck mal, da hinten trinken sie Tee
English: well, look over there, they are drinking tea

ja des geb isch ihne vor äh 500 bis 1.500 ohm
Standard: Ja, das gebe ich Ihnen vor, 500 bis 1.500 Ohm
English: Yes, I will provide that to you, 500 to 1,500 Ohm

English examples of spoken language

SWITCHBOARD
I’d be very very careful and, uh, you know, checking them out.
Uh, it had to be done in hurry.

TedTalk
But on the other side of that, though, we are big readers in our house.
Or we ’ll be here all day with my childhood stories.

GUM-Interview
How did you come to be involved with this discovery.
Are you intending to go there yourself ?

BNC-Conversation
Oh very nice, very nice, yes.
er, anyway we ’re alright now so, you know

Table 3.6: Examples of transcripts in the German Folk corpus with many slang
utterances compared to the transcripts in the English corpora with spoken language

that contains mostly standard English

the German and English evaluation setup. The English corpora, despite of being
transcripts of spoken language, are close to standard English and show no slang ut-
terances as in the German corpus. Thus, informal utterances pose a huge challenge
for tagging. It is, thus, not surprising to find the average tagging accuracy to be
located between the spoken and formal domain corpora. Text from the social media
domain contains both, informal and formal utterances.

3.4 Chapter Conclusion

In this chapter, we discussed the challenges of informal text domains for PoS tagging.
We started with a discussion of the term social media and its related terms Web
2.0 and CMC that are different notions of non-professional, user-generated (textual)
content. In a theoretical analysis, we investigated the difference between text of the
formally written, spoken and social media domain with respect to the occurrence of
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word classes and lexical diversity. We found that the domains differ considerably
with social media being rich in spelling variations of individual words. In a practical
analysis, we empirically evaluated 11 PoS taggers with 18 models for English and
German on text of the aforementioned three text domains. We found that existing
taggers are well equipped for tagging formal text but tagging accuracy drops con-
siderably if a text contains many properties of informal, colloquial language use. In
German, tagging of the Folk corpus performed even worse than tagging of the social
media corpora. This observation was not possible in English for a lack of annotated
corpora that contain such informal utterances.

A rather fundamental issue is also the dominance of formal newswire text for
training the models. In particular, the WSJ in English and the Tiger corpus in
German are the most frequently used corpora for training models. There are barely
alternatives to these corpora and if they are, they are often still of a formal nature.
Hence, none of these models, neither for English nor German, have encountered
phenomena of informal utterances during model training. When applied to less formal
text domains, these models perform only poorly.
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Chapter 4

Domain Robustness - Existing
Approaches

In this chapter, we investigate the effectiveness of approaches that have been proposed
in the literature to improve domain robustness of tagger models. As we saw in
Chapter 3, the accuracy of available taggers and their models varies with the text
domain to which they are applied. While the tagger models perform decently as long
the models are applied to in-domain text, they lose a considerable amount of tagging
accuracy when applied to foreign text domains. In particular, the social media text
turned out to be a highly challenging domain for the available taggers. This poor
robustness gave rise to various approaches to improve domain robustness that we
categorize into two paradigms: normalization and domain adaptation. Normalization
removes orthographic and syntactical anomalies of a text and brings them into its
standard form (Han and Baldwin, 2011; Chrupala, 2014). The text is adapted to the
tagger, which enables newswire trained PoS tagger models to perform well. Domain
Adaptation focuses on a re-training strategy and trains new models that are more
similar to the social media text, i.e. the tagger is fitted to the text. We will focus
on the domain adaptation approaches that we evaluate and analyze in detail to learn
where and how they achieve improvements. We also investigate the validity of these
approaches by constructing social media adapted models for the English, German
and Italian language.

Normalization vs. Domain Adaptation Figure 4.1 shows an example for tag-
ging social media text by using normalization versus domain adaptation. Normaliza-
tion is probably the more challenging paradigm as it often requires a semantic inter-
pretation and entails two tasks, first detection that a non-standard form is present
(or text has been omitted) and second transforming this form into its standard form.
Information such as emoji or emoticons do not have a standard from which requires
additional strategies how to deal with those phenomena that cannot be substituted.
Furthermore, word contractions of two or more words such as gonna have to be split up
again into separate words and the possible misspellings of words have to be detected
and corrected. A normalized social media posting allows to apply models trained
on formal text without having to expect a severe drop in accuracy. This assumes



52 Chapter 4. Domain Robustness - Existing Approaches

Tagger
Newswire

Model

Tagger
Social Media 

Model

N
or

m
al

iz
at

io
n

I am going to sign up !

Gonna sign uppa !!!

Normalized text

Social media text

Domain
Knowledge

Domain	
DataD

om
ai

n
Ad

ap
ta

tio
n

Social media text
Gonna sign uppa !!!

Normalization

Figure 4.1: PoS tagging by normalization versus domain adaptation

that the normalization process provides an appropriate standard form replacement
for each non-standard form. This is essentially a coverage problem of providing many
mappings from non-standard word forms to a canonical standard form. Normaliza-
tion has been used for improving PoS tagging accuracy (not just on social media data)
(Li and Liu, 2015; Yang and Eisenstein, 2016; van der Goot et al., 2017). Li and Liu
(2015) takes a joint approach and combines the normalization step with PoS tagging,
instead of first normalizing and then apply the tagging as in a pipeline architecture.
They obtain normalization candidates from several normalization models and deter-
mine the most likely tag for a word by applying a Viterbi (Viterbi, 1967) decoding
that also considers a normalization of the word with one of its candidates. They
use datasets that are annotated with PoS tags and normalized word forms. Yang
and Eisenstein (2016) works on historical English and uses spelling normalization to
achieve improvements on early modern English text. van der Goot et al. (2017) also
investigates normalization for PoS tagging. They consider words as normalization
candidates that a close in the embedding space to each other (including the canonical
word form). A random forest classifier ranks each normalization candidate. They
also experiment with normalizing only unknown words (from the training data) or all
words. They find their normalization method to reach substantial improvements for
PoS tagging and that normalizing all words is of advantage.

Domain Adaptation works directly on the social media text. Instead of modifying
the text, the model of the PoS tagger is adapted to the social media domain. Hence,
domain adaptation sustains all the phenomena of the social media domain. Ideally,
one has a large annotated social media corpus and can directly train a new model
on (social media) domain text. At the moment, no such large corpus is available
which complicates the task to train an adapted model. In case of social media, the
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Figure 4.2: Overview of domain adaptation approaches

number and size of annotated datasets are considerably smaller than for other text
domains. Existing datasets have usually a size of few then-thousand tokens, which
is not sufficient for training models. We will, thus, focus hereinafter on the domain
adaptation paradigm and how to tackle the lack of training data.

Domain Adaptation Approaches Two domain adaptation strategies surfaced to
deal with the lack of training data. These strategies are show in Figure 4.2, i.e. adding
more data and adding more knowledge. More data tackles the lack of training data by
adding foreign or machine-generated data (Ritter et al., 2011; Derczynski et al., 2013).
Foreign domain data might be only of limited use as foreign domain text provides no
new information for tagging social media phenomena. Automatically producing new
social media data is inexpensive but the automatized production process is flawed
to some extent, which makes it difficult to estimate the number and the impact
of incorrect examples. More knowledge adds information obtained from resources,
which usually cannot be directly used as training data (Ritter et al., 2011; Owoputi
et al., 2013). The available training instances are enriched during model training by
injecting knowledge from those resources into the machine learning process. The first
strategy affects from which data is learned, the second one what is learned.

More Data With only little annotated data from the social media domain, directly
re-training a model is not effective. Also, due to the high variance of word forms in
this domain, annotating more data is less effective than in the news domain. More
social media data would certainly be helpful. However, this would not solve the
general problem of having to deal with many spelling variations in this domain. An
obvious approach to improve performance is to add annotated training data from
another domain (usually newswire text) what we call mixed re-training. However, as
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the much bigger foreign-domain data easily dominates the tiny amount of annotated
social media data, oversampling (Daumé III, 2007; Neunerdt et al., 2014) might be
used to adjust for the difference in size by adding the social media data multiple times.
Voting (Goldman and Zhou, 2000; Derczynski et al., 2013) is another approach that
provides more social media training data relying on multiple already existing PoS
taggers. If all taggers assign the same PoS tags to all tokens of a sentence, it is added
to the training data. The assumption is that the mutual agreement between several
(foreign domain) tagger models compensates for the increased error-rate of a single
tagger on social media data.

More Knowledge Instead of adding more training data, one can also try to inject
knowledge from outside. A PoS dictionary (Rehbein, 2013) provides information
about the most frequent PoS tags of a word. The PoS distributions are compiled from
an external knowledge source, i.e. large corpora that are either manually annotated
or machine-tagged. A further approach to get more knowledge about the social media
domain is clustering of social media data. Clustering tends to place spelling variations
of the same word into the same cluster (e.g. tomorrow, tmr, 2mr, tmrrow, etc.), which
improves handling of unknown word forms or spelling variations of words (Chrupala,
2011; Ritter et al., 2011; Owoputi et al., 2013).

Experimental Setup We conduct our experiments with the tagger FlexTag (Zesch
and Horsmann, 2016) using Conditional Random Fields (Lafferty et al., 2001), we use
an Averaged Perceptron (Collins, 2002) as training algorithm. As feature set that is
common to all subsequently described evaluations, we use a tri-gram word context,
the 750 most frequent character bi-grams, tri-grams and four-grams, the length of
the token and features that check if a token is an emoticon, smiley, a number, a user-
mention or a hashtag. As social media corpus, we use the Twitter corpus by Ritter
et al. (2011) with 15k tokens. We also report results on the coarse-grained Universal
PoS (Petrov et al., 2012) tagset by mapping the results of the fine-grained PTB tagset.
With several approaches to our disposal, we will evaluate the effectiveness of each
approach in isolation and then compare them in combination.

4.1 More Data

We now describe and evaluate the strategies that rely on changing the training data
of the tagger: re-training, oversampling, and voting.

Re-training In our first experiment, we investigate the effect of re-training. Due
to the limited amount of social media data we have, we use 10fold cross-validation for
evaluation and report averaged results. On the fine-grained PTB tagset, we reach an
accuracy of 79.8%, on the coarse-grained tagset 86.0%. The huge difference between
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Figure 4.3: Re-training learning curve (10fold CV)

fine- and coarse-grained shows that a substantial amount of the errors must be confu-
sions between the fine-grained tags belonging to the same (coarse-grained) word class,
e.g., confusions of a present tense verb from with a past tense verb form. Obviously,
more annotated social media training data should further improve the results.

Figure 4.3 shows a learning curve to estimate the potential of providing more
data. We compute the learning curve by splitting Twitter into ten data chunks
and evaluate against a holdout chunk. We then add one additional data chunk to
the training dataset in each iteration to measure the improvements of adding more
data. We repeat this whole process ten times (we 10fold cross-validate ten times)
to ensure that each data chunk has been in the test set once and report averaged
result. The curve confirms our assumption that more data would lead to further
improvements. However, the expenses of annotating more data are often too high to
follow this approach. Thus, we analyze the effectiveness of less expensive but more
sophisticated domain adaptation strategies.

Mixed Re-Training A quite obvious approach is training on a mixture of formal
text and Twitter, which we call mixed re-training. We experiment with adding
newswire text from the Wall-Street-Journal (WSJ), which has a compatible tagset to
the one used in Twitter. We provide an increasing number of tokens to observe
the effect of foreign domain data on accuracy. As we only want to test on Twitter,
we use a specialized version of cross validation where we cross-validate only over
Twitter but add newswire data each time. The results are shown in Figure 4.4.

After adding of 300k additional tokens, the fine- and coarse-grained tagging ac-
curacy has improved by about two percent points. This result clearly show that
the tagger benefits from more language knowledge, even if it is from a foreign text
domain. However, we also see that using considerably less data, 100k, reaches an
almost identical result by a learning curve that flattens out early. Since the tagger
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Figure 4.4: Results of mixed re-training (10fold CV)
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Figure 4.5: Results of oversampling (10fold CV)

cannot learn any social media phenomena from the newswire text we added, the im-
provements we see must be accounted to an improved lexical knowledge about the
language. Thus, mixed re-training is quite effective to improve performance at least
for such small datasets as the Twitter dataset.

Mixed Re-Training With Oversampling A possible problem with mixed re-
training is the large differences between the dataset size of the foreign domain corpus
to the small social media corpus. The syntactical and orthographic properties of
the foreign-domain corpus outweigh the actually more accurate knowledge by the
social media data. To overcome this imbalance, oversampling has been proposed
(Daumé III, 2007; Neunerdt et al., 2014). The idea is to boost the importance of
the social media training data by adding it multiple times to the training dataset
to artificially increase the weight of the more accurate information during model
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training. A parameter of this approach is the factor of how often the social media
data is added additionally. We base the mixed re-training experiment on 100k foreign
domain data from the WSJ and evaluate again by 10fold cross-validation only over
the Twitter corpus.

Figure 4.5 shows the results for different oversampling rates in comparison to
mixed re-training without oversampling and the re-training baseline. We see no im-
provements by oversampling the Twitter corpus.

Voting Voting aims at producing more annotated training data by using several
PoS taggers. Postings where all tagger agree are added to the training dataset. This
is similar to the approach by Zhou and Li (2005), they accepted automatically labeled
training samples for a third classifier as training data when two other classifiers agreed
on the labeling of a data sample. The idea behind this procedure is that (newswire-
trained) PoS taggers still tag a large proportion of the tokens correctly. If all taggers
assign the same label sequence (i.e. all voted the same) the sequence is added to the
training set. Thus, the lack of confidence of a (newswire-trained) tagger is overcome
by using several ones. We use three existing taggers with models that use the PTB
tag set: ClearNLP with the model ontonotes, OpenNLP with the model maxent and
the Stanford tagger with the model caseless-left3words-distsim. We manually set the
PoS tags for Twitter phenomenona such as user-mention, hashtags, urls, etc. in a
post-processing step by regular expressions (Ritter et al., 2011). We 10fold cross-
validate again over Twitter and add an increasing amount of voted sequences to
the respective training dataset. We compare the effect of voted data to adding the
same amount of human-annotated newswire-data from the WSJ.

The results are shown in Figure 4.6. We see small improvements when adding
voted data. After adding of 70k tokens of produced data, we reach an improvement
by about two percent points. Providing even more data is unlikely to improve results
even further. Using hand-annotated newswire data performs similar to adding voted
social media data. This might be surprising at first but is actually rather reasonable
because voting is projecting models that have been trained on newswire on the social
media data. The sequence where all newswire-trained models agree will inevitably be
extremely similar to newswire text. Sequences with phenomena typical for the social
media domain, which make this domain challenging, are also the postings where the
taggers disagree.

4.2 More Knowledge

PoS Dictionaries We use dictionaries that store the PoS distribution for each
word form as it occurs in a corpus. The underlying corpus can either be manually
annotated or machine-tagged. Gimpel et al. (2011) combined the WSJ and the Brown
corpus (Nelson Francis and Kuçera, 1964), Plank et al. (2014) used a crowd-sourced
online dictionary, and Rehbein (2013) used the machine taggedWaCky corpus (Baroni
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Figure 4.6: Voting versus mixed-retraining (10fold CV)

et al., 2009). We use two dictionaries in our experiments: HumanDict1, created from
the human-annotated Brown corpus, and MachineDict2, created from the first 100
million tokens of the machine-tagged English WaCky corpus (Baroni et al., 2009).
The WaCky corpus contains text crawled from the Internet such as forums, which
makes the text of this domain more similar to Twitter than the Brown corpus with
its formal nature. HumanDict has a vocabulary coverage3 of 74.3% of the tokens in
Twitter and MachineDict has 85.1%. The dictionaries store for each word the three
most frequent PoS tag according to the source corpus. We provide this information
by introducing three additional features for each dictionary entry. If a word has less
than three PoS candidate tags, a constant value is provided.

The results are shown in Figure 4.7. Surprisingly, both dictionaries improve the
performance almost equally. The machine dictionary offers a small advantage, which
we account to the better coverage of the domain vocabulary. We assume that the
lower quality of the annotation in MachineDict eventually leads to a comparable
performance between both dictionaries.

Clustering Providing knowledge from word clusters has been reported to account
for substantial improvements (Ritter et al., 2011; Owoputi et al., 2013; Rehbein, 2013).
The clusters are created by grouping words according to their word distributional
similarity. The main idea is that words that are placed into the same cluster, i.e.
occur in a similar word context, also share the same word class. This cluster label is
provided for each word during model training. In a prediction task, finding a spelling
variation of a word in the same cluster as a word form encountered during model
training provides a bias to assign the spelling variation the same tag as the known
word form. This assumes that the unknown word was seen during clustering, i.e.
clusters are only helpful if a spelling variation occurred during word clustering. This

1contains 54k entries
2contains 1,000k entries
3all words in the dictionary and corpus have been lower-cased before computing the coverage
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tomorrow

yestrday

tumorw

tmr

cluster[513]

2mr
tomorrow=Adverb

Training	Data

Bias	to	consider	2mr as	equivalent	to	tomorrow
i.e.	assign	2mr the	same	tag	as	tomorrow

Figure 4.8: Example how the knowledge obtained from word clusters provide a bias
to deal with unknown word forms that did not occur in the training data

is shown in Figure 4.8 which assumes that only the standard English form tomorrow is
known from the model training phase. The cluster knowledge provides a bias to treat
the out-of-vocabulary word 2mr the same way as tomorrow because both words have
been placed into the same cluster i.e. share a highly similar word context. Clusters
created over social media text, e.g. Twitter messages, provide a high coverage of many
spelling variations of the same word and, hence, offer improvements for tagging social
media text. Hence, using clusters is well suited for tackling the problem of facing
many spelling variations of words.

We experiment with two clustering algorithms: LDA4 (Blei et al., 2003; Chrupala,
2011) and hierarchical Brown clustering5 (Brown et al., 1992). Brown clustering has
been used by Owoputi et al. (2013) with 56 million tweets (800 million token) and
by Ritter et al. (2011) with roughly comparable 52 million tweets. Rehbein (2013)

4https://bitbucket.org/gchrupala/lda-wordclass/, last accessed 8 May 2017
5https://github.com/percyliang/brown-cluster, last accessed 8 May 2017

https://bitbucket.org/gchrupala/lda-wordclass/
https://github.com/percyliang/brown-cluster
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Figure 4.9: Improvements by using Brown and LDA clusters (10fold CV)

used LDA clustering over 200 million tokens of German Twitter messages. To learn
how many tokens of plain text we need, we experiment with clusters created from
10, 30, 50 and 100 million tokens of Twitter plain text that have been sampled
between the years 2011 and 2017 to avoid a time-bias. Occurrences of Twitter-specific
phenomena like at-mention, URL, and hashtags have been replaced with constant
values before applying the clustering algorithm and all tokens are lowercased. We use
the parametrization for the cluster algorithms that we find in the literature (Rehbein,
2013; Owoputi et al., 2013), i.e. we create 1,000 Brown clusters with a minimal word
frequency of 10, and 50 LDA clusters with a minimal word frequency of 10.

Figure 4.9 shows the results on fine-grained and coarse-trained tags. Both ap-
proaches account for improvements of several percent points with Brown clustering
reaching a higher accuracy in all cases. The best result on the fine-grained tagset is
achieved by the largest source corpus with 100 million tokens. The slope indicates
further (minor) improvements if more data is added. The most relevant information
is obtained by using already a few million tokens which seem to sufficiently cover
the most common spelling variations of this domain. We hypothesize that the over-
all better performance by Brown clusters is explainable by the way the clusters are
identified. Brown clustering is a hierarchical clustering algorithm and cluster ids are
bit-code ids. Clusters, thus, contain information about higher or lower similarity to
other clusters by comparing the overlap of those ids. This additional information
about (partial) similarity between the clusters provides additional information to the
classifier. The details how the bit-string information is provided plays an important
role. We experimented with various methods and found that providing the bit string
information as prefixes of increasing length to work best6 (Miller et al., 2004; Koo
et al., 2008; Owoputi et al., 2013).

6i.e. for each word with an entry in the created word clusters, we provide for each word several
cluster features each holding the bit-string in an increasing length, i.e. 2, 4, 6,..., N.
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4.3 Combining Approaches

While the strategies for more knowledge are easy to combine, it is not reasonable to
combine all more data strategies, i.e. voting and oversampling did not show advan-
tages that would justify the effort or prolonged training time of these methods. Thus,
we combine re-training a tagger on the Twitter dataset using the PoS dictionary
and word clusters as resources of the more knowledge strategy, and provide additional
100k more data of newswire text.

In Figure 4.10, we show a comparison of the combined approach to all other ap-
proaches. Furthermore, we make a distinction between all tokens and only OOV7

tokens. The combined approach reaches the best accuracy on the fine-grained and
coarse-grained tagset, and also on OOV words, which shows that the individual ap-
proaches add up well.

Improvements by Tag So far, we focused on the accuracy as evaluation metric.
Some approaches accounted for quite large improvements and increased the accuracy
by several percent points. To learn more about which tags improve using which ap-
proach, we will compare the best working configuration of each approach by comput-
ing the F-Score for each tag. For reasons of readability, we focus on the fine-grained
tags belonging to the four major word classes adjective, adverbs, nouns, and verbs.
All reported results are again averaged results computed by 10fold cross-validation
over the Twitter corpus. We report for each tag its frequency in the Twitter
corpus as reference for the relative importance of a tag.

The results are shown in Table 4.1, bold faced results indicate the best number
achieved for a tag. The best individual approaches are highlighted in gray. We see that
all approaches have their largest effect on noun and verb related tags. We suspect
that many improvements are due to added language knowledge as the Twitter
corpus is standalone just too small. The improvements by 100k Mixed RT provide
more lexical knowledge (from a standard English text domain), which should allow
improvements on standard English words that also occur in Twitter but might not
have occurred in the training data. The Voted Data 70k approach confirms this,
too, as this approach is highly similar, i.e. the created annotated data is similar to
newswire text. Oversampling x10 achieves similar results by overweighting the same
information multiple times. Thus, either the strategies improve by providing more
standard language knowledge or by overweighting the small social media training
data. In almost all cases either the PoS dictionary or the word clusters account
for the largest improvements, which is not surprising as these two resources contain
standard and non-standard language knowledge. Furthermore, the combination of the
approaches improves tagging on verb related tags. In particular, cases such as VBN
(past participle verb) that require local context in order to be disambiguated from a
normal past tense verb improve when all data and knowledge sources are combined.

7We define known vocabulary as (lower-cased) words which occur in the training part of the
Twitter corpus.
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Re- 100k Over Voted
PoS Train Mixed -sample Data Dict 100M
Tag Freq. (RT) RT x10 70k Machine Brown Combo

A
D
J JJ 670 .64 .72 (+.08) .71 (+.07) .71 (+.07) .73 (+.10) .72 (+.08) .77 (+.13)

JJR 31 .42 .65 (+.23) .68 (+.26) .60 (+.19) .58 (+.17) .62 (+.20) .68 (+.26)
JJS 26 .69 .88 (+.19) .92 (+.23) .79 (+.10) .88 (+.19) .84 (+.15) .94 (+.25)

A
D
V RB 680 .80 .84 (+.04) .83 (+.03) .86 (+.05) .85 (+.05) .85 (+.05) .86 (+.06)

RBR 20 .42 .36 (−.06) .43 (+.01) .55 (+.13) .59 (+.17) .52 (+.10) .31 (−.11)
RBS 3 .00 .75 (+.75) .86 (+.86) .67 (+.67) .40 (+.40) .21 (+.21) .75 (+.75)

N
O
U
N NN 1,931 .75 .80 (+.05) .80 (+.05) .78 (+.03) .80 (+.05) .79 (+.04) .83 (+.08)

NNP 1,159 .55 .60 (+.05) .60 (+.05) .56 (+.02) .60 (+.05) .62 (+.08) .66 (+.12)
NNPS 8 .00 .09 (+.09) .00 (+.00) .00 (+.00) .00 (+.00) .00 (+.00) .00 (+.00)
NNS 393 .70 .81 (+.10) .81 (+.10) .79 (+.08) .79 (+.09) .76 (+.05) .84 (+.13)

V
ER

B

MD 181 .96 .96 (+.00) .96 (+.00) .96 (+.00) .95 (−.01) .97 (+.01) .98 (+.02)
VB 660 .80 .80 (+.00) .81 (+.01) .80 (+.00) .83 (+.03) .83 (+.03) .84 (+.05)

VBD 306 .80 .84 (+.05) .83 (+.04) .83 (+.03) .81 (+.02) .80 (+.00) .86 (+.06)
VBG 303 .87 .88 (+.02) .89 (+.02) .89 (+.02) .90 (+.04) .90 (+.04) .91 (+.05)
VBN 140 .57 .69 (+.12) .69 (+.13) .67 (+.10) .71 (+.14) .65 (+.08) .73 (+.17)
VBP 527 .82 .82 (+.00) .82 (+.00) .82 (+.00) .84 (+.01) .84 (+.02) .85 (+.03)
VBZ 342 .81 .88 (+.06) .87 (+.05) .87 (+.06) .87 (+.06) .87 (+.06) .91 (+.10)

Table 4.1: F-Score improvements for the tags in the four major word classes on the
Twitter dataset. Shading highlights best improvements for a tag by an individual

approach and bold face shows best overall result per tag

We also find that names and named entities improve considerably. When putting
the frequency of the tags in perspective, it becomes clear why word clusters improve
the tagging accuracy to such an extent, they do not just cover spelling variations of
words but also a large number of (proper) nouns. As word clusters are inexpensive
to create from plain text, they are by far the most promising approach to adapt a
tagger to the social media domain.

4.4 Transferability to Other Languages

In the previous section, we investigated the effect of various domain adaptation ap-
proaches to increase model robustness on an English social media corpus. In the
following sections, we apply these approaches to a German and Italian social media
dataset to investigate the general applicability of these approaches to other languages.

4.4.1 Case Study: German Social Media and Web Text

This case study is centered around the dataset of the “Empirikom Shared Task” by
Beißwenger et al. (2016). The main objective of this shared task lay on constructing a
PoS tagger which is able to tag various kinds of social media text with high accuracy.

Dataset The shared task provided a corpus of 23k tokens of PoS annotated text,
split up in an official train and test set. The text consists of computer mediated
communication (i.e. WhatsApp chats, Twitter, blog comments, Wiki talk pages, social
and professional chats) and web text about lifestyle or traveling. This dataset is larger
than the English Twitter data that we have been using before but the official train-test
data split cuts the dataset nearly in half. Furthermore, the dataset is annotated with
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Extended Frequency
STTS tags Train Test

EMOASC 115 72
PTKMA 103 85
PTKIFG 99 133
AKW 49 60
HST 46 42
ADR 35 48
PTKMWL 28 24
EMOIMG 22 63
URL 18 21
VVPPER 7 6
VAPPER 4 4
DM 3 6
PPERPPER 1 1
ONO 1 2
KOUSPPER 1 2
VMPPER 1 0
ADVART 1 3
EML 0 1

Table 4.2: Frequency of the newly introduced tags in the German dataset

an extended version of the Stuttgart-Tübingen-Tagset (STTS) (Schiller et al., 1999),
which adds 18 additional PoS tags to the 54 tags in the canonical STTS to account
for social media phenomena. The additional tags assign user-mentions, hashtags and
alike and own tag but also introduces new tags for word contractions that occur in
informal but conceptually “oral” written discourse.

We analyzed the frequency of the newly added tags in the training and testing
set in Table 4.2. We find that nine out of eighteen tags occur less than 10 times.
Interestingly, we even have one tag in each set that occurs zero times showing that
the dataset contains many rare phenomena. Thus, the German Empirikom dataset
appears to be more challenging as it is a mixture of informal text domains with a
highly fine-grained PoS tagset of which many tags occur only rarely.

Experimental Setup The shared task made a distinction in its test data between
data from the CMC genre and web text but also reported overall results. To ensure
comparability of our results to the shared task setup, we will adapt to this three-way
evaluation and also report separate results on the CMC and web subset but also
overall results over the entire test set.

We apply the domain adaption strategies as follows: To provide more data, we will
apply mixed re-training by providing 100k tokens of annotated newswire text from the
Tiger (Brants et al., 2004) corpus. The extended STTS is compatible to the canonical
STTS used in the Tiger, which allows using data annotated with the canonical STTS.
We provide more knowledge from Brown clusters and a PoS dictionary:

• Brown clusters: We create Brown clusters from 170 million tokens of German
Twitter messages which we crawled between 2011 and 2017. All tokens have
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been lowercased. Hashtags, user mentions and URLs are replaced by constant
values in a pre-processing step using regular expressions.

• PoS dictionary: We create a PoS dictionary which stores the three most frequent
PoS tags of a word. We build the dictionary using the Hamburg Dependency
Treebank (Foth et al., 2014b), which contains STTS annotated text from a
technical German newswire website. We choose this corpus for its large size of
several million tokens and its technical nature, which seems to be more suited
for the social media domain than a business newswire corpus.

We use the same feature set as for the English experiment. We will re-evaluate
each approach individually and determine the combined results.

Results In Figure 4.11, we show the results for each approach on all and OOV
tokens. We can confirm the findings we already made for the English dataset, the
combined approach reaches the best result. Mixed RT, word clusters and the PoS
dictionary reach highly comparable results, with the dictionary reaching higher im-
provements than the word clusters. We assume that the higher annotation quality
and size of the corpus from which the dictionary was created is accountable for the
better performance (unlike for the English dataset where the annotation was created
by automatically tagging). Tagging OOV words on the fine-grained tagset shows
that the combined approach does not reach the highest accuracy. We assume that
the added newswire data account for the slight decrease of the combined approach
by introducing an increased amount of intra-class errors (e.g. confusion of verb past
tense with present tense). An assumption we find confirmed when looking on the
OOV performance on the coarse-grained mapped tags where the combined approach
reaches the best overall performance.

Improvements by Sub-Genre In Table 4.3, we show the results for the CMC
and Web subset of the test data in contrast to the averaged result over both subsets.
The number in brackets show the improvement relative to the Re-Train baseline that
is trained only on the shared-task training data. Bold-faced accuracies show the
best overall result per subset. Gray highlighting shows the best individual approach
per subset. We see in general a similar picture as for the English dataset, with
an exception for mixed re-training that improves performance the most. This clearly
shows that the shared task dataset alone is too small to allow learning the rich German
morphology. On Web, the PoS dictionary is considerably more effective than on the
CMC subset. Since the dictionary was created from a large newswire (standard text)
corpus, we see the main reasons in an improved named entity coverage. Furthermore,
web text appears to be less challenging than CMC. The gap between both sub-genres
is with over five percent points quite large. The coarse-grained mapping confirms
that CMC with 90.7% is a lot more challenging than Web that reaches 95.6%. The
combined tagger reaches on the fine-grained tagset on CMC, Web and All statistical
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Accuracy (%)
Fine-grained Tagset Coarse-grained Tagset

CMC Web Both ∅ CMC Web Both ∅

TreeTagger 74.1 91.7 84.4 79.3 93.2 87.5

Re-Train (RT) (Baseline) 80.4 81.9 81.3 85.7 86.5 86.2
+Mixed RT 86.2 (+5.8) 91.5 (+9.6) 89.3 (+8.0) 90.7 (+5.0) 95.0 (+8.5) 93.2 (+7.0)
+Clusters 85.5 (+5.1) 87.8 (+5.9) 86.9 (+5.6) 90.4 (+4.7) 92.2 (+5.7) 91.5 (+5.3)
+PoSDict 84.7 (+4.3) 88.4 (+6.5) 86.9 (+5.6) 89.8 (+4.1) 92.1 (+5.6) 91.2 (+5.0)

+All 86.8 (+6.4) 92.3† (+10.4) 90.0† (+8.7) 90.7 (+5.0) 95.6 (+9.1) 93.6 (+7.4)

Table 4.3: Results on German test data subsets per approach, for the fine-grained
tagset we show in bold face the best result per subset and in gray the best individual
strategy. The combination of all fine-grained approaches are statistical significant
improvements compared to the RT baseline, results marked with † are significant
compared to Mixed RT, i.e. just adding foreign domain data, (McNemar’s test,

p < 0.05)

Accuracy (%)
Rank Configurations CMC Web All

1 UdS-distributional 87.3 93.6 90.4
2 UdS-retrain 86.4 92.8 89.6
3 UdS-surface 86.5 92.4 89.4
4 Our tagger 86.1 92.1 89.1

Table 4.4: Official results of the German Empirikom shared task of our tagger and
the winner tagger(s) by Prange et al. (2016)

significant improvements in a McNemar’s test, p < 0.05, compared to the RT baseline.
Results marked with a † are significant improvements to MixedRT, which is the
simplest adaption approach of just adding foreign, i.e. newswire, domain data.

Improvements by Tag In Table 4.5, we show the F-Score for the fine-grained
PoS tag belonging to the four major word classes. Reported results are obtained by
testing on both, CMC and Web, datasets. We show the frequency of occurrence in the
train and test dataset as reference for the relative importance of a tag in the corpus.
We show the improvements per tag, per approach, and in combination. Highest
improvements for each tag by a single approach are highlighted in gray, overall best
result for a tag is shown in bold-face.

We find that the accuracy improvements from Table 4.3 originate in noun-related
improvements. Nouns, NN and NE, are by far the most frequent tags and we see
for all methods considerable improvements for these two tags. Adjective and adverb
tags also improve considerably. On verbs, we also see improvements on reasonably
frequent tags but especially the F-Score on the newly added tags remain poor. We
even have a the zero-block for tags such as VMINF, VMPP or VMPPER. For two
tags, VMPP and VMPPER, we even have no testing instances. Hence, we see that
the size of the corpus is too small to cover all typical social media phenomena. We
will come back in Chapter 7 to the problem of tagging under-represented phenomena,
which occur too infrequently to be learned during model training.
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Re-
Frequency Train Word

PoS Tag Train Test (RT) Mixed RT PoS Dict Clusters Combo
A
D
J ADJA 390 647 .76 .91 (+.16) .88 (+.12) .86 (+.11) .93 (+.18)

ADJD 294 410 .59 .83 (+.24) .80 (+.21) .74 (+.16) .84 (+.25)

A
D
V ADV 473 577 .69 .76 (+.08) .78 (+.09) .76 (+.08) .77 (+.09)

PAV 53 78 .74 .92 (+.18) .87 (+.13) .85 (+.11) .91 (+.17)

V
ER

B

PTKVZ 46 69 .37 .74 (+.37) .53 (+.16) .50 (+.12) .75 (+.38)
VAFIN 299 416 .94 .97 (+.03) .96 (+.02) .96 (+.02) .97 (+.03)
VAINF 26 52 .73 .80 (+.08) .77 (+.04) .77 (+.05) .81 (+.09)
VAPP 3 1 .67 .50 (−.17) .33 (−.33) .33 (−.33) .50 (−.17)
VAPPER 4 4 .00 .40 (+.40) .40 (+.40) .33 (+33) .40 (+.40)
VMFIN 113 160 .88 .98 (+.10) .97 (+.08) .96 (+.08) .98 (+.10)
VMINF 3 4 .00 .00 (±.00) .00 (±.00) .00 (±.00) .00 (±.00)
VMPP 1 0 .00 .00 (±.00) .00 (±.00) .00 (±.00) .00 (±.00)
VMPPER 1 0 .00 .00 (±.00) .00 (±.00) .00 (±.00) .00 (±.00)
VVFIN 376 433 .67 .85 (+.17) .79 (+.12) .80 (+.13) .86 (+.19)
VVIMP 18 32 .10 .17 (+.07) .05 (−.05) .11 (+.01) .16 (+.06)
VVINF 241 212 .63 .86 (+.22) .78 (+.15) .77 (+.13) .85 (+.22)
VVIZU 7 15 .26 .90 (+.64) .53 (+.27) .48 (+.22) .93 (+.67)
VVPP 141 182 .64 .86 (+.23) .76 (+.12) .77 (+.13) .87 (+.24)
VVPPER 7 6 .20 .44 (+.24) .29 (+.09) .37 (+.17) .60 (+.40)

N
O
U
N NN 1,644 2,357 .80 .91 (+.11) .88 (+.08) .88 (+.09) .92 (+.12)

NE 407 482 .51 .67 (+.16) .64 (+.13) .63 (+.12) .72 (+.21)

Table 4.5: F-Score of each tag of the major word classes per approach and in
combination on the German test set (CMC and Web). Shading highlights best
improvements by approach and bold face highlights best overall improvement

Shared Task Results We participated in this shared task (see Horsmann and
Zesch (2016b) for the exact details of our submitted tagger) and are the second-best
team on the PoS tagging task (Beißwenger et al., 2016). Our submitted tagger used
essentially the previously described domain adaptation approaches. The slight varia-
tion in our achieved results to the one in the shared task origin in a few subtle changes
to the learning parameters during model training (after the gold annotated test set
has been released). The official results of the shared task are shown in Table 4.4 (each
team was allowed to submit several runs). The key difference of the winner’s taggers
by Prange et al. (2016) are additional social media training data. They re-annotated
a corpus with the extended shared task tagset and used this extra data for training.
This corpus has not been available to other participants. Significance values have not
been reported but we consider our tagger to still be competitive to the taggers by
Prange et al. (2016). When reproducing our own shared task setup, we reach on All
an accuracy of 90.0% (see Table 4.3) without the extra social media data used by the
winning tagger.

4.4.2 Case Study: Italian Tweets

This case study is based on the dataset of the Italian shared task by Bosco et al.
(2016). The main objective of this task lay on tagging Italian Twitter messages.
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Dataset The organizers of this task provided a dataset of 6,700 Twitter messages
with 120k tokens, which are split into an official train dataset (115k tokens) and test
dataset (5k tokens). The dataset is annotated with a coarse-grained tagset which
consists of 25 tags in total. The tagset is based on the Universal Dependency tagset
which has 17 tags but was refined with additional tags to deal with Twitter phenomena
such as user mention and alike, and to account for a customized tokenization that
was applied in this shared task. This tagset is, thus, by far much more coarse-grained
while the corpus size is magnitudes larger than in the datasets we used for English and
German. Thus, we have to learn only few tag distinctions while having magnitudes
more annotated social media data.

Experimental Setup We will use again training and evaluating on the official
training dataset as reference point for investigating the effect of the following domain
adaptation approaches:

• Mixed Re-Train: We use 100k tokens of formal text from the Italian corpus
in the Universal Dependencies (UD) project (Nivre et al., 2016). The corpus is
annotated with the standard UD tagset, this shared task uses a slightly modified
version of this UD tagset.

• Brown clusters: We train Brown clusters on 565 million tokens of Italian Twitter
messages. All tokens have been lowercased and hashtags, user mentions and Urls
are replaced by constant values.

• PoS dictionary: We create a PoS dictionary which stores the three most frequent
PoS tags of a word. We build the dictionary from a machine-tagged corpus of
Italian Wikipedia entries for lack of availability of other resources8.

We use the same feature set as for the English experiment. To the best of our
knowledge there is no existing tagger that uses the same tagset as in the shared-task.
Hence, we will report baseline results by using the Italian model of the TreeTagger
and map the predicted tags to coarse-grained tags. This should still serve as a fair
approximation as both tagsets are highly similar.

Results In Figure 4.12, we show the results on all and OOV tokens for both tagset
granularities. The difference between re-training and combining approaches is con-
siderably smaller than the one we saw for English or German. Furthermore, mixed
Re-training shows in this setting no improvements. In fact, the additional foreign
domain data harm overall performance even a bit compared to just re-training on
the provided training data. This is explainable by (i), the large size of the social
media training corpus and (ii), the rather coarse-grained tagset, which has a few
modifications over the tagset used in the foreign domain data. We assume that the
cases in which the annotation between both corpora conflicts account for the overall

8http://wacky.sslmit.unibo.it/doku.php?id=corpora, last accessed 17 May 2017

http://wacky.sslmit.unibo.it/doku.php?id=corpora
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Figure 4.12: Results for each approach and in combination on the Italian test dataset
for all and OOV words, Combo consists of RT with PoS Dict and Clustering excluding

the Mixed RT approach as it does not offer improvements over simple Re-training
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Test (RT) Re- Mixed PoS Word
PoS Tag Freq. Train RT Dict Clusters Combo

ADJ 210 .75 .78 (+.03) .84 (+.09) .83 (+.08) .85 (+.10)
ADV 322 .90 .90 (±.00) .91 (+.01) .92 (+.02) .92 (+.02)
VERB 595 .87 .87 (±.00) .91 (+.04) .92 (+.05) .93 (+.06)
VERB_CLIT 27 .73 .78 (+.05) .86 (+.13) .93 (+.20) .91 (+.18)
NOUN 607 .84 .85 (±.00) .89 (+.05) .88 (−.01) .89 (+.05)

Table 4.6: F-Score of each tag of the major word classes per approach and in
combination on the Italian test set. Shading highlights best improvements by approach
and bold face highlights best overall improvements. Combo uses RT, PoS Dict and

Word Clusters (Mixed RT is excluded)

reduced performance, although we see a slight improvement on OOV words when
adding foreign domain data. The added external resources reach an improvement
of a bit more than two percent points. They have their greatest effect on the OOV
accuracy where the re-training approach performs only poorly but the resources ac-
count for large improvements. The combo approach combines the two resources but
excludes the foreign domain data as they harmed overall performance. The improve-
ments of combo over Re-Train on the fine-grained tagset are statistical significant in
a McNemar’s test with p < 0.05.

Improvements by Tag Table 4.6 shows the F-Score of the four major word classes
(that are represented by five tags in the shared-task tagset). We see the same im-
provements in F-Score that we have seen for the English and German dataset. A
remarkable exception is the adverb tag that improves considerably after adding the
word clusters. Also, the newly introduced tag for verb clitics shows remarkable im-
provements by using external resources.

Shared Task Results We participated in this shared task (see Horsmann and
Zesch (2016a) for the exact details of our submitted tagger) and reached the sec-
ond place (Bosco et al., 2016). The results are shown in Table 4.7, the best system
by Cimino and Dell’Orletta (2016) uses a bidirectional Long-Short-Term-Memory
(Hochreiter and Schmidhuber, 1997; Graves et al., 2005) neural network. They com-
bine a common word-level LSTM and a bag-of-character LSTM. The bag-of-character
LSTM uses hand-crafted information such as capitalization or lowercasing of letters in
a word. Significance values have not been reported by the organizers but the six best
systems have an absolute difference of less than one percent point between the win-
ning tagger and the sixth placed tagger. This shows that all taggers perform highly
similar on this dataset, one reason might be the large amount of available training
data that lets technical differences between implementations become less important
i.e. 115k tokens of annotated training data evaluated on 5k tokens in the test set.
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Rank Configurations Acc (%)

1 (Cimino and Dell’Orletta, 2016) 93.2
2 Our Tagger 92.9
3 (Tamburini, 2016) 92.8
4 (Paci, 2016) 92.7
5 (Tamburini, 2016) 92.5
6 (Plank and Nissim, 2016) 92.3

Table 4.7: Official results of the Italian shared task showing the result of our tagger
and the winning tagger (teams were allowed to submit two runs)

4.5 Chapter Conclusion

In this chapter, we investigated the impact of approaches proposed in the literature
to improve tagging robustness for social media text. We evaluated the effectiveness of
each approach in isolation and in combination when using a fine-grained and coarse-
grained tagset. The domain adaptation strategies showed that in particular methods
improving word form coverage account for substantial accuracy improvements. Uti-
lizing word distributional knowledge obtained from word clusters and retrieving most
common tags from PoS dictionaries showed to be very effective. Due to the fact
that social media text is easily available, clusters are an inexpensive choice to reach
substantial improvements. We found Brown clusters to be particularly effective as
the additionally encoded (partial) similarity between created clusters turned out to
be an extremely valuable information for training more robust models. Even mixing
annotated foreign domain text with social media corpora showed rather high improve-
ments. This effectiveness seems to originate in the low amount of lexical knowledge
in the small-sized social media corpora.

We confirmed the general applicability of these approaches by applying them
also to German and Italian social media text and found similar improvements as for
English. Although the approaches are easy to combine, they only partially solve the
robustness problem. A high tagging accuracy on informal text domains is still out
of reach. In case of Italian, we had magnitudes of more social media training data
available than for English or German. Despite of having that much more data, we still
did not reach comparable results as when tagging formally written text. This stresses
once more that annotation of more (social media) data is no satisfying solution,
either, even if combined with domain adaption approaches. Hence, we will introduce
an entirely different approach for robust tagging in the next chapter.
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Chapter 5

Domain Robustness - Two-Step
Tagging

In this chapter, we discuss a new Part-of-Speech (PoS) tagging approach to improve
domain robustness when tagging across different text domains. Chapter 3 showed
that the accuracy of tagger models drops considerably when applied to foreign text
domains, e.g. social media. In Chapter 4, we reviewed the present state of research for
improving domain robustness of tagger models. The discussed approaches account
for substantial improvements but do not solve the general robustness problem. A
rather fundamental issue when tagging across text domains lies in the high amount
of uncertainty that the tagger model faces when dealing with unknown (foreign do-
main) phenomena. This is further complicated by choosing a tag from an often very
fine-grained tagset. The approach we discuss in this chapter tackles the robustness
challenge by breaking the tagging down into two steps. Each step has to choose
from a small number of tags compared to directly making a poorly informed tagging
decision by choosing from all tags in a tagset. We consider this approach as a step
towards a single tagger that is able to cope with a variety of text domains.

Motivation of Two-Step Tagging Usually, when assigning a tag, the tagger
determines a tag from a rather large pool of possible tags. The tagset size varies from
a dozen tags up to several hundred depending on the language and domain. Models
trained on a large amount of training data perform this task well when the plain text
and the model training data are from the same domain. If little or no domain data
is available, directly choosing the fine-grained tag might not be the best strategy.

Tagging in two steps is based on an intermediate step in which a coarse-grained
tag assignment precedes the fine-grained tag assignment. This breaks the tagging
task down into two sub-problems which are, so our assumption, easier to solve than
directly making a potentially poorly informed fine-grained tagging decision. Fig-
ure 5.1 provides an example of this two-step tagging approach assuming that the
Penn Treebank (Marcus et al., 1993) tagset is used as fine-grained tagset (45 tags).
In the first step, we assign only a coarse-grained PoS tag on a granularity level of the
Universal PoS tagset (Petrov et al., 2012) or the Universal Dependency tagset (Nivre
et al., 2016). In a second step, only few fine-grained tags remain as possible tags,
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to this coarse-grained tag (round-boxed area) to determine the final fine-grained tag

(green shading)

as the first tagging step already excluded a large portion of all possible fine-grained
tags. Separating the tagging into two steps simplifies the tagging, as it solves two
considerably smaller problems, for instance, the prediction of determiner (from 12
tags when one assumes Petrov et al. (2012)’s tagset) for the first word, excluded 41
candidate tags in the second step. The tagging in the second step then has to pick
the final tag out of four remaining fine-grained determiner candidates.

The fundamental assumption of this approach is that a model trained on coarse-
grained tags is more robust and avoids tagging errors a fine-grained model would
make. A coarse-grained model will naturally achieve a higher accuracy simply be-
cause confusions between fine-grained tags are removed, e.g. confusions between verb
tenses. The improvements we have in mind are avoiding confusions between word
class categories, for instance, a model trained on a fine-grained tagset might confuse
in a particular case adverbs with adjectives, while a model trained on coarse-grained
tags would avoid making this error. Thus, we will first analyze how well coarse tagging
can actually be done and then turn to tagging in two steps.

5.1 Potential of Coarse-grained Tagging

Two-step tagging requires a robust and highly accurate coarse-grained tagging. We
will start with experiments to learn more about the possible improvements between
fine-grained and coarse-grained tagging. Since we are interested in robustness, we



5.1. Potential of Coarse-grained Tagging 75

expect coarse-grained tagging to offer advantages for tagging foreign text domains,
especially if training data is limited.

Corpora We conduct our comparison on four corpora of four text domains: News,
Web, Chat, and Twitter. This covers a wide range of text domains and ensures that
the results are not bound to a certain domain. Newswire text has a formal nature
and contains few language errors, as it is usually carefully edited. Text from the
web is (on average) less formal containing informal expressions and orthographic
errors. Chat conversations are highly informal and often contain many non-standard
abbreviations and orthographic errors. Twitter contains highly diverse text as the
platform is used for all kinds of purposes ranging from chat-like discussions to formal
announcements. As News corpus, we use 46k tokens of the Wall Street Journal (WSJ)
(Marcus et al., 1993), for Web we use 44k tokens from the GUM corpus (Zeldes, 2016)
containing semi-formal text from various Wiki-platforms, as Chat corpus we use the
NPS (Forsyth and Martell, 2007) corpus with 32k tokens, and a Twitter (Ritter et al.,
2011) corpus with 15k tokens.

5.1.1 Mapping Fine-Grained Tags as a Baseline

There are two ways to obtain coarse-grained tags: First, by mapping fine-grained
tags after prediction to the corresponding coarse-grained tag and second, by directly
training on coarse-grained tags where no fine-grained information enters the training
or prediction step. The mapping will remove fine-grained intra-class confusions, e.g.
confusions between verb inflections, and will serve as a strong baseline for the coarse-
grained tagging. The expectation is that by having to learn a less complex tagset,
the task is simplified to an extent that the model trained directly on coarse-grained
tags learns to avoid some errors that the fine-grained model would make.

Experimental Setup We will train a model on each corpus and compare the
coarse-grained tagging results to results that have been predicted by a model trained
on fine-grained tags, which have been coarse-mapped afterwards. This allows a di-
rect comparison between the tagging quality and judge the differences between both
approaches. We train the models using Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) as implemented in FlexTag (Zesch and Horsmann, 2016). We use
a tri-gram context window and provide the 750 most frequent character uni-grams,
bi-grams, three-grams and four-grams as features. We map the tags of each corpus
to a slightly modified version of the Universal tagset by Petrov et al. (2012), which
additionally uses a tag for interjections. This tagset has 13 tags and is used in all
subsequently discussed experiments in this chapter that work with (direct) coarse-
grained tagging. Please note that we intentionally do not include any additional
resources (at this point) when training these models as we want to study the impact
of the tagset differences. We use 10fold cross-validation on each corpus and report
averaged results over all runs.
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Accuracy (%)
Setup News Web Chat Twitter

fine-mapped 94.5 93.1 92.0 89.0
coarse 94.3 92.8 92.3 89.7

Table 5.1: Comparison of fine-mapped and coarse-grained tagging (10fold CV)

Results Table 5.1 shows the results. We see only small differences between fine-
mapped and directly working on coarse-grained tags. Direct coarse-grained tagging
shows small advantages on informal corpora while fine-mapping works a bit better
on formal text. This indicates a (small) advantage of directly using coarse-grained
tagging on informal text domains, but we found no statistical significance when using
a McNemar’s (McNemar, 1947) test with p < 0.05.

5.1.2 Amount of Necessary Training Data

When the tagger has to learn fewer tags, it should also require less training data to
learn these few tags.

Experimental Setup To confirm this hypothesis, we run a learning curve exper-
iment to see the effect of the amount of training data on fine-mapped and direct
coarse-grained tagging. We adapted our 10-fold cross validation experiment to train
on a decreasing number of chunks, i.e. instead of training on 9 folds and test on the
remaining one, we train only on 8 and test on the 10th fold, then train on 7 and test
on the 10th fold, and so on. We run this experiment ten times to ensure that every
fold was once in the test set and report averaged results over all runs.

Results Figure 5.2 shows the results on News and Twitter. We see a small ad-
vantage of using direct coarse-grained tagging for smaller amounts of training data.
Especially on the low-resourced social media corpus, we see the expected advantage
of coarse-grained tagging. The difference between fine-mapped and direct coarse-
grained tagging starts to vanish once a large part of the data is used for training.
The advantage of coarse-grained tagging over fine-mapped tagging is on the Twitter
corpus constantly visible but not significant in a McNemar’s test with p < 0.05.

5.2 Coarse-grained Cross-Domain Robustness

So far, we have compared mapped fine-grained and coarse-grained tagging by compar-
ing results when training and testing on text of the same corpus. In this setup, we find
only small differences between both methods, which are not enough to justify using
coarse-grained tags instead of fine-grained ones. Furthermore, training and testing on
data of the same corpus is an evaluation under ideal circumstances (Giesbrecht and
Evert, 2009) because the text during training and the one for testing are most similar
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Figure 5.2: Learning curves for the News and the Twitter dataset comparing mapping
fine-grained tags to coarse-grained tags to directly working on coarse-grained tags

to each other. The results allow no conclusion how coarse-grained tagging behaves
when the dissimilarity between training and testing data increases.

The next reasonable step would be to continue the evaluation by using two corpora
coming from the same domain, i.e. in-domain robustness. Unfortunately, there are not
enough corpora available to conduct such an in-domain evaluation. As a consequence,
we directly move on to evaluate across domains. Cross-domain evaluation requires
only one corpus of each domain with a compatible tagset, which we have with the
corpora we used already above.

5.2.1 Cross-Domain Learning Curve

We continue the learning curve experiment from the previous section but train this
time on one text domain and evaluate on another one.

Experimental Setup We run each experiment ten times and increase in each
iteration the number of training data while testing in each iteration against the full
out-of-domain corpus. We use again News and Twitter. In the first experiment, we
train on an increasing amount of News while testing on the full Twitter corpus, and
in the second experiment, we train on an increasing amount of Twitter while testing
on the full News corpus. We limit this experiment again to News and Twitter which
are the cleanest and noisiest corpus in the evaluation setup.

Results We show the results in Figure 5.3. When tagging cross-domain, we find
that the model learned on the smaller Twitter corpus predicts News considerably more
accurately than the other way around. Twitter contains additionally to non-standard
language also some portion of standard language, it thus is not surprising to see that
the model learns useful information from this corpus to tag News. When testing on
Twitter, the News training data provides no helpful information how to deal with
the many non-standard phenomena. We find no statistical significance after adding
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Figure 5.3: Cross-domain learning curves that compare mapping fine-grained tags to
coarse-grained tags to directly working on coarse-grained tags when tagging foreign

text domains

all training data but when working with only one data fold, direct coarse-grained
tagging is significantly better in a McNemar’s (McNemar, 1947) test with p < 0.05
than fine-mapping on News→ Twitter. Thus, direct coarse-grained tagging performs
better when training on small amounts of data and tagging across text domains. This
confirms our assumption that coarse-grained tagging is of advantage, when working
with extremely small amounts of training data.

5.2.2 Real-world Comparison

The comparisons we made until now used only the training data for predicting tags.
This was necessary to compare fine-mapped tagging to direct coarse-grained tagging.

Experimental Setup We are now turning to more realistic setups where addi-
tional resources are provided for improving tagging performance to investigate the
differences between fine-mapped and coarse-grained tagging under more realistic con-
ditions. Furthermore, we now compare the performance of several taggers to also
investigate if some taggers are better equipped to deal with domain transfers than
others. We use the following tagger implementations: We use a CRF tagger using
FlexTag (Zesch and Horsmann, 2016), the LSTM tagger by Plank et al. (2016) based
on a bidirectional Long-Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber,
1997; Graves et al., 2005) neural network and the Hidden-Markov-Model tagger Hun-
Pos (Halácsy et al., 2007). We use the same corpora for evaluation as in the above
sections, except for News, which we redefine to be section 22-24 of the WSJ, which is
the commonly used subset for tagger evaluations (Collins, 2002). The Twitter eval-
uation corpus contains Twitter-specific PoS tags for hashtags or user-mentions that
do not exist in the training data, we set these tags in a post-processing step to their
correct tag, which is easily possible using regular expressions (Ritter et al., 2011).
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Coarse-grained Models We train the coarse-grained models on the slightly cus-
tomized Universal tagset with one additional tag for interjections. A key advantage of
directly training on coarse-grained tags is a considerably larger pool of training data.
While several corpora may exist for a language they often use incompatible tagsets
and cannot be directly combined. By mapping these corpora to a more coarse-grained
representation, a combination of these corpora is possible. As training data, we use
the WSJ section 0-18 and the Twitter datasets by Owoputi et al. (2013) and Jørgensen
et al. (2016). By providing a mixture of formally written text and social media text,
we aim at achieving an increased robustness of our coarse-grained model. Adding the
Twitter datasets is possible for the coarse-grained model but not for the fine-grained
model (discussed below).

We will train two models for the best working coarse-grained tagger (i), using only
the WSJ data for a direct comparability to the fine-mapped model and (ii), using
WSJ+Twitter to learn about the improvements of adding coarse-grained mapped
training data. The CRF model adds as additional resources Brown (Brown et al.,
1992) clusters trained on 100 million token of English tweets and a PoS dictionary
created from the British National Corpus (Leech et al., 1994). The LSTM tagger is run
with three different pre-trained word embeddings, two versions of the 100-dimensional
GloVe (Pennington et al., 2014) word embeddings, one created from Wikipedia text
and one from Twitter text, and the 64-dimensional Polyglot (Al-Rfou et al., 2013)
word embeddings that have been created from Wikipedia. The HMM tagger uses no
resources and is trained as-is on the training data using default parametrizations.

Fine-grained Baseline Models The fine-grained models are trained on WSJ sec-
tion 0-18. The Twitter corpus we add for the coarse-grained model cannot be used
here as the fine-grained tagset of this corpus is incompatible to the PTB tagset of
the WSJ. The CRF model uses the same Brown clusters and PoS dictionary as the
coarse-grained models. The HMM model is trained on the training data without any
additional resources.

Results Table 5.2 shows the results of tagging theWeb, Chat, and Twitter datasets.
We also show the results on News to provide the usual reference value on WSJ section
22-24. The macro average result is computed over Web, Chat and Twitter as our focus
lies on the cross-domain tagging performance.

The best working configuration is the CRF tagger using the WSJ and the Twitter
corpus as training data. When compared to training only on the WSJ data, we see
statistically significant improvements in a McNemar’s test with p < 0.05 on Chat and
Twitter. Table 5.3 shows a comparison of the F-Score of the major word classes and
interjections for both coarse-grained CRF setups (with and without extra Twitter
data) for the Chat corpus, which showed the largest improvements by the additional
Twitter training data. While we see a general improvement on the major word classes,
the improvements on interjections are the highest. In a qualitative analysis, we find



80 Chapter 5. Domain Robustness - Two-Step Tagging

Accuracy (%)
Setup News Web Chat Twitter Macro ∅
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HMM 97.6 95.8 79.3 78.9 84.7
CRF 97.4 96.0 87.4 89.6 91.0
LSTM-PolyEmb 97.9 96.1 81.3 85.7 87.7
LSTM-WikiEmb 97.9 96.0 79.9 83.3 86.3
LSTM-TwitEmb 97.9 96.2 81.1 85.9 87.7

C
oa

rs
e

HMM 97.0 95.4 88.2 86.1 89.9
CRF (only WSJ) 96.9 95.4 85.9 88.7 90.0
CRF (WSJ+Twitter) 96.9 95.6 90.6* 91.6* 92.6

LSTM-PolyEmb (WSJ+Twitter) 97.9 96.4 87.0 88.4 90.6
LSTM-WikiEmb (WSJ+Twitter) 97.9 96.3 88.5 89.0 91.3
LSTM-TwitEmb (only WSJ) 98.0 96.2 80.8 86.0 87.7
LSTM-TwitEmb (WSJ+Twitter) 97.9 96.4 89.4 † 89.2 91.7

Table 5.2: Accuracy of fine- and coarse-grained models for tagging across domains.
Macro average computed over Web, Chat and Twitter. Fine-mapped taggers are only
trained on the WSJ corpus because the fine-grained tagset of the Twitter corpus is not
compatible to the WSJ. Improvements of the coarse-grained CRF and LSTM tagger on
Chat and Twitter are significant (marked with *) in a McNemar’s test p < 0.05 when
adding additionally Twitter training data. Using GloVe embeddings instead of Polyglot

reaches also significant improvements (marked with †) for the LSTM tagger on the
Chat corpus. Best results are bold-faced

that smilies and frequently occurring interjections such as omg or lol are tagged
wrongly by the CRF tagger when trained only on the WSJ data. These typical chat
phenomena do not occur in the WSJ data but do occur in the additional Twitter
data. Thus, by adding only a small amount of social media training data, we reached
significant improvements by covering highly frequent linguistic phenomena of the
social media domain. We find similar improvements for the best coarse-grained LSTM
tagger (LSTM-TwitEmb). Unsurprisingly, the LSTM that uses the word embeddings
created from Twitter reach the best performance on the informal corpora and even a
significant result on Chat compared to using the Polyglot embeddings.

We also analyzed the difference between the best CRF and the best LSTM-
TwitEmb tagger. We find that the CRF tagger deals better with peculiarities of
the training data that we use. In the WSJ, the word “my” is used as pronoun, while
in the extra Twitter data, it is almost exclusively annotated as determiner. Therefore,
the LSTM tags the word “my” in the Chat and Twitter corpus frequently as pronoun
although it is a determiner. Furthermore, we find in Chat frequent one-letter words
that are annotated as nouns, for instance the letter “m” is used as abbreviation for
“male” that is found in sentences such as any girls wanna chat with 24 / m ?. The
LSTM tags these cases as “other” while the CRF manages to assign the correct noun
tag in these cases.



5.3. Tagging in Two-steps 81

F-Score
Tag Freq. w/o Twitter with Twitter

ADJ 1.514 .784 .812
ADV 1.920 .836 .870
VERB 6.038 .885 .925
NOUN 6.633 .817 .890
INTJ 1.556 .297 .799

Table 5.3: F-Score for the coarse-grained CRF taggers on selected tags with and
without training additionally on Twitter training data evaluated on the Chat corpus
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Figure 5.4: Two-step tagging using a CRF coarse-grained tagger in the first step,
depending on the predicted coarse-grained tag a dedicated SVM model is used to assign

the fine-grained PTB tag belonging to the predicted coarse-grained word class

5.3 Tagging in Two-steps

We will now turn to the actual two-step tagging approach to learn how well two-step
tagging works in practice.

Implementation of Two-step Tagging We show the implementation of this ap-
proach in Figure 5.4. The coarse-grained tagging decision of the CRF in the first
step is used to load a dedicated SVM tagger in the second step that assigns (one of)
the fine-grained PTB tags, which belong to the coarse-grained word class which was
predicted. The obvious drawback is the error propagation from the first to the second
step. A wrongly predicted coarse-grained tag cannot be corrected during the second
step. However, the advantage is that the models in the second step can focus on a
much smaller sub-problem, which simplifies the tag prediction by having to choose
from only a few tags.
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Figure 5.5: Stacking two CRF taggers and providing the predicted coarse-grained
tags as features into a second CRF to predict fine-grained tags

Baseline: Stacked CRFs A further possibility to utilize the coarse-grained infor-
mation is to stack two sequence classifiers e.g. CRFs. The first CRF would predict
coarse-grained tags that are provided to the second CRF as shown in Figure 5.5. The
coarse-grained information is utilized by using additional features in the second CRF,
which provide for the word in focus, in a ±2 context window1, the predicted coarse-
grained PoS tags of the first step. The fundamental difference to two-step tagging
is that the coarse-grained prediction for a word is not binding i.e. the second CRF
might predict a fine-grained tag that belongs to another coarse-grained word class
than the one predicted in the first step. This allows recovering from a tagging error
in the first step, which is not possible for two-step tagging.

Experimental Setup For coarse-grained prediction, we use the CRF model dis-
cussed in Section 5.2. The coarse-grained stacked CRFs baseline uses the same fea-
tures as the coarse-grained model with additional features to provide the coarse-
grained information.

The SVMs in the second step of two-step tagging are implemented with LibLinear
(Fan et al., 2008). We use a context window of ±2 words around the word in focus
as features. We additionally include the 1000 most frequent character uni-grams,
bi-grams and tri-grams, use Brown clusters created over 100 million token of Twitter
messages and a PoS dictionary created from the British National Corpus as resources.
The SVMs are trained on the WSJ section 0-18, i.e. we have no social media corpus
available with the PTB tagset that we would need for a mixed training of the SVMs.

1e.g. pos2Before=PUNCT, pos1Before=DET and so on
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Accuracy (%)
Setup News Web Chat Twitter Macro ∅

CRF fine baseline 95.7 92.2 74.6 83.4 86.5

Stacked CRFs 96.0 93.4* 78.3* 85.0 88.2
T
S Plain 95.4 92.6 81.3*† 85.1 88.6

Coarse-context 95.6 92.8 81.4*† 85.4 88.8

O
ra
cl
e Stacked CRFs 99.0 97.5 85.8* 91.7 93.5

T
S Plain 98.4* 96.6* 88.6* 92.2* 94.0

Coarse-context 98.6* 97.0* 89.1*‡ 92.3* 93.7

Table 5.4: Accuracy of tagging in TS=two steps compared to coarse-induced tagging.
Plain uses no coarse-grained information in second step while Context does. We

additionally show results assuming an oracle condition in the first step – results marked
with an * are statistically significant improvements against the baseline, † (no-oracle)
and ‡ (oracle) are significant against Stacked CRF (McNemar’s test, p < 0.05). The
coarse-grained accuracy of the first step in two-step tagging (no-oracle) are on News:

96.9%, Web: 95.6%, Chat: 90.6% and on Twitter: 91.6% which set the upper bound for
the fine-grained tagging in the second step (see Table 5.2)

The two candidate corpora that principally are available are in our evaluation dataset,
namely Chat and Twitter.

We conduct an additional experiment to investigate whether two-step tagging
improves if the SVMs are provided with coarse-grained PoS context from the first
step. We compare two setups: Coarse-context, which uses the coarse-grained tags
predicted in the first step as additional PoS context features and Plain, without
coarse-grained features. Furthermore, as one can expect errors propagating from the
first step into the second step, we run both experiments again, this time assuming an
oracle condition in the first step, i.e. we assume a perfect coarse-grained tagging.

Results We show the results in Table 5.4 and additionally show a macro-averaged
value over all four evaluation corpora to better compare the configurations. All config-
urations exceed the performance of the baseline system showing an improved average
performance across the four domains.

Stacked CRF and two-step tagging are competitive. The stacked CRFs approach
works better on the more formal corpora, which is reasonable to expect, as the training
data are still mostly newswire data. Two-step tagging shows advantages on the less
formal corpora. On the Chat corpus, two-step tagging is statistically significantly
better than the Stacked CRF approach (McNemar’s test, p < 0.05). Providing coarse-
grained PoS context (coarse-context) from the first step as additional features in the
second step leads to insignificant improvements on all corpora.

When assuming an oracle condition for the prediction in the first step, we see the
huge unused potential of this approach. Stacked CRF improves in a comparable scale
to two-step tagging and both approaches stay competitive. We see again insignificant
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Figure 5.6: Relationship between coarse-grained accuracy and fine-grained accuracy
of two-step tagging. Oracle error shows an oracle condition for the first step with an

artificially added error to degenerate the oracle’s performance

improvements for two-step tagging when using additionally coarse-grained informa-
tion in the SVMs (coarse-context) of the second step against using no coarse-grained
information in the SVMs (plain).

Two-step Tagging Error Propagation Analysis The results that assume an
oracle condition for the first step reach an outstanding accuracy. The difference to
the results without oracle condition show the impact of the error propagation between
the two steps for the fine-grained tagging. In order to better understand the influence
of the coarse-grained tagging error in the first step, we simulate a certain level of
error propagation by using an oracle that only returns a wrong tag with a certain
probability (uniformly sampled over all tags). This allows a gradual degeneration
of the oracle condition and shows the influence of the coarse-grained tagging error.
Figure 5.6 shows the resulting relationship between a certain level of coarse-grained
accuracy and the resulting fine-grained accuracy. We see that both are in a similar
linear relationship for all datasets. Measuring the slope, we can approximate that
a one percent point improvement in coarse accuracy translates into an improvement
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Tag News Web Chat Twitter

A
D
J JJ .999 .998 .999 .996

JJR .991 .970 .976 .928
JJS .995 .997 .970 .980

A
D
V RB .995 .997 .998 .992

RBR .938 .943 .921 .870
RBS .961 1.00 1.00 1.00

N
O
U
N NN .988 .962 .875 .885

NNP .969 .925 .766 .785
NNPS .348 .486 .005 .064
NNS .979 .955 .848 .840

V
ER

B

MD .999 .996 .776 .923
VB .975 .935 .798 .859

VBD .954 .911 .857 .878
VBG .998 .999 .907 .942
VBN .928 .915 .658 .732
VBP .949 .887 .733 .805
VBZ .998 .997 .887 .965

Table 5.5: F-Score of fine-grained tags for two-step tagging under oracle condition for
the best two-step tagging setup with coarse-context (see Table 5.4)

between .8 and .9 percent points in fine-grained accuracy. The accuracy of the best
two-step tagging is marked by a black dot. Its location is always on or very close to the
hypothetical performance of the oracle. We can thus conclude that our predictions are
quite accurate and a better coarse performance will really lead to better fine-grained
tagging performance.

Tagging Errors of Oracle Two-step Tagging Even if we assume a flawless
coarse-grained tagging in the first step, two-step tagging still makes a substantial
amount of tagging errors on the fine-grained level. We show in Table 5.5 the F-
Scores for the best working two-step tagger (coarse-context) on the fine-grained tags
under oracle condition. We focus on fine-grained tags belonging to the major word
classes adjectives, adverbs, nouns and verbs to gain insights on the tagging errors
that remains under oracle condition.

We focus our discussion on the noun and verb related tags as the F-Score differ-
ences on these tags is more severe than on the adjective and adverb related tags. The
more informal the text domain is, the more the F-Scores on NN (common noun, sin-
gular) and NNP (proper noun, singular) decrease i.e. the tagging error on these tags
increase. Proper nouns are a kind of noun and the distinction between common and
proper noun is not a strictly syntactic distinction anymore. As these two tags occur
in the fine-grained PTB tagset we use here, it is not surprising to find an increased
error rate on these tags.
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For verb-related tags, tagging VBN (past participle verb) drops considerably on
Chat and Twitter, where it is often confused with VBD (past tense verb). We analyzed
erroneous cases and find that phrases that are typical for spoken discourse are also
these in which VBN is not tagged correctly, for instance in i’ve got/VBN a brother
in Naples, VBN is confused as VBD. A reason for the increased number of VBN
confusions can also be found in the training data of the SVMs that we use in the
second step. We train the SVMs on WSJ data as the social media corpora with a
compatible tagset are in our evaluation dataset and, thus, cannot be used for training
the SVMs. The words that are annotated in the Chat and Twitter corpus as VBN
are almost in all instances annotated as VBD in the WSJ. This is, thus, a bias
problem learned from the WSJ training data. The Chat corpus contains many modal
verbs, tag MD, which are not tagged correctly. An examination of these cases showed
that many non-standard spelling variation of frequent words have been erroneously
tagged as modal verbs, for instance wanna, or dont and wont (missing apostrophe).
Thus, few systematic errors account for a substantial number of tagging errors on the
informal corpora.

We saw in Table 5.2 the huge impact on the coarse-grained tagging accuracy by
already a small amount of social media training data. One can assume to reach
similar improvements on the fine-grained tagset, too, if the SVMs are trained on at
least a few training samples from the social media domain.

5.4 Chapter Conclusion

In this chapter, we investigated how to improve cross-domain PoS tagging robustness.
We suggested to split the tagging task into two steps in which a first tagging step
assigns only a coarse-grained tag. This coarse-grained tag is then refined in a second
step to the fine-grained PoS tag. The underlying assumption of this approach is
that when tagging out-of-domain text, ones solves an easier problem first, i.e. coarse-
grained tagging, and then refines this tag to the final fine-grained tag.

At first, we investigated coarse-grained tagging in detail as key pre-requisite for
tagging in two steps. We compared the differences between training models on fine-
grained tags and mapping them afterwards to coarse-grained tags to directly training
and evaluating coarse-grained. We find that the differences are only small. A big
advantage of coarse-grained tagging lies in the opportunity to ease the access to addi-
tional training corpora. The fine-grained tagsets of many corpora are not compatible
and cannot be combined for training models. Mapping these fine-grained tags to a
more coarse-grained tagset allows a harmonization of tagsets and enables training
models on an enlarged corpora pool. This allows informing the coarse-grained model
about data of several text domains and increase its robustness, which is an impor-
tant pre-requisite of the two-step tagging approach. We find that adding already a
small Twitter corpus to the coarse-grained model reached substantial improvements
on informal text.
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We implemented two-step tagging as a combination of a coarse-grained CRF tag-
ger in the first step and dedicated SVMs in the second step to assign the final fine-
grained tag. We compared two-step tagging to stacking two CRF taggers. The first
CRF predicts coarse-grained tags that are then injected as features values into the
second CRF to make the final fine-grained prediction. On formal text, we find that
the stacked CRF tagger reaches the best results while two-step tagging reaches on
informal text the best results. This finding is not surprising, as models trained on
large newswire corpora do not face many out-of-vocabulary (OOV) words when being
applied to newswire-like domains. Two-step tagging aims at lowering the severity of
(potentially wrong) decisions that are made under poorly informed situations when
facing many OOV words, for instance in social media. The biggest remaining chal-
lenge for two-step tagging lies in dealing with the error propagation occurring in
the first step, which lead to classification errors in the second step. A simulation
assuming a perfect coarse-grained tagging in the first step showed a huge untapped
potential when the tagging error can be further reduced. The overall result showed
that two-step tagging is the most suited multi-domain tagger of all taggers that we
compared in our setup.
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Chapter 6

Language Robustness

In the previous chapters, we focused on the robustness of Part-of-Speech (PoS) taggers
when tagging different domains of the same language. In this chapter, we take a step
back and look at a more general kind of robustness, namely language robustness.
Many tagger implementations are available today, we have evaluated some of the
available English and German taggers in Chapter 3. One finds many reports in the
literature that a particular implementation works well (or better than another) for a
certain language (Singh et al., 2006; Spoustová et al., 2007), while other taggers can
cope with more than just a single language (Halácsy et al., 2007). We will investigate
in this chapter the need for tailoring PoS taggers to a particular language. From a
technical point-of-view, PoS taggers follow usually a common schema of a machine
learning process that uses contextual and morphological features to learn a model.
Hence, one can assume that a tagger is generally able to deal with more than just a
single language, as shown in Figure 6.1. Thus, we investigate language robustness by
using several tagger implementations and train models of a variety of languages to
find out which taggers work well on more than just one language. Furthermore, we
will compare these language-independent taggers to implementations that have been
tailored to a particular language.

Tagger

EN DE

…

FR
HUSK FI

Language	Robustness

Figure 6.1: Evaluation for language robustness
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Fallback Tagger The choice for a tagger usually depends on the expectation how
accurately the tagger is able to learn a model of a certain language. Ideally, one
would choose an off-the-shelf tagger tailored to a certain language. This would ensure
that the tagger can deal with the individual properties of a language to achieve good
results. Such tagger implementations are often available for well-resourced languages.
If no such reference implementation exists, two options remain: i) implementation of
an own tagger, or ii) using the next best off-the-shelf tagger that hopefully works
reasonably accurately to learn models for other languages. Both options set a high
threshold, i.e. i) requires experience and expertise to even be able to attempt tailoring
an implementation to a language and ii) requires a high familiarity with all available
tagger implementations to narrow down candidate taggers that a worth a try. Thus,
both options are not easily implemented. Having a well-evaluated language robust
tagger would certainly ease this problem. This puts the question in focus how to
achieve language robustness, i.e. which technical properties are necessary to construct
a language robust tagger.

Previous Work on Language Robustness The work by Plank et al. (2016) in-
vestigates a similar question regarding multilingual tagger robustness by comparing
a tagger based on Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997; Graves et al., 2005) neural networks to a Conditional Random Field (CRF)
(Lafferty et al., 2001) and Hidden Markov Model (HMM) tagger. They train and
compare model accuracy on the languages contained in the Universal Dependencies
(UD) (Nivre et al., 2016) project. They find that the LSTM tagger reaches the best
results i.e. is highly language robust. However, these corpora are all annotated with
the language-independent UD tagset that distinguishes 17 tags. Learning a coarse-
grained tagset is an easier task than using a language-specific fine-grained tagsets that
easily reach hundreds or even more PoS tags. A language robust tagger must be able
to also cope with fine-grained tagsets granularities. Thus, we conduct a replication
of Plank et al. (2016)’s setup and investigate language robustness when working with

Plank et al. (2016) Our Replication

Tagger Bidirectional LSTM same

B
as
el
in
e CRF Unpublished self-implemented (see Section 6.2.3)

HMM TNT (Brants, 2000) HunPoS (Halácsy et al., 2007)

Data 22 corpora 27 corpora
22 languages 21 languages

Tagset coarse-grained varying granularity
(17 tags) (12 up to 1,500 tags)

Table 6.1: Comparison of the replication setup to the setup by Plank et al. (2016)
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Tokens Tagset Anno-
Corpus Id Source (103) Size tation Reference

La
ng
ua

ge
G
ro
up

s

G
er
m
an

ic
Danish Copenhagen DTB 255 36 manual (Buch-Kromann and Korzen, 2010)
Dutch Alpino 200 20 manual (Bouma et al., 2001)
English Brown 1,100 180 manual (Nelson Francis and Kuçera, 1964)
German-1 Hamburg DTB 4,800 54 manual (Foth et al., 2014b)
German-2 Tiger 880 54 manual (Brants et al., 2004)
German-3 Tüba-D/Z 1,500 54 manual (Telljohann et al., 2004)
Icelandic Mim 1,000 703 auto (Helgadóttir et al., 2012)
Norwegian Norwegian DTB 1,300 19 manual (Solberg et al., 2014)
Swedish-1 Talbanken 96 25 manual (Einarsson, 1976)
Swedish-2 Stockholm-Umea 1,100 153 manual (Ejerhed and Källgren, 1997)

R
om

an
ic

Braz.Portug. MAC-Morpho 1,000 82 manual (Aluísio et al., 2003)
French-1 Multitag 370 992 manual (Paroubek, 2000)
French-2 Sequoia 200 29 manual (Candito et al., 2014)
Italian Turin Parallel 80 15 auto (Bosco et al., 2012)
Spanish IULA DTB 550 241 manual (Marimon et al., 2014)

Sl
av
ic

Croatian-1 Croatian DTB 200 692 manual (Željko Agić and Ljubešić, 2014)
Croatian-2 Hr500k 500 769 manual (Ljubešić et al., 2016)
Czech Prague DTB 2,000 1,574 manual (Bejček et al., 2013)
Polish National Corpus 1,000 27 manual (Przepiórkowski et al., 2008)
Russian Open Corpus 1,700 22 manual (Bocharov et al., 2013)
Slovak MULTEXT-East 84 956 manual (Erjavec, 2010)
Slovene-1 IJS-ELAN 540 1,181 auto (Erjavec, 2002)
Slovene-2 SSJ 590 1,304 manual (Krek et al., 2013)

O
th
er
s Afrikaans AfriBooms 50 12 manual (Augustinus et al., 2016)

Finnish FinnTreebank 170 1573 manual (Voutilainen, 2011)
Hebrew HaAretz Corpus 11,000 22 auto (Itai and Wintner, 2008)
Hungarian Szeged Treebank 1,200 1,085 manual (Csendes et al., 2005)

Table 6.2: Multi-lingual corpora collection for comparing PoS taggers robustness for
their suitability to train models on a variety of languages

fine-grained tagsets. In Table 6.1, we show a direct comparison of the key elements
in our replication to the work by Plank et al. (2016).

In the remainder of this chapter, we present a new set of multilingual evaluation
corpora annotated with the typical fine-grained tagsets for the respective language.
Based on this new dataset, we replicate the experiments by Plank et al. (2016) to
investigate the impact of tagset granularity on language robustness. Furthermore, we
analyze the technical properties that make tagger language robustness.

6.1 Corpora

A key requirement for our experiment is a large set of evaluation corpora that are an-
notated with the respective tagset that is commonly used for a language. In Table 6.2,
we show the in total 27 corpora from 21 languages and 4 language groups that we
collected. We collected these corpora by screening through the literature for corpus
resources that are freely available for research purposes, which is a key prerequisite
for reproducible research. Our dataset provides more than just one corpus for each
language if several ones are available.
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Figure 6.2: LSTM architectures in our replication setup

6.2 Tagger Implementations

In this section, we discuss and analyze the tagger implementations that we use in the
replication experiments.

6.2.1 Hidden Markov Model (HMM) Tagger

We use HunPos (Halácsy et al., 2007) as HMM tagger, which is a freely available
implementation of the TNT tagger (Brants, 2000). HunPos has been used before for
training models of various languages and tagsets (Seraji, 2011; Attardi et al., 2010;
Hládek et al., 2012), which makes this tagger a suited black-box baseline. We will use
HunPoS using the default parameters.

6.2.2 Long Short Term Memory (LSTM) Neural Network Tagger

The replication is based on the LSTM tagger by Plank et al. (2016) of which we use
the provided1 reference implementation. The tagger by Plank et al. (2016) uses a
stacked LSTM architecture which combines results of a word- and character level
LSTM. In order to better understand the reported results, we will analyze the tagger
architecture in detail by re-implementing the tagger. We compare the results of our
own implementation to results obtained with the reference implementation by Plank
et al. (2016). Word embeddings are a crucial variable when conducting experiments
using neural networks. To account for this importance, we also ensure comparability
of the pre-trained word embeddings. We, retrieve 15 · 106 tokens plain text for each
language in our setup from the Leipzig Corpus Collection (Quasthoff et al., 2006)
and use fasttext (Bojanowski et al., 2017) for training the embeddings. We show the
LSTM architectures that we re-implement in Figure 6.2.

1https://github.com/bplank/bilstm-aux, last accessed 18 January 2018

https://github.com/bplank/bilstm-aux
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Figure 6.3: Results of the LSTM architectures per language group (10fold CV)

Word In this setup, we use word-level information for training the LSTM tagger.
This setup will serve as baseline and is shown in Figure 6.2a.

Char The character embeddings of a word are provided to a bidirectional LSTM.
The last state of the forward and the backward character LSTM are combined (Ling
et al., 2015) and provided to another bidirectional LSTM layer. The character em-
beddings are trained on the fly during model training. This setup is shown in 6.2b.

Word-Char This architecture is a combination of the previous two architectures.
The last state of the character LSTMs is added to the word embedding information
before it is provided to the next LSTM layer. This setup is shown in Figure 6.2c.

Word-Char-Ref The reference implementation by Plank et al. (2016). This tagger
reported state-of-the-art results on the coarse-grained tagset of the UD corpora.

Experimental Setup We implement the architecturesWord, Char andWord-Char
in DyNet (Neubig et al., 2017), which is the same framework used as by Plank et al.
(2016). We use the hyper-parameter settings by Plank et al. (2016), i.e. we train
20 epochs using Statistical-Gradient-Descent with a learning rate of 0.1 and adding
Gaussian noise of 0.2 to the embedding layer. To control also the amount of training
data, we use (for now) of each corpus 50k tokens in a 10fold cross-validation setup
for comparability.
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Results In Figure 6.3, we show the averaged results per language group for the
LSTM architectures. The Word-Char-Ref tagger performs best followed by our re-
implementation Word-Char. The difference in accuracy between the various archi-
tectures is small for the Germanic and Romanic languages. However, for Slavic and
Other, which use much more fine-grained tagsets than Germanic and Romanic, the
differences become more clearly visible. It is surprising to see that Char performs
slightly better than Word for all four language groups. We assume that the Word
architecture is challenged by a high number of unknown word forms. To some extend
this is also explainable by the training corpus size that we are using in this experi-
ment for comparability, i.e. the Word architecture faces many unknown word forms.
The Char model, which uses only sub-word information, seems to have considerable
advantages here by focusing on a word’s morphology. Furthermore, focusing on mor-
phological properties require considerable less training data than a word-based model.
Consequently, it is not surprising that the combination of Word and Char reaches a
better performance. The character level model works essentially as fallback in the
combined Word-Char architecture for unknown word forms. The HMM baseline tag-
ger is superior to the Word and Char LSTMs but stays behind the results achieved
by combining these two LSTM architectures.

We show in Figure A.2 and Table A.2 in the Appendix the detailed results per
language that we discussed here.

6.2.3 Conditional Random Field (CRF) Tagger

We implement an own CRF tagger using FlexTag (Zesch and Horsmann, 2016). As
feature set we use a trigram word window of ±1 words to the right and left, the 750
most frequent character ngrams of length [1..4] and add semantic knowledge from
Brown (Brown et al., 1992) clusters.

We arrived at this feature set by running a series of evaluation experiments. We
reviewed the recent literature for commonly used features and found word ngrams,
fixed character sequences focusing on either pre-, in-, or suffixes of words and word
distributional knowledge for PoS taggers of various languages (Brants, 2000; Halácsy
et al., 2007; Ljubešić et al., 2016). To the best of our knowledge there is no agreement
for parametrization of word- and character ngrams that work best for a single or multi-
ple languages. To arrive at a multilingual feature set (parametrization), we evaluate
all parameter permutations using 10fold cross-validation to find a parametrization
that works reasonably well across all languages in our setup.

Word Features We experiment with adding the {1, 2, 3} words to the right and
left of the current word as lower-cased string features.

Character Features Which character ngram is discriminative for a language de-
pends on the language and its morphological properties. To avoid a language bias, we
use a frequency-based approach in which we select the N most frequently occurring
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Figure 6.4: Averaged results of the CRF feature parametrization experiment across
language groups (10fold CV)

character ngrams of length {1, 2, 3, 4} from the training dataset. We experiment with
a frequency cut-off that uses the N ε {250, 500, 750, 1000} most frequent character
ngrams. The intuition is that only frequent character ngrams are informative. This
grants the character ngrams a flexibility to automatically consider frequent ngrams
with respect to a language. These N features are boolean and are set to 1 if the
respective character ngram occurs in the current word.

Semantic Features We use Brown clustering to create word clusters for each lan-
guage. We use the same 15·106 tokens of plain text from the Leipzig Corpus Collection
that we used for training the word embeddings for the LSTM experiment. We provide
the cluster ids in substrings of varying length2 to the classifier (Miller et al., 2004;
Koo et al., 2008; Owoputi et al., 2013).

Experimental Setup We use of each corpus 50k tokens and report averaged results
of running each feature variation as 10fold cross-validation.

Results In Figure 6.4, we show the results of our parameter search experiment av-
eraged by language group. The diamond symbol shows the configuration which works
best over all corpora. We show additionally the averaged performance of the HMM
baseline tagger as point of reference. The horizontal line marks the variance between
worst and best performance across all parameter configurations and languages. The
Best CRF configuration that worked best across all languages uses a word-context
window of 1 word to the left and right and the 750 most frequent character [1..4]
grams with additionally adding word clusters.

2For each word with an entry, we create several cluster-related features of which each encodes the
cluster id, which is a bit string, in increasing length, i.e. 2, 4, 6, .., N
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Figure 6.5: Effect of tagset size on accuracy for a HMM, CRF and LSTM tagger

When looking at the detailed results per language in Figure A.1 or in Table A.1 in
the appendix, we find that Best CRF does not necessarily reach the best results for
each individual language but is always among the best working ones. In particular,
for the Slavic and Other group, which contain languages richer in morphology than
Germanic or Romanic, the variance in performance is quite large. We account this
wider variance to the higher morphological complexity of these languages but also
to the usually considerably more fine-grained tagsets used for these languages. On
Slavic languages the character ngrams perform much better than using only word
ngrams or clusters, but we also see that a low number of character ngrams perform
extremely poorly, i.e. Slavic languages require a higher number of character ngrams
to account for the higher morphological complexity. Hence, a rather naïve strategy
to achieving a decent performance on almost any language is to just use all kinds of
character ngrams.

Table A.1 shows that also the cluster feature performs better than using only word
ngrams. Considering that we had to limit the amount of data for cluster creation for
reasons of comparability, we can conclude that this feature has more potential when
using larger data sizes (Derczynski et al., 2015).

The combination of all features shows that the features address quite different
information and add up well. A rather important observation are the differences to
the HMM baseline tagger. The HMM tagger is often competetitive, which shows that
off-the-shelf taggers do not necessary have a disadvantage over constructing an own
tagger. We will subsequently use the Best CRF configuration when discussing CRF
tagger results.
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Figure 6.6: Results of a HMM, CRF and LSTM tagger on multilingual corpora
(10fold CV). Results are shown as aggregate results over all corpora in a language group

6.3 Direct Comparison of Taggers

Figure 6.6 shows the results for each of the three taggers for a direct comparison. CRF
is the Best CRF discussed in Section 6.2.3 and LSTM is the tagger implementation by
Plank et al. (2016). The evaluation is again conducted on 50k tokens of each corpus
and reported results are averaged values over 10fold cross-validation.

The CRF and HMM taggers are for Germanic and Romanic languages rather close
to the LSTM results. In particular on Slavic languages, the difference between taggers
grows larger which might be explicable by the more fine-grained tagsets used by
morphologically rich languages. A detailed comparison for each individual language
is found again in the appendix in Figure A.3.

We show in Figure 6.5 the relationship between accuracy and tagset size. For
each PoS tagger, a regression trendline is plotted, which indicates the average loss
in accuracy with an increasing tagset size. For one-hundred additional PoS tags, the
LSTM tagger loses .72 points in accuracy, while the CRF HMM tagger have a much
steeper decay of .87 to .89 points. Hence, with growing tagset size the tagger choice
becomes increasingly more important.

6.4 Comparison to State-of-the-art Taggers

Our experiments until now were limited to the fixed dataset size that we set at
the beginning for comparability. In particular, for the morphologically fine-grained
tagsets this might have been problematic, i.e. it is doubtful if all PoS tags of a
morphological tagset do even occur on 50k tokens. Furthermore, one can expect
that there is some difference in accuracy between a language-independent tagger and
one that is fitted to a certain language. To quantify this difference and learn more
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Figure 6.7: Results of reproducing setups in the literature with a HMM, CRF and
LSTM tagger utilizing the full corpus size for selected languages

about the trade-off in accuracy when picking a language-independent tagger over a
language-fitted one, we compare the language-independent taggers to reference results
found in the literature.

Experimental Setup This experiment limits the number of comparisons to cor-
pora that we have in our evaluation dataset and for which we also find reference
values in the literature.

This constraint leaves us with the following setups that we can reproduce here.
For Czech, the setup by Spoustová et al. (2009), with training on 106 and evaluation
on 2 · 105 tokens, for German-2, the setup by Giesbrecht and Evert (2009) and for
Swedish-2, the setup by Östling (2013), which both use 10fold cross-validation over the
full corpus size. Taggers for Slavic languages often make use of additional resources
such as morphological dictionaries, such additional knowledge sources might be a
reason why a language-fitted taggers reaches improvements over a tagger without such
a resource. We include in the taggers in our setup intentionally no human-crafted
resources to give no language an (unfair) advantage. This leads to a limitation to
train models only on the training data and provide distributional knowledge that is
usually available for any language. Thus, we do not expect to reach state-of-the-art
performance but we want to quantify the difference in accuracy that is accompanied
by using a language independent tagger, compared to using language-fitted reference
implementation.

We also add one additional corpus to our setup, sections 22-24 of the Wall Street
Journal (WSJ) (Marcus et al., 1993) that we compare to the best reported results
by Choi (2016), i.e. section 22-24 are the commonly used evaluation dataset of this
corpus (Collins, 2002).
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Results In Figure 6.7, we show the results. On German and Swedish, the LSTM
tagger is able to reach better results than the reported reference values. This confirms
our previous observations once more; the LSTM tagger fits better than the CRF and
HMM to the data of a certain corpus. For Czech and English, none of the taggers
reaches the reference value but the LSTM still performs better than the HMM and
CRF tagger. For the English corpus, the CRF tagger is considerably more challenged
than the HMM and LSTM model. This might be accountable to the feature set that
we use for this tagger, i.e. a trigram window with one word to the right and left.
It is for good reason common to use a context window that considers the previous
two words when building taggers specifically for English. This is a clear disadvantage
in this case. The best result reported for the English WSJ corpus can be suspected
to be highly fitted to this particular corpus for its frequent use as de-facto standard
reference value for evaluating English PoS taggers. Therefore, the close approximation
of the HMM and LSTM tagger are still good. For Czech, we see the largest difference
to the reference value in this comparison. The LSTM tagger reaches with a difference
of about 1.5 percent points the best approximation. The accuracy of CRF and HMM
are clearly dissatisfactory, which is easily explainable by the highly fine-grained tagset
size of the Czech corpus (> 1500 tags). We suspect that the feature set used by the
HMM and CRF tagger is not suited to learn this many fine-grained distinctions.

Thus, we find that language-fitted PoS tagger might still reach better results
than a language-independent LSTM tagger, but we also find that differences between
tagger are small when the tagset of the corpus is small.

6.5 Chapter Conclusion

In this chapter, we investigated multilingual robustness of PoS taggers by replicating
the setup by Plank et al. (2016). We compared a HMM, CRF and LSTM PoS taggers
with each other on a multilingual corpus evaluation set that we newly collected com-
posing of 27 corpora of 21 languages. We find that language robustness is in general
a less severe challenge than domain robustness, which we investigated in the previous
chapters. The differences between taggers remain small as long training corpora use
small tagsets. The choice of the tagger becomes increasingly more important for large
tagsets. In particular, the LSTM performs considerably better on morphologically
fine-grained tagsets compared to HMM and CRF. This also means that a language
is not difficult per-se but rather that the PoS granularity of the annotation makes a
particular corpus challenging to train an accurate model on.

Despite our efforts to keep things fair and comparable, the LSTM tagger has
a small advantage as it learns the most suited feature representation by itself for
each language. This is certainly a merit of using a LSTM but the results in this
chapter should not be understood as proof of a general superiority of LSTMs over a
HMM or CRF tagger. When evaluating different feature sets for the CRF tagger (see
Section 6.2.3), we saw already that more suited feature sets exist. If more knowledge
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about a particular language is available, configurations might be found that perform
better than the LSTM tagger.

A comparison of tagging results to reference values found in the literature showed
that language robust taggers do not necessarily perform worse than language-fitted
taggers. If language-fitted taggers rely on human-created resources, the LSTM was
the only tagger that achieved an acceptable approximation. This also showed that
language-specific knowledge from external resources is the key factor that makes a
certain tagger implementation superior on a particular language.
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Chapter 7

Long Tail Robustness

In the previous chapters, we discussed domain and language robustness. In this
chapter, we focus on a tagger’s robustness with respect to dealing with a lack of
training data of linguistic low-frequency phenomena. As long as a sufficient amount
of training data (of a phenomenon) is available, a model can be trained that is able to
learn to recognize a certain phenomenon accurately. When working in low-resourced
domains such as social media, the assumption of sufficient training data is usually
not fulfilled. Many domain-specific phenomena are often under-represented in the
small training corpora. If one assumes a Zipf-like distribution as shown in Figure 7.1,
many vocabulary items occur in the long tail of this distribution, i.e. occur extremely
infrequently. Consequently, they occur equally rarely in an annotated corpus. This
means that many domain-specific phenomena are not learnable during model training
due to their infrequency.

Tagger

Long	Tail	Robustness

DE
Long Tail Vocabulary

Vocabulary

Fr
eq
ue

nc
y

Figure 7.1: Long tail robustness

Thus, even when using the approaches discussed in Chapter 4 or Chapter 5 to
improve domain robustness, the unique phenomena of a domain are still difficult to tag
accurately. This is a particularly severe problem as these domain-specific phenomena
often are the main reason for working in low-resourced domains. A linguist who
wants to study domain peculiarities such as shifts in word usage or domain-specific
word formations require datasets with a sufficient number of samples of such rare
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phenomena. A rather obvious approach to deal with this lack of data is to collect
and annotate more samples that contain a certain phenomenon. While this would
certainly work, it is also an extremely expensive and time-consuming process that
scales poorly. Furthermore, it is unclear how many instances one would have to
annotate to reach an acceptable performance.

Use-case The work in this chapter is motivated by a practical example for German
in which a linguist wants to use a PoS tagger as corpus query tool. Usually, linguists
screen many plain text samples to find relevant instances of a phenomenon. Working
on social media means that this manual screening is highly time-intensive as many
irrelevant postings have to be screened, too. The idea of using a tagger as query
tool is based on a specific PoS tagset that assigns a phenomenon of interest an own
PoS tag. If a tagger would accurately tag the phenomenon with its tag, a large
number of postings without this tag could be easily ignored. This would speed-up
the screening of plain text samples considerably and allow acquiring new examples of
this phenomena with only a fraction of the manual effort. Furthermore, for studying
such a phenomenon, the tagger should not just tag instances correctly that occurred
in the training data but also be able to correctly tag out-of-vocabulary instances of
this phenomenon. As this phenomenon is comparatively rare and occurs only a few
times in a small annotated dataset that is available to us, training a model that
accurately tags this phenomenon is not possible.

Thus, in this chapter, we investigate how to deal with the lack of training data
and improve tagging of such under-represented phenomena, while keeping the manual
annotation effort at a minimum.

Dataset We base this work on the German social media corpus by Beißwenger et al.
(2016). The corpus contains 23k tokens from a mixture of social media sub-domains,
such as Twitter, WhatsApp chats, Blog comments, etc. This dataset is annotated
with the extended version (Beißwenger et al., 2015) of the Stuttgart-Tübingen tagset
(STTS) (Schiller et al., 1999), which adds 18 additional tags to the canonical STTS
with 54 tags. These additional tags target many typical phenomena of informal and
colloquial utterances, which are not found in standard German. We showed in Section
4.4.1 (see Table 4.5) that the newly added tags are usually not learned by a tagger
due to their infrequency, even if domain adaptation approaches are applied.

7.1 Fitting Towards a Phenomenon

In this section, we will focus on word contractions of a full verb with a personal
pronoun. This word contraction is annotated with an own tag, VVPPER, in the
shared-task dataset. Table 7.1 shows examples of this type of contractions taken
from the Dortmund Chat Corpus (Beißwenger, 2013). This word contractions are not
found in standard German which prevents using formal German corpora to obtain
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wiederhols = wiederholen (to repeat) + es (it)
ich wiederhols nochmal, ihr redet hier öffentlich!
I repeat it [repeat-it] again, you’re talking in public!
I repeat it once more, you’re talking in public!

kommste = kommen (to come) + du (you)
wieso? wo kommste denn her?
why? where do [come-you] from?
Why? Where do you come from?

findeste = finden (to find) + du (you)
nö,dat beste findeste eigentlich wenn du gar nich suchst ...
nope, you find [find-you] the best when you’re not searching for it
No, you will find the best when you’re not searching for it

Table 7.1: Examples of full-verb with personal pronoun contractions (VVPPER).
Bold face shows the contracted words

more data of this phenomenon. We, hence, start with an investigation how to deal
with infrequent phenomena.

7.1.1 Experiment: Dealing with Infrequency

The German social media corpus contains in total 13 VVPPER instances, which
are not sufficient to train a model that can reliably recognize this tag. Thus, in this
experiment, we test different strategies to improve the tagging of VVPPER instances.
In order to train the tagger but also to arrive at meaningful results during evaluation,
we will need more than the 13 instances we have at the moment. Hence, we are not
able to avoid annotation entirely. However, since we are interested in only a particular
tag anyway, we don’t have to annotate the entire posting. We can focus on correcting
the tag of this one word, which avoids a large part of the manual annotation effort.

Inexpensive Annotation of More Data We apply the following strategy to
produce more annotated data as shown in Figure 7.2. This strategy requires only a
minimalistic amount of manual annotation. We asked the expert (i.e. the linguist)
to provide us with additional plain text examples in which the word contraction
phenomenon occurs. We obtained 230 additional postings with this phenomenon
from the Dortmund Chat Corpus. We machine tagged these additional data by using
the Stanford (Toutanova and Manning, 2000) tagger with one of the provided models
for German that assigns PoS tags of the canonical STTS. We use a model trained on
newswire data as no German social model is available.

The results from Chapter 3.3, the evaluation of available PoS tagger models,
showed that newswire-trained model perform poorly on social media text. We yet
decided to use a newswire model for lack of alternatives and to keep the annotation
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Figure 7.2: Inexpensive production of training data for under-resourced phenomena

process as simple and straight-forward as possible, which is sufficient to reach im-
provements, as we will see soon. The choice of the Stanford tagger is motivated by its
good reputation, the ease of installing and using this tagger and for the availability of
a German model that assigns STTS tags. Any other tagger which provides a German
STTS compatible model should be equally suited. If a tagger or model is available
that is adapted to German social media text, this one should be of course preferred.
However, this is just another fine-tuning step. We focus here on the principle approach
and use a newswire-trained model for automatically tagging.

The tag of the word contraction is the only tag that is manually corrected and
set to VVPPER of the extended STTS. This is the most minimalistic amount of
manual annotation one can possibly perform. We will soon see that this is enough
to reach considerable improvements, despite of the poor performance of newswire-
trained models on social media text.

Experimental Setup An option to circumvent annotation of a larger amount of
data is boosting the signal for a certain PoS tag in the already existing data. This can
either be done by oversampling (Daumé III, 2007) or downsampling as alternative to
provide more (fresh) training data. Oversampling adds the few available instances N
times to the training set. Downsampling removes sequences without the PoS tag of
interest, i.e. VVPPER. Both approaches lead to an increased frequency weight of the
phenomenon relative to the other PoS tags in the corpus. Our evaluation dataset is
created from the few existing instances and the 230 freshly created ones. Of the 230
additionally obtained instances, we add one half to the testing set and one-sixth to
the training set. The remaining two-sixths are our development set and are held back
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for the moment. Thus, the train set for this experiment contains 45 (38+7) postings
with the phenomenon and the test set 121 (115+6) postings. We use an intentionally
large test set to see how well the tagger is able to generalize to this phenomenon.

Oversampling/new Instances: We choose oversampling rates that add a number
of instances which we can also provide from the held back annotated data. This
allows a direct comparison between oversampling instances and adding fresh ones.
We oversample two and three times, and compare this to adding the same number of
instances from the set of new sequences in the held back development set.

Downsampling: We remove 25, 50 and 75 percent of the training data instances
that do not contain any full verb contractions.

Furthermore, we conduct these experiments with several taggers to learn about
the empirical differences between tagger implementations. The taggers essentially
face two challenges (i), infrequency of training instances and (ii), the noisy nature
of our additionally created data. Our assumption is that some taggers might be
better suited for dealing with such a setup than others. We use two taggers that
are frequently used in the literature where we can assume that they work accurately.
Additionally, we add a rather recently published tagger to our setup based on neural
networks, which reported good results on a variety of languages, and we include the
two-step tagging approach that we discussed in Chapter 5.

Stanford (Toutanova et al., 2003). A PoS tagger that is frequently used in the
community due to its good reputation and high accuracy.

HunPos (Halácsy et al., 2007). A further tagger with a good reputation based on
Hidden-Markov models and a re-implementation of the TNT tagger (Brants, 2000).

LSTM (Plank et al., 2016). A deep learning PoS tagger that is based on Long-
Short-Term-Memory (Hochreiter and Schmidhuber, 1997) neural networks. We use
the same parametrization as Plank et al. (2016) and a self-trained German word
embedding trained on 195 · 106 tokens German Twitter messages.

Two-step Tagging Briefly summarized, a coarse-grained tagging is performed in
a first step, which is refined to the fine-grained tag in the second step. The idea is to
reduce the complexity of the task by dealing with smaller sub-problems that are easier
to solve and, hence, reach an improved accuracy. The second tagger is tailored towards
recognizing the tag of interest while the first tagging step constraints the application
of the second tagger. We implement this approach by using a CRF tagger (Lafferty
et al., 2001) in the first step and a Support Vector Machine (SVM) in the second step.
For training the coarse-grained sequence model, we map the extended-STTS tags of
the training data to the coarse-grained tagset used by the Universal Dependency
project and map VVPPER to verb. We include a PoS dictionary and Brown (Brown
et al., 1992) clusters created over German Twitter messages to compensate for the
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F1
Setup All OOV

H
un

Po
s

Baseline .78 .52

Downsampling 75% .78 .54
Downsampling 50% .79 .53
Downsampling 25% .79 .53
Oversampling x2 .79 .53
Oversampling x3 .79 .53
Annotated x2 .83 .65
Annotated x3 .88 .75

Tw
o-
St
ep

Baseline .77 .48

Downsampling 75% .78 .51
Downsampling 50% .80 .55
Downsampling 25% .79 .53
Oversampling x2 .77 .48
Oversampling x3 .77 .48
Annotated x2 .81 .59
Annotated x3 .85 .69

Table 7.2: F-Score on full-verb with personal pronoun contractions for all and OOV
words. Bold face shows best overall F-Score for each tagger and gray shading shows

best results only on OOV words

lack of training data. The coarse-grained CRF tagger uses a trigram word context
window, the 750 most frequent character bi-grams, tri-grams and four-grams, and
boolean features for capitalization and numeric values. We use as SVM features
character bi-grams and tri-grams over all verb forms and the local bi-gram and tri-
gram word context. Please note, we ignore the other word classes since we are only
interested in tagging VVPPER. This coarse-grained tagger reaches a F1 of 0.93 on
the tag Verb in the test data, which means that some VVPPER instances will be
missed because the coarse model did not predict verb.

Results In Figure 7.3, we show the results of the three strategies on the VVPPER
tag. We focus on out-of-vocabulary instances which perform considerably poorer than
in-vocabulary instances (F1 between 0.96 to 0.99), and thus, offer more opportunities
for improvements. We see that neither downsampling nor oversampling helps to reach
a substantial improvement on the tag. Furthermore, downsampling shows that the
anyway low amount of training data becomes a large problem for the LSTM if further
reduced. The Stanford tagger stays behind the other taggers with both sampling
methods. The only effective method is, without much surprise, providing new data.
The LSTM needs considerably more data to improve while the other taggers improve
linearly with each new dataset.

Discussion Table 7.2 shows the F-Score of the two best taggers HunPoS and Two-
Step in each experiment. The overall F-Score shows that both taggers reach a rather
similar overall performance. The only effective approach was providing fresh data.
Oversampling showed no effect which suggest that the improvements origin in lexical
knowledge from the added data. This also means that the taggers seem to focus too
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Figure 7.3: Results of tagging out-of-vocabulary instances of full-verb with personal
pronoun contractions (VVPPER) for each tagger and each approach
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F1
Configuration All OOV

Baseline .81 (+.04) .57 (+.09)
Annotated x3 .86 (+.01) .73 (+.04)

Table 7.3: Improvements of the contextualised two-step tagging on full-verb with
personal pronoun contractions

much on the word form and less on the word context. This has important impli-
cations for the tagger’s ability to find unknown instances. Without weighting the
word context sufficiently, this tagger is not well suited for retrieving new instances
of a phenomenon. Thus, we investigate next if we can improve the performance of
Two-Step by forcing it to focus more strongly on the local word context.

7.1.2 Experiment: Forced Generalization

In this experiment, we try to improve generalization of the Two-step tagger by forc-
ing the tagger to rely more on the local word context to improve the recall. This
investigation focuses only on Two-Step as this tagger is fully self-implemented. We
alter the feature space of the SVM and exclude all features that inform the classifier
about the lexical form of the VVPPER instances. Thus, the SVM is not aware of any
lexical forms, it must now rely on the word context to recognize VVPPER instances.

Results In Table 7.3, we show the changes in performance of the contextualized
Two-Step tagger. In parentheses, we show the differences to the not contextualized
tagger in Table 7.2. For both setups, we see an improved F-Score but especially
the recall increases for out-of-vocabulary instances. The F-Score by HunPos (.88) in
Table 7.2 is still superior. However, Two-Step’s trade-off between precision and recall
(not shown) supports better the use case in which the tagger functions as a precise
filtering tool with decent recall, i.e. a higher precision than HunPoS.

7.1.3 Experiment: Field Trial in Social Media

So far, we have only simulated our use case of a linguist who uses a tagger as a
filtering tool, while now, we turn to a real setting and apply the tagger to plain text
Twitter messages for finding full verb-pronoun contractions.

Working on plain text means that the ground truth of how many instances occur
is unknown, which prevents calculating an F-Score. We focus instead on precision as
main evaluation metric. We choose the Twitter domain for its ease of obtaining data
but also for its linguistic diversity that ranges from informal, interactional language
to messages that are similar to formally written text. This domain provides us with
a challenging testbed that should allow to determine a conservative, lower-bound
performance for our approach. We will use the contextualized Two-Step tagger for
its higher precision while providing a reasonable high recall.



7.1. Fitting Towards a Phenomenon 109

Twitter Data We use a subsample of 50k tweets (about 1.7 million tokens) crawled
between 2011 and 2017 from the public Twitter API that we language-filtered for
German. All occurrences of user-mentions, hashtags and URLs are replaced by a text
constant and the Tweets are tokenized by Gimpel et al. (2011)’s ArkTools tokenizer.

Tagger Setup We train the coarse-grained model and the SVMs on the full shared
task dataset including the additionally annotated data. To provide more lexical
knowledge and increase the robustness when facing standard language text, we also
add 100k tokens of German newswire text of the Tiger (Brants et al., 2004) corpus to
both steps.

Evaluation Setup We evaluate the tagged instances with two annotators. The
annotators make four distinctions: strict, relaxed, all and none. Strict are full verb
contractions with personal pronoun, the exact phenomenon we intended to tag. Re-
laxed counts all verb contractions with personal pronoun as correct, this includes also
modal and auxiliary verbs. All counts all contractions phenomena as correct, this ad-
ditionally includes, for instance, contractions of conjunctions with personal pronouns.
The remaining cases are no contractions and are, thus, false positives.

We will evaluate two setups. The first one selects the first 250 of all found in-
stances, which will be the overall evaluation. The second evaluation focuses on out-
of-vocabulary instances in which we remove all tagged instances that are known from
the training set until we gather 250 instance and, thus, evaluate how reliably new
instances are found.

Results In total, we found 1,091 instances in 50k tweets tagged as VVPPER. The
two annotators reached a perfect agreement on the subset of the first 250 instances
that we evaluated manually. Figure 7.4a shows the precision of the overall evaluation.
The strict result shows that the majority of found instances are the targeted full verb
contractions. Including modal and auxiliary verbs in the relaxed mode, even three-
quarter are verb contractions. When including also miscellaneous contractions in all,
almost all instances are contractions.

In Figure 7.4b, we take a closer look on the performance of detecting new contrac-
tions, e.g. out-of-vocabulary instances. We focus our discussion on the strict results.
The precision is drastically decreased to almost half of what we reach when including
all instances. We also computed the type/token ratio which is at 0.69 almost twice as
high as in the overall evaluation in Figure 7.4a. This confirms that the tagger is able
to recognize many new instances of the phenomenon. Furthermore, when ignoring
the known instances almost every correct instance is a new lexical form.

Analysis Table 7.4 shows examples of found instances for each of the three contrac-
tion classes (bold face). Many of the provided VVPPER training instances end on s
or ’s, which is a common morphological property of contractions in German. On the
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Figure 7.4: Evaluation for precision of tagging full-verb with personal pronoun
contractions in Twitter plain text. Strict are correctly tagged VVPPER postings,

Relaxed are all verb forms with personal pronoun contractions including auxiliary and
modal verbs and All are any kind of word contraction of all word classes

one hand, this bias introduces a substantial number of false positives, for instance the
verb weiß (to know) occurs frequently as weiss in social media. On the other hand,
this enables the SVM to also tag similar contraction cases of other word classes in
relaxed or all.

7.2 Generalization of the Approach

The methods we introduced in Section 7.1 focus on a particular verb contraction
form that we chose as leading example to develop the fitting approach. This naturally
raises the question if this fitting works likewise for other phenomena that are similarly
under-represented. We reproduce in this section our own experiments for two other
phenomena to confirm the general applicability of this approach.

7.2.1 Fitting to Contractions of Adverbs with Articles

In this experiment, we adapt our tagger to a contraction of adverbs with articles,
examples of this phenomenon are shown in Figure 7.5. This phenomenon is annotated
in the shared task dataset with the tag ADVART. We have one occurrence of this
tag in the shared task training data and three in the testing data. Naturally, (3+1)
instances are not sufficient to learn to recognize this tag.

Experiment: Tagging ADVART At first, we need again additional samples of
the phenomenon for constructing a sufficiently large evaluation dataset. We use again
the Dortmund Chat Corpus from which we obtain 18 postings in total. Furthermore,
most of the newly retrieved instances are of the same type. Hence, the additionally
retrieved instances are magnitudes lower than for the verb contraction phenomena
that we discussed in Section 7.1. This case will provide us with a lower bound
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Found Contractions

St
ric

t

lernste = lernst (learn) + du (you)
Da lernste pragmatisch zu sein .
There [learn-you] to be pragmatic
You will learn to be pragmatic there

sachs = sagen (tell) + es (it)
Ich sachs dir noch .
I [told-it] you so
I told you so

R
el
ax

ed

häts = hätte (had) + es (it)
Wer häts gedacht .
Who would [had-it] thought of
Who would have thought of it

wills = will (want) + es (it)
Ich wills nicht ich will aber auch nicht [...]
I don’t [want-it] but I don’t want ... either
I don’t want that but I don’t want [...] either

A
ll

du’s = du (you) + es (it)
Würdest du’s mir heute noch sagen?
Would [you-it] still tell me today?
Would you still tell me today?

für’s = für (for) + das (the)
Danke für’s retweeten
Thanks [for-the] retweeting
Thanks for retweeting

Table 7.4: Twitter postings that have been tagged as full-verb with personal pronoun
contractions (VVPPER). Strict are correctly tagged VVPPER postings, Relaxed are all
verb forms with personal pronoun contractions including auxiliary and modal verbs and

All are any kind of word contraction of all word classes

estimation of the performance one can expect if more data is hard to obtain. We
automatically tag these sentences with the Stanford tagger and hand correct the tag
for the ADVART instances. The enhanced training set contains now 10+1 instances
and the testing set 8+3 instances. This means we have now some additional data
samples with barely any additional types of the phenomenon.

We use again Two-Step as tagger, the coarse-grained sequence tagging model is
trained on the enhanced training set that is mapped to coarse-grained tags. The
ADVART tag is mapped to the coarse tag for adverb. We add Brown clusters cre-
ated from German Twitter messages as resources. For the second step, we train a
contextualized (see Section 7.1.2) SVM that uses the same Brown clusters as the
coarse-grained model. We use HunPos as baseline tagger.
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son = so (such) + einen (an)
noch nie gesehen, son archiv
never seen [such-an] archive
(I have) never seen such an archive

auchn = auch (also) + eine (an)
oz hat auchn octavia
oz has [also-an] octavia
Oz has an Octavia

nurn = nur (just) + ein (a)
is halt nurn bischen teuer ...
it is [just-a] bit expensive
It is just a bit expensive

Table 7.5: Examples of adverb with article contractions (ADVART). Bold faced
words are the contracted words

Results We reach for both taggers comparable results for tagging ADVART, as
shown in Table 7.6. Two step tagging reaches a considerably better performance on
OOV words. We also analyzed the F-Score for only known instances (not shown) and
find that known instances are accurately tagged. Thus, two-step tagging supports the
use case of a corpus query tool better than HunPoS for tagging ADVART contractions,
although these results have to be taken with caution as the evaluation dataset contains
only eleven instances of six types.

Experiment: Finding ADVART Instances in Plain Text In this experiment,
we use the Two-Step tagger for finding ADVART instances in plain text. We use
the setup as for the verb contraction experiment described in Section 7.1.3. Briefly
summarized, we train the sequence model and the SVM on the shared task data, 100k
tokens of the Tiger corpus and the manually retrieved instances from the Dortmund
Chat Corpus and tag 50k plain text Twitter postings.

Results The tagger tags in 50k Twitter messages in total 83 instances as ADVART.
Figure 7.5 shows the precision of the detection. We found an additional kind of
contraction in our data in which the adverb and article occurred as own words (thus,
not a contraction in the actual sense) but where the article was shortened to a single
letter. For instance, “so n (such an)” is not a single word form but a strongly related

F1
Tagger All OOV

Two-Step 0.84 0.67
HunPoS 0.84 0.40

Table 7.6: F-Score results on ADVART instances
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Figure 7.5: Evaluation for precision of tagging adverb with article contractions
(ADVART) in Twitter plain text. Strict are correctly tagged ADVART instances,
Relaxed are instances that still occur as two words with the second word being

contracted to a single letter

phenomenon that we consider additionally in our evaluation. The strict result show
found ADVART instances while relaxed also includes the partially contracted cases
that still appear as two own words.

We find in total only two new OOV instances, which is easily explained by a
low number of training instances for this phenomenon, i.e. the 22 instances in our
training data compose of nine types of which one occurs ten times. Thus, the tagger
had only very few information to learn how to recognize new instances, which led to
an unsurprisingly low number of OOV instances. Thus, with few training instances,
we find two-step tagging to be highly conservative yielding only a low number of
actual hits with barely any new ones.

As frequent error case, we find instances in which an indirect article such as “ein/e
(a)” is contracted to a single letter “n”, which indicates that the taggers put a strong
emphasis on the suffix of an instance to recognize ADVART instances. We show
examples of the found instances in Table 7.7.

7.2.2 Fitting to Contractions of Preposition With Articles

In this experiment, we fit a tagger to contractions of preposition with articles that are
labeled with the tag APPRART. This tag does already exist in the canonical STTS
as this kind of contractions also occurs in standard German. For instance, the word
“im” is such a contraction of “in dem (in the)”. However, in social media text we find
a large number of other contractions that are not part of standard German. These
instances are also labeled as ADVART in the shared task dataset. We show some of
those non-standard cases in Table 7.8. The contracted words classes, preposition and
article, are both closed word classes which means that there is a limit in the number
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Found Contractions

St
ric

t

nurn = nur (only) + ein (a)
... hmm aber nurn glas
... hmm but [only-a] glass
(I will drink) only one glass

mitem = mit (with) + ein (a)
ja is mitem Firmenlogo
yes it is [with-a] company logo
Yes, it has a company logo

R
el
ax

ed

noch n = noch (still) + ein (a)
bin mir unsicher ... hab noch n komisches Gefühl
I am unsure ... have [still-a] strange feeling
I am not sure, I still have a strange feeling

nur n = nur (only) + ein (a)
Da wurde halt nur n bisschen geläster
There was [only-a] bit gossipping
There was some gossipping

Table 7.7: Twitter postings that have been tagged as adverb with article contractions
(ADVART). Strict are correctly tagged ADVART instances, Relaxed are instances that

still occur as two words with the second word being contracted to a single letter

of words that can be contracted but not necessarily in the spelling variations in which
this contraction might occur.

Two-step tagging reaches an F-Score of .96 on the tag APPRART which suggest
that this class is easy to tag. However, the majority of the 187 instances in the
shared task dataset are standard language forms and only five are non-standard. We
re-computed the F-Score considering only non-standard instances and arrive at an
F-Score of .57 (over five instances in total). Thus, the total number of non-standard
APPRART instances is too low to arrive at meaningful conclusions.

Experiment: Tagging APPRART The first step for reaching meaningful results
is to create a dataset that allows verification of our adaptation to this phenomenon.
The dataset is enhanced by manually retrieving 81 sentences with non-standard text
instances of APPRART from the Dortmund Chat Corpus. We use again the Stanford
tagger for machine tagging and manually correct the tag of the APPRART instances.
The enhanced dataset contains now 40+5 non-standard APPRART instances in the
training set and 41+1 instances in the testing set.

We use again two-step tagging for our experiment. The coarse-grained sequence
tagging model in the first step is trained on the shared task training data, include
the Brown cluster create over German Twitter messages. The APPRART instances
are mapped to the coarse tag for Adpositions. The coarse tagging reaches on the
enhanced test dataset an F-Score of .95 on the ADP tag to which the APPRART tag
is mapped. When focusing on non-standard APPRART forms, we find that 72.5% of
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annen = an (on) + den (the)
aua.... doch net annen kopf
ouch .. but not [at-the] head
Ouch don’t hit my head

durch’s = durch (through) + das (the)
Wir haben uns durch’s internet kennen gelernt
We have met [through-the] internet
We met on the Internet

fürn = für (for) + einen (a)
Was quatscht der fürn müll
What [for-a] garbarge is he talking
He is talking nonsense

Table 7.8: Examples of preposition with article contractions (APPRART). Bold faced
words are contractions

F1
Tagger All OOV

Two-Step .84 .61
HunPoS .63 .17

Table 7.9: F-Score on preposition with article contractions for all and on OOV words

the cases are tagged correctly as adposition. Hence, about one third of those instances
will be missed by a wrong prediction in the first tagging step.

For the second step, we train a contextualized (see Section 7.1.2) SVM on the
enhanced training dataset and included a Brown cluster created over German Twitter
messages. As baseline tagger, we use HunPos.

Results In Table 7.9, we show the results of tagging APPRART instances. The
reported results focus on non-standard APPRART text forms only (we excluded
standard text forms by excluding all instances found in the Tiger corpus). Two-Step
and HunPoS reach a close to perfect F-Score on instances contained in the training
data but on out-of-vocabulary word forms, the advantages of Two-Step are striking.
Two-Step clearly outperforms HunPoS for this phenomenon.

Experiment: Finding APPRART Instances in Plain Text We use the same
setup as for the verb contraction experiment, described in Section 7.1.3, for finding
instances in plain text. Briefly summarized, we train the sequence model and the SVM
on the shared task data, 100k token of the Tiger corpus and the manually retrieved
instances from the Dortmund Chat Corpus. We modify the setup to account for
the circumstance that the tag APPRART contains standard text and non-standard
text phenomena. As our interest lies only on the non-standard phenomena and the
standard text forms are rather frequently encountered, we want to avoid screening
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Figure 7.6: Evaluation for precision of tagging preposition with article contractions
(APPRART) in Twitter plain text

through countless standard text instances. Hence, for training the SVM, we assign
to all standard text forms an own tag which allows it to distinguish standard from
non-standard APPRART instances. We treat all APPRART instances that occur in
the Tiger corpus as standard text instances. This allows a better targeting of the
interesting word forms.

Results In the 50k Twitter messages, we find 249 non-standard APPRART in-
stances in total1. Figure 7.6 shows the precision of detection after a manual ver-
ification of each found instance. Unlike with the open word class experiments in
Section 7.1.3 and Section 7.2.1, we do not obtain any related or similar contraction
forms. This might be accountable to the circumstance that the APPRART con-
traction composes of two closed word classes. We, thus, distinguish all and OOV
instances. All shows the precision for all 249 instances which indicates that two-step
tagging is quite conservative but in return highly precise in finding APPRART con-
tractions. OOV reports the precision on the out-of-vocabulary instances of which we
have 79 in total. Less than half of the OOV instances are actual APPRART con-
tractions but among the 33 correct ones we have two-third new types. We, thus, find
many new instances of this phenomenon, we show examples in Table 7.10.

We also analyzed the errors and found a particular interjection to be frequently
confused as adverb forms. The interjection ne (nope) is a typical suffix of APPRART
instance in which “ne” means “a/the”, as in “sone (so eine = such a). We find “ne”
to occur most the time as article but only once as interjection while in the Twitter
data “ne” is frequently used as interjection. We, thus, suspect the lack of training
instances as cause, i.e. the tagger is not given the chance to distinguish these forms.

1We find 9,463 instances without distinguishing between standard and non-standard forms
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übern = über (over) + den (the)
sie hat sich immer des öl übern körper geschüttet
she always poured the oil [over-the] body.
she always poured the oil over her body.

aufem = auf (on) + dem (the)
Ich wohne aufem Dorf
I live [in-the] village
I live in the village

nach’m = nach (after) + dem (the)
Bitte aber erst nach’m Mittag
But please [after-the] noon
But please after noon

Table 7.10: Twitter postings that have been tagged as preposition with articles

7.3 Chapter Conclusion

In this chapter, we discussed and analyzed strategies to overcome the notorious lack
of training data often found in under-resourced text domains. Motivated from the
use case of constructing a tagger as corpus query tool to find such under-represented
phenomena, we experimented with two strategies to dealing with the lack of training
data, namely adjusting the frequency weight and annotation of new data. We altered
the frequency weight of the under-represented phenomenon in the corpus by over-
and undersampling data. We found that neither strategies improve tagging of the
phenomenon under observation and that annotation of more data is unavoidable.

However, we also showed that additional data can be produced in an inexpensive
fashion. We produced additional training data of a certain phenomenon by mostly
relying on an annotation of a single word per posting and automatically tagging of the
remaining words with a newswire-trained model. Furthermore, we compared various
PoS taggers for their ability to deal with infrequent phenomena. We find that some
taggers are much better equipped to deal with such phenomena than others. The
best trade-off between precision and recall was achieved by two-step tagging after
forcing the tagger to focus on the local word context, i.e. contextualized tagging.
As proof-of-concept, we fitted two-step tagging to three infrequent phenomena and
evaluated their performance by tagging Twitter messages. We find that our approach
performs rather conservatively but precisely and returns many instances of the desired
phenomenon. Among the found instances, we additionally find a high number of new
instances which is important for studying such phenomena.

The basic version of data production offers of course many opportunities for
achieving additional improvements. We focused on manual annotation of a single
word to keep things as simple as possible. A certainly reasonable next step would be
to also experiment with a larger manually annotated PoS context. In particular, with
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respect to the requirement of being able to find out-of-vocabulary instances, provid-
ing a verified local PoS context promises additional improvements. As starting point,
one could use a social media adapted tagger model instead of a newswire-trained one,
which might be a less expensive methods to achieve more improvements.

Thus, the results of the presented annotation method should be understood as a
lower bound, which promises realistic improvements if more effort is invested.
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Chapter 8

Technical Prerequisites

In this chapter, we discuss the software tools we used and developed during the course
of this thesis. It has been a key requirement that the tools we use are beyond the state
of a mere research prototype. This is of particular importance for reproducibility of
experiments where running a machine learning algorithm is only a small part of all
necessary steps to come to a result.

We subsequently discuss the two projects FlexTag and DeepTC, which are both
based on DKPro Text Classification (DKPro TC) (Daxenberger et al., 2014). FlexTag
is a highly flexible Part-of-Speech (PoS) tagger that we used for many experiments
in this thesis. As the name already suggest, the unique characteristic of FlexTag
is its high flexibility compared to other PoS taggers. DeepTC is a deep learning
extension to DKPro TC that provides a software environment for end-to-end share-
able text classification experiments based on neural networks. DeepTC improves the
reproducibility of deep learning code, which is often released in a prototypical and
incomplete state. Consequently, such code is not easily executable for third-party
researchers. FlexTag is based on DKPro TC and development progress in DKPro TC
leads consequently also to improvements and extensions for FlexTag. The DeepTC
extension adds support for deep learning classifiers to DKPro TC, which have not
been supported so far. Subsequently, we will discuss FlexTag and Deep TC in detail.

8.1 FlexTag – A Flexible PoS Tagger

The experiments we conducted entailed experimenting with various information that
was provided to the PoS tagger during model training. We varied, for instance, the
size of the word context window, number of character ngrams or providing knowledge
from external resources. While off-the-shelf taggers allow training of new models,
changing the feature set is often not possible. This enforces that each model learning
process must always use the same feature set. The conducted experiments in this
thesis frequently required changes to the feature set and experimenting with various
feature parametrizations. These modifications are not easily possible for off-the-shelf
taggers, which treat the used feature set as a fixed, internal component of the tagger
that is not exposed to the user. This led to the development of FlexTag, which
grants the user a new level of flexibility by enabling a modification of the feature
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set. A further objective is to make this flexibility also accessible to non-experts.
Feature space modifications are a highly technical task that require a rather high
amount of technical expertise. Altering the feature space in FlexTag is easy and
less technical experienced user can perform this modification in a straight-forward
manner. Furthermore, trained models are easily serializable and can be shared with
other researchers, which eases the reproducibility of tagging experiments.

8.1.1 PoS Tagger Architectures

In order to better understand in which way FlexTag differs from existing PoS taggers,
we distinguish four commonly used architectures, i.e. see Figure 8.1 for an overview.

Fixed Model Some taggers cannot be changed at all (without rewriting the tagger
code itself) because model and features are hard-coded in the implementation. This
is often the case for proof-of-concept implementations that might directly implement
an optimized machine learning classifier or a domain-specific feature set. Figure 8.1a
shows how taggers with a fixed model look from the user’s perspective. A fixed-model
tagger is a black box that accepts raw text as input and outputs tagged text.

Replaceable Model The next step on the flexibility continuum are taggers with
replaceable models as shown in Figure 8.1b. Here, the user can change the behavior
of the tagger by choosing from a set of provided models, but the tagger itself provides
no means for training a model. An example is the rule-based Hepple tagger (Hepple,
2000), where a rule set for English is provided. Rulesets for other languages can be
specified, but there is no method offered by the tagger itself for training new models.

Trainable Model A major step towards really custom-made taggers is to let users
train their own models as shown in Figure 8.1c. While the tagger is still a black
box, it provides an additional interface to turn PoS annotated training data into a
custom-made model. Once the model is trained, the tagger works exactly as in the
replaceable model case.

Flexibly Trainable Model The hard-coded feature set of trainable taggers com-
plicates the process of adapting a tagger to new domains. In our FlexTag architecture,
which is shown in Figure 8.1d, we provide the user full control over the features that
are extracted and which machine learning algorithm is used. A similar approach was
taken by SVMTool (Giménez and Màrquez, 2004), which allowed the user to change
the parametrization of features but not adding new ones or removing old ones. When
a tagger uses a fixed feature set, the model is a persisted version of the weights learned
during the training process. In the case of FlexTag, the model additionally includes
the feature extractors that were used during model training. FlexTag loads during
prediction the used feature extractors from the model to extract the same features as
used during the training phase. This enables an easy experimenting with feature set
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Figure 8.1: Flexibility levels of PoS taggers
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configurations and sharing trained models with other researchers, as the used feature
set is now a part of the model and not of the tagger implementation.

The main challenge that remains when exposing more parameters of a PoS tagger
is how to keep the tagger usable, also for non-experts.

8.1.2 Trade-Off between Usability and Flexibility

A central question when exposing more functionality to the user is how to keep things
useable. We now explain how we sustained usability while allowing a considerably
higher degree of flexibility.

Using FlexTag As FlexTag is a Java/Maven-based implementation, it does not
need to be manually installed and runs wherever a JVM is available. Everything is
downloaded and setup upon first usage without any additional user intervention. Also,
mapping of fine-grained tags to coarse-grained tags is provided automatically. In order
to make this simplicity possible, FlexTag relies on DKPro Core (Eckart de Castilho
and Gurevych, 2014) for usage and model loading, and DKPro TC (Daxenberger
et al., 2014) for feature extraction and classification. FlexTag can be used standalone
or as an Apache UIMA component (Ferrucci and Lally, 2004).

Training FlexTag Most other trainable taggers only support one input format
and users are supposed to transform their data in this required format. In contrast,
FlexTag makes no assumptions about the input format and relies on the UIMA reader
concept supporting all readers that are compatible with the DKPro type system. For
most common data formats (e.g. BNC, Brown, IMS-CWB, Negra, PTB, or TEI),
many DKPro Core readers are already available that convert the corpus format in
the correct format used by UIMA/FlexTag.

Figure 8.2: Feature extractor that detects user mentions in Twitter

Adding Features FlexTag already comes with a wide range of implemented feature
extraction modules that can be enabled when needed. However, as it is impossible
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to foresee all future uses, one can easily implement own ones. For example, when
processing Twitter data it might be useful to detect user mentions (like @DummyName)
in order to reliably assign a specific tag (Ritter et al., 2011).

Technically, users need to provide a self-contained Java class that implements
the FlexTag interface for feature extractors. In case of PoS tagging, this is a unit
or sequence classification interface (see Daxenberger et al. (2014) for the different
classification modes) where features are separately extracted for each token. The
extractor interface exposes an in-memory representation of the whole text, i.e. the
UIMA CAS (Götz and Suhre, 2004). This in-memory representations allow accessing
all pre-processing results as stand-off-annotation. Figure 8.2 shows the full source
code of a feature extractor that detects user mentions in tweets. In this case, we
simply request the text of the current token and check whether it starts with an
@ sign. However, more complicated actions such as accessing information about
neighboring tokens are easily possible, too.

Additionally, a large number of existing feature extractors are pre-defined such
as word or character ngrams which keeps the necessity to implement own feature
extractors to a minimum.

Switching Classifiers As FlexTag relies on DKPro TC, we can easily switch be-
tween all the provided classifiers by changing the configuration without having to
change any code. We will discuss the available classifiers in the following section
where we introduce DKPro TC in greater detail.

8.1.3 Proof of Concept

Even if FlexTag is all about defining your own features, there is a set of standard
features that usually work well and are thus activated by default. Default features in-
clude context features, the top 1000 most frequent 1-4 character ngrams, and boolean
features testing if a word uses capitalized letters, hyphenation, periods, or is numeric.
Users are however free to not use these features, i.e. the full feature space is fully
customizable and if other features definition for the task at hand seem more suited,
FlexTag does not prevent the user from building an own feature space. Training and
testing a PoS tagger trained with this feature set reaches on the Wall-Steet-Journal
(Marcus et al., 1993) default data split (Collins, 2002) an accuracy of 96.6%. This is
in range of the state-of-the-art accuracy that lies between 96.5% (Brants, 2000) and
97.6% (Choi, 2016).

8.2 Extending DKPro Text Classification

Experiments based on deep learning neural networks pose huge challenges to repro-
ducibility. An experiment consists not just of the actual neural network architecture
but also of a potentially large number of processing steps to prepare the data. Fur-
thermore, countless network parameters exist which can greatly affect a networks’



124 Chapter 8. Technical Prerequisites

performance. Reproduction attempts lead to a considerable amount of time spent
with constructing comparable processing setups. Even if the deep learning code is
released, code that applies all preprocessing to a dataset is often missing. Additional
effort is often necessary to install and configure required third-party tools.

A potential solution to these reproducibility challenges is DKPro TC. DKPro TC
ensures that the same pre-processing is automatically applied to any (new) dataset
and provides convenience services such as an automatic installation of third-party
tools. DKPro TC experiments are end-to-end shareable, enabling a quick and easy
execution of experiments by other researchers. However, until now1, DKPro TC only
supported shallow learning frameworks. To offer the merits of DKPro TC also to
deep learning researcher, we implemented an extension that also supports the deep
learning paradigm, which is highly different to shallow learning. As proof-of-concept
of this extension, we integrated the deep learning frameworks Keras (Chollet et al.,
2015), DyNet (Neubig et al., 2017) and DeepLearning4J (DeepLearning4J, 2017). We
start with a brief introduction of DKPro TC before we discuss the deep learning
extension in detail.

8.2.1 DKPro Text Classification

DKPro TC is a Java based open-source software framework build upon the UIMA
architecture. DKPro TC provides an intermediate software layer that harmonizes the
use of various machine learning frameworks. The same experimental setup is easily
executed with one or more classifiers, which enables a direct comparison of different
implementations. The user defines feature extractors, which collect the information
the classifier uses for training a model. DKPro TC transforms the extracted feature
information into the data format required by the respective classifier. Hence, the user
is completely shielded from the intrinsic data format details required by a certain im-
plementation. Furthermore, DKPro TC allows running experiments as train-test
or cross-validation setups and takes care of all data-splitting operations, execution,
and aggregation of results. Required pre-processing components are automatically
downloaded and installed on the users’ computer. In summary, this allows sharing
self-contained and executable DKPro TC experiments with other researchers. As of
version 0.9.0, DKPro TC supports: Weka (Hall et al., 2009), LibLinear (Fan et al.,
2008), LibSvm (Chang and Lin, 2011), SvmHmm (Joachims, 2008), and CrfSuite
(Okazaki, 2007) that cover the common machine learning tasks in NLP, i.e. single
outcome (e.g. sentiment analysis), multi-outcome (e.g. categorization), sequence clas-
sification (e.g. PoS tagging), and regression (e.g text reading difficulty).

DKPro TC is designed around three design goals: (i) reproducibility, (ii) conve-
nience, and (iii) applicability.

1Version 0.9.0
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Figure 8.3: Processing schema for experiments in DKPro TC

Reproducibility We achieve reproducibility by using only software components
that are released in public repositories such as Maven Central. This ensures that soft-
ware remains available even if components are no longer maintained. Furthermore, all
parametrization details of the experiment, for instance classifier parametrization, fea-
tures, and configuration of pre-processing tools, are automatically stored in a DKPro
TC project for sharing the project right away.

Convenience We achieved convenience by (i) easy-to-implement feature extractors
with frequently needed ones being already pre-defined and (ii) automatic installation
of third-party components from public repositories. Additionally, DKPro TC inte-
grates DKPro Core (Eckart de Castilho and Gurevych, 2014) and thus provides a
rich source of tools, such as tokenizers, part-of-speech taggers or lemmatizers, which
can be added in a plug-and-play fashion as processing component. These tools are
also automatically downloaded and installed as Maven artifacts. This provides a high
degree of flexibility in terms of experimenting with various pre-processing tools and
picking the best working one for a certain task. Of course, researchers can always
implement their own UIMA processing components.

Applicability DKPro TC supports all common machine learning setups related to
text classification tasks. This ensures a wide applicability of DKPro TC to different
kinds of text classification tasks.

8.2.2 Shallow Architecture

Figure 8.3 shows a conceptual overview of DKPro TC and DeepTC. We focus our
discussion for the moment on the DKPro TC part of the figure.
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Reader The corpus data is read into DKPro TC by a reader component. DKPro
Core support dozens of common NLP formats, for instance CoNLL, TEI or Penn
Treebank (Marcus et al., 1993).

Preprocessing In this step, an optional pre-processing can be applied, which might
entail tasks such as tokenization, part-of-speech tagging, syntactic parsing, etc.

Feature Extraction The feature extractors are applied to the data with access
to information created during the pre-processing step. The extracted information is
temporarily stored in an intermediate data format.

Interface to Shallow Learning Frameworks The feature information is trans-
formed into the data format of the selected machine learning framework.

Evaluation If test data is provided, the trained model is applied to this dataset
(after running through the same pre-processing and feature extraction as the train
data). Many commonly used metrics such as accuracy, F-Score or Spearman cor-
relation can be computed during evaluation. In case of cross-validation, aggregated
results over all folds are automatically provided.

8.2.3 Deep Learning Extension

The conceptual differences between shallow and deep learning make an extension
challenging, i.e. the shallow paradigm learns a model from a representation created
from human defined features, while the deep paradigm learns a suited representation
by itself. Furthermore, a meaningful extension must not just work on a technical level,
but also sustain the advantages of taking workload from the user. Consequently, we
conducted an analysis of common deep learning setups in the literature to learn about
the challenges to reproducibility and convenience. This led to the DeepTC extension
shown in Figure 8.3.

Format Many experiments assume a flat file format. The most common format is
a whitespace or tabulator separation of text and labels. This format is quite popular
and wide-spread as it allows a rather easy transformation of the textual data into
an integer representation. Any corpus must, hence, first be transformed into this
format before an experiment with a new dataset can be executed. In case of more
complex data formats, such as XML, this leads to considerable additional effort. This
challenge is solved by the many data format readers included in DKPro Core. The
seamless integration of DKPro Core into DKPro TC allows it to access all corpus data
and annotations (e.g. lemmas, part-of-speech tags, etc.) from DKPro TC enabling
a quick and easy exchange of corpora and data formats. Of course, own readers for
highly specific data formats can be easily written, too.
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Awesome PC! POSITIVE The beautiful tree … DET ADJ NOUN ...
The beautiful car ... DET ADJ NOUN ...

SINGLE OUTCOME (N-TO-1)
SENTIMENT CLASSIFICATION

SEQUENCE MODE (N-TO-N)
PART-OF-SPEECH TAGGING

[Awesome, PC, !]
[The, PC, is, slow]

POSITIVE
NEGATIVE

Τ
Τ

[1, 2, 3]
[4, 2, 5, 6]

[1]
[2]

Τ
Τ

Integer Vectorization

Raw Vectorization
[The, beautiful, tree]
[The, beautiful, car]

[DET, ADJ, NOUN]
[DET, ADJ, NOUN]

Raw Vectorization

Integer Vectorization

Text OutcomesText Outcomes

Text Outcomes

The PC is slow NEGATIVE

[1, 2, 3]
[1, 2, 4]

Τ
Τ

Text Outcomes

[1, 2, 3]
[1, 2, 4]

Τ
Τ

Τ
Τ

Τ
Τ

MULTI OUTCOMES (N-TO-M)
GENRE CATEGORIZATION

[A, murder, series]
[A, dead, student]

[CRIME, MYSTERY]
[CRIME]

Raw Vectorization

Integer Vectorization

Text Outcomes

[1, 2, 3]
[1, 4, 5]

Τ
Τ

Text Outcomes

[1, 2, 3]
[1]

Τ
Τ

Τ
Τ

Τ
Τ

A murder series ... CRIME, MYSTERY,
A dead student … CRIME

Τ
Τ

Figure 8.4: Vectorization N-to-1, N-to-M and N-to-N

Vectorization All textual information has to be transformed into a numerical vec-
tor representation before it can be provided to the deep learning framework. This
vectorization entails mapping words and labels to integer values. When applying a
prototype to unlabeled plain text, the integer values have to be mapped back to the
original label to obtain human interpretable results. This is a mandatory task that
can be easily automatized. While the general task of vectorization appears straight-
forward, its details depend on the kind of classification task of which we distinguish
the three variants shown in Figure 8.4:

Single Outcome (N-to-1): For a text document with N tokens, an outcome have
to be predicted. In classification the outcomes are labels, in case of regression they
are numeric values. Use cases for single outcome classification are sentiment analysis
or scoring the reading difficulty of a text.

Multi-Outcome (N-to-M): For a text document with N tokens, M outcomes have
to be predicted. For instance, categorization of books into genres where a single book
might have more than just one genre.

Sequence (N-to-N): For a text document with N tokens, an equal amount of N
labels has to be predicted. The sequence in which the tokens occur is furthermore
informative for predicting the labels. A prominent example is part-of-speech tagging.

The user is given control as to whether a vector is created with textual information
(raw vectorization) or if the words have already been mapped to an integer repre-
sentation (integer vectorization). Integer vectorization fits most setups and leads to
further reduction of user-specific preprocessing code as the mapping process is done
automatically by DeepTC. If the network architecture also considers sub-word in-
formation, e.g. character- or byte-level information, integer vectorization would be
premature as the networks requires access to the actual word forms. For such cases,
raw vectorization allows providing the actual words to the deep learning framework,
as trade-off, the deep learning code has then to take care of mapping the raw data to
an integer representation. This allows DeepTC to be flexible for more complex tasks,
but still provide convenience features for common NLP setups.

Word Embeddings It is common to use pre-trained word embeddings, which are
often quite large with negative effects on the start-up time of experiments. As a
consequence, embeddings are usually pruned to contain only words that occur in the
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vocabulary. Furthermore, in some tasks words without pre-trained embedding are
either dropped or vectors are randomly initialized instead.

We provide a processing step in which the word embedding is pruned to contain
only the occurring vocabulary. The user is given control as to whether words missing
in the embeddings are removed or shall be initialized with a random vector. In case
no word embedding is provided, this step performs no operation.

Interface to Deep Learning Framework The prepared data is provided to the
deep learning framework. All necessary files are written to disk and the framework
code is executed. The file locations are passed as parameters to the framework code.
The framework code is expected to create a file at a specified location which contains
the results of the execution. The break between programming environments, i.e. Java
to Python to Java, are tackled by defining a protocol of data exchange. For each of
the three defined classification tasks, i.e. single outcome, multi-outcome and sequence
classification, a data format is expected in which the framework code provides the
predicted outcomes. This allows bridging to deep learning frameworks based on
non-Java technologies. As non-Java frameworks work internally with their own data
structures, the framework code has to wrap the vectorized data into the respective
data format. In case of Keras, for instance, which is based on Python, the vectorized
data has to be transformed into the NumPy data type.

Record Software Versions An important challenge to reproducibility is keeping
track of the software versions that are being used for running an experiment. Many
deep learning frameworks are still under rapid development and, thus, change quickly
with bugs being fixed and APIs updated. If code is released, it is often not reported
which software version was used. For instance, for Keras, which depends on a backend
such as TensorFlow, we record not just the Keras version but also the version of the
backend and the NumPy library as primary data structure. The software versions
that are recorded are highly dependent on the respective deep learning framework.
This provides a basic software versioning record, which can be released with the
experimental code.

8.2.4 Limitations

The rapid development of deep learning software creates practical limitations to re-
producibility and convenience.

The convenience of automatically installing needed components is easily provided
for Java/Maven-based software. For non-Java frameworks, this is not as easily pos-
sible and the task of installing software is delegated to the user. We would require
a method to serialize the deep learning framework environment into a container that
would allow deployment on a third-party computer, i.e. in the case of Keras. This
would also entail the respective backend and their dependencies. To the best of
our knowledge, such a method is not available with support for all major operating
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systems. A further challenge is to track the names and versions of all involved com-
ponents the user has to install to reproduce an environment. This would lead to an
extremely long list with some software components being more important than others
to the reproducibility of results. As a compromise, we record the software components
of primary importance for the respective framework. A further limitation occurs if
researchers work on unstable software versions. It is not uncommon that researchers
compile their deep learning software from the latest version in a source-code reposi-
tory to make certain features available, i.e. a bleeding edge version. One would have
to record the exact hash-id of the source-code repository from which the software
was built to enable reproducibility, i.e. detecting such setups is beyond an automatic
detection by DeepTC.

Nonetheless, we provide with DeepTC a substantial improvement to reproducibil-
ity despite of lacking functionalities to automatically create software environments
on the users’ computer.

8.3 Chapter Conclusion

In this chapter, we discussed the two major software projects that we have been
developing in the course of this thesis. One is FlexTag, a highly flexible part-of-
speech tagger and the second one is Deep TC, for improving the reproducibility of
deep learning experiments. FlexTag allows changing the feature set, which grants
an advantage over the many available off-the-shelf taggers that do not permit any
changes to the feature set. This flexible tool is the prerequisite for the many tagging
experiments conducted in this thesis. The second project is DKPro TC, which is
the underlying framework used by FlexTag. DKPro TC is an environment for text
classification experiments that aims on avoiding repetitive work and eases experiment
reproducibility. We discussed a deep learning extension for DKPro TC to improve
the reproducibility of deep learning experiments by embedding them into an end-to-
end shareable environment, i.e. as DKPro TC experiments. As underlying framework
to FlexTag, this extension will also enable the use of deep learning frameworks in
FlexTag, in future releases.
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Chapter 9

Conclusion

In this chapter, we summarize the content of this thesis and give an overview of our
main contributions. Furthermore, we discuss limitations and provide pointers for
future work.

9.1 Summary

In this thesis, we focused on the robustness of Part-of-Speech tagging from the view-
point of domain, language and long tail robustness.

Domain Robustness Our first objective was on domain robustness which we in-
vestigated in Chapter 3, Chapter 4 and Chapter 5. The central questions focused on
determining which is the best and most robust tagger model and on how to improve
tagging if tagging performance is inadequate on a certain text domain.

In Chapter 3, we started with an analysis of informal text by the example of social
media, and continued with an empirical evaluation of PoS taggers to learn about the
currently provided robustness. We conducted this evaluation for English and German
taggers and their available models by evaluating them on three inherently different
text domains – formal text, transcripts of spoken discourse, and social media text.
We find that the taggers are well equipped to deal with formal text but often perform
poorly on less formal text domains. In particular, text containing colloquial, informal
utterances that are also often found in oral discourse poses a huge challenge to taggers.
A central problem is the availability of training data. Most training data is formally
written text such as newswire. Furthermore, sufficient training data of foreign text
domains is not available, which prevents training new models that are more suited
for a certain text domain.

In Chapter 4, we investigated currently available methods to improve tagging ro-
bustness, which showed that two main strategies exist. First, providing more training
data for the taggers (without annotating new data), and the second is injecting ex-
ternal knowledge into the model training process. We find that injecting external
knowledge works best on social media text as it provides knowledge about common
spelling variations of canonical word forms. While these methods substantially im-
prove tagging on informal text, the overall performance remains dissatisfactory.
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In Chapter 5, we introduced a new cross-domain tagging approach with an in-
creased robustness called two-step tagging. In two-step tagging, we first apply a
highly robust coarse-grained tagger followed by the second tagging step in which the
predicted coarse-grained tag is refined to the fine-grained tag. An evaluation on four
text domains showed that this approach performs better than the baselines systems
and has a huge latent potential. The question that remains is how to tap this poten-
tial; we will discuss starting points for improving two-step tagging further below.

Language Robustness In Chapter 6, we investigated the language robustness
of taggers. The central research question here is whether or not a construction of
a language-independent tagger is possible that is competitive to a language-fitted
tagger. We compare taggers based on Hidden Markov Models (HMM), Conditional
Random Fields (CRF) and Long Short Term Memory (LSTM) neural networks on 21
languages for their language robustness. We find that the differences between taggers
and languages remain small as long as the tagset size is small. On large tagset sizes,
we find that the LSTM tagger performs considerably better than the HMM and
CRF tagger. A reproduction of state-of-the-art results for selected languages showed
that the LSTM tagger is indeed suited as a language-independet PoS tagger. When
learning models on morphologically rich languages, we did find that language-fitted
taggers that use additional human-crafted resources might reach better results. Thus,
language robustness is a considerably less severe challenge than domain robustness.

Long Tail Robustness In Chapter 7, we investigated long tail robustness of tag-
gers. This work is centered around the research question on how to train taggers
in order to recognize phenomena that occur infrequently in the training corpus. We
proposed an inexpensive method to produce additional training data for such under-
represented phenomena. This method uses an off-the-shelf tagger to automatically
tag a sentence, which is followed by a manual correction of a single word, i.e. the
phenomenon of interest. This procedure is easily applied and avoids a manually
annotation of the entire sequence. We compared the quality of the produced data
to altering the frequency weight of a phenomenon by over- and undersampling the
data in the training corpus. We find that annotation of additional data is unavoid-
able but that the proposed data production method is sufficient to reach substantial
improvements in tagging such phenomena.

Enabling Technologies In Chapter 8, we discussed our two technical contribu-
tions that were developed in the course of this thesis. These tools provide valuable
functionalities that are not found in other tools. The tagger FlexTag provides a high
flexibility that researchers require to experiment with various feature configurations.
DeepTC is a contribution towards reproducibility of deep learning experiments by
providing an end-to-end shareable environment for such experiments.
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9.2 Limitations and Outlook

The strong bias of available taggers to mostly support formal text domains prevents
these taggers from being directly applicable to other text domains. The domain
adaptation approaches that we discussed reached substantial improvements but still
stay behind the extremely high accuracies reported on formal newswire corpora.

More Knowledge We found that providing knowledge from resources such as dis-
tributional word clusters is a valuable resource of information to improve tagging.
These resources are often created from large amounts of plain text Twitter messages.
The reason for choosing Twitter lies for one in the heterogeneity of the text found in
this domain but also in the ease of accessing plain text from this domain. We expect
to see further improvements if such resources are created from text that is similar to
the text that shall be tagged. Thus, for tagging chat messages such clusters should be
ideally created from a chat domain corpus. Here, the challenge lies in getting access
to a sufficiently large amount of plain text of the respective text domain.

Two-Step Tagging On average, two-step tagging showed an improved performance
over the baseline taggers. This higher cross-domain robustness makes it reasonable
to pursue this approach further. Ideally, a PoS tagger can be used as a black-box
that works reasonably well on all domains. Our analysis showed that essentially every
tagger fails in some domain due to larger differences between training and application
text domain. In such cases, users who rely on the black-box assumption that a tagger
will perform equally well on all text domains, will face many situations in which
tagging performs poorly. Two-step tagging is certainly a promising step towards a
single tagger that can deal in an acceptable fashion with many text domains. In
the future, this will hopefully liberate the user from worrying about training and
application domains of the tagger model.

An opportunity to improve two-step tagging lies in harmonizing the sub-corpora
used to train the coarse-grained model in the first step. Each annotated corpus
follows its own annotation schema that often also entails differences with respect
to tokenization decisions. These differences lead to sub-corpora with contradicting
information, which in turn lead to additional tagging errors. A harmonization of
the PoS annotation and also a unification of the corpora tokenization should lead to
further improvements. While a harmonization by a human annotator would certainly
lead to the best result, less labor-intensive strategies such as the application of regular
expressions to equalize systematical differences would be an inexpensive strategy to
start with.

In this thesis, we trained a single coarse-grained model that combines text from
two domains. The limitation to two text domains was mostly motivated by the
circumstance that other candidate corpora have been used in our evaluation set. It
would be worthwhile to explore how training of several domain-fitted coarse-grained
models perform. By measuring the out-of-vocabulary rate from the input sentence
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to the training data of the respective coarse-grained model, the most suited model
could be determined. This might allow tapping the latent potential of this approach,
which mostly depends on the coarse-grained tagging.

Another approach lies in using multi-task learning (Caruana, 1997). Multi-task
learning solves a task by learning from the source data of two or more problems,
which appear to be not directly related to the problem one tries to solve. The as-
sumption is that the machine learning process can learn to avoid certain errors from
additionally learning from these indirectly related data. Multi-task learning can be
applied in two different ways: First, instead of training the coarse-grained model only
on coarse-grained tags, the tagger could be simultaneously trained on coarse-grained
and fine-grained tags. This would allow for the learning of coarse-grained tags by
taking advantage of distinctions only learnable from a more fine-grained level of PoS
annotation. This would be a possibility to improve the coarse-grained tagging ac-
curacy. Second, one trains a single model that directly predicts fine-grained tags,
while during model training, in addition to the correctness of the fine-grained pre-
dictions, one considers also the correctness of the coarse-mapped predictions. The
coarse-grained tagging would thus provide some additional constrains leading to a
more accurate fine-grained tagging. This would replace the two-step tagging archi-
tecture by a single model. We discussed that in particular adding of social media
data to the coarse-grained model improved tagging accuracy considerably, which was
only possible due to the harmonization of the tagsets to coarse-grained tags. Both
ways require that all training corpora use the same fine-grained tagset, which means
losing the advantage of combining the data of several domains.

9.3 Closing Remarks

With the work in this thesis, we have demonstrated that many of the extremely
good results reported for PoS tagging cannot be reached under realistic conditions.
Tagging quality rarely reaches the quality level known from newswire text or other
highly formal text domains. We provided with two-step tagging an approach which
has the potential of becoming a multi-domain tagger that can sustain a high accuracy
even under text domain shifts.
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Appendix A

Language Robustness - Results
per Corpus

We provide here detailed results for each corpus in the experiments in Chapter 6 that
we showed in aggregated form per language group.

Word Top 750
Lang. Ngrams ±1 Char Ngrams Clusters Best CRF HMM
Group Corpus Id All OOV All OOV All OOV All OOV All OOV

G
er
m
an

ic

Danish 90.9 53.3 90.3 69.3 89.5 67.6 96.1 82.4 94.9 74.2
Dutch 86.5 66.9 85.0 71.7 88.0 77.7 90.7 83.7 89.9 80.6
English 87.5 45.1 90.3 70.1 89.1 64.0 94.6 80.2 93.8 77.7
German-1 88.5 62.4 90.3 77.7 90.8 73.7 94.6 84.6 94.4 83.7
German-2 87.2 60.3 90.9 77.7 90.8 76.1 95.2 87.1 94.9 85.4
German-3 86.3 58.5 91.7 76.8 91.6 77.6 94.4 85.0 94.4 83.9
Icelandic 67.5 14.2 76.5 45.1 68.3 28.9 80.9 53.6 79.8 51.9
Norwegian 92.4 77.1 91.6 80.6 92.8 82.7 96.1 89.7 95.5 86.5
Swedish-1 91.1 70.6 92.9 82.2 92.3 79.9 96.3 90.3 95.6 85.9
Swedish-2 78.7 29.7 87.2 67.3 81.4 48.8 91.0 74.6 91.4 77.6

R
om

an
ic

B-Portug. 86.9 62.8 87.8 73.6 89.7 76.0 92.8 83.8 93.3 84.2
French-1 81.9 40.1 85.9 66.5 81.6 58.2 89.2 75.7 88.2 71.8
French-2 95.4 67.3 93.8 74.5 91.9 79.3 97.7 88.2 97.4 82.4
Italian 93.3 68.6 91.6 74.8 91.7 75.5 96.4 86.5 95.8 80.8
Spanish 88.5 45.5 94.5 78.2 88.1 58.8 96.4 83.5 96.6 83.6

Sl
av
ic

Croatian-1 69.0 18.6 80.6 56.3 75.2 47.2 84.9 65.4 84.7 66.7
Croatian-2 66.3 15.9 78.5 54.4 73.5 44.8 83.4 63.9 82.6 63.9
Czech 64.1 14.4 79.2 56.0 75.2 39.2 83.1 62.9 81.7 60.9
Polish 82.9 58.1 92.5 86.9 86.5 72.5 95.5 91.5 93.6 85.4
Russian 83.7 53.7 93.0 83.5 88.2 70.9 95.5 87.5 94.6 83.6
Slovak 67.7 14.9 80.5 57.8 65.6 31.9 83.5 63.8 82.9 61.6
Slovene-1 72.6 17.4 83.5 55.6 72.4 39.4 86.4 62.5 82.6 59.6
Slovene-2 65.4 12.1 78.2 50.5 73.0 39.0 83.0 59.4 86.2 59.5

O
th
er

Afrikaans 95.7 75.0 95.3 80.3 95.8 81.9 97.8 89.6 97.3 85.5
Finnish 62.6 10.0 77.1 48.5 67.8 33.8 82.3 56.7 81.3 55.8
Hebrew 82.3 41.7 81.3 60.9 76.3 53.3 90.5 68.5 90.3 60.1
Hungarian 72.7 13.9 86.7 63.3 72.0 31.7 89.9 69.6 89.4 69.5

Table A.1: Accuracy of CRF tagger configurations on multi-lingual corpora (10fold
CV). Best results per language are highlighted in bold-face. We show additionally OOV

performance and the results with a HMM tagger as baseline
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Figure A.1: Results of the various parameterizations of the CRF tagger feature set on
multi-lingual corpora (10fold CV). Triangles mark the result of a particular

configuration, the diamond symbol is the overall best working configuration. HMM
results are additionally shown as baseline
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Figure A.2: Results of the LSTM architectures on multilingual corpora (10fold CV)
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Reference
Lang. Word Char Word-Char Word-Char HMM
Group Corpus Id All OOV All OOV All OOV All OOV All OOV

G
er
m
an

ic

Danish 94.9 72.7 95.0 79.1 96.4 82.5 96.9 83.4 94.9 74.2
Dutch 91.1 82.3 90.3 83.6 91.6 85.7 92.5 87.1 89.9 80.6
English 91.9 65.9 92.3 77.4 94.1 79.6 94.9 80.9 93.8 77.7
German-1 93.6 78.3 94.1 84.5 95.6 87.6 96.0 88.3 94.4 83.7
German-2 94.5 82.4 94.6 87.1 96.4 90.1 96.8 91.5 94.4 85.4
German-3 93.8 80.3 94.0 84.9 95.8 88.6 96.4 89.8 94.4 83.9
Icelandic 76.0 34.8 76.5 49.3 81.8 56.2 84.1 60.6 79.8 51.9
Norwegian 95.8 86.2 95.7 88.2 96.6 90.3 96.9 90.3 95.5 86.5
Swedish-1 94.9 81.4 95.3 86.7 96.2 89.0 96.7 89.8 95.6 85.9
Swedish-2 86.5 54.3 88.9 74.3 91.8 78.5 92.5 80.4 91.4 77.6

R
om

an
ic

B-Portug. 93.3 82.4 93.9 87.4 95.0 90.3 95.1 90.8 93.3 84.2
French-1 87.6 67.0 85.8 72.0 88.7 77.4 89.7 78.7 88.2 71.8
French-2 97.5 80.4 97.4 83.4 98.1 87.7 98.3 88.7 97.4 82.4
Italian 96.0 81.3 95.6 84.2 96.5 85.9 97.1 86.9 95.8 80.8
Spanish 93.1 63.3 96.4 85.5 96.9 86.1 97.2 87.0 96.6 83.6

Sl
av
ic

Croatian-1 83.2 55.5 83.8 67.5 88.1 72.8 89.1 75.2 84.7 66.9
Croatian-2 80.3 52.4 81.1 63.8 84.9 69.1 86.8 72.4 82.6 63.9
Czech 79.4 49.1 81.0 62.7 85.8 68.7 87.7 72.4 81.7 60.9
Polish 86.9 73.6 89.2 84.7 95.5 91.2 95.1 91.0 93.6 85.4
Russian 91.3 73.2 94.6 85.8 95.3 86.9 96.0 88.4 94.6 83.6
Slovak 78.7 44.9 80.6 65.0 85.3 69.7 86.6 71.4 82.9 61.6
Slovene-1 81.9 44.5 83.9 61.1 86.0 62.6 87.9 65.7 82.6 59.6
Slovene-2 79.9 47.9 82.0 63.4 85.8 67.4 87.5 70.1 86.2 59.5

O
th
er

Afrikaans 97.3 82.8 97.1 85.8 97.8 88.4 98.0 90.0 97.3 85.5
Finnish 76.7 42.7 78.0 57.6 82.0 58.9 83.6 61.2 81.3 55.8
Hebrew 89.9 60.2 89.2 66.9 92.2 69.7 92.9 72.1 90.3 60.1
Hungarian 84.7 53.3 88.0 73.1 91.2 76.9 92.0 79.0 89.4 69.5

Table A.2: Accuracy of LSTM taggers on multi-lingual corpora (10fold CV). Best
results for a language are highlighted in bold-face
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Figure A.3: Results of a HMM, CRF and LSTM tagger on multilingual corpora
(10fold CV)
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