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Abstract

In component-based software engineering software architectures are specified using components,
that are interconnected via interfaces. During implementation, specified architectures are
realized using architecture implementation languages, typically on the basis of standardized
component frameworks. Both, architecture specification and implementation, concern the
same subject while focusing on different aspects. The specification focuses on abstract views
for design, communication, and analysis. The implementation focuses on the details of an
executable system, with dependencies to the execution platform. Both can be seen as different
view points on the architecture.
Both view points together describe the complete architecture, but redundant information

exist between them, because they are partly overlapping. This makes the complete architecture
hard to understand, because multiple sources of information have to be considered and artefacts
have to be mapped to each other. This mapping is often undefined. It is therefore hard to
validate whether the implemented architecture matches the specified architecture, and it is
often unclear how changes in the specifications should be implemented.
This problem can be solved by reducing the number of sources of architectural information

with well-defined mappings to different view points. This approach has the following ben-
efits: (a) the consistency of the architecture implementation and specification are improved,
by defining a single underlying source of information. (b) Architecture implementations and
specifications survive architecture specification and implementation language evolution, because
well-defined mappings exist between architecture languages, and translations can be automated.
Therefore specification and implementation migrations are supported. (c) It makes the archi-
tecture easier to understand, because only one source of information is necessary to understand
the architecture, and the mappings between architecture elements and their implementations
are well-defined.
The stated problem is subject to existing approaches. Some of these approaches create

mappings between higher level program code fragments, such as code files or directories, and
components. The granularity of this mapping is not fine enough to map all architectural
aspects. Other approaches have no bidirectional mapping, so that the architecture can only
be developed or evolved within one representation, typically the specification. Ad-hoc changes
of the architecture within the program code, as they are often observed in “hot” phases of the
development, cannot be detected or handled with these approaches. Most related work does
not consider the differing focus of architecture implementation and specification languages.
This thesis presents an approach that integrates architecture specification information with

program code, so that the program code is the only source of information. The program
code includes the architectural information of both, the implementation and the specification
language. Architecture specifications expressed in specification languages can be derived from
the code, ready for design, communication, and analysis. Bidirectional formal mappings
between program code structures and specification elements allow for propagating changes
in the specification to the code.
The main contributions of this thesis are:
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1. a Model Integration Concept for integrating model information with program code, in-
cluding an development and execution framework for bidirectional model-code transfor-
mations,

2. a flexible and extensible Intermediate Architecture Description Language for covering the
different aspects of architecture languages,

3. a generic framework for architecture model transformations as formal mappings between
architecture specification language and architecture implementation language elements,
and

4. the Explicitly Integrated Architecture Process, that uses the Model Integration Concept,
the architecture model transformations, and the Intermediate Architecture Description
Language for integrating architecture specification models with program code that com-
plies to architecture implementation languages.

The approach presented in this thesis helps software developers by increasing the understand-
ability of the software architecture, and therefore supporting the maintainability and evolvabil-
ity of the software. Implemented software architectures can not only be visualized, but also
changed at a high abstraction level. The Explicitly Integrated Architecture Process can be
used for newly developed systems and for existing systems.
The concept and implementation presented in this thesis have been evaluated in four case

studies. The first case study is a part of the development of the program JACK 3, an e-learning
and e-assessment tool, whose predecessor is in active use in multiple educational institutions.
The second case study is a translation of the academic common case study for component
modelling approaches CoCoME into a Palladio representation, as preparation for a perfor-
mance analysis. Palladio is an architecture specification language that can be used to analyse
quality aspects of architectures. The third case study translates the CoCoME implementation
into a UML model, and the fourth case study migrates the architecture implementation of
CoCoME to the Java Enterprise Edition. The evaluation has shown that the approach bridges
that gap between architecture implementation and specification languages. The approach pro-
vides a single source of architecture information and provides bidirectional transformations
between architecture implementation and specification languages via formal mappings between
program code structures and model elements. It is a generic approach that can be instantiated
for multiple languages, and considers the different focus of architecture implementation and
specification languages.
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Zusammenfassung

In komponentenbasierter Softwareentwicklung werden Software-Architekturen durch Kompo-
nenten spezifiziert, die über Schnittstellen verbunden werden. Bei der Implementierung werden
die spezifizierten Architekturen mithilfe von Architektur-Implementierungssprachen realisiert,
üblicherweise auf der Basis standardisierter Komponenten-Frameworks. Beide, Architektur-
Spezifikation und -Implementierung, betreffen dasselbe Thema, fokussieren jedoch unterschied-
liche Aspekte. Die Spezifikation beschreibt abstrakte Ansichten für das Design, die Kommuni-
kation und die Analyse. Die Implementierung beschreibt Details eines ausführbaren Systems,
einschließlich der Abhängigkeiten zur Ausführungsplattform. Beide können als Sichten auf die
Architektur gesehen werden.
Beide Sichten zusammen beschreiben die komplette Architektur, aber sie stellen Informatio-

nen redundant dar, da sie in Teilen überlappen. Dies macht es schwierig, die vollständige Archi-
tektur verstehen, da mehrere Informationsquellen betrachtet werden, und Artefakte einander
zugeordnet werden müssen. Dabei ist die Zuordnung oft nicht definiert. Daher ist es schwierig
zu validierten, ob die implementierte Architektur der spezifizierten Architektur entspricht, und
es ist oft unklar, wie Änderungen an der Spezifikation implementiert werden sollen.
Dieses Problem kann gelöst werden, indem die Anzahl der Quellen für Architekturinfor-

mationen auf eine einzelne reduziert wird und eine wohldefinierte Zuordnung in verschie-
denen Sichten existiert. Dieser Ansatz hat die folgenden Vorteile: (a) Die Konsistenz der
Architektur-Implementierungs- und Spezifikationssprachen wird verbessert, indem eine einzelne
zugrundeliegende Informationsquelle definiert wird. (b) Architektur-Implementierungen und -
Spezifikationen überleben die Evolution von Spezifikations- und Implementierungssprachen, weil
wohldefinierte Zuordnungen zwischen Architektursprachen existieren und Übersetzungen auto-
matisiert werden können. (c) Es wird leichter, die Architektur zu verstehen, da ausschließlich
eine einzige Informationsquelle benötigt wird, und die Zuordnung zwischen spezifizierten Ele-
menten und der Implementierung wohldefiniert ist.
Existierende Ansätze gehen das beschriebene Problem unterschiedlich an. Einige dieser An-

sätze ordnen abstrakte Code-Fragmente, wie Dateien oder Ordner, Komponenten zu. Die Gra-
nularität dieser Zuordnung ist nicht klein genug um alle Architekturaspekte zuordnen zu kön-
nen. Andere Ansätze haben keine bidirektionalen Zuordnungen, sodass die Architektur nur
innerhalb einer Repräsentation entwickelt oder evolviert werden kann, typischerweise in der
Spezifikation. Ad-hoc-Änderungen der Architektur innerhalb der Programmcodes, wie sie oft
in „heißen“ Phasen der Entwicklung zu beobachten sind, können mit diesen Ansätzen nicht
erkannt oder behandelt werden. Die meisten verwandten Arbeiten betrachten den unterschied-
lichen Fokus von Architektur-Implementierungs- und Architektur-Spezifikationssprachen nicht.
Die vorliegende Arbeit stellt einen Ansatz vor, der Architektur-Spezifikationen mit Pro-

grammcode integriert, sodass der Programmcode die einzige Informationsquelle ist. Der Pro-
grammcode enthält die Architekturinformationen der Architektur-Implementierungs- sowie der
Architektur-Spezifikationssprache. Architekturspezifikationen in entsprechenden Architektur-
Spezifikationssprachen können aus dem Code abgeleitet werden, bereit zum Design, zur Kom-
munikation oder zur Analyse. Bidirektionale formale Zuordnungen zwischen Programmcode-

III



Strukturen und Spezifikations-Elementen ermöglichen es, Änderungen in der Spezifikation in
den Code zu propagieren.
Die wesentlichen Beiträge der vorliegenden Arbeit sind:

1. ein Model Integration Concept zur Integration von Modell-Informationen mit Programm-
code, einschließlich eines Entwicklungs- und Ausführungsframeworks für bidirektionale
Modell-Code-Transformationen,

2. eine flexible und erweiterbare Architektur-Zwischensprache Intermediate Architecture De-
scription Language, zur Abdeckung der unterschiedlichen Aspekte von Architekturspra-
chen,

3. ein generisches Framework für Architektur-Modelltransformationen als formale Zuord-
nungen zwischen Elementen aus Architektur-Spezifikationssprachen und Architektur-
Implementierungssprachen, sowie

4. der Prozess Explicitly Integrated Architecture Process, der das Model Integration Concept,
die Architektur-Modelltransformationen und die Intermediate Architecture Description
Language nutzt um Architektur-Spezifikationsmodelle mit Programmcode zu integrieren,
welcher mithilfe einer Architektur-Implementierungssprache umgesetzt wurde.

Der in der vorliegenden Arbeit vorgestellte Ansatz hilft Softwareentwicklern, indem die Ver-
ständlichkeit der Softwarearchitektur erleichtert wird, und unterstützt damit die Wartbarkeit
und die Evolvierbarkeit der Software. Implementierte Software-Architekturen können auf einer
hohen Abstraktionsebene nicht nur visualisiert, sondern auch geändert werden. Der Prozess
Explicitly Integrated Architecture Process kann sowohl für neu entwickelte Systeme, als auch
für existierende Systeme genutzt werden.
Das Konzept und die Implementierung, die in der vorliegenden Arbeit vorgestellt werden,

wurden an vier Fallstudien evaluiert. Die erste Fallstudie ist Teil der Entwicklung des Pro-
gramms JACK 3, ein Programm zum E-Learning und E-Assessment, dessen Vorgänger von
mehreren Lehrinstitutionen aktiv genutzt wird. Die zweite Fallstudie ist eine Übersetzung der
verbreiteten akademischen Fallstudie für Ansätze der Software-Architektur-Modellierung Co-
CoME in eine Palladio-Repräsentation, zur Vorbereitung einer Performance-Analyse. Palladio
ist eine Architektur-Spezifikationssprache, die für die Analyse von Qualitätsaspekten genutzt
werden kann. Die dritte Fallstudie übersetzt die CoCoME-Implementierung in ein UML-Modell
und die vierte Fallstudie migriert die Architekturimplementierung von CoCoME in die Java En-
terprise Edition. Die Evaluation hat gezeigt, dass der Ansatz die Lücke zwischen Architektur-
Implementierungssprachen und Architektur-Spezifikationssprachen schließen kann. Der Ansatz
bietet eine einzige Informationsquelle für Architekturinformationen und bietet durch formale
Zuordnungen zwischen Programmcode-Strukturen und Modell-Elementen bidirektionale Trans-
formationen zwischen Architektur-Implementierungs- und Spezifikationssprachen. Es ist ein
generischer Ansatz, der für mehrere Sprachen instanziiert werden kann, und beachtet den un-
terschiedlichen Fokus von Architektur-Implementierungs- und Spezifikationssprachen.
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1 Introduction

This chapter first introduces the context of this thesis, describes the addressed problem, and
motivates its solution. Requirements for a successful solution are stated, and the objective is
formulated in Section 1.6, before a road map is sketched in Section 1.7.

1.1 Introduction to the Specification of Software Architectures

Software architecture is a set of the most relevant design decisions in the development of
a software [TMD09, p. 58]. It has a great impact on the quality of a software [TMD09,
p. 447], [BBC+10, p. 2]. A variety of software architecture specification1 languages ex-
ist [MT00, BBC+10]. A specified software architecture is realized by the software’s implemen-
tation artefacts, e.g. the program code, configuration data, and execution platforms [TMD09,
p. 337].
Specifications of software architectures can be seen as view points on relevant design deci-

sions. The goals of architecture specification are diverse, generally centering on the design,
communication, or analysis of the subject of specification [TMD09, Chapter 2].
Despite a lack of a generally accepted definition of software architecture2, a set of abstract

concerns commonly agreed upon for specifying software architecture seems to exist. These
include the general structure, often expressed in terms of components and interfaces, connec-
tions between structural elements, abstract descriptions of behaviour [MT00, TMD09, BBC+10,
SG96], but also quality aspects like performance [BGMO06, BKR09], security [McD02], or re-
liability [BKBR12]. Many architecture languages have been developed in the academic and
industrial context [MLM+13] for modelling these concerns. However, no language is generally
usable in all projects. Thus in different project, typically different languages are used. Even
within one project, different language may be used for different purposes, or other languages
are used throughout the project lifecycle.

1.2 Introduction to the Implementation of Software
Architectures

When software is being developed, the architecture is realized in the software artefacts, in-
cluding the program code, configuration, and platforms [TMD09, Chapter 9]. The goal of the
implementation is an executable system. The implementation of software architecture is driven

1Architecture specifications in the context of this thesis means any artefact for unambiguous architecture
descriptions. This includes formal notations in textual and graphical forms as well as informal documents
with semantics that the artefact’s stakeholders agreed upon. This especially – but not only – includes
Architecture Description Languages (ADLs) [MT00].

2The Software Engineering Institute (SEI) of the Carnegie Mellon University (CMU) has an extensive list
of definitions for software architecture in their glossary at http://www.sei.cmu.edu/architecture/start/
glossary/index.cfm (see "Software architecture"), that contains 267 definitions by 2017-11-23.
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by industry standards and platforms that define standard elements such as components and
interfaces. Automated build tools are used for packaging parts of the software into deployable
units, and these units are deployed on standard execution platforms.
Standards and platforms for implementing software architectures usually do not declare

specific rules for imperative behaviour descriptions in program code. Therefore in the context
of this thesis, only descriptions of structures are considered. Imperative behaviour descriptions
in program code, such as the content of operation bodies, are not within the scope of this thesis.

1.3 Motivation for Considering the Differences between Software
Architecture Specifications and Implementations

Figure 1.1 shows an example of a specification and an implementation view on an excerpt
of a software architecture. Both represent the same information: A component with the
name CashDesk exists that requires two interfaces IBarcodeScanner and IPrinter. The
implementation adds information unnecessary for the specification, i.e. the package declaration,
detailed structure and behaviour information (abbreviated with [...]), and dependencies to
the underlying execution framework: the component is declared by a Java annotation Stateful,
meaning this class is a component that does not store a session specific state, and the required
interfaces are declared using the annotation @EJB, which instructs the execution platform to
resolve the dependencies in a specific way.

CashDesk

IBarcodeScanner

IPrinter

package org.example.cashdesk;

@Stateful
public class CashDesk {
  @EJB
  IBarcodeScanner barcodeScanner;
  @EJB
  IPrinter printer;
  [...]
}

Figure 1.1: An excerpt of a software specification (left) and a corresponding implementation
(right)

Both, architecture specification and implementation, concern the same subject while focusing
on different aspects. The specification focuses on views for design, communication, and analysis.
The implementation focuses on the details of an executable system, with dependencies to
the execution platform. They are considered different artefacts, and are usually notated
in different files or documents. Nevertheless they are strongly coupled, because they share
common architectural information. Both can be seen as different views on the architecture. The
following section inspects the commonalities and differences between architecture specifications
and implementations.
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1.4 The Difference between Architecture Specifications and Implementations

1.4 The Difference between Architecture Specifications and
Implementations

Many different architecture specification and implementation languages exist, of which many
are devoted to a special architectural style or domain. It is, however, possible to identify com-
monalities and differences [Mü10, MBG10, MT00]. As an assumption, this thesis distinguishes
between two types of commonalities:

Explicit commonalities have first class elements in both the specification and the implemen-
tation. E.g. in Figure 1.1 a specified component is implemented as a Java class using
an annotation. Explicit commonalities are typically the representation of components,
interfaces, and connectors [MBG10].

Specifications that are translated into composed implementation structures have first
class elements in a specification, that can be mapped to composed structures in
the architecture implementation, which are considered equivalent. As an example,
Figure 1.2 shows an architecture with a hierarchical component specification. The
component CashDesk contains the components CashBox and BarcodeScanner. The
implementation of this architecture uses Java packages as hierarchical namespaces to
model the parent-child relationship. While the namespaces represent the relationship,
they do not carry semantics included in the relationship. I.e. the component CashBox
could reference any component outside its parent in the implementation, while this is
not allowed in the specification.

package org.example.cashdesk;

@Stateful
public class CashDesk { [...] }

package org.example.cashdesk.cashbox;

@Stateless
public class CashBox { [...] }

package org.example.cashdesk.barcodescanner;

@Stateless
public class BarcodeScanner { [...] }

CashBox IBarcodeScanner

BarcodeScanner IBarcodeScanner

CashDesk

Figure 1.2: A specification (left) and an implementation (right) of a component hierarchy. The
implementation uses the package hierarchy to represent the parent-child relation-
ship.

This thesis distinguishes between two types of differences:

Specification details that have no representation in the implementation are elements in
the specification, that have no equivalent element or structure in the implementation.
An example for such information is the annotation of subsystems with quality
properties. While these annotations can be used for a quality analysis, they typically
have no representation in the implementation.
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Implementation details that have no representation in the specification are elements in
the implementation, that have no equivalent element or structure in the specification.
Examples for such information are platform dependencies or detailed behaviour
descriptions. While such program code is used to create an executable system, it is too
specific for being represented in the abstract specification.

The reason for these differences lie in the goals and presumptions of the view points. The
specification does not consider e.g. platform dependencies or constraints due to the reuse
of standard libraries. The implementation instead needs to take the platform and adjacent
technologies into account, while its main goal is to create an executable system.

1.5 Motivation for Bridging the Gap between Software
Architecture Specifications and Implementations

The section above identified a gap between the two view points on the software architecture.
Bridging this gap could help with the following concerns:

The consistency of the architecture implementation and specification are improved:
When an architecture is defined using multiple views that show different concerns, these
views are often in inconsistent states. During maintenance and evolution of a software,
the architecture specification and implementation are changed independently from each
other.

The specification and implementation in the example in Figure 1.3 have evolved inde-
pendently. The specification shows a required interface IPrinter for the component
CashDesk, which is not existent in the implementation. In this situation, without further
information, it is unclear whether the interface needs to be added in the implementation
or removed from the specification. When the views are not kept in an consistent state,
the information on the architecture might be misleading.

CashDesk

IBarcodeScanner

IPrinter X

package org.example.cashdesk;

@Stateful
public class CashDesk {
  @EJB
  IBarcodeScanner barcodeScanner;
  
  [...]
}

Figure 1.3: Inconsistent software specification (left) and implementation (right)

It is possible to derive the architecture specification from the implementation. Therefor a
precise mapping between the two views needs to exist, and the implementation must
include all commonalities and all specification details. Using the implementation as
the single underlying model for the implementation and the specification integrates the
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information of these highly coupled views. It ensures the consistency between the views,
which increases the evolvability and maintainability.

The consistency between program code and the architecture specification is also a stated
need by practitioners. In a study of Malavolta et al. [MLM+13], 37% of the answers
stated that reverse and forward engineering between architecture languages and the
implementation would be useful in the future, opposed to 24% who stated it would not be
useful. 70% stated that a support for the alignment of software architecture descriptions
with the implemented system will be useful in the future.

Architecture implementations and specifications survive language evolution: In long-living
software systems it is not uncommon that the languages used to implement or specify
architectures changes over time. Many reasons lead to implementation languages and
execution platforms to become outdated. Such reasons include the decrease of the
number of experts for specific languages when new, better languages emerge or when
execution platforms are not maintained any more. Even successful and broadly used
languages evolve, and the changes between language revisions can be severe. During an
implementation migration the software architecture needs to be reimplemented in the
new language. The reimplementation is often expensive, without visible improvements
for users, and it can introduce errors.

When a precise, known, and complete mapping between the specification and the im-
plementation of the software architecture exists, it is possible to automatically translate
between different architecture implementation and specification languages. This allows to
handle Implementation Language Evolution: A software architecture implementa-
tion can be translated into a specification, and that specification into an implementation
in another implementation language. While such a translation would not include im-
plementation details, the new implementation would already include common elements
between the implementation and specification languages.

Architecture specification languages also evolve. On the one hand new specification
languages may provide new, desired features, on the other hand existing languages may
evolve, and corresponding visualization and analysis tools may rely on the use of the most
current version of the language. The specification must be migrated to the new language
version or the corresponding tools might be unusable.

A precise, known, and complete mapping between the specification and the implemen-
tation of the software architecture also allows for handling Specification Language
Evolution. Such mappings can be used to derive specifications in arbitrary specifica-
tion languages from the implementation. When a specification language evolves, it is
possible to derive a representation of the architecture in the newer language from the
implementation, by adapting the original mappings to the new language.

The understandability of the architecture is increased: For understanding the whole archi-
tecture, it is necessary to consider all views. In the example in Figure 1.1 the specification
and an abstract implementation of a component CashDesk is shown. For understanding
how the component is implemented, it is necessary to read both the specification and
the implementation and to create a mapping. In the example, it is unclear whether a
component is implemented using a class in a package named after the specified compo-
nent, using a class that is named after the specified component, or a combination of both.
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When the mapping is not communicated, it will probably not be used consistently. Be-
cause the architecture comprises the most relevant design decisions, a misunderstanding
or an inconsistent use of this mapping can impose relevant mistakes during development,
maintenance, and evolution.

Therefore it is necessary to create a precise mapping between architecture specification
elements and architecture implementation elements and make this mapping available to
all stakeholders of the software architecture.

1.6 Requirements and Objective of this Thesis

Section 1.4 identified differences between software architecture specification and implementation
languages, which lead to a gap between architecture specifications and their implementation.
Section 1.5 motivated why this gap should be bridged. The following requirement is therefore
formulated for the co-evolution of architecture models and program code:

R1 Bridge the gap between software architecture specification languages and implementations
thereof.

For evaluating whether R1 is met, the following questions have to be answered:

Q1.1 Does a semantic equivalence relation exist for explicit commonalities?

Q1.2 Does a semantic equivalence relation exist for specifications that are translated into com-
posed implementation structures?

Architecture implementation and specification languages have commonalities and differences
as shown in Section 1.4. R1 considers the commonalities of these languages. The differences
are considered with the following requirement:

R2 Take the differences of architectural specification and implementation languages into ac-
count.

For evaluating whether R2 is met, the following questions has to be answered:

Q2.1 Do program code representations exist for specification details, that had no representation
in the implementation before?

Q2.2 Are implementation details, that have no representation in the specification, preserved
during changes in the specification?

When two views upon software architecture overlap, the views must be consistent regarding
this overlapping part. I.e. the two views must not define contradictory specifications [LMT09]
or specifications that do not fit together, e.g. when a component is used via an interface that
it does not provide. If the views are in an inconsistent state, misunderstandings may occur. To
avoid inconsistencies between architecture views, for each architecture element there must be
exactly one original source of information. Other views may be derived from that origin. The
following requirement is formulated:

R3 Provide a single source of information for architecture descriptions.
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For evaluating whether R3 is met, the following question has to be answered:

Q3.1 Does a single source contain all implemented and specified architecture information?

To also make the architecture changeable within the syntax of specification languages, an
approach must provide bidirectional translations between the specification and the implemen-
tation of architectures. Therefore the following requirement is formulated:

R4 Create bidirectional translations between the architecture specification and the implementa-
tion.

For evaluating whether R4 is met, the following questions has to be answered:

Q4.1 Can specification views be derived from program code?

Q4.2 Are changes in the derived specification views propagated to the program code?

In practice many languages for specifying and implementing architectures are used. It can be
expected that current architecture specification and implementation languages will continue to
evolve in the future, and that new languages will emerge. To make architecture implementations
and specifications survive the evolution of languages, a general approach is desirable, which can
take current and future languages and their different features into account. This is reflected in
the following requirement:

R5 Prepare for architecture specification and implementation language emergence and evolu-
tion.

For evaluating whether R5 is met, the following questions has to be answered:

Q5.1 Can multiple architecture implementation and specification languages be used with the
approach?

Q5.2 Are languages weakly coupled with other languages in the approach?

Related work to this thesis does not bridge the gap sufficiently (see Chapter 3). Therefore a
need is identified for bridging this gap, while considering the specific advantages of both view
points on the software architecture. The following objective for this thesis is derived:

Develop concepts for bridging the gap
between software architecture specification and implementation

1.7 Thesis Road Map

This thesis is structured into three parts as follows:

Part I – Introduction and Related Work After the motivation and the description of the the-
sis’ goals above, Chapter 2 introduces the conceptual foundations of this thesis. Chapter 3
describes existing related work. It shows – with the requirements stated above – that ex-
isting solutions do not sufficiently bridge the identified gap.

9
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Part II – Bridging the Gap between Architecture Specification and Implementation This
part describes the research contribution. Chapter 4 gives an overview of the proposed
solution, which is used to overcome the challenges described in the motivation. It
comprises a Model Integration Concept, which is further described in Chapter 5, an
Intermediate Architecture Description Language described in Chapter 6, and a set of
Architecture Model Transformations, which are described in Chapter 7. Chapter 8
describes a process how the parts of the proposed solution interact to bridge the gap
between architecture specifications and implementations. Chapter 9 gives an overview
of the implementation of a set of tools that are a foundation for the development and
execution of the process.

Part III – Evaluation and Conclusion Chapter 10 describes the evaluation of the contribution.
The prototype described in Chapter 9 is used to bridge the gap between the architecture
specification and implementation of existing programs. The conclusion and thoughts on
future work are given in Chapter 11.

The appendix of this thesis comprises the list of references, an overview of the contents of the
data medium that accompanies this document, examples of the use of the architecture language
defined in this thesis, the list of integration mechanisms presented in Chapter 5, lists of figures,
listings, definitions, and examples.

10



2 Conceptual Foundations

In Chapter 1 languages for architectural description and implementation were described as cen-
tral foundation of this thesis. The chapter at hand lays the basis for understanding this thesis,
by presenting further conceptual foundations. Abstraction is a key concept for architectural
description and design. Section 2.1 presents the aspects of abstraction in software engineering
that are relevant for the topic of this thesis. The concepts described in the following chapters
are based on languages with an abstract syntax defined with meta models. Section 2.2 describes
meta modelling and its use in model-based software engineering. At last, Section 2.3 gives a
brief overview of the languages and tools used during the implementation of the prototype
presented in Chapter 9.

2.1 Abstraction in Software Engineering

Abstraction in software engineering means to ignore details that are unnecessary in a given
situation [GJM03, p. 49]. Abstraction can be found in many places in the software engineering
domain. Some examples are: (a) A programming language is an abstraction of machine code.
(b) A software design is an abstraction of a detailed implementation. (c) Requirements are
abstractions of a possible solution for a given problem. Even business processes that are
supported by automation are abstractions of their underlying problem.
Abstraction in software engineering is used for mastering complexity [GJM03, p. 49]. In

a technical sense, abstraction is not necessary for developing software. A program can be
functional without any technical abstractions. E.g. a program written in machine code for
a specific hardware is technically able to work as intended. Abstraction, such as the use
of high-level programming languages, the use of patterns [GHJV95], or architectural design
specification are only necessary for humans to increase their efficiency or effectiveness. In the
context of software architecture, three relevant kinds of abstractions are views and view types,
modularity, and hierarchies.

2.1.1 Views, View Types, and View Points

When a stakeholder takes part in the development of a system, it makes sense not to see
the complete system as a whole in all its details. Instead a specific view upon the system
should be provided, which includes the necessary information but does not contain information
unnecessary for the current task [FS96].
View types are the generalization of views. A view type describes the abstract and concrete

syntax for describing a view. Kruchten’s 4+1 view model [Kru95] is an example for organizing
the specification of software architecture using view types. The 4+1 view model comprises a
logical view, that describes the object model; the process view, which describes concurrency
aspects; the physical view for describing the deployment on hardware; and the development
view, that describes the static structure. The fifth (+1) view is named scenarios, and describes
examples how the elements of the other four views are used together. For each of these views
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a specific notation exists. Further view types are defined in ISO/IEC/IEEE 42010 [ISO11]
(Systems and software engineering — Architecture description) or the Unified Modeling Lan-
guage (UML) [Obj15]. View-based software engineering is concerned with the development of
software using multiple interdependent views. View points are sets of view types, which have
common abstract syntax elements [The13, Sec. 8.2].

Views in view-based software engineering should be consistent to each other to provide a
base for executing a functionally correct software with the desired qualities. E.g. when a
system implementation and its requirements are inconsistent, the software probably does not
implement the requirements correctly. Views can be kept consistent e.g. by actively managing
consistency after any change. This might be supported by an underlying consistency model.
However, keeping views in a consistent state is considered a major challenge in view-based
software engineering. In the context of this thesis the program code and the architecture
specification are considered views upon the software, which have to be kept in a consistent
state. Therefore architectural views should be derived from the program code view, and the
program code should be changed according to the changes in the architectural views.

2.1.2 Modularity

Modularity [GJM03, p. 47] in software engineering can be used to divide complex systems
into smaller pieces. These smaller pieces are called modules. Modules are in directed relations
with each other, e.g. a module calls another module or a module is part of another module.
The details of one module can be developed independently from the other modules, as long as
the endpoints of these relationships are not subject to change. Systems can be composed of
multiple modules. Such composed systems are called modular systems. A modular system can
be built in two stages: (a) The internal details of the modules are developed. (b) A system
is composed of multiple modules. Depending on the order of the stages another development
style is employed: A bottom-up development means that first the modules are developed or
reused (and probably adapted) from a module repository. Then the system is composed of
these existing modules. A top-down development means that first a system to be built is
decomposed into multiple modules. Then these modules are developed or reused (and probably
adapted) from a repository. Parnas describes criteria for decomposing systems into modules in
a top-down approach [Par72]. The composition can happen on multiple levels, where composed
modules are also composable in a broader context. Two desired properties for modular systems
are high cohesion and low coupling. High cohesion means that all elements within a module
are related strongly. Low coupling means that the interconnections between modules are weak.
Modular systems with a high cohesion and low coupling make it easy to exchange or evolve
single modules.

In a more general sense, modularity can be seen as the concept divide et impera (divide
and conquer), where a problem is divided into multiple smaller pieces which have a limited
scope. These “conquered” smaller pieces can then be composed. In the context of this thesis,
systems are decomposed into modules. The modules can be implemented with general purpose
programming languages. These modules can then be composed using architecture specification
languages.
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2.1.3 Hierarchies

Modules were described above as elements that are interconnected with directed relations.
Hierarchies in this context are directed acyclic graphs of these relations [GJM03, pp. 79-83].
Consider the relation r ⊆ M , with M being a set of modules. When a module M1 ∈ M calls
another module M2 ∈ M , then M1

r−→ M2. This relation is transitive. The transitive closure
M1

r+−→M3 means that eitherM1
r−→M3 orM1

r−→M2 andM2
r+−→M3. A relation is a hierarchy

when there are no modules M1 and M2 so that M1
r+−→M2 and M2

r+−→M1.
In general, hierarchies can be seen as directed acyclic graphs of relations between elements.

Within this thesis abstraction hierarchies of architecture views are created. The program code
eventually holds all necessary information. Other architectural views upon the program code are
derived. These derived views are more focused on architectural aspects and therefore describe
the architecture on a more abstract level.

2.2 Modelling, Meta Modelling, and Model-Driven Software
Development

A model can be seen as an abstraction of a subject. An example for models can be mathematical
formulas that describe the reality, while ignoring factors that are irrelevant for the use case.
Models of software are often represented as interconnected elements, e.g. structural models or
behavioural models of the UML. Modelling is the activity to create models.
Meta models are the generalisation of model elements. Meta models define the abstract

syntax of models that comply with the meta model. A model that complies with a meta
model is called an instance of the meta model. The key concepts behind meta modelling are
the relationship between a model element (often called object or instance in this context) and
its meta model element (classifier or class) and the ability to navigate from an object to its
classifier. Multiple levels of instance-of relationships are possible, where the classifier of an
object is itself the instance of a “higher level” classifier. Two meta levels mean that one level
of objects and one level of classifiers exist. An arbitrary number of meta levels is possible,
although typically two to four levels are used [Obj16, Section 7.3]. Instance-of relations in
meta modelling build directed acyclic graphs. They form a hierarchy (see Section 2.1.3).
Meta Modelling is the activity to create meta models. This can follow a top-down or a

bottom-up approach. Top-down meta modelling means to define a meta model for a subject
to model and to create models afterwards. Bottom-up means to derive a meta model out of a
modelled subject to classify the already modelled elements.
Model-driven software development (MDSD) [SVC06] uses models as central artefacts for

software development activities. In MDSD parts of the software are described using models
that comply to domain-specific meta models [MF10]. These domain models are refined with
detailed technical models that are not relevant to the domain, but to the platform that will run
the software. Such models are the basis for automated code generation. The generated code
has to be enriched with implementation details.
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2.3 Languages, Standards, and Tools used Within this Thesis

This section briefly describes languages, standards, and tools used within this thesis.

2.3.1 Ecore and the Eclipse Modeling Framework

Ecore [SBPM09, Chapter 5] is a meta meta model, the highest level in a meta model hierarchy
of three meta levels. It therefore declares an abstract syntax for describing meta models. The
Eclipse Modeling Framework (EMF)1 [SBPM09] is a set of specifications and tools for building
and using domain-specific meta models in Java. It uses Ecore as its foundational meta meta
model. Among the features provided by EMF, the following are the most relevant for this
thesis:

• Meta models can be created based on Ecore.

• Program code can be generated to create models of the meta models and to interact with
them.

• A rich ecosystem of tools exist based on Ecore meta models, such as languages for model
transformations and code generation.

In this thesis the meta models of the implemented prototype are technically based on Ecore
and built with EMF.

2.3.2 Model Transformations with Henshin

Henshin2 [ABJ+10a] is a graph transformation [Roz97] language and tool for EMF, with
formal graph transformation semantics. It supports two types of transformations: Endogenous
transformation of models result in a changed model of the same meta model. Exogenous
transformations result in a new model of another target language. It uses a graphical syntax
for the definition of transformations. A model transformation definition in Henshin consists of
possibly multiple rules and units. Rules describe actual transformations. Units describe the
order of rules, repeated, concurrent, or conditional execution. Rules describe the left hand side
of a transformation and the right hand side of a transformation in an integrated view.
Figure 2.1 shows a simple example of a rule named createCashDesk, expressed with the

graphical editor of Henshin. The left hand side of a rule describes which element should be
found, and eventually changed, within a model. In the example, the left hand side defines, that
an element Architecture is searched in the model, which is subject to transformation. Each of
these elements found forms a match in a list of matches. For each of these matches, a negative
application condition is checked: If the architecture element has a reference componentTypes
towards an element of the type ComponentType, which has the value CashDesk for the attribute
name, the match is removed from the list of matches. The right hand side defines, that for
each match in the list of matches, a new element ComponentType should be created with
the value CashDesk for the attribute name. A new reference componentTypes will be created
from the architecture element in the match to the newly created component type. Besides
the graphical editor and menu items for the Eclipse platform for executing transformations

1Eclipse Modeling Framework – https://www.eclipse.org/modeling/emf/
2Henshin – https://www.eclipse.org/henshin/
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Figure 2.1: A simple Henshin model transformation rule

based on transformation definition files, Henshin also provides an API for executing model
transformation definitions. In this thesis Henshin is used in the prototype, for transformations
between different types of architecture models.

2.3.3 Triple Graph Grammars with HenshinTGG

Triple Graph Grammars (TGG) [Sch94, SK08] describe the simultaneous, context-sensitive
production of three graphs. The three graphs are usually called source, correspondence, and
target graph. The transformation rules of TGGs—so-called triple rules—describe a relationship
between a source graph and a target graph, declared by interconnections via a correspondence
graph. Forward and backward translation rules can be derived from triple rules. These derived
rules define how a target graph can be created based on an existing source graph (forward rules)
or vice versa (backward rules). Correspondence rules can be derived from the triple rules, that
create a valid correspondence graph "between" the source and the target graph. TGGs are
useful for creating bidirectional mappings between two representations of information.
HenshinTGG3 [Lai13, Chapter 4] is a tool for defining TGGs and executing TGG transfor-

mations. It is technically based on Henshin, and operates on Ecore models. Triple rules are
defined with Ecore-based meta models in HenshinTGG.

Figure 2.2: A simple HenshinTGG triple rule

Figure 2.2 shows a simple example of a triple rule created with HenshinTGG. The source
graph of the triple rule (left side of the figure) describes an architecture that contains named

3HenshinTGG – http://de-tu-berlin-tfs.github.io/Henshin-Editor/
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Figure 2.3: A forward rule derived from the
simple rule in Figure 2.2

Figure 2.4: A backward rule derived from the
simple rule in Figure 2.2

component types. The target graph (right side of the figure) describes archives that contain
named session beans. The correspondence graph (center of the figure) defines Trace elements,
which can have source and target nodes of any type, and other trace elements as subtraces. The
rule describes that a ComponentType is related to a SessionBean. The name of the component
type corresponds to the name attribute od the session bean. The rule relies on another rule,
that relates an architecture to an archive.
From this triple rule, forward, backward, and correspondence rules can be derived. The

Figures 2.3 and 2.4 show forward and backward rules derived from the triple rule in Figure 2.2.
The forward rule defines that an Architecture element is searched for in the source graph that is
related to an Archive via a Trace element as a basis. The architecture element must already be
translated by another rule, hence the marker [tr]. For all instances of this structure, a match
exists when the architecture has a reference to a ComponentType element, that has not been
translated yet. These component types, and the corresponding componentTypes references, will
be subject to translation. This is declared by the marker <tr>. The translation will create a new
Trace and a new SessionBean element, and the corresponding references, as denoted with the
marker <++>. The session bean’s name attribute will have the same value as the corresponding
name attribute of the component type. The backwards translation works analogously, by
creating a new component type for each session bean. In this thesis HenshinTGG is used in
the prototype, for transformations between different, model-based architecture languages.

2.3.4 Eclipse Java Development Toolkit

The Eclipse platform4 provides an integrated development environment for a variety of lan-
guages. Eclipse plugins for Java development are concentrated in the Eclipse Java Development
Toolkit (JDT)5. Most notable, JDT provides features for developing, building, and debugging
Java programs.
The prototype developed in the context of this thesis is implemented based on the Eclipse

platform. The API of JDT is used in the prototype to parse and change program code. This is
used to create or change Java program code so that it contains program code structures which
represent architecture model information, and to read program code to extract architecture
models from it.

4Eclipse – http://www.eclipse.org/
5Eclipse Java Development Toolkit – https://www.eclipse.org/jdt/
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2.3.5 Java Enterprise Edition

The Java Enterprise Edition (JEE) [Ora13b] is an umbrella standard for server side programs
developed with the Java programming language. It comprises many APIs, most notable for
dependency injection, transactional server side components, web services, object-relational
mapping, and web-based user interfaces, In the context of this thesis, Context and Dependency
Injection, Enterprise JavaBeans, and JavaServer Faces are used in case studies in the evaluation.
Applications using JEE as a platform are programmed against a subset of the JEE APIs, and

deployed on JEE compliant application servers, such as the Red Hat’s WildFly6, or Oracle’s
GlassFish Server7 for execution.

Context and Dependency Injection

Context and Dependency Injection (CDI)8 [JSR17] is a technique to implement components as
building blocks of software architectures in object-oriented languages. It manages the lifecycle
of objects and their context, and references between these objects using a dependency injection
mechanism. Java types managed by CDI are called beans. This term is overloaded multiple
times within the JEE. Therefore in the remainder of this thesis this kind of beans is called
CDI beans. Listing 2.1 gives a simple example of program code using CDI. It shows a simple
CDI bean TrivialBank that provides two operations, and a simple CDI bean CashDesk, which
uses the bank. The trivial bank type and the cash desk type are annotated as RequestScoped,
which means that for each request up to one instance of these types are created. The request is
the context of the bean instances. When the cash desk type is instantiated in the same context
(during the same request), CDI injects the bank instance into the field after constructing the
cash desk object.

1@javax.enterprise.context.RequestScoped
2public class TrivialBankServer {
3public boolean validateCard (...) {...}
4public void debitCard (...) {...}
5}
6

7@javax.enterprise.context.RequestScoped
8public class CashDesk {
9@javax.inject.Inject TrivialBankServer bank;
10

11public void executePayment (){
12if(bank.validateCard (...))
13bank.debitCard (...);
14}
15}

Listing 2.1: Two interconnected CDI beans

Many types of properties can be used to determine which object should be integrated, both
statically during development time or dynamically at run time. These features are not in the
focus of this thesis. Within this thesis, the injection of CDI bean instances within their specific

6WildFly Application Server – http://wilfdfly.org
7GlassFish Application Server – https://javaee.github.io/glassfish/
8Context and Dependency Injection – http://www.cdi-spec.org
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contexts is a feature used to identify components in JEE program code in a case study of the
evaluation.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) [EJB13] manages the lifecycle of objects of specific Java types and
references between them, typically in the context of server-side programming. As such, it has
common goals with CDI. Types managed by EJB are considered components in JEE compliant
application servers. Among others, EJB provides mechanisms for transactions, component
naming and discovery, security, and remote access, making it broadly used for server-side
business applications.
Types managed by EJB are called beans, just like CDI beans. To avoid confusion, in

remainder of this thesis this kind of beans is called EJB beans. Listing 2.2 shows the types of
the CDI example as EJB beans. The TrivialBankServer and CashDesk are now annotated
as Stateless, meaning that a pool of instances of these types may exist and each request gets
one pseudo-random instance out of the pool. The cash desks references the bank server via a
field. When an instance of the cash desk is used, an instance of the bank server is injected to
the field. In contrast to the CDI example, the operation executePayment() is now executed
within the context of a transaction. I.e. the results of the operation are only fixed, when the
transaction completes successfully.

1@javax.ejb.Stateless
2public class TrivialBankServer {
3public boolean validateCard (...) {...}
4public void debitCard (...) {...}
5}
6

7@javax.ejb.Stateless
8public class CashDesk {
9@javax.ejb.EJB TrivialBankServer bank;
10

11// Executed within a transaction now
12public void executePayment (){
13if(bank.validateCard (...))
14bank.debitCard (...);
15}
16}

Listing 2.2: Two interconnected EJB beans

This kind of beans is called Session Beans. Besides these beans, EJB also defines Entity
Beans, i.e. data types for object-relational mapping and persistence, and Message Driven
Beans, i.e. components that trigger and react upon events. Within this thesis, EJB Session
Beans and their interconnections are used in a case study of the evaluation as components.

JavaServer Faces

JavaServer Faces (JSF) [Ora13a] is a standard for defining server-side web-based UI components
in Java. In JSF web pages are defined using HTML, with additional tags for dynamic content.
A relation to Java types is created using the Expression Language (EL). Types managed by JSF
are called beans. To avoid confusion, in the remainder of this thesis this kind of bean is called
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JSF beans. Listing 2.3 gives an example of a UI defined with JSF. The listing shows an HTML
web page with additional tags from JSF for dynamically building a table on each request. The
data of the table is referenced in the parameter value of the tag h:dataTable using the EL.
A JSF bean with the name cashDeskUI must contain a collection of elements scannedItems.
Listing 2.4 shows the JSF bean CashDeskUI, which is mapped to the name cashDeskUI in the
EL. It is annotated to be ViewScoped, meaning that it is a JSF bean, which is instantiated
when the corresponding web page is visited, and exists as long as the site is viewed. The instance
survives postbacks, i.e. when the user submits a form on the web page that has the same page
as result, and also asynchronous requests. The operation getScannedItems() maps to the EL
expression scannedItems.

1<?xml version ="1.0" encoding ="UTF -8"?>
2<!DOCTYPE html >
3<html xmlns ="http ://www.w3.org /1999/ xhtml" xmlns:f="http :// xmlns.jcp.org/jsf/core"

xmlns:h="http :// xmlns.jcp.org/jsf/html" xmlns:jsf="http :// xmlns.jcp.org/jsf">
4<head >
5<title >CashDesk Web Interface </title >
6</head >
7<body >
8<form >
9<h:dataTable id=" scannedItems" value ="#{ cashDeskUI.scannedItems }" var="item">
10<h:column >
11<f:facet name=" header">Item Name </f:facet >
12<a jsf:outcome =" itemDetails" title ="Show #{item.name}">
13#{item.name}
14<f:param name="id" value ="#{ item.name}"/>
15</a>
16</h:column >
17</h:dataTable >
18</form >
19</body >
20</html >

Listing 2.3: A UI definition in JSF

1@javax.faces.view.ViewScoped
2public class CashDeskUI {
3private List <Item > scannedItems;
4

5public List <Item > getScannedItems (){ return scannedItems; }
6

7public void setScannedItems (){ return scannedItems; }
8}
9

10public class Item {
11private String name
12

13public Item(String name){ this.name = name; }
14

15public String getName (){ return name; }
16}

Listing 2.4: A bean backing the UI definition of Listing 2.3 and its data type

JSF provides many features for building UIs. It can also be interwoven with CDI annotations
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for creating interconnected JSF beans. Within this thesis, JSF beans and their interconnections
with CDI are used in a case study of the evaluation as components.

2.3.6 Unified Modeling Language

The Unified Modeling Language (UML) [Obj15] is a generic graphical language that focuses on
general software engineering tasks, such as requirements engineering, structural and behavioural
object-oriented design, concurrency design, and deployment. It is widely used in software
engineering in practice [LMWK14, SGT10].
The UML specification defines multiple types of diagrams, generally divided into behaviour

and structure diagrams. Examples of UML behaviour diagrams are state machine diagrams
that define a specific type of state machine, or sequence diagrams, which define scenarios or
generic interactions between multiple run time elements. Examples for structure diagrams are
the very common class diagrams, which can be used to specify interconnected classes in an
object-oriented sense, or object diagrams that can be used to specify interconnected objects at
run time.
In the context of software architecture, the component diagrams and composite structure

diagrams are most notable. Component diagrams can be used to define components which
are interconnected via interfaces. The components in that type of diagram are considered
black boxes. Composite structure diagrams define the internals of composite elements, such
as components. The combination of these two types of diagrams can be effectively used to
describe architectural structures. In this thesis, the UML is used in case studies for evaluation.
In these case studies, composite structure diagrams are derived from program code.

2.3.7 Palladio Component Model

The Palladio Component Model (PCM) [BKR09] is a component modelling language. PCM
can be used for developing and simulating component-based software architectures, and to
analyse the expected qualities based on their architecture specification. It is accompanied by
the Palladio Simulator9 as an IDE and simulator for quality properties [RBH+16].
Architecture specifications with Palladio are composed of five types of models: The Repos-

itory describes all components and interfaces of the system. The Service Effect Specifications
(SEFF) describe abstract behaviour, including e.g. performance information or calls to required
interfaces. The System is the high level run time view upon the defined software system. In
this model components from the repository are instantiated. Analogously to the system model,
composite components in the repository are refined in composite structure views, where they
can instantiate other components from the repository, and interconnect the component in-
stances via their interfaces. The Resource Environment model is used to describe the hardware
nodes and network between them, on which a system should be executed. The instances in the
system model are mapped to hardware nodes in an Allocation model. Finally, a Usage model
is used to define a workload upon the system to analyse the system’s qualities.
Within this thesis, the PCM is used in a case study for evaluation. In that case study, a

repository and a system model are derived from program code.

9Palladio Simulator – http://palladio-simulator.com
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This chapter examines the current state of research regarding the relationship between program
code and models thereof. Related work in adjacent fields is also considered.

3.1 Model-Code Co-Evolution

Langhammer [Lan17] and more abstract Langhammer and Krogmann [LK15] describe an ap-
proach for the co-evolution of Palladio architecture models and Java program code, including
architectural structure and abstract behaviour in terms of Palladio’s Service Effect Specifi-
cations (SEFF). Langhammer describes preservation rules, which preserve a consistency rela-
tionship between the architecture model and the program code during changes in either side.
Change operations include the insertions, removal, and replacement of attributes, references,
and objects in Ecore models. Arbitrary code within methods is preserved during model-to-
code change propagation. The approach is semi-automated, meaning that in cases where full
automation is not possible, a developer is asked to describe how consistency can be preserved.
This approach creates a specific mapping between the specific ADL and the code. While the
approach in general should be usable with multiple implementation or specification languages
and can handle language evolution, it does not consider the differences between architecture
implementation and specification languages.
Haitzer et al. [HNZ17] developed a method for software architecture and code co-evolution,

that includes a mapping between program code elements and architecture model elements,
and formalized evolution activities upon the architecture with translations into program code
representations. They use a domain specific language to represent architectures. The mapping
between program code elements and architecture model elements is limited to the identification
of specific packages, classes, and interfaces in the program code, including sub- and supertypes,
interface realizations, and dependencies. Changes in the architecture are first declared in the
domain specific language and then implemented by developers in the program code. This
approach does not include code generation, but solely checks for violations of architectural
prescriptions.
Kapto et al. [KEKT16] describe a model-code co-evolution method that detects the applica-

tion of architectural tactics [BBK03, p. 6] upon program code. They assume the existence of a
mapping between elementary actions on program code, such as adding or removing a package,
to architectural tactics. They present a language for describing architecture tactics, and detect
elementary actions on program code by comparing its versions. The approach does not allow
for changing code based on model changes.
Rocco et al. [RRIP14] explicitly describe language evolution as aspect of model-code co-

evolution. When a system is modelled using meta modelled representations and corresponding
code is generated, a challenge arises when the meta model is subject to evolution. Such changes
can break the code generators. This is a case of model-code co-evolution: the meta model can be
regarded as model and the code generator can be regarded as code in the context of model-code
co-evolution. The authors propose a co-evolution approach where model changes are propagated
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via well-defined transformations, which operate on the code and take the model difference as
input. This approach can be used to handle architecture language evolution regarding model
editors, but not regarding the code that implements a system’s architecture.
Song et al. [SHC+11] bridge the gap between architectural descriptions and the actual

system at run time. They assume the existence of two meta models, one that represents
the architectural description at run time, and one that represents the actual system at run
time. They use bidirectional model transformations to create causal connections between the
two models. This allows for monitoring, and reconfiguration of the actual system in the syntax
of the architecture model. The implementation is not considered in this approach.

3.2 Synchronization of Models and Synchronization of Models
and Code

This section presents the current state of research regarding the synchronization of models with
overlapping semantics and the synchronization of program code and corresponding models.
Such synchronization is an inherent challenge for all approaches where multiple views upon a
shared model exist. Modelling with multiple views has been subject to multiple approaches,
some of them broadly accepted in the software engineering, such as the 4+1 view model of
architecture [Kru95] or the architecture modelling standard ISO/IEC/IEEE 42010 [ISO11].

3.2.1 Consistency Management

Consistency management [FHK+15] (sometimes also referred to as inconsistency management)
assumes that two views upon a shared body of information overlap. When one view is changed
in the overlapping part, these changes should be propagated to the other view. Consistency
management deals with methods and tools to reestablish synchronization.
The specification of trace links (also referred to as traceability links) can be seen as the

most common technique for consistency management [WP10]. Change impact analysis is a
method for measuring the impact that a change in an artefact has upon adjacent artefacts.
Change impact analysis can be used to identify traces between artefacts or it can use trace
links for measurement. Winkler and von Pilgrim [WP10] surveyed approaches for specifying
and maintaining trace links in requirements engineering and model-driven development. They
found that traceability has been subject to research since 1978 [Pie78].
Schenkhuizen et al. [SvdWJC16, Sch16] describe the Concern-Driven Inconsistency Manage-

ment (CDIM) method for consistency management which can handle incomplete, informal,
and heterogeneous software architecture models. The method is based on the inconsistency
management process of Spandoudakis and Zisman [SZ01] and Nuseibeh et al. [NER01]. The
method is at the moment not backed by a corresponding tool and therefore requires manual
effort.
Multiple views upon models are a major concern in the systems engineering domain, where

the description of systems comprise hardware, software, and often social concerns. The multi-
disciplinary of this domain fosters inconsistencies between views. Feldmann et al. [FWKVH16]
describe a consistency management approach for automated production systems. They use an
explicit consistency model containing trace links between elements of the foundational models.
Consistency management is also used in further aspects. E.g. Karagiannis et al. [KBB16]

describe a method for consistency management for enterprise modelling, where multiple inter-
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dependent views – technical and social – exist upon a shared body of information. For managing
the consistency, they employ a common ontology for the views, upon which they reason for
consistency with queries. Ruhroth et al. [RGB+14] use atomic change operations on models
and corresponding operations on code to keep code consistent with certain security models.
Consistency management approaches do not consider the gap between architecture specifi-

cation and implementation languages.

3.2.2 Change Impact Analysis

Lehnert [Leh11a, Leh11b] developed a taxonomy for change impact analysis [BA96] approaches
which he used to classify existing approaches. He concludes that most approaches to not span
the whole software development process. One of their criteria is the scope of the analysis. Ap-
proaches are classified whether they analyse the code, architecture models, requirement models,
miscellaneous artefacts, or a combination. Those approaches that analyse a combination of code
and architecture models are of relevance to the Explicitly Integrated Architecture approach.
Out of 160 approaches, Lehnert identified 19 that analyse a combination of scopes. Eight
analyse a combination of code and architecture models. Three analyse a combination of code,
architecture models, and requirement models.
Hammad et al. [HCM11] present an approach that identifies modelled elements that are

impacted by a change in the underlying code. They only consider UML class diagrams. Changes
in the architecture are not traced to their impact in the code.
Sharafat and Tahvildari [ST07, ST08] also analyse the impact of changes between Java

program code and corresponding UML class diagrams. Their approach does not bridge the
semantic gap between object-oriented structures in general purpose programming languages
and higher architectural concepts such as components.
Bohner [Boh02b, Boh02a] and later Bohner and Gracanin [BG03] describe impact analysis

between architecture models and code for systems composed of existing components and mid-
dleware. Their analysis is based on explicitly declared dependency graphs between architecture
artefacts. Their focus is on adding middleware concerns to existing analysis technique. They
do not describe how to link models and code.
Kim et al. [KKK10] focus on change impact analysis for software product lines. They link

architecture models with code by using explicit mapping rules. With these mapping rules, model
elements are mapped to program code directories or files. More fine grained code elements are
not considered.
Hassan et al. [HDB10] describe an impact analysis approach between architecture models

and program code. They employ two intermediate languages, one called Architectural Soft-
ware Components Model (ASCM) to represent architectures independently from their original
specification, and one called Software Component Structural Model (SCSM), for representing
program code in the terms of their change impact approach. A projection is created between
the ASCM and the SCSM, which ultimately describes trace links between the architecture
model and the program code. This concept can also be used to handle evolving and emerging
languages.
In addition to code and design, Ibrahim et al. [IIMD05, II05, IIM06] include requirement

models and test cases in their impact analysis. Trace links in these approaches are gathered
using three techniques: explicit links are created explicitly, name tracing creates links based on
the naming of elements, domain knowledge and concept location uses the domain knowledge of
the impact analysis users. Models or code are not generated.
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Rostami et al. [RSHR15] describe the Karlsruhe Architecture Maintenance Prediction
(KAMP) approach for change impact analysis. KAMP allows for a change impact analysis in
architectures described with the Palladio Component Model (PCM) [BKR09]. In KAMP
a relation can be established between program code and the architectural description by
annotating modelled components with context information, including the location of program
code files or configuration files. Upon modelling a change request, the KAMP approach can
then show which files have to be changed, including metrics such as accumulated lines of code
of all affected files.

3.2.3 Model-Code Synchronization

Völter [Voe10] describes a projectional Integrated Development Environment (IDE) that can
represent models, including architectural structure and behaviour models, within the program
code. The visual projection is created on the fly, based on the abstract syntax tree (AST) of the
underlying code. Changes in the model are translated into changes in the AST. The Explicitly
Integrated Architecture approach could be used in this context to create such projections of
architecture models. The approach does not handle language evolution.
Already in 1995 Murphy et al. [MNS95] presented an approach for bridging the gap between

program code elements and higher-level software models. In their approach a mapping is created
between higher-level model elements and program code elements. A so-called reflexion model
is created as a view, that compares the prescriptive higher-level model with the descriptive
program code, by showing the convergence and divergence between program code and model
elements and the absence of program code elements compared to the prescriptive higher-level
model based on the mapping. Murphy et al. use a mapping between program code files and
model elements. The general ideas behind this approach is close to the Explicitly Integrated
Architecture approach. In both approaches a semantic gap between program code elements
and higher-level models has been identified and should be bridged with a mapping. Instead
of program code files, the Explicitly Integrated Architecture approach uses a formal model of
the program code based on the elements provided by the underlying programming language as
basis for the mapping. That formal model is mapped to meta model elements of an architecture
languages with transformations. The Explicitly Integrated Architecture approach is therefore
more expressive. Language evolution is not handled by Murphy et al.
ReflexML of Adersberger and Philippsen [AP11] is a mapping of UML component diagrams

to program code artefacts, enriched with a set of consistency checks between the model and the
code. They defined a UML profile with stereotypes for referencing type or interface declarations
that implement a component or an architectural interface. They use the ideas of aspect-oriented
programming for pointcut declarations to create that mapping using e.g. wildcards or by
defining supertypes. The predefined conformance checks can then be used to validate whether
the code conforms to the prescriptive architecture model.

Code Generation

Code generation [SLS18] has the aim to generate program code from a model specification.
The idea is often, that the generation happens once. The resulting program code can then be
adapted and extended to the specific need of the project.
As Syriani et al. state, “Code generation has been around since the 1950s, taking its origin

in early compilers” [SLS18]. In this thesis, code generation is seen as deterministically deriving
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program code from a meta modelled model. Therefore typically templates are used as an input
for code generation. Relevant as related work are code generators for higher-level models.
E.g. Shluga et al. [SISV16] describe a code generator for state machines. Das et al. [DGJ+16]
generate code for embedded systems based on UML for Real-Time (UML-RT) [Sel98]. Their
generated code includes monitoring aspects. Gessenharter and Rauscher [GR11] generate code
for activity diagrams.

Further code generators exist for architectural aspects. Cavalcante et al. [COB14] generate
program code in the Go programming language [GoP] based on architecture descriptions with
the π-ADL [Oqu04], including components, connections, and abstract behaviour specifications.
Lung et al. [LRSS10] generate code for architecture patterns in distributed systems, allowing for
rapid architecture prototyping. Further approaches generate code based on arbitrary domain
specific languages [EBM12, Pü16].

Approaches focusing on code generation transform models to code. When the model changes,
the code should be generated again to reflect the changes. This imposes the challenge that
changes in the generated code may be overwritten. Manual changes in the generated program
code can break the synchronization with the originating model. When the specification language
evolves, a new generator is required. A relation to existing code is not considered in this case by
code generation approaches. When the implementation language evolves, an initial code base
can be generated for the evolved language. Code added manually to the previously generated
code base has to be manually copied and adapted.

Model-Driven Development and Model-Driven Architecture

In Model-Driven Software Development (MDSD) [SVC06] – also called Model-Driven En-
gineering (MDE) – domain specific models of parts of a program or whole programs are
created with domain experts. These domain models are refined with detailed technical
models that are not relevant to the domain, but to the platform that will run the soft-
ware. Such models are the basis for automated code generation. The generated code
has to be enriched with implementation details. Model-Driven Software Development is a
broadly accepted and employed method [WHR14], especially in the domain of embedded
systems [RAK15, LMT+14, ZT13, SV12, Cor10], but also in the domain of information sys-
tems [DMWW15]. Model-Driven Architecture (MDA) [Gro14] is a MDSD approach for soft-
ware architecture. In MDA platform-independent models (PIM) are the domain models.
Platform-definition models (PDM) are the basis for translating PIMs into platform-specific
models (PSM). PSMs, or program code generated from them, can be run on their correspond-
ing platform. MDSD concentrates on deriving program code from models. The specification
(PIM, PDM, and PSM in MDA) and the program code are two interdependent views upon
the architecture that are subject to evolution and maintenance independently. Changes in the
specification can be taken over automatically in the implementation. When the architecture
changes in the implementation, these changes cannot be automatically taken over in the spec-
ification. MDSD bridges the gap between the abstraction levels of the representations, but
changes can only be carried over one way, from the abstract specification to the detailed pro-
gram code. As MDSD and MDA are a special case of code generation, language evolution is
not addressed by these approaches.
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Model Extraction

The aim of model extraction methods is to create a model of a software based on code or
execution traces. Such architecture model extraction methods are based on techniques for
identifying components in program code. Birkmeier and Overhage made a survey on methods
for identifying components in 2009 [BO09]. Many approaches for model extraction have been
developed over time. E.g. Srinivasan et al. [SLY16] extract sequence diagrams from Java
program code and execution traces. Sen and Mall [SM16] extract finite state machines of
arbitrary Java programs using symbolic execution. Other approaches can be used to extract
interaction models between the user and the program [Bow15], variability models from plugin
descriptors [ACC+14], or platform independent models of web applications [RS13]. These
approaches create models used for understanding or analysing the program. They usually aim
to create lower-level models such as UML class diagrams or sequence diagrams, and therefore
do not bridge the semantic gap between higher-level models and program code.
Architecture models are also subject to model extraction methods. Ducasse and Pollet pub-

lished a taxonomy for software architecture reconstruction approaches and compared existing
approaches with their taxonomy [DP09]. The following is a selection of software architecture
reconstruction approaches.
SoMoX [BHT+10] is an architecture model extraction tool that uses metrics to identify

components and their interconnection within program code. The extraction method is based
on heuristics and can be tuned by the user to get the desired architecture description.
With the concept and tool Archimetrix [vDPB14], von Detten et al. extract component-based

architecture models even under the circumstances of design deficiencies, using a semi-automatic
approach. Archimetrix uses SoMoX for the detection of components based on metrics, before
the method’s user is guided to incrementally provide input on how to get the desired architecture
description, thereby removing design deficiencies in the underlying program code.
Alshara et al. [AST+16] extract component models from program code. They detect clusters

of classes in the program code and distinguish between internal and boundary classes. Internal
classes are used internally by the cluster and have no direct connections the cluster’s context.
Boundary classes serve as entry points into the cluster.
Weinreich et al. [WMBK12] describe a method for extracting architecture models from

software implemented with a Service-Oriented Architecture (SOA) [TMD09, pp. 443]. A model
of the ADL LISA is built by parsing the program code, byte code of libraries, and component
specifications of several component specification languages.
Chouambe et al. [CKK08] argue that a manual approach for reconstruction would be better

than a fully automated approach. As a consequence, they present a semi-automatic method,
which can be used to assist an architect in reconstructing the architecture from the program
code, by suggesting possible components, based on metrics.
These methods for identifying components are usually based on heuristics and rely on generic

assumptions about component-based design: most prominently they assume that a component
is a cluster of artefacts with high cohesion, which is not always true in practice. Also, when
the resulting architecture models should be the basis for analysis, one must be confident that
the models are complete and correct to a degree that does not affect the analysis results. With
heuristic methods or methods based on generic assumptions about component-based design
this confidence cannot be ensured. It should be possible to tune the extraction based on tech-
nical, domain, and project knowledge. The Explicitly Integrated Architecture approach allows
for encoding technical knowledge using well-defined transformations for specific architecture
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implementation languages, and project knowledge when such transformations are used as a ba-
sis for defining project-specific transformations. Language evolution is not an issue for model
extraction approaches in general. When the implementation or specification language of a
system’s architecture changes, a new extraction logic has to be implemented.
Model extraction methods in general can be only a part of the Explicitly Integrated Archi-

tecture approach, because changes in the model are not forwarded to changes in the underlying
program code.

Program Comprehension

The field of program comprehension [Sie16] is concerned with helping developers to understand
the software. A part of program comprehension is usually the extraction of models, such as
architectural models, object-oriented models, but also e.g. metrics. Kozar et al. [KMC12]
showed that program comprehension is easier with models of a domain-specific language than
without.
With program comprehension as a goal, several model extraction approaches have been

developed. Some examples are the following: Ebert et al. [EKRW02, EB10] describe GUPRO,
a generic framework for program comprehension. GUPRO creates a graph as an abstract view
upon the program code, which can be queried by GReQL [GRe01] queries to find relevant
structures. Haiduc et al. [HAM10] create a textual summary of program by scanning the code
for important artefacts. Abi-Anoun et al. [AGCK14] extract information about objects and
call graphs between them out of the static program code.
As the goal of program comprehension approaches is the understanding, not the evolution

of programs, they do not provide means to edit the program code in the model views. The
Explicitly Integrated Architecture approach can be used in the context of program comprehen-
sion, as it is usable to extract architecture models of a program. As an extension, the model
view can also be used to change the mapped code.

Roundtrip Engineering

Roundtrip engineering [Aß03, NNWZ00] is a method where two views of program code are
maintained together: in a textual syntax and in a – usually graphical – model syntax. In this
context the method offers a bijective projection between the textual and the model syntax. The
models used in roundtrip engineering are close to the code structures, e.g. UML class diagrams
or data models. The Explicitly Integrated Models approach can be seen as a case of roundtrip
engineering with architecture models and program code.

3.2.4 Embedded Models

Balz [Bal11] describes an approach for representing models with well-defined code structures,
called Embedded Models. Balz defines Embedded Models as a mapping between formal models
and program code patterns in a general-purpose programming language. In this context the
patterns are views upon model structures in the syntax of the programming language.
A major contribution of Balz’ work is the formal mapping between higher-level models, such

as state machines and process models, and structures in programming languages, which includes
the definition of two layers of model semantics. One layer describes the semantics declared for
a meta model. Every instance of that meta model uses these semantics. E.g. a transition in a
state machine always first evaluates a guard, then executes an update, and at last changes the
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current state of the state machine to the target state. These concerns are always executed in this
order. For each meta model, an execution runtime is developed, which executes the semantics
of the meta model and is parametrized with the specific model to execute. Balz employs well-
defined interfaces within the program code patterns to be executed by these runtimes, e.g. a
method guard to be called in a type declaration that represents a guard in a state machine.
The other layer describes the semantics of the specific modelled element. E.g. the update

definition of a specific transition should have a specific effect on the application that is controlled
by the state machine. In a bank account example, the balance of an account could be decreased.
It could be expected in a traditional program, that such a change should be reflected in a
database. To integrate with arbitrary program code, the Embedded Models approach defines
interfaces for this kind of semantics. Balz uses an actor as representative for the context in
which the state machine is embedded. The actor provides operations for the semantics that
the state machine can execute on its context.
The Model Integration Concept (see Chapter 5) is conceptually based on the foundational

ideas of the Embedded Models approach. It also uses program code patterns to represent
model information. Balz defines two specific types of models for which embedded models can
be used, state machines and process models. The Model Integration Concept generalizes this
approach by building upon a definition of meta models (see Section 5.4.1). Any meta model
that can be defined with these means can be used in the Model Integration Concept. With
the definition of meta models as a basis, the Model Integration Concept can declare integration
mechanisms (see Section 5.6) as general templates for program code patterns. In prior work
we defined model representations in code and corresponding execution runtimes, including
Interface Automata [MBG11a], Protocol Contracts [KKG14, KG14], State Machines [Kon14],
or Palladio Allocation models [MK16]. These can be seen as applications of Embedded Models.

3.2.5 Model Execution

Model execution handles models as data for model execution engines. Popular executable
modelling languages are Executable UML (xUML) [MB02], the graphical Foundational UML
(fUML) [Gro16], and the textual Action Language for fUML (Alf) [Gro13], which all provide
means to add formal, executable semantics to UML models. Oquendo et al. [OLB16] integrate
Alf expressions into the ADL SysADL, a profile for SysML [Gro15a], to get executable architec-
tures. Khan and Haider [KH14] present an ADL that combines ontologies, UML, and Colored
Petri Nets to model architectural structure and behavior. Putschögl and Dorninger [PD10] add
interaction information to UML activity diagrams to make them executable.
ArchJava [ACN02] adds the notion of components, connectors, and ports to Java program

code. Composite components can interconnect their composed components with connectors via
their ports. ArchJava adds (textual) architecture model information to Java programs. It is
translated into byte code for the Java virtual machine by the ArchJava parser. The execution
engine in the sense of model execution is the compiled byte code.
Executable models are based on model runtimes, which implement the semantics for a meta

model. These runtimes are comparable to runtimes for program code structures in the Model
Integration Concept. Instead of using a model definition as input (as a runtime for executable
models would do), such a runtime takes program code structures as input, which represent
model elements, and executes the semantics as declared by a specification of semantics for the
meta model. Model execution approaches in general do not address language evolution. While
it is possible to create model transformations for translating models into evolved or emerging
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languages, this is not within the scope of the model execution research area.
The Model Integration Concept fits well into the field of model execution. This has been

shown in prior work, where we defined model representations in code and corresponding ex-
ecution runtimes for different types of models. The resulting program code is executable in
combination with the corresponding execution runtime and can therefore be regarded as exe-
cutable models.
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Model-Code Co-Evolution
[LK15] X - X X X
[HNZ17] X - - - -
[KEKT16] X - X - -

Change Impact Analysis

[Boh02b, Boh02a, BG03] X - - - -
[HDB10] X - - - X

[IIMD05, II05, IIM06] X - - - -
[RSHR15] X - X - -

Model-Code Synchronization
[Voe10] X - X X -
[MNS95] X - - - -
[AP11] X - - - -

Code Generation

[SISV16] X - X - -
[DGJ+16] X - X - -
[GR11] X - X - -
[COB14] X - X - -
[LRSS10] X - X - -
[EBM12] X - X - -
[Pü16] X - X - -

MDSD and MDA [SVC06] X - X - -
[Gro14] X - X - -

Model Extraction

[BHT+10] X - X - -
[vDPB14] X - X - -
[AST+16] X - X - -
[WMBK12] X - X - -
[CKK08] X - X - -

Embedded Models
[Bal11] X - X X -
[Kon14] X - X X -
[MK16] X - X X -

Table 3.1: Overview of the Evaluation of Related Work

3.2.6 Summary

Section 1.6 defines the requirements towards an approach for bridging the gap between archi-
tecture specifications and architecture implementations. In this section, the current state-of-
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research was evaluated regarding these requirements. The results are summarized in Table 3.1.
The table only shows related work that is bridging the gap in general. Approaches that do not
bridge the gap are not considered here.

3.3 Adjacent Research Areas

In the following sections, adjacent research areas are inspected.

3.3.1 Model-Based Migration

When legacy software is to be migrated to modern platforms or languages, a common practice
is the Model-Based Migration (MBM). The underlying challenge of MBM is the evolution
or emergence of implementation languages. Several experience reports for MBM have been
presented, especially in the context of the workshop series Software-Reengineering & Evolution
(WSRE)1. These methods usually follow the same principles. First a meta model for a domain
specific language is developed that can represent the semantics of the legacy system. Then a
meta model is developed for the target platform and transformations between these meta model
are created. This is usually done in an iterative process, until most of the code can be translated
automatically. Many examples of such migrations exist [RCM14, AB14, BT12, BCJM10].
The Explicitly Integrated Architecture approach can be used in this context by following

the stated principles, but is limited to well-defined code structures. The legacy system can be
translated into a model of the Intermediate Architecture Description Language and from there
to a more recent platform. This only translates code, which is part of mappings between the
model and code representations, and does not take e.g. detailed behaviour into account. Such
a migration is executed in a case study in Section 10.4.

3.3.2 Architecture Interchange Languages

It might be necessary to migrate a given software architecture specification model into another
language. Possible reasons include that analyses, that should be executed, are not possible
in the used specification language, or the language evolved, and a newer version should be
used. In these cases an architecture interchange language can be used to decrease the effort for
translation. Architecture interchange languages provide means to describe arbitrary properties
that can be interpreted by translations into other languages.
ACME [GMW97] is an early ADL that has specifically been developed as an architecture

interchange language. ACME has language elements to model systems, components, and
connectors. Ports are interfaces of components to their context. Connectors interconnect
components by binding their ports to roles within the connector. All elements in an ACME
description can be enriched with attachments. Attachments contain arbitrary content, which
is ignored by the ACME tools. Translations from or to other ADLs can generate or interpret
these structures and attachments.
KLAPER (Kernel LAnguage for PErformance and Reliability analysis) [GMRS08, GMS05]

is an intermediate language for the performance and reliability analysis of component-based
systems. The main idea of KLAPER is that component-based systems are designed using
languages that are well suited for software design, but that for system analysis other languages

1WSRE – https://fg-sre.gi.de/archiv/wsr.html
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are to be preferred. KLAPER architectures comprise software or hardware resources that offer
services. Such resources are typed and may have attributes, including performance attributes.
KLAPER offers typed attributes for exchanging architecture information.
A more general approach for exchanging models is the XML Model Interchange format

(XMI) [Gro15b]. XMI defines an XML-based format for exchanging model information for
meta models based on MOF as common meta meta model. For architecture languages based
on MOF, XMI can be used as in interchange format.
When an architecture is expressed in one of many architecture implementation languages

and should be translated into one of many architecture specification languages, then an archi-
tecture interchange language can reduce the number of translations necessary to define. The
Explicitly Integrated Architecture approach includes the Intermediate Architecture Description
Language in the role of an architecture interchange language in Chapter 6.

3.3.3 Modular Architecture Languages

A meta model can be seen as an interface between its models, and all tools working with these
models. Most architecture specification languages are based on a single grammar or a sin-
gle meta model. Malavolta identifies challenges imposed by this monolithic structure [Mal10].
These languages are not extensible, customizable, and do not provide suitable means to man-
age multiple views. To overcome these challenges, Malavolta describes byADL (build your
ADL) [DRMM+10], DUALLY [MMPT10], and MEGAF [HMMP10]. byADL is a framework
to incrementally compose ADLs using composition rules. DUALLY is a transformation frame-
work for transforming architecture descriptions into the syntax of other languages. MEGAF is
a multi-view framework to use with byADL.
Strittmatter et al. [SRHR15] describe the modularization approach of the Palladio Compo-

nent Model (PCM) [BKR09]. They use a language kernel with multiple layers of interdependent
modules to keep the language extensible, customizable, and to provide multiple views. The In-
termediate Architecture Description Language presented in this thesis (Chapter 6) is a modular
architecture language.

3.4 Summary and Conclusion

Some approaches relate implementation artefacts to architecture elements, but for many of
those the support is limited to directories or program code files. Only five of the remaining
approaches have bidirectional translations between both concepts. Only two of the remaining
approaches explicitly address language evolution. None of them is prepared for differences
between the architecture languages.
The evaluation of the related work shows that currently no general approach exists for

bridging the gap between architecture specifications and architecture implementations, that
allows for bidirectional translations between architecture implementation and specification
languages while considering the differing focus of these languages. The related work does
not structurally and efficiently handle the evolution and emergence of architecture languages.
This thesis’ objective (see Section 1.6) thereby justified.
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4 Proposed Solution

Chapter 3 shows that currently no general approach exists to bridge the gap between archi-
tecture implementation and architecture specification languages, that fulfills the requirements
stated in Section 1.6. This chapter gives an overview of the solution proposed in this thesis to
fill this gap. Using the proposed approach, architecture model information is integrated with
program code. The code will contain sophisticated structures, which represent architecture
meta model and model elements, and their properties, while respecting the requirements, that
architecture implementation languages have towards the program code.

Implementation 
Model

Program Code

Architecture Model Transformations

Specification
Model

Model 
Integration 
Concept

Is  Translated  To

Model  Layer

Code  Layer

Translation 
Model (IAL)

Figure 4.1: The parts of the proposed solution (underlined), the elements, and their interrela-
tionships

Figure 4.1 gives an overview of the view types, that are subject to translation in the proposed
solution, and their interrelationships. The figure will be subsequently described in the following
chapters. The view types that are subject to translation are the following:

Program Code: the implementation of a software following the standards of an architecture
implementation language

Implementation Model: an abstract model view upon the program code, that complies to an
architecture implementation language

Translation Model: an intermediate model view for translating between an implementation
model and a specification model

Specification Model: a specification of architectural concerns using an architecture specification
language
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Four research areas are part of the proposed solution:

1. A Model Integration Concept is used to integrate models and meta models with
program code. It is used to create well-defined translations between program code
structures, model elements, and meta model elements.

2. The proposed solution uses the translation model during the translation between archi-
tecture implementation and architecture specification models, for reducing the number of
required translation definitions. The Intermediate Architecture Description Lan-
guage (IAL) is defined to express translation models.

3. Architecture Model Transformations are used for the translation between models of
different languages, and for transformations within models of IAL.

4. The Explicitly Integrated Architecture Process describes how these areas are used
to achieve the objective.

For all these research areas, concepts and implementations are developed in this thesis. In
the following sections, these research areas are briefly described to give an overview of the
approach. The research areas are then described in detail in the following chapters. The
idea of the presented approach is to ensure the consistency between the architecture views at
development time. The consistency with the run time has to be subject to an execution runtime
environment, and is not in the focus of this thesis.

4.1 Model Integration Concept

The Model Integration Concept describes how model information1 is integrated with program
code. In Figure 4.1 the concept provides vertical integration. It is used to integrate and
extract architecture model information from an implementation model and the translation
model with/from program code (see [KG12]). For doing so, within the Model Integration
Concept it is defined how information of meta models and models thereof can be notated with
program code structures. The code is statically analyzed for program code structures that
identify implementation model elements, or adapted respectively when the model is changed.
It therefore derives a new view with bidirectional mappings. The Model Integration Concept
is described in detail in Chapter 5.

4.2 Intermediate Architecture Description Language

The Intermediate Architecture Description Language (IAL) is a translation model language.
It is used to represent architecture information independently from the specification language
that is used to describe the architecture and from the implementation model that is used
to implement the architecture. It has the role to increase the interoperability of the proposed
solution with different specification and implementation models, and to increase the evolvability
of the approach. Chapter 6 describes the Intermediate Architecture Description Language.
Specification and implementation languages have different kinds of information that they are
able to describe. E.g. in contrast to specification languages, implementation languages often

1Models in the term of this approach are always based on meta models. Other models, such as mathematical
functions etc. are not meant here.
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cannot describe a deep component hierarchy. The IAL handles these differences using a profile
concept similar to UML profiles [Obj15, Chapter 12.3]. The IAL is described in detail in
Chapter 6.

4.3 Architecture Model Transformations

In Figure 4.1 the architecture model transformations provide the horizontal integration. Two
kinds of transformations are used within the proposed solution: First, specification models are
synchronized with implementation models via a translation model. Second, translation models
may have to be transformed to match the different kinds of information required by the targeted
specification or implementation model language. Both kinds of transformations are described
in Chapter 7.

4.4 Explicitly Integrated Architecture Process

The three parts above build the conceptual foundation for a process for automatically inte-
grating architecture model information with program code and extracting this information.
Figure 4.2 shows a simple example of the Explicitly Integrated Architecture Process in action.
In this example an EJB Session Bean CashDesk is added to an existing bean BarcodeScanner.
The CashDesk is declared to be the parent of the BarcodeScanner.
(1) shows the program code for the bean BarcodeScanner.
(2) The implementation model is built by scanning the program code for well-defined struc-

tures based on the Model Integration Concept. In this example a type declaration with an
attached annotation Stateless is identified. The name of the declared type is identified as the
name of the bean.
(3) The implementation model is translated into a translation model, an instance of the IAL.
(4) The translation model is translated to a specification model. The specification model in

the example is represented using a UML component diagram. In an evolutionary step, a parent
component named CashDesk is added.
The changes are propagated to the code as follows:
At (5) the architecture specification model is translated into the translation model. A new

ComponentType with the name CashDesk is created, with a stereotype that allows to add
children to a component type.
(6) The translation model is translated into an implementation model. In this model the

hierarchy cannot be represented, because the EJB specification does not define component
hierarchies.
At (7) the program code is adapted corresponding to the changes in the implementation

model. I.e. the type CashDesk is created.
(8) The architecture information that has no representation in the implementation model is

translated into the code using the Model Integration Concept. In this example, the hierarchy is
translated as a field in the Java type declaration BarcodeScanner with the annotation EJB.
This is an annotation of the EJB framework, that specifies that an instance of the bean
BarcodeScanner has to be injected. Additionally this field has the annotation ChildTypes,
which marks the reference an instance of the childTypes reference. To remove the hierarchy the
code could be translated to a model using the process. As an alternative, the respective code
element could be removed.
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It should be noted that the hierarchy could also have been created in the terms of the approach
by simply adapting the code accordingly, because the models can be derived automatically. The
Explicitly Integrated Architecture Process is described in detail in Chapter 8.

(2)

(3)

(4) (5)

(6)

(7)

(8)

Program Code

Implementation Model

Translation Model

Specification Model

Translation of Commonalities Translation of Differences

(1)

Model Evolution Step

@Stateless
public class BarcodeScanner { ... }

@Stateless
public class BarcodeScanner { ... }

@Stateless
public class CashDesk {
  @EJB
  @ChildTypes
  BarcodeScanner barcodeScanner;
}

Figure 4.2: An Example of the Explicitly Integrated Architecture Process

This chapter gave an overview of the proposed solution and sketched the parts of the solution
and their interconnection. In the following chapters, these parts are described in detail.
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5 Model Integration Concept

The Model Integration Concept integrates architecture model information with program code.
Figure 5.1 highlights its role in the proposed solution. We first state the objective of the concept
and the foundational assumptions for its applicability in Section 5.1. Section 5.2 gives an
example of notations—a formal mapping between models (or meta models) and program code
structures. After an overview of the concept in Section 5.3, a formal definition of languages
involved in the concept, their required elements and their interrelationships is provided in
Section 5.4. This definition is the basis for the definition of notations of information in different
languages, which is given in Section 5.5. Section 5.6 identifies patterns for notations, called
integration mechanisms. At last, Section 5.7 describes the process how transformations for
specific languages are developed.

Implementation 
Model

Program Code

Architecture Model Transformations

Specification
Model

Model 
Integration 
Concept

Is  Translated  To

Model  Layer

Code  Layer

Translation 
Model (IAL)

Figure 5.1: The Model Integration Concept highlighted in the overview of the proposed solution

5.1 Foundational Assumptions for Integrating Models with
Program Code

The objective of the Model Integration Concept is to integrate model information with program
code written in an object-oriented general purpose programming language. It assumes the
existence of two languages. Both languages must be a described with meta models. One
language must be an object-oriented general purpose programming language. This language
is called the programming language in the context of this concept. The information modelled
with this language is called program code. The other language is an arbitrary other language.
The information modelled with this language is called model.
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5 Model Integration Concept

5.2 Example of an Integrated Model

Figure 5.2 shows a very simple example of an integrated architecture model.1 The meta model of
the modelling language on the upper left side of the figure comprises one class ComponentType
with the attributes name, and version, both of the type String. The lower left side shows
an instance of that meta model, a single object of the ComponentType class, with the name
BarcodeScanner, and the version 1.0. The right side shows their program code representation
with Java as a programming language. The lower right side shows a translation of the object.
The program code declares a type BarcodeScanner. An annotation ComponentType is attached
to the type, with the annotation member version set to 1.0. The upper right side shows the
translation of the meta model element. The meta model class is represented with the declaration
of an annotation with the name ComponentType. It has an annotation member version, of the
type String. The declaration of the annotation ComponentType is shown in the upper right
side.

Modeling Meta Model and Model Program Code in Java

M
e
ta

 M
o
d
e
l 
Le

v
e
l

M
o
d
e
l 
Le

v
e
l

public @interface ComponentType {
  String version();
}

@ComponentType(version="1.0")
public class BarcodeScanner {

}

Figure 5.2: Example of an integrated model. The upper left side shows a meta model. The
lower left side shows an instance of that meta model. The lower right side shows an
program code representation of the model. The upper right side shows an program
code representation of the meta model.

The relation shown in Figure 5.2 can be the basis for defining transformations between model
elements and program code, or meta model elements and program code. Such well-defined
translations have to ensure that the translation of a model element or a meta model element
into program code as well as the interpretation of model structures from the program code are
unambiguous. The relation between the meta model element and the annotation declaration
in the example in Figure 5.2 is based on the equality of the name of the meta model element
and the annotation declaration. A transformation based on this relation is executed once. As
long as the meta model remains unchanged, the translated code structure can be reused as a
library for programs to reference. The example also shows the relation of the program code

1The notation used for expressing meta model and model elements here and in following examples is related
to UML. They do, however, not represent UML classes and objects.
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and meta model view on the attribute version: The attribute is expressed as declaration of an
annotation member. Its type is declared correspondingly.
The relation between the model element and the type declaration with the attached annota-

tion in the example is based on the relationship between the type declaration and the attached
annotation. The fact that the annotation is attached to the type defines that this type repre-
sents an instance of a ComponentType meta model element. The name of the type is declared
to be equivalent with the value of the attribute name. The value of the annotation member
version is equivalent to the value of the attribute in the corresponding model element.

The example shows that two categories of bidirectional translations are necessary, one be-
tween the meta model and program code, and one between the model and program code. The
translations have to be set up so that the relationship between meta model elements and their
model instances are consistently translated into program code. E.g. the type of the annotation
member version enforces that the values entered can be used as values for the attribute.

The Model Integration Concept declares translations between the abstract syntax elements
of models and code, and their respective language elements. The translations must preserve
the semantics of the translated elements. When an execution runtime exists that interprets
the annotation of the type declaration to create a component instance, then the semantics of
the model element is declared in the execution runtime. The runtime could e.g. manage a life
cycle for the component instance, and announce its existence in a component instance registry.
These semantics must be reflected in the modelling language element that represents this code
element.
An execution runtime could also call methods within the declared type to execute behaviour.

The behaviour is not part of the meta model presented in Figure 5.2. It could be subject to
another modelling language, that is also integrated in the type declaration, or not be modelled
at all, in which case it would be considered an implementation detail in the context of the
Model Integration Concept. Therefore the body of the type declaration is called an entry point
for further details of the program.

5.3 Overview of the Parts of the Model Integration Concept

Figure 5.3 gives an overview of the elements in the Model Integration Concept and their
interrelationships. The Model Integration Concept consists of the following elements.

• Modelling Language Meta Models and Models: Modelling language meta models define
the abstract syntax of a modelling language. Models are instances of these meta models.
In Figure 5.3 the modelling languages meta models and models are shown on the left
hand side.

• Programming Language Meta Models and Program Code: Programming language meta
models in the context of the Model Integration Concept define the abstract syntax of a
programming language. Program code is an in an instance of such a meta model. In
Figure 5.3 programming language meta models and program code are shown on the right
hand side.

• Modelling Language Meta Model Code Structures: Modelling language meta model code
structures are parts of a program, that are defined to represent meta model elements of
modelling languages. These code structures are part of the program code in Figure 5.3.
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Programming Language Meta Model

Modelling Language Meta Model
Code Structures

Modelling Language 
Meta Model

Modelling Language 
Model

Implementation Detail

is instance of

links

Program Code

Modelling Language 
Model Code Structures

Entry
Points

includes
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is instance of
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Figure 5.3: An overview of the elements in the Model Integration Concept and their interre-
lationships. Well-defined program code structures represent meta model elements
and model elements of modelling languages. Entry points within the code structures
can be used to enter arbitrary other code.

• Modelling Language Model Code Structures: Modelling language model code structures
are parts of a program, that are defined to represent model elements of modelling lan-
guages. These code structures may link other code structures, which represent meta
model elements of modelling languages, to define that a code structure represent an in-
stance of the corresponding meta model element. These code structures are part of the
program code in Figure 5.3.

• Implementation Details: Every program code, that does not represent a model element
or a meta model element, is considered an implementation detail. Implementation details
are not subject to translation in the approach presented in this thesis. Implementation
details are part of the program code in Figure 5.3.

• Entry Points: Some parts of the code structures are fixed, so that the model-code
mapping is well-defined. Other parts of the structures are explicitly declared to be
flexible, so that a relationship to the rest of a program can be created. Entry points are
these flexible places within modelling language model code structures, that can include
implementation details. Entry points are part of the modelling language model code
structures in Figure 5.3.

• Notations: Notations describe how a modelling language meta model element (meta
model notations) or model element (model notations) are represented using program code
structures written in a specific programming language. They describe an equivalence
relation between meta model or model elements and program code structures. Notation
are shown in Figure 5.3 as bidirectional edges with the label represents between the
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modelling language meta model and the modelling language meta model code structures,
and between the modelling language model and the modelling language model code
structures.

• Integration Mechanisms: Integration mechanisms are a generalisation of notations. Inte-
gration mechanisms define a translation between placeholders of meta model elements or
model elements and program code elements and can therefore be used as templates for
building specific notations between languages. Integration mechanisms are not shown in
Figure 5.3.

The following sections describe these elements and their interrelationships in more details,
before they are defined in Section 5.4.

5.3.1 Modelling Language Meta Models

The abstract syntax of modelling languages in the context of the Model Integration Concept
is described with meta models. These meta models define classes, attributes, and references.
Classes own attributes and references. Attributes are typed. References define the allowed
relationships between instances of classes. References target classes and have a cardinality. A
subset of references are containment references, meaning that the reference’s source owns the
reference’s target. Classes, attributes, and references are named. Figure 5.4 shows an example
of a graphical notation2 of a simple meta model with classes, attributes, and references. The
nodes are classes with their name at the top and a list of attributes below. Attributes are
notated with their name and their type. References are represented as edges between the
nodes. Their name and cardinality is attached as label. Containment references have a black
diamond at their source class. All references have an arrow head at their target class.

Figure 5.4: A graphical notation of a simple meta model

5.3.2 Modelling Language Models

Models are instances of meta models. They comprise objects, assign values to attributes and
assign targets to references of objects. Figure 5.5 shows an example of a graphical notation of a

2The graphical notation for meta models used in this thesis is closely related to the one used by the EcoreTools
(https://www.eclipse.org/ecoretools/overview.html) for Ecore meta models
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simple model3. The model is an instance of the meta model in Figure 5.4. The nodes are object
with the name of their class after a colon at the top, and a list of value assignments to attributes
below. Attribute assignments show the name of the attribute of the class, an equality sign and
the assigned value. The targets of references are represented as edges between the objects.
Containment references have a black diamond at the source. Other references have an arrow
head at the target. When a model is the instance of a meta model, it must be conform to the
constraints regarding the classes, attributes, and references available, their typing, cardinalities,
and naming, expressed by the meta model.

Figure 5.5: A graphical notation of a simple model. The model is an instance of the meta model
shown in Figure 5.4.

5.3.3 Programming Language Meta Models

Programming languages in the context of the Model Integration Concept are defined like
modelling languages, but with a specific set of abstract syntax elements and their interrelations
in the meta model. Figure 5.6 shows an excerpt of the required abstract syntax. The excerpt
defines the class Type which corresponds to an object-oriented type declaration. A type is
named. An Annotation corresponds to annotations in Java. They are typed meta data
declarations, that can be attached to other program code elements. Annotations are named,
and can have Annotation Parameters. Annotation parameters are named and typed properties
of annotations. When annotations are attached to an element, this can be represented using
the class AttachedAnnotation. An attached annotation has an annotation as type and a
list of Attached Annotation Parameters which correspond to the parameters of the attached
annotation. The attached annotations parameters may have values corresponding to the types
of their respective parameters4.

The Model Integration Concept does not provide a thorough definition of a specific program-
ming language, but describes abstract concepts, which need to be available in a programming
language to be applicable in this context. A programming language is usable with the Model
Integration Concept, when the necessary abstract syntax elements are mappable to abstract
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Figure 5.6: An excerpt of elements in the meta model of programming languages in the Model
Integration Concept

syntax elements of the programming language.

5.3.4 Program Code

Programs are descriptions of structures and behaviour. They are typically notated with a
textual syntax of a programming language. In the context of the Model Integration Con-
cept, programs are models that instantiate programming language meta models. Figure 5.7
shows a very simple instance of the programming language meta model described above. List-
ing 5.1 shows this program in the Java programming language. It first declares the annotation
ComponentType with a parameter version, a String. It then declares a type with the name
BarcodeScanner, with the annotation ComponentType attached to it. The attachment assigns
the value 1.0 to the parameter. In the context of this thesis, only descriptions of structures
are considered. Imperative behaviour descriptions in program code, such as the content of
operation bodies, are not within the scope of this thesis.

Figure 5.7: An example of a simple program

3The graphical notation for models in this thesis is the one used by the HenshinTGG Editor (http://
de-tu-berlin-tfs.github.io/Henshin-Editor/)

4In the definition of programming languages in Section 5.4.4, attached annotation parameters can actually
take multiple values for handling arrays. In this example, only single values are allowed.
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1public @interface ComponentType {
2String version ();
3}
4

5@ComponentType(version="1.0")
6public class BacodeScanner { }

Listing 5.1: The simple program of Figure 5.7 written in Java

5.3.5 Modelling Language Meta Model Code Structures

Modelling language meta model code structures are parts of program code, that represent meta
model elements in the Model Integration Concept. Figure 5.8 shows an excerpt of the example
of Figure 5.2. On the left side, it shows the class ComponentType, with its two attributes name
and version, both of the type String. On the right side, the figure shows the code structure,
that represents this meta model element in Java: an annotation declaration ComponentType
with an annotation parameter version of the type String. The name attribute has no direct
representation in the code structure.

Modeling Language Meta Model Program Code in Java
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public @interface ComponentType {
  String version();
}

Figure 5.8: The meta model code structure (right hand side) extracted from the example of
Figure 5.2

5.3.6 Modelling Language Model Code Structures

Modelling language model code structures are parts of program code, that represent model
elements in the Model Integration Concept. Figure 5.9 shows an excerpt of the example of
Figure 5.2. On the left side, it shows an object of the class ComponentType, which is shown
in Figure 5.8. Its name attribute value is set to BarcodeScanner. Its version attribute value is
set to 1.0. On the right side, the figure shows the code structure, that represents this model
element in Java: The type declaration BarcodeScanner represents the object. The annotation
ComponentType is attached to the type, thus indicating, that the declared type represents an
object of the class ComponentType. The name attribute’s value corresponds to the declared
type name. The version attribute’s value is declared in the attached annotation parameter.

5.3.7 Notations

Notations define an equivalence relation between model elements and program code structures.
There are two types of notations: Meta model notations define equivalence relationships be-
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Modeling Language Model Program Code in Java
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@ComponentType(version="1.0")
public class BarcodeScanner {

}

Figure 5.9: The model code structure (right hand side) extracted from the example of Figure 5.2

tween meta model elements and program code structures. Model notations define equivalence
relationships between model elements and program code structures.

Figure 5.10 shows the meta model notation for the example meta model element and program
code structure given in Figure 5.8. The attribute name is not declared in the meta model
notation. This attribute is subject to the model notation.

Modeling Language Meta Model Program Code in Java
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public @interface ComponentType {
  String version();
}

Figure 5.10: The meta model notation highlighted in the example of Figure 5.2

Figure 5.11 shows the model notation for the example model element and program code
structure given in Figure 5.9.
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@ComponentType(version="1.0")
public class BarcodeScanner {

} Entry Point

Figure 5.11: The model notation highlighted in the example of Figure 5.2
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5.3.8 Entry Points

Entry points are parts of modelling language model code structures, that can include arbitrary
other program code. Notations declare entry points in their program code structures. In
Figure 5.11 the type declaration is considered the entry point in the code structure, indicated
by the dashed box in the type’s body. The entry point means that the type can be extended with
arbitrary other code, e.g. further annotations, interface implementations, member attributes,
or operations.

5.3.9 Integration Mechanisms

Integration mechanisms are templates for meta model notations and model notations. Instead
of describing notations for specific meta model or model elements such as those described infor-
mally in the Figures 5.10 and 5.11, integration mechanisms describe notations for placeholder
elements of meta models or models respectively. Several integration mechanisms are described
in Section 5.6 for representing classes, attributes, containment references, or non-containment
references.
This section gave an overview of the elements in the Model Integration Concept. In the next

section, the elements will be described in detail.

5.4 Foundational Definitions

The Model Integration Concept defines formal bidirectional mappings between model and meta
model elements on the one side and program code structures on the other side, using notations.
Templates of actual notations will be presented later in this chapter. For understanding the
formal definition of notations (see Section 5.5) and specific integration mechanisms (see Sec-
tion 5.6), the foundations need to be formally defined. This section defines these foundational
elements. First, the meta models (Section 5.4.1) and models (Section 5.4.2) of modelling lan-
guages are defined. Then, the meta model of programming languages (Section 5.4.4) and its
instantiation (Section 5.4.5) are defined.

5.4.1 Modelling Language Meta Models

Meta models in the context of the Model Integration Concept describe the abstract syntax
elements that can be modelled and the possible relations between these elements.5 Figure 5.12
accompanies the definition as an overview of types of abstract syntax elements and their
relationships to each other, to data types, and labels. The definitions 1 and 2 define meta
models and their classes, attributes, and references.

5The concepts used for the modelling language meta model in this approach is conceptually based on the Ecore
meta meta model [SBPM09].
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Language Meta Model
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Figure 5.12: An overview of the elements of language meta models and their relations to each
other

Definition 1: Modelling Language Meta Model

A meta model MMeta is defined as follows:

MMeta = (A,D,L, F ), where

• A is a set of abstract syntax elements of the language, with a typing function
isOf−−−→: A→ {ClassType,AttributeType,ReferenceType},

• D = {String,Boolean, Int, F loat, V oid,Any,Datatype} is a set of data types,

• L a set of labels,

• F is a set of relations and functions, that define the interdependencies between
abstract syntax elements, data types, and string labels. The elements of F are
subsequently defined in the following definitions.

Definition 2: Meta Model Abstract Syntax Element Types

For the abstract syntax elements A of a meta model, the following subsets of A are defined
to highlight the types of abstract syntax elements:

• Classes := {a | a ∈ A ∧ a isOf−−−→ ClassType},

• Attributes := {a | a ∈ A ∧ a isOf−−−→ AttributeType},

• References := {a | a ∈ A ∧ a isOf−−−→ ReferenceType}.

The abstract syntax elements of language meta models are named:
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Definition 3: Named Abstract Syntax Elements of Modelling Language Meta
Models

For the abstract syntax elements A of a meta model and its labels L the function

name : A→ L

relates a name to an abstract syntax element.

Abstract syntax elements of meta models have interrelationships. Classes own attributes and
references, which is declared with the relation has−−→. Attributes and References are typed using
the function isOfType−−−−−−→. The type of attributes and references determine which kind of values
they represent.

Definition 4: Classes own Attributes and References

The relation has−−→ defines that a class owns attributes and references:

has−−→⊆ Classes× (Attributes ∪References)

For a class c ∈ Classes and an attribute or reference e ∈ Attributes ∪ References,
the relation has−−→ can also be notated c

has−−→ e. When an attribute or reference e ∈
Attributes ∪ References is owned by a class c ∈ Classes, the owned element can also
be identified with a dot as separator:

c.e :⇐⇒ e, c
has−−→ e

Instead of the elements, their name can also be used. E.g. for a class c ∈ Classes and
an attribute a ∈ Attributes:

c
has−−→ a ∧ name(c) = Component ∧ name(a) = id⇔ Component.id = a

Constraint 1: Constraints to Owning Attributes or References

Each attribute and each reference must be owned by exactly one class: For two classes
c1, c2 ∈ Classes and an attribute or reference e ∈ Attributes ∪ References the following
must be true:

c1
has−−→ e ∧ c2

has−−→ e =⇒ c1 = c2

Attributes and references owned by the same class must not have the same name: For
a class c ∈ Classes and two attributes or references e1, e2 ∈ Attributes ∪References the
following must be true:

c
has−−→ e1 ∧ c

has−−→ e2 ∧ name(e1) = name(e2) =⇒ e1 = e2
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Attributes and references are typed. The type of a reference is its targeted class.

Definition 5: Typed Attributes

For a meta model MMeta, its attributes Attributes, and its types D (all but Void), the
function

isOfType−−−−−−→: Attributes→ D \ {V oid}

relates a data type to an attribute. a isOfType−−−−−−→ d can also be notated as type(a) = d.

Definition 6: Reference Targets

For a meta model MMeta, its references References and its classes Classes, the relation

isOfType−−−−−−→⊆ References× Classes

defines that a reference targets a class. (r, c) ⊆ isOfType−−−−−−→ can also be notated as r isOfType−−−−−−→ c
or type(r) = c.
Please note that this allows a reference to have multiple types. This means that any

object can be assigned as target, that instantiates one of these classes.

References have cardinalities, which define how many other objects an object can target with
the reference.

Definition 7: Reference Cardinalities

For a meta model MMeta and its references References, the cardinality of references is
declared using the following function:

cardinality−−−−−−−→: References→ {0..1, 0..∗, 1..1, 1..∗}

The cardinality constraints the amount of target objects in an instance of the meta model
(see Constraint 6). If no cardinality is explicitly stated, a cardinality of 0..∗ is assumed.

A subset of references are containment references, meaning that the source object owns the
target object.

Definition 8: Containment References

For a meta model MMeta and its references References, the subset of references that are
containment references is defined as:

Containment ⊆ References

Containment references define that instances of the origin class own the instances that
are referenced by the containment reference.
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5.4.2 Modelling Language Model

Meta models can be instantiated by models. When meta models are instantiated, instances of
their classes are created, values are assigned to attributes, and targets are set for references,
following the defined relations between abstract syntax elements of the meta model. Figure 5.13
accompanies the following definitions as an overview of the elements of models, their relation-
ships to each other and to meta model elements. The upper part of Figure 5.13 shows the
modeling language meta model elements defined above. The middle and the lower part show
language models, their elements and their interconnections with each other and with a language
meta model.

Language Meta Model
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Class Attribute Data Type
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Figure 5.13: An overview of the elements of models, their relations to each other and to meta
model elements
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Definition 9: Modelling Language Model

A model M is an instance of a meta model MMeta. It is defined as a tuple

M = (MMeta, O, V,N, F,R), where

• MMeta is the meta model of the model,

• O is a set of objects building the model,

• V is a set of value literals, with a typing function isOfType−−−−−−→: V → DMMeta

• N ⊆ V is a set of labels,

• F is a set of relations and functions, that define the interconnection of the objects,
data types of the meta model, value literals, and abstract syntax elements of the
meta model, subsequently defined in the following definitions.

• R is a set of models which are referenced by this model.

A meta model is instantiated by defining objects, assigning attribute values, and targets to
references of objects, in correspondence to the rules defined by the meta model.

Definition 10: Meta Model Instantiation

A model M instantiates a meta model MMeta by instantiating the classes ClassesMMeta

with objects OM (see Definition 11), assigning values to attributes (see Definition 12), and
assigning targets to references (see Definition 13).

Objects instantiate classes. They are typed by their classes.

Definition 11: Class Instantiation

An object instantiates a class. For a meta model, its classes Classes, a model of that meta
model and its objects O, the function

instanceOf−−−−−−−→: O → Classes

returns the class that an object instantiates.

Values can be assigned to the attributes of an object’s class.

Definition 12: Assigning Values to Attributes

For a meta model, its attributes Attributes, a model of that meta model, its objects O,
and its value literals V , the relation

hasV alue−−−−−−→⊆ O ×Attributes× V

assigns a value literal to an object’s attribute. For an object o ∈ O, an attribute a ∈
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Attributes, and a value literal v ∈ V , this assignment can also be written:

o.a
hasV alue−−−−−−→ v, or value(o.a) = v

E.g. for an object o ∈ O, an attribute a ∈ Attributes that is owned by the class that o
instantiates (i.e. o instanceOf−−−−−−−→ c ∧ c has−−→ a), with name(a) = id, and a value literal 1:

o.id hasV alue−−−−−−→ 1

Constraint 2: Values can only be Assigned to Attributes of an Object’s Class

It is only possible to assign values to attributes for an object, when the attribute is owned
by the object’s class. Let o be an object, a be an attribute, and v be a value literal. Then

(o, a)
hasV alue−−−−−−→ v =⇒ ∃c ∈ Classes : o

instanceOf−−−−−−−→ c ∧ c has−−→ a

Constraint 3: Value Assignments of Attributes must respect the Attribute’s
Type

The assignment of a value to an attribute for an object must respect the attribute’s type.
For a meta model, its class c ∈ Classes, its attribute a ∈ Attributes, its data type d ∈ D,
a model of the meta model, and its object o ∈ O, the following must be true:

(o, a)
hasV alue−−−−−−→ v ∧ o instanceOf−−−−−−−→ c ∧ c has−−→ a ∧ a isOfType−−−−−−→ d =⇒ v

isOfType−−−−−−→ d

Targets are assigned to references for objects. Target assignments respect the target type
and the cardinality of the reference.

Definition 13: Assigning Targets to References

An object can assign targets to references owned by its class. For a meta model, its
references References, a model of that meta model, and its objects O, the relation

references−−−−−−−→⊆ O ×References×O

assigns a target to a reference for a source object.
Let MMeta be a meta model, with csource, ctarget ∈ ClassesMMeta

and
r ∈ ReferencesMMeta

. The reference is owned by csource and targets ctarget:

csource
has−−→ r, r

isOfType−−−−−−→ ctarget.

Now let M
instanceOf−−−−−−−→ MMeta be a model of that meta model, with two objects

osource, otarget ∈ OM , with osource
instanceOf−−−−−−−→ csource ∧ otarget

instanceOf−−−−−−−→ ctarget. Then

the assignment (osource, r, otarget) ∈
references−−−−−−−→ can be written as follows:

(osource, r)
references−−−−−−−→ otarget
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When the name of the reference is given, it can also be written in a short hand notation.
Let the reference be named as follows: name(r) = child, then the assignment can be
written as follows:

osource.child
references−−−−−−−→ otarget

Constraint 4: Targets can only be Assigned to References of an Object’s Class

It is only possible to assign targets to references for an object, when the reference is owned
by the object’s class.

Let osource be a source object, r be a reference, and otarget be a target object. Then

(osource, r)
references−−−−−−−→ otarget =⇒ ∃c ∈ Classes : osource

instanceOf−−−−−−−→ c ∧ c has−−→ r

Constraint 5: Target Assignments of References must respect the Reference’s
Type

The assignment of targets to references must respect the reference’s type. Let osource be a
source object, r be a reference, and otarget be a target object. Then

(osource, r)
references−−−−−−−→ otarget =⇒ ∃c ∈ Classes : otarget

instanceOf−−−−−−−→ c ∧ r isOfType−−−−−−→ c

Constraint 6: Target Assignments of References must respect the Reference’s
Cardinality

The assignment of targets to references must respect the reference’s cardinality. Let s be
a source object, and r be a reference. Let references−−−−−−−→s,r⊆

references−−−−−−−→ be the set of target

assignments (s, r, o) for the reference r and the source object s. Then for all references−−−−−−−→s,r:

r
cardinality−−−−−−−→ 0..1 =⇒ 0 ≤

∣∣∣ references−−−−−−−→s,r

∣∣∣ ≤ 1

r
cardinality−−−−−−−→ 0..* =⇒ 0 ≤

∣∣∣ references−−−−−−−→s,r

∣∣∣ ≤ ∞
r

cardinality−−−−−−−→ 1..* =⇒ 1 ≤
∣∣∣ references−−−−−−−→s,r

∣∣∣ ≤ ∞
r

cardinality−−−−−−−→ 1..1 =⇒ 1 ≤
∣∣∣ references−−−−−−−→s,r

∣∣∣ ≤ 1
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A model can reference other models. This means that all objects, literal values, string labels,
and the functions and relations of the referenced models can be used in the referencing model.

Definition 14: Model Dependencies

For a model M = (MMeta, O, V,N, F,R), the set R declares models on which M depends.
All objects o ∈ O, value literals v ∈ V , and functions and relations f ∈ F of dependencies
r ∈ R can be used in the model M as if they were contained in the model itself.
Dependencies can span multiple levels. I.e. a model M1 that depends on a model M2

can itself be the dependency of another language M0.

5.4.3 Example Meta Model and Example Model

The following examples show how this formalization can be used to describe a meta model and
a corresponding model. Figure 5.14 depicts an example meta model. It defines a class Com-
ponentType with two attributes: name and version, both of the type String. The component
has a reference provided that targets the class Interface. The interface has an attribute named
name, a String. The formalization of this meta model is given in Example 1.

Figure 5.14: Example meta model as formalized in Example 1

Example 1: Formalization of the modelling language in Figure 5.14

The example meta model MExample
Meta is formalized as follows:

Classes := {c, i} Attributes := {aversion, acname, a
i
name}

References := {rprovided} Containment := ∅

The elements are named as follows:

name(c) = ComponentType, name(aversion) = version,

name(acname) = name, name(ainame) = name,
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name(rprovided) = provided

The attributes and references are defined as follows:

ComponentType.version isOfType−−−−−−→ String, ComponentType.name isOfType−−−−−−→ String,

ComponentType.provided references−−−−−−−→ Component, InterfaceType.name isOfType−−−−−−→ String

Figure 5.15 shows a model of the meta model defined in Example 1. The model declares a
component type with the name BarcodeScanner and the version 1.1, which provides an interface
IBarcodeScanner.

Figure 5.15: Example model as formalized in Example 2

Example 2: Formalization of a model based on the meta model defined in
Example 1 as depicted in Figure 5.15

The example model MExample instanceOf−−−−−−−→MExample
Meta is formalized as follows:

O := {c, i}

The objects instantiate the following classes:

c
instanceOf−−−−−−−→ ComponentType, i

instanceOf−−−−−−−→ Interface

The assignments of values to attributes and targets of references are defined as follows:

i.name hasV alue−−−−−−→ IBarcodeScanner, c.name hasV alue−−−−−−→ BarcodeScanner,

c.version hasV alue−−−−−−→ 1..1, c.provided references−−−−−−−→ i
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5.4.4 Programming Language Meta Models

Programming languages in the context of the Model Integration Concept contain specific
abstract syntax elements and relationships between these elements, that are typical for current
object oriented imperative programming languages. The definitions 15 to 28 specify the
requirements for programming languages.

Definition 15: Programming Languages Meta Model

A programming language meta model PMeta is similar to a meta model of modelling
languages (see Definition 1) with the following constraints (Definitions 15 to 28). The
following classes or equivalents must exist in ClassesPMeta

:

• N is the class of namespaces,

• I is the class of interfaces,

• T is the class of types,

• MA is the class of member attributes,

• MR is the class of member references,

• OS is the class of operation signatures,

• OP is the class of operation parameters,

• O is the class of operations,

• A is the class of annotations,

• AP is the class of annotation parameters,

• AA is the class of annotation attachments,

• AAP is the class of parameters of annotation attachments.

The classes ClassesPMeta
, their attributes AttributesPMeta

and their relations
ReferencesPMeta

, as well as the labels LPMeta
, and the relations and functions FPMeta

will now
be subsequently defined, including short examples. Figure 5.16 accompanies the definition as
an overview of the abstract syntax elements and their containment references.
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Figure 5.16: An overview of the types of abstract syntax elements in programming languages
and their containment relations. Non-containment references and attributes are
omitted here for readability reasons. Annotation attachments and their parameters
are shown in Figure 5.22.
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Named Elements

All classes of programming languages but operations, annotation attachments, and annotation
attachment parameters own an attribute for assigning names to instances.

Definition 16: Named Elements in Programming Languages

Namespaces, interfaces, types, member attributes, member references, operation signa-
tures, operation parameter, annotations, and annotation parameters each own an attribute
name that is be used to assign names to their instances.

Named = {N , I, T ,MA,MR,OS,OP,A,AP}

∀n ∈ Named : n.name
isOfType−−−−−−→ String

Namespaces

N is the class of namespaces. They own interfaces, types, and annotations. They are hierar-
chically organized, meaning that namespaces may own other namespaces.

Definition 17: Namespaces

For a programming language meta model, N is the class of namespaces. The following
containment references declare the containment of interfaces, types, and annotations.

N .interfaces isOfType−−−−−−→ I,

N .types isOfType−−−−−−→ T ,

N .annotations isOfType−−−−−−→ A

interfaces, types, annotations ∈ Containment

Namespaces are hierarchically organized.

N .children isOfType−−−−−−→ N ,

Interfaces and Types

I is the class of interfaces in programming languages. T is the class of types as they are
known from object-oriented languages. Inheritance is not within the scope of this work. Types
can implement interfaces. Figure 5.17 depicts the non-containment references of types and
interfaces.
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Figure 5.17: The non-containment references of types and interfaces. Types can implement
interfaces.

Definition 18: Interfaces

I is the class of interfaces. Interfaces have operation signatures

I.operationSignatures isOfType−−−−−−→ OS,
operationSignatures ∈ Containment

Definition 19: Types

T is the class of types. Types have operation signatures, operations, member attributes,
and member references.

T .operationSignatures isOfType−−−−−−→ OS,

T .operations isOfType−−−−−−→ O,

T .memberAttributes isOfType−−−−−−→MA,

T .memberReferences isOfType−−−−−−→MR,
operations ∈ Containment,

operationSignatures ∈ Containment,
memberAttributes ∈ Containment,
memberReferences ∈ Containment

Types can implement interfaces.

T .implements isOfType−−−−−−→ I

Member Attributes and Member References

MA is the class of member attributes. Member attributes have types and may have values.
Their type is a data type (String, Boolean, Int or Float). Figure 5.18 depicts the attributes of
the model class MemberAttribute.
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Figure 5.18: The attributes of the member attributes. Member attributes have types.

Definition 20: Member Attributes

Member attributes have types and optional values. The member attribute’s type may be a
data types of String, Boolean, Int or Float (notated with the type Datatype). The following
attributes are defined for the classMA:

MA.type isOfType−−−−−−→ Datatype,

MA.value isOfType−−−−−−→ Any

When an actual value is assigned to a member attribute, it must respect the type.
The details on the constraints on assigning values to member attributes are defined in
Constraint 12.

MR is the class of member references. Member references are typed by either an interface
in I or a type in T . They can be of an array type, meaning that they can reference multiple
objects. Figure 5.19 depicts the attributes and non-containment references of the model class
MemberReference.

Figure 5.19: The attributes and non-containment references of member references. Member
references are typed.
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Definition 21: Member References

Member references have an interface or a type as target. They can be of an array type.

MR.type isOfType−−−−−−→ I,

MR.type isOfType−−−−−−→ T ,

MR.type cardinality−−−−−−−→ 1..1,

MR.isArrayType isOfType−−−−−−→ Boolean

If no value is explicitly assigned to the attribute isArrayType for a member reference
mr, it is assumed that mr.isArrayType hasV alue−−−−−−→ false.

Operation Signatures, Operation Parameters, and Operations

An operation is the implementation for an operation signature. Operation Signatures have
operation parameters. Operation signatures and operation parameters are typed, either by a
data type or by an interface. Figure 5.20 accompanies this definition as an overview.

Figure 5.20: An overview of operations, operation signatures, and operation parameters

Definition 22: Operation Signatures

OS is the class of operations signatures. Interfaces and types have operation signatures
(see definitions 18 and 19). Operation signatures have a set of operation parameters OP.

OS.parameters isOfType−−−−−−→ OP,
parameters ∈ Containments

Operation Signatures have an object as type that instantiates an interface in I or a type
in T . It is considered the return type of the operation upon successful execution.
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OS.type isOfType−−−−−−→ I,

OS.type isOfType−−−−−−→ T ,

OS.type cardinality−−−−−−−→ 1..1

Definition 23: Operation Parameters

OP is the class of operation parameters. Operation parameters have an object as type
that instantiates an interface in I or a type in T .

OP.type isOfType−−−−−−→ I,

OP.type isOfType−−−−−−→ T ,

OP.type cardinality−−−−−−−→ 1..1

Definition 24: Operations

O is the class of operations. An operation is the implementation for one operation signature.

O.signature isOfType−−−−−−→ OS,

O.signature cardinality−−−−−−−→ 1..1

Constraint 7: Implementing Operation Signatures

Multiple operations can implement a signature. For each type, only one such operation
must exist. Let o1, o2 ∈ O be operations, os ∈ OS an operation signature, and t ∈ T a
type.

o1.signature
references−−−−−−−→ os ∧ o2.signature

references−−−−−−−→ os

∧t.operations references−−−−−−−→ o1 ∧ t.operations
references−−−−−−−→ o2 =⇒ o1 = o2

Annotations

A is the class of typed meta data declarations called annotations. Annotations have typed pa-
rameters. Annotation parameters are typed analogously to operation signatures and operation
parameters. Figure 5.21 accompanies this definition as an overview.
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Figure 5.21: An overview of annotations and annotation parameters

Definition 25: Annotations

A is the class of annotations. They have annotation parameters:

A.parameters isOfType−−−−−−→ AP,
A.parameters ∈ Containments

Definition 26: Annotation Parameters

AP is the class of annotation parameters. Annotation parameters may have a data type
as type, or an object that instantiates an interface in I or a type in T .

AP.type isOfType−−−−−−→ Datatype,

AP.referenceType isOfType−−−−−−→ I,

AP.referenceType cardinality−−−−−−−→ 0..1

When the reference referenceType is set, any value assigned to type is ignored. When
neither the reference or attribute is set, any type can be assigned to the parameter as
reference type (see Constraint 14).
Annotation parameters with a reference type can be of an array type. If no value is

explicitly assigned to this attribute, it is assumed to be false.

AP.isArrayType isOfType−−−−−−→ Boolean

One annotation parameter of an annotation can be the default parameter.

A.defaultParameter isOfType−−−−−−→ AP

A.defaultParameter cardinality−−−−−−−→ 0..1
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Constraint 8: Constraints to Array Type Annotation Parameters

Only annotation parameters with reference types can be of an array type.

∀ap ∈ ClassesPMeta
: ap

instanceOf−−−−−−−→ AP ∧ ap.isArrayType hasV alue−−−−−−→ true =⇒

∃i ∈ ClassesPMeta
: i

instanceOf−−−−−−−→ I ∧ ap.referenceType hasV alue−−−−−−→ i

Annotations can be attached to types, interfaces, member attributes, member references,
operations, and operation signatures. When these annotations are attached, values or targets
have to be assigned to their parameters. Figure 5.22 gives an overview of the classes, references,
and attributes for attaching annotations to elements and assigning values or targets to their
parameters.

Figure 5.22: An overview of annotations and annotation parameters attached to elements

Definition 27: Annotation Attachments

AA is the class of annotation attachments. Annotation attachments are owned by types,
interfaces, member attributes, member references, or operations.

T .attachedAnnotations isOfType−−−−−−→ AA, T .attachedAnnotations ∈ Containment,

I.attachedAnnotations isOfType−−−−−−→ AA, I.attachedAnnotations ∈ Containment,

MA.attachedAnnotations isOfType−−−−−−→ AA, MA.attachedAnnotations ∈ Containment,
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MR.attachedAnnotations isOfType−−−−−−→ AA, MR.attachedAnnotations ∈ Containment,

O.attachedAnnotations isOfType−−−−−−→ AA, O.attachedAnnotations ∈ Containment

OS.attachedAnnotations isOfType−−−−−−→ AA, OS.attachedAnnotations ∈ Containment

Attached annotations reference an annotation that is attached to its owner.

AA.annotation isOfType−−−−−−→ A,

AA.annotation cardinality−−−−−−−→ 1..1

Attached annotations may own attached annotation parameters.

AA.parameters isOfType−−−−−−→ AAP,
AA.parameters ∈ Containment

Definition 28: Parameters of Annotation Attachments

AAP is the class of parameters for annotation attachments. They reference an annotation
parameter. A value attribute and a value reference can be used to describe the static value
of the attached annotation parameter.

AAP.parameter isOfType−−−−−−→ AP, AAP.parameter cardinality−−−−−−−→ 1..1,

AAP.value isOfType−−−−−−→ Any, AAP.referenceV alue isOfType−−−−−−→ T

When an actual value or reference value is assigned to a parameter of an attached
annotation (see Definition 31), it must respect the parameter’s type and cardinality. The
details on the constraints on assigning values to parameters of attached annotations are
defined in the Constraints 13 and 14.

5.4.5 Program Code

Program code is a model that instantiates a programming language meta model. In the
following, program code and the constraints for creating program code are described.

Definition 29: Program Code Definition

Program code is an instance of a programming language meta model, following Definition 9
of models.

Constraint 9: Tree Structures for Namespaces

Structures of namespaces are only well-formed when they form a tree structure.

Member attributes and member references of types must be uniquely named.
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Constraint 10: Uniquely Named Members within Types

The set M of member attributes t.memberAttributes and member references
t.memberReferences of a type t ∈ O, t

instanceOf−−−−−−−→ T must contain uniquely named
objects.

∀m1,m2 ∈M : m1.name = m2.name =⇒ m1 = m2

Types that Implement Interfaces

Types can implement interfaces. When a type implements an interface, it has operations for
each operation signature of the implemented interface.

Constraint 11: Interface Implementation

A type that implements an interface is obliged to own operations for all operation signatures
of that interface.
For a program code, let t ∈ O, t instanceOf−−−−−−−→ T be a type and i ∈ O, i instanceOf−−−−−−−→ I be an

interface. Then:

∀os ∈ O :os
instanceOf−−−−−−−→ OS ∧ i.operationSignatures references−−−−−−−→ os

∧ t.implements references−−−−−−−→ i =⇒ ∃o ∈ O ∧ o instanceOf−−−−−−−→ O

∧ t.operations references−−−−−−−→ o ∧ o.signature references−−−−−−−→ os

Member Attribute Constraints

When assigning values to member attributes, the values must be of the member attribute’s
type.

Constraint 12: Member Attribute Value Assignments Respect their Type

A member attribute value must be an instance of the member attribute’s type. I.e. for a
data type d ∈ D, a member attribute m ∈ O,m instanceOf−−−−−−−→ MA, and a value v ∈ V , the
following must be true:

m.type
hasV alue−−−−−−→ d ∧m.value hasV alue−−−−−−→ v =⇒ v

isOfType−−−−−−→ d
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Attaching Annotations to Elements

Annotations can be attached to types, interfaces, member attributes, member references,
operation signatures, operation parameters, and operations.

Definition 30: Attaching Annotations to other Elements

The relation attachedTo−−−−−−−→ is used for attaching annotations to elements. For an annotation
a ∈ O, a instanceOf−−−−−−−→ A and an object e ∈ O, e instanceOf−−−−−−−→ x, x ∈ {T , I,MA,MR,O,OS},

a
attachedTo−−−−−−−→ e :⇐⇒ ∃α ∈ O : α

instanceOf−−−−−−−→ AA

∧ e.attachedAnnotations references−−−−−−−→ α ∧ α.annotation references−−−−−−−→ a

When the name of the annotation is known, the attachment can also be written in a
short hand notation. For an attachment a attachedTo−−−−−−−→ e, let the annotation be named as
follows: name(a) = Versioned, then the assignment can be written as follows:

e.Versioned

Definition 31: Assigning Values to Parameters of Attached Annotations

When annotations are attached to elements, values must be assigned to the annotations’
parameters for the attachment. The following relations is a short hand notation for
assigning values to parameters in annotation attachments:

hasV alue−−−−−−→⊆ Φ× (V ∪ Types)

The set Φ is the set of all tuples representing parameters of attached annotations:

Φ := {(e, a, ap) | a attachedTo−−−−−−−→ e ∧ a has−−→ ap}

The set Types is the set of all types.

Types :⇐⇒ {o | o ∈ O ∧ (o
instanceOf−−−−−−−→ T )}

The relation hasV alue−−−−−−→ is defined as follows. Let e be an annotatable element (see
Definition 30), a ∈ O, a

instanceOf−−−−−−−→ A be an annotation, ap ∈ O, ap
instanceOf−−−−−−−→ AP

an annotation parameter, and v ∈ V ∪ Types a value literal or targeted type or interface
object. Then let a attachedTo−−−−−−−→ e, and α ∈ O,α instanceOf−−−−−−−→ AA be the annotation attachment
therein. Then:

(e, a, p)
hasV alue−−−−−−→ v :⇐⇒ ∃β ∈ O ∧ β instanceOf−−−−−−−→ AAP

∧ α.parameters references−−−−−−−→ β ∧ β.parameter references−−−−−−−→ p
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The annotation parameter must be owned by the annotation.

(e, a, p)
hasV alue−−−−−−→ v =⇒ a.parameters

references−−−−−−−→ p

Let e be an annotatable element, a be an annotation, with name(a) = Versioned and p
a parameter of a, with name(p) = version, then the attached annotation parameter can
also be identified as follows:

e.Versioned.version

Therefore the assignment of a value v ∈ V ∪Types to the attached annotation parameter
can be written as follows:

e.Versioned.version hasV alue−−−−−−→ v, or value(e.Versioned.version) = v

Constraint 13: Annotation Parameter Value Assignments Respect their Car-
dinality

The allowed number of assigned targets for an annotation parameter is determined by the
parameter’s attribute isArrayType.
Let hasV alue−−−−−−→e,a,p⊆

hasV alue−−−−−−→ be the set of value assignments (e, a, p)
hasV alue−−−−−−→ v. Then

for all hasV alue−−−−−−→e,a,p:

p.isArrayType
hasV alue−−−−−−→ false =⇒ 0 ≤

∣∣∣ hasV alue−−−−−−→e,a,p

∣∣∣ ≤ 1

p.isArrayType
hasV alue−−−−−−→ true =⇒ 0 ≤

∣∣∣ hasV alue−−−−−−→e,a,p

∣∣∣ ≤ ∞
Constraint 14: Annotation Parameter Value Assignments Respect their Type

The value assigned to an annotation parameter must respect the parameter’s type.
Let (e, a, p)

hasV alue−−−−−−→ v be an assignment of a value to an annotation parameter. When
the annotation parameter is typed with a data type d, the value’s type must match the
respective data type.

p.type hasV alue−−−−−−→ d ∧ (e, a, p)
hasV alue−−−−−−→ v =⇒ v

instanceOf−−−−−−−→ d

When the annotation parameter is typed with an interface i, the assigned type t must
implement the respective interface.

p.type hasV alue−−−−−−→ i ∧ (e, a, p)
hasV alue−−−−−−→ v =⇒ v

implements−−−−−−−→ i

When no type is declared for an annotation parameter, any type t can be assigned as
value.
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5.4.6 Example Program

The following examples show how this formalization can be used to represent a program.
Listing 5.2 shows an annotation ComponentType in Java, that is included in a namespace
with the name componentmodel. The annotation has an attribute version of the type String.
Example 3 shows the formalization of that program.

1package componentmodel;
2

3public @interface ComponentType { String version (); }

Listing 5.2: Example Annotation Declaration

Example 3: Formalization of the Java Code in Listing 5.2

The formalization for the Java code in Listing 5.2 is:

P1 := (PMeta, O, V,N, F,R), where R = ∅,

O := {ncm, act, apversion}

The objects instantiate the following classes:

ccm
instanceOf−−−−−−−→ N ,

act
instanceOf−−−−−−−→ A,

aversion
instanceOf−−−−−−−→ AP,

The elements are named as follows:

name(ncm) = componentmodel,
name(act) = ComponentType,
name(aversion) = version

The assignments of values to attributes and targets of references are defined as follows:

componentmodel.annotations references−−−−−−−→ ComponentType,

ComponentType.parameters references−−−−−−−→ version

Listing 5.3 shows an attachment of the annotation that is declared in Listing 5.2. The code
declares a type BarcodeScanner with a member attribute and two operations. The annotation
ComponentType is attached to this type, with a value of “1.0” for the attribute parameter
version. Example 4 shows the formalization of that program. Note that the statements
within the operations are not formalized. Statements are not part of the formalization in the
Model Integration Concept.
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1package cocome.barcodescanner;
2

3@ComponentType(version="1.0")
4public class BarcodeScanner {
5

6int scanned = 0;
7

8public void setScanned(int scanned){
9this.scanned = scanned;
10}
11

12public int getScanned (){
13return scanned;
14}
15}

Listing 5.3: Example Type Declaration

Example 4: Formalization of the Java Code in Listing 5.3

The formalization for the Java code in Listing 5.3 is:

P2 := (PMeta, O, V,N, F,R), where R = {P1},

O := {ncocome, nbcs, tbcs,mascanned, ossetScanned,

osetScanned, opscanned, osgetScanned, ogetScanned, aa, aap}

The objects instantiate the following classes:

ncocome
instanceOf−−−−−−−→ N , nbcs

instanceOf−−−−−−−→ N , tbcs
instanceOf−−−−−−−→ T ,

mascanned
instanceOf−−−−−−−→MA, ossetScanned

instanceOf−−−−−−−→ OS, osetScanned
instanceOf−−−−−−−→ O,

opscanned
instanceOf−−−−−−−→ OP, osgetScanned

instanceOf−−−−−−−→ OS, ogetScanned
instanceOf−−−−−−−→ O,

aa
instanceOf−−−−−−−→ AA, aap instanceOf−−−−−−−→ AAP

The elements are named as follows:

name(ncocome) = cocome, name(nbcs) = barcodescanner,
name(tbcs) = BarcodeScanner, name(mascanned) = scanned,
name(ossetScanned) = setScanned, name(opsetScanned) = scanned,
name(osgetScanned) = getScanned

The assignments of values to attributes and targets of references are defined as follows:

cocome.children references−−−−−−−→ barcodescanner,

barcodescanner.types references−−−−−−−→ BarcodeScanner,

BarcodeScanner.operationSignatures references−−−−−−−→ setScanned,
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BarcodeScanner.operations references−−−−−−−→ osetScanned,

BarcodeScanner.memberAttributes references−−−−−−−→ scanned,

BarcodeScanner.ComponentType.version hasV alue−−−−−−→ 1.0,

mascanned.type
hasV alue−−−−−−→ Int,

mascanned.value
hasV alue−−−−−−→ 0,

setScanned.parameters references−−−−−−−→ opscanned,

setScanned.type hasV alue−−−−−−→ V oid,

opscanned.type
hasV alue−−−−−−→ Int,

osetScanned.operationSignature
references−−−−−−−→ setScanned,

getScanned.type hasV alue−−−−−−→ Int,

ogetScanned.operationSignature
references−−−−−−−→ getScanned

5.5 Notations

Notations provide means to represent model information with program code. The definition of
notations in this thesis is conceptually based on the work of Moritz Balz [Bal11, p. 28].

5.5.1 Definition

There are two types of notations for representing model information in program code. The first
type of notations is used to represent meta model elements in program code structures. This
type of notations is called meta model notation.

Definition 32: Meta Model Notations

A meta model notation is a bidirectional mapping between modelling language meta model
elements and specific program code structures. For the set of all program codes P and the
set of all modelling language meta models MMeta, the relation of meta model notations is
defined as:

represents⇐=====⇒⊆ P×MMeta

To emphasize the translational character, for a program P and a meta model MMeta,
the meta model notation can be declared as:

P
represents⇐=====⇒
$name

MMeta

The notation’s name $name is a variable that can be exchanged with a label to distin-
guish different specific notations.

The second type of notations is used to represent a model using program code structures.
This type of notations is called model notation. Program code structures in model notations
represent model elements. They use the code structures of the meta model notations to show

73
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which meta model element is instantiated by the represented model element. Both notations
work bidirectional. Using these notations, meta models and models can be translated into a
program code representation and back.
Model notations also declare the set E of entry points. Entry points are elements that can be

extended with arbitrary program code that is not part of the model notation. I.e. it is expected
that these entry points contain code, e.g. for defining execution semantics of operations or fine-
grained structures of types. This code can also be part of another model notation.

Definition 33: Model Notations

A model notation is a bidirectional mapping between model elements and program code
structures. For the set of all programs P, the powerset 2OP of the set of all objects in P,
and the set of all modelling language models M, the relation of model notations is defined
as:

represents←−−−−−→⊆ P× 2OP ×M

For a given program P , the set E is a set of objects in P that serve as entry points
in model notations. To emphasize the translational character, for a program P , a subset
E ⊆ OP of objects in P and a model M , the model notation can be declared as:

(P,E)
represents←−−−−−→
$name

M

The notation’s name $name is a variable that can be exchanged with a label to distin-
guish different specific notations.

5.5.2 Example

Figure 5.23 shows an example of notations. The figure shows a meta model and a model on the
left side, and program code structures representing the meta model and model elements on the
right side. The upper part of the figure describes a meta model notation P represents⇐========⇒

ComponentType
Java,

for the program code P
instanceOf−−−−−−−→ Java and a modelling language MMeta. Java is the

programming language Java in the terms of the definition 15. The meta model defines a class
ComponentType, which has the attributes name and version, both of the type String. The
corresponding program defines an annotation with the name of the class, and an annotation
parameter with the name and the type of the attribute version.
The lower part of the figure describes a model notation (P,E)

represents←−−−−−−−−−→
ComponentType

M , for the

program code P instanceOf−−−−−−−→ Java, an entry point E, and a model M instanceOf−−−−−−−→ MMeta. The
model consists of an object of the type ComponentType. Its name is BarcodeScanner. Its
attribute version has the value “1.0”. The corresponding program code defines a type with the
name of the model’s ComponentType object. The value of the name attribute is notated using
the declared type name. The annotation defined in the meta model notation is attached to the
type declaration. The value of the version attribute is given as the corresponding annotation
parameter value. The type is declared to be the entry point of the notation. The type therefore
allows for a structural and behavioural refinement of the model’s ComponentType object. The
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Modeling Meta Model and Model Program Code in Java
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public @interface ComponentType {
  String version();
}

@ComponentType(version="1.0")
public class BarcodeScanner {

}

Figure 5.23: Example of a meta model and a model, notated with the programming language
Java. The left side shows the meta model of the modelling language and the model.
The right side shows possible program code structures for the meta model and the
model in the programming language.

examples 5 and 6 describe the formalization of these notations. With such notations, meta
models and models can be integrated with program code. The program code therefore can be
translated into the corresponding meta model and model, and back.

Example 5: Example Meta Model Notation

The ComponentType meta model notation P represents⇐========⇒
ComponentType

MMeta is defined as followsa:

The meta model MMeta comprises a class and two attributes.

ClassesMMeta
= {c}, AttributesMMeta

= {an, av}

The elements of the meta model are named as follows:

name(c) = ComponentType, name(an) = name, name(av) = version

The attributes and references of the meta model are defined as follows:

ComponentType.name isOfType−−−−−−→ String,

ComponentType.version isOfType−−−−−−→ String

The program comprises an annotation and an annotation parameter owned by that
annotation.

OP = {a, ap}, a instanceOf−−−−−−−→ A, ap instanceOf−−−−−−−→ AP, FP = {a has−−→ ap}
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The annotation is named after the meta model’s class name. The annotation parameter’s
name and type equal the name and type of the meta model’s attribute version.

a.name = name(c), ap.name = name(av), ap.type = type(av)

aThis and further definitions are separated into multiple blocks, with a description for each block for
convenience.

Example 6: Example Model Notation

For a program P , and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Example 5,
the ComponentType model notation (P,E)

represents←−−−−−−−−−→
ComponentType

M is defined as follows:

The model M comprises one object of the class named ComponentType of the meta
model MMeta.

componentType ∈ OM , componentType
instanceOf−−−−−−−→ ComponentType

The attribute values and reference targets of the model are defined as follows:

componentType.name hasV alue−−−−−−→ BarcodeScanner,

componentType.version hasV alue−−−−−−→ 1.0

Program structures Plib exists that represent the meta model MMeta with the Compo-
nentModel meta model notation. The program P depends on these program structures.

Plib
represents⇐========⇒

ComponentType
MMeta, Plib ∈ RP

The program code comprises a type.

t ∈ OP , t
instanceOf−−−−−−−→ T

The type t is named after the value of the model’s attribute componentType.name. The
annotation ComponentType is attached to the type t. The annotation parameter version
of the attached annotation has the same value as the model’s attribute version.

t.name hasV alue−−−−−−→ value(componentType.name),

t.ComponentType.version hasV alue−−−−−−→ value(componentType.version)

The model notation defines the body of the type t as entry point.

E = {t}
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5.6 Integration Mechanisms

Integration mechanisms are templates for meta model notations and model notations. They
describe a mapping between program code structures and symbolic meta model elements or
symbolic model elements. Each comprises a meta model notation for translating a meta model
element type and a corresponding model notation for translating instances of that element.
Integration mechanisms can be instantiated by applying them to a specific meta model or
model, i.e. by replacing the symbolic elements with specific elements.
Some integration mechanisms presented here have already been implicitly used in our previous

publications [KKG14, Kon14, MBG11b, KG14, MBG11a]. Some are based on the work of
Moritz Balz [Bal11]. Here, each integration mechanism is described using an example, formally
defined, and then discussed. The descriptions are grouped by the type of meta model element
that can be mapped with the respective integration mechanism.
The mechanisms are described based on a common running example, to emphasize how they

can interact in a common meta model. First the running example meta model and model is
shown in Section 5.6.1, before the mechanisms for classes (Section 5.6.2), containment references
(Section 5.6.3), references in general (Section 5.6.4), and attributes (Section 5.6.5) are described.

5.6.1 Running Example

Each description of an integration mechanism will be accompanied by an excerpt of a running
example. This section gives an overview of an example meta model and the example model (see
Figure 5.24). The meta model comprises structural, behavioural, and quality-related aspects
for software architectures. The following classes describe the structural aspects of the meta
model.

Architecture The architecture is the root element of the model. It contains all structural
elements and other elements that cover the overall architecture.

Interface An interface declares callable functionality. It can be provided or required by compo-
nent types. An interface usually declares operations. These can be accessed by Transitions
of State Machines via the interfaces. Interfaces are named.

ComponentType A component type represents an executable part of the software. It can
provide or require interfaces. Component Types are named and versioned. They can be
marked as being executable in parallel with themselves. Otherwise calls to their execution
semantics will be sequentialized.

Namespace A namespace is used for organizing component types in a hierarchy. Components
are only allowed to invoke operations on components that are in the same or a deeper
scope. Namespaces are named.

The behavioural aspects of the meta model are described using the following classes:

StateMachine State machines are behavioural descriptions with a set of states and transition
between them. They contain a set of variables.

Variables Variables are sets of arbitrary data that can be accessed by a state machine.
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State A state machine is always in a defined state. These states are named. When the state
is marked immediate, the state machine must not stay in this state, but immediately fire
the next transition. In that case exactly one transition must be able to fire.

Transition A transition is a named behavioural step of a state machine between two states.
During the transition a defined behaviour can be executed. Therefore the transition may
have access to interfaces. Transitions have contracts they are obliged to fulfill.

Contract Before and after the execution of a transition, a contract is used to validate the
preconditions and the post conditions for the transition, based on the machine’s variables.
Transitions can access interfaces and variables that may use data outside the definition
of the state machine, e.g. because the data is provided by an external service. The
compliance with the pre and post conditions can therefore usually not be statically checked
in this model. Contracts are named.

Operation An operation describes executable semantics. Operations are named. Operations
describe their expected time resource demand. It is possible to enter static values or
probability functions regarding the time resource demand. Operations declare roles that
are allowed to invoke them, and an execution strategy, how and where they are processed.

The further quality-related aspects of the meta model are described using the following
classes:

Execution Strategy An execution strategy describes how and where an operation is to be
processed. This could e.g. be the local processor for minor tasks, or a cloud environment
for long running tasks.

Role A user of the system is always in one or more security roles. Roles are named.

The example model in the running example describes a simple architecture using these meta
model elements. The example is based on the CoCoME benchmark program [HKW+08], but
adjusted heavily for the means of this chapter. In the following, the foundational elements of
the running example are described. Figure 5.25 shows the structural aspects of the model. The
model’s root object Architecture is not shown in the figure due to readability reasons. That
element contains all component types, interfaces, state machines, roles, execution strategies
in the model, and the root namespace. The structure consists of an architecture with four
component types, that each provides an interface.

BarcodeScanner The bar code scanner scans bar codes and returns an identifier of the scanned
product.

Printer The printer can print data to sheets of paper.

CashDesk The cash desk is used to handle sales. It uses the bar code scanner to scan items,
and the printer to print a bill. The bar code scanner and the printer belong to the cash
desk. They are therefore in a namespace hierarchy level below the cash desk.

StoreServer The store server gets information about sold items from the cash desk. It generates
and provides access to a report of statistical data about the sold items. The store server
can be executed in parallel with itself.
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Figure 5.24: The meta model of the running example

Figure 5.25: The structural aspects of the model in the running example
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The behaviour of the component type ICashDesk is implemented with a state machine.
Figure 5.26 shows the states and transitions of this state machine. The containment relationship
of the state machine to the states is not shown in the figure due to readability reasons. The
state machine comprises four states. The initial state is the state Ready. When an item is
scanned, the state machine is in the state Scanning. From here further items can be scanned or
the cash box can be opened. When the cash box is opened, the cash desk is Awaiting Payment.
When the payment is received, the sale finishes, and the CashDesk is Resetting. This last
state is an immediate state, meaning that the state machine will move forward with the next
transition as soon as is comes into this state.

Figure 5.26: The state machine of the CashDesk component in the running example

Each class, attribute, and reference in the meta model of the running example is directly
or indirectly mapped to an integration mechanism in the following sections. All identifying
attributes are included in the mechanism mapped to their owning classes. Classes that are
targets of the Containment Operation mechanism are mapped to this mechanism along with the
corresponding containment reference. As an overview, Table 5.1 shows the mapping between
meta model elements in the running example and the integration mechanisms shown in the
following sections.
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Meta Model Element Integration Mechanism
Architecture Ninja Singleton
→ all attributes and references Included in the owner’s mechanism
Namespace Namespace Hierarchy
→ all attributes and references Included in the owner’s mechanism
ComponentType Type Annotation
→ name Included in the owner’s mechanism
→ parallel Constant Member Attribute
→ provided Static Interface Implementation
→ required Annotated Member Reference to Type Annotation or Static Interface
→ version Attribute Annotation Parameter
Interface Static Interface
→ name Included in the owner’s mechanism
→ operations Containment Operation for Interfaces
Operation Contained in Interface.operations
→ executionStrategy Containment Operation Reference Annotation Parameter to Type Annota-

tion or Static Interface for x..1 References
→ rolesAllowed Containment Operation Reference Annotation Parameter to Type Annotation

or Static Interface for x..* References
→ timeResourceDemand Containment Operation Attribute Annotation Parameter
Role Type Annotation
→ name Included in the owner’s mechanism
ExecutionStrategy Type Annotation
→ name Included in the owner’s mechanism
StateMachine Type Annotation
→ initial Annotated Member Reference to Marker Interface for x..1 References
→ name Included in the owner’s mechanism
→ states Annotated Member Reference to Marker Interface for x..* References
→ variables Annotated Member Reference to Type Annotation or Static Interface
State Marker Interface
→ immediate Attribute Annotation
→ name Included in the owner’s mechanism
→ transitions Containment Operation for Types
Transition Included in State.transition
→ contracts Containment Operation Reference Annotation Parameter to Marker Inter-

face for x..* References
→ interfaces Containment Operation Reference Annotation Parameter to Type Annotation

or Static Interface for x..* References
→ name Included in the owner’s mechanism
→ target Containment Operation Reference Annotation Parameter to Marker Inter-

face for x..1 References
→ variables Containment Operation Reference Annotation Parameter to Type Annota-

tion or Static Interface for x..1 References
Contract Marker Interface
→ name Included in the owner’s mechanism
Variables Static Interface
→ name Included in the owner’s mechanism

Table 5.1: The running example’s mapping of meta model elements and integration mechanisms
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5.6.2 Class Representation

Integration mechanisms for class representations can be used to represent classes in a meta
model and their objects in a model with program code structures. Table 5.2 lists integration
mechanisms for representing classes and objects in models with program code structures.

Class Representations
Type Annotation
Marker Interface
Static Interface
Ninja Singleton

Namespace Hierarchy

Table 5.2: An overview of integration mechanisms for representing classes and objects with
program code structures

Type Annotation

Using the Type Annotation mechanism, an annotation with the name of the class represents
the class. The annotation is attached to a type, whose name equals the value of an identifying
attribute of the represented class.

Example Figure 5.27 shows an example of the Type Annotation mechanism. The meta model
specifies a class ComponentType with the attribute name, a String. The model instantiates
this class with an object and assigns the value BarcodeScanner to the name attribute. The
corresponding code defines the annotation ComponentType, and a type BarcodeScanner which
has the annotation attached to it and therefore represents the component BarcodeScanner.

Meta Model and Model Program in the Programming Language Java
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@ComponentType
public class BarcodeScanner  {

}

public @interface ComponentType {}

Figure 5.27: Example code for the Type Annotation Mechanism
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Formalization The Type Annotation mechanism is formalized as follows:

Definition 34: Type Annotation - Meta Model Notation

The meta model notation of the Type Annotation mechanism P
represents⇐========⇒

TypeAnnotation
MMeta is

defined as follows:
The meta model MMeta comprises a class and an attribute.

class ∈ ClassesMMeta
, id ∈ AttributesMMeta

The attribute of the meta model is defined as follows:

class.id
isOfType−−−−−−→ String

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A

The annotation is named after the meta model’s class name.

annotation.name
hasV alue−−−−−−→ name(class)

Definition 35: Type Annotation - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 34,
the model notation of the Type Annotation mechanism (P,E)

represents←−−−−−−−−−→
TypeAnnotation

M is defined

as follows:
The model M comprises one object of the class class of the meta model MMeta.

object ∈ OM , object
instanceOf−−−−−−−→ class

Program code structures Plib exists that represent the meta modelMMeta with the Type
Annotation meta model notation. The program references these program structures.

Plib
represents⇐========⇒

TypeAnnotation
MMeta, Plib ∈ RP

The program declares a type named after the value of the model’s identifying attribute.
The annotation of the meta model notation is attached to the type.

type ∈ OP , type
instanceOf−−−−−−−→ T type.name

hasV alue−−−−−−→ value(class.id),

annotation
attachedTo−−−−−−−→ type
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The model notation defines the body of the type as entry point.

E = {type}

Discussion For this mechanism to be applicable, the class to represent must have an identify-
ing attribute of the type String, to be mappable to the name of the code element in programming
languages. At design time, objects of the class can be identified by finding all types with the
annotation attached. An execution runtime can instantiate such a type, execute its execution
semantics, and make the instance available where necessary.
The entry point of the Type Annotation mechanism is a type body. It is therefore possible to

include imperative execution semantics within standardized operations of that type. The Type
Annotation mechanism is therefore good to represent classes that have individual behavioural
execution semantics. There is no common denominator that enforces the existence of these
operations. Therefore errors might occur, when an execution runtime tries to execute such an
operation, which does not exist, e.g. because of an incorrectly spelled operation name.
The concept behind the type annotation mechanism is broadly known in the Java community

from frameworks such as Enterprise JavaBeans (EJB) [EJB13] or the Contexts and Dependency
Injection (CDI) [JSR14], they are also used in the Windows Workflow Foundations of the .Net
Framework (e.g. [Mic]).

Marker Interface

Marker interfaces are interfaces that are used to mark a type to have certain properties. In
the Marker Interface mechanism the interface represents the meta model’s class. A type that
implements the interface is marked as an object that instantiates the class. The name of the
interface equals the name of the translated class, while the name of the marked type equals the
value of an identifying attribute.

Example Figure 5.28 shows an example of the Marker Interface mechanism. The meta model
specifies a class State with the attribute name, a String. The model instantiates this class
with an object, and assigns the value Ready to the attribute name. The corresponding code
declares the marker interface State, and a type Ready that implements the marker interface
and therefore represents the state object.
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Meta Model and Model Program in the Programming Language Java
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public class Ready implements State {

}

public interface State {}

Figure 5.28: Example code for the Marker Interface Mechanism

Formalization The Marker Interface mechanism is formalized as follows:

Definition 36: Marker Interface - Meta Model Notation

The meta model notation of the Marker Interface mechanism P
represents⇐=========⇒

MarkerInterface
MMeta is

defined as follows:
The meta model MMeta comprises a class and an attribute.

class ∈ ClassesMMeta
, id ∈ AttributesMMeta

The attributes and references of the meta model are defined as follows:

class.id
isOfType−−−−−−→ String

The program declares an interface, which is named after the meta model’s class name.

interface ∈ OP , interface
instanceOf−−−−−−−→ I

interface.name
hasV alue−−−−−−→ name(class)

Definition 37: Marker Interface - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 36,
the model notation of the Marker Interface mechanism (P,E)

represents←−−−−−−−−−−→
MarkerInterface

M is defined

as follows:
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The model M comprises one object of the class class of the meta model MMeta.

object ∈ OM , object
instanceOf−−−−−−−→ class

Program structures Plib exists that represent the meta model MMeta with the Marker
Interface meta model notation. The program references these program structures.

Plib
represents⇐=========⇒

MarkerInterface
MMeta, Plib ∈ RP

The program declares a type.

type ∈ OP , type
instanceOf−−−−−−−→ T

The type is named after the value of the model’s identifying attribute. It implements
the marker interface.

type.name
hasV alue−−−−−−→ value(object.id),

type
implements−−−−−−−→ interface

The model notation defines the body of the type type as entry point.

E = {type}

Discussion For this mechanism to be applicable, the class to represent must have an identify-
ing attribute of the type String, to be mappable to the name of the code element in programming
languages. At design time, objects of the class can be identified by finding types that instantiate
the marker interface. An execution runtime can instantiate such a type, execute its execution
semantics, and make the instance available where necessary.
The entry point of the Marker Interface mechanism is a type body. Like in the Type Anno-

tation mechanism, it is possible to include imperative execution semantics within operations.
In contrast to the Type Annotation mechanism, this mechanism uses a common denomina-

tor for describing execution semantics. Operation signatures can be declared in the marker
interface, which makes it mandatory to implement the corresponding operations in the types
that implement the interface. The operations are available to an execution runtime, and to
arbitrary program code. The Marker Interface mechanism is therefore good to represent classes
that have behavioural execution semantics.
The marker interface can also be used as a basis for references to objects of the class in

the model. Mechanisms for representing references benefit from this property (e.g. see the
mechanism Annotated Member Reference in the Definitions 48 to 53. The concept behind the
Marker Interface mechanism is a common solution for marking types in Java [Blo08, p. 197].

Static Interface

Using the Static Interface mechanism, a class is represented by an annotation. Objects of the
class are represented by interface declarations to which the annotation is attached.
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Example Figure 5.29 shows an example of the Static Interface mechanism. The meta model
specifies a class Interface with the attribute name, a String. The model instantiates this class
with an object, and assigns the value IBarcodeScanner to the name attribute. The correspond-
ing code declares the annotation Interface which is attached to an interface IBarcodeScanner.
The interface in the program code represents the component interface IBarcodeScanner.

Meta Model and Model Program in the Programming Language Java
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@Interface
public interface IBarcodeScanner 
{ 

}

public @interface Interface {}

Figure 5.29: Example code for the Static Interface Mechanism

Formalization The Static Interface mechanism is formalized as follows:

Definition 38: Static Interface - Meta Model Notation

The meta model notation of the Static Interface mechanism P
represents⇐========⇒

StaticInterface
MMeta is

defined as follows:
The meta model MMeta comprises a class and an attribute.

class ∈ ClassesMMeta
, a ∈ AttributesMMeta

The attributes and references of the meta model are defined as follows:

class.id
isOfType−−−−−−→ String

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A
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The annotation is named after the meta model’s class name.

annotation.name hasV alue−−−−−−→ name(class)

Definition 39: Static Interface - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 38,
the model notation of the Static Interface mechanism (P,E)

represents←−−−−−−−−→
StaticInterface

M is defined

as follows:
The model M comprises one object of the class class of the meta model MMeta.

object ∈ OM , object
instanceOf−−−−−−−→ class

Program structures Plib exists that represent the meta model MMeta with the Static
Interface meta model notation. The program P references these program structures.

Plib
represents⇐========⇒

StaticInterface
MMeta, class ∈ ClassesMMeta

, class.id ∈ AttributesMMeta
,

annotation ∈ OPlib
, annotation

instanceOf−−−−−−−→ A, Plib ∈ RP

The program declares an interface.

interface ∈ OP , interface
instanceOf−−−−−−−→ I

The interface is named after the value of the identifying attribute of the represented
class. The annotation is attached to the interface.

interface.name
hasV alue−−−−−−→ value(object.id),

annotation
attachedTo−−−−−−−→ interface

The model notation defines interface interface as entry point, meaning that further
annotation can be attached, and operation signatures can be added to the interface.

E = {interface}

Discussion For this mechanism to be applicable, the class to represent must have an identify-
ing attribute of the type String, to be mappable to the name of the code element in programming
languages. At design time, objects of the class can be identified by interfaces with their respec-
tive annotations. The entry point of the Static Interface mechanism is the interface body. It is
therefore not possible to include imperative execution semantics within the code structures of
the element, in contrast to the Marker Interface mechanism or the Marker Interface mechanism,
where imperative execution semantics can be placed within operations.
It is, however, possible to add operation signatures that declare callable semantics. The

Static Interface Implementation mechanism (see Definitions 54 and 55) declares a type that
implements the interface of the Static Interface mechanism. This type is forced to implement
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operations for all signatures declared in the interface, and therefore to provide execution se-
mantics declared by the interface. In a variant of the Annotated Member Reference mechanism
a member reference is created using the static interface as a type (see Definition 49). This
allows to execute the declared execution semantics using operation calls.
The Static Interface mechanism is therefore good to represent classes that have no behavioural

execution semantics for themselves, but declare them for others. This is a common pattern for
the provision and requirement of component or service interfaces, where providers implement,
and users reference interfaces. When semantics are declared with this mechanism, they can
be provided with the Static Interface mechanism, and consumed with any other containment
or non-containment reference mechanism. Examples for this pattern can be found e.g. in the
OSGi framework for services [The14, Section 5.2].

Ninja Singleton

Using the Ninja Singleton mechanism, a class is not represented by specific code structures.
Instead, the existence of exactly one instance of the class is assumed. This is useful for singleton
objects in models, e.g. a root object architecture of an architectural description, that is the
container of a variety of other elements.

Example Figure 5.30 shows an example of the Ninja Singleton mechanism. The meta model
specifies a class Architecture without attributes or references. The model instantiates this class
with an object. No corresponding code exists.

No code representation

No code representation

Meta Model and Model Program in the Programming Language Java
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Figure 5.30: Example code for the Ninja Singleton Mechanism
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Formalization The Ninja Singleton mechanism is formalized as follows:

Definition 40: Ninja Singleton - Meta Model Notation

The meta model notation of the Ninja Singleton mechanism P
represents⇐========⇒

NinjaSingleton
MMeta is

defined as follows:
The meta model MMeta comprises a class.

class ∈ ClassesMMeta

Definition 41: Ninja Singleton - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 40,
the model notation of the Ninja Singleton mechanism (P,E)

represents←−−−−−−−−→
NinjaSingleton

M is defined

as follows:
The model M comprises one object of the class class of the meta model MMeta.

object ∈ OM , object
instanceOf−−−−−−−→ class

The model notation defines no element as entry point.

E = ∅

Discussion The Ninja Singleton mechanism is usable when exactly one instance of the class
must exist. The meta model class must not have any attribute. The class may have references
to other classes. When one of these references is a containment reference, the targeted class
must not be containable by other classes. When these requirements are met, the mechanism
allows to have a single instance of the class, with all elements referenced by references being
referenced by that single element. E.g. all components and interfaces can be contained by one
single architecture element. This can be used to create root objects in models.

Namespace Hierarchy

The Namespace Hierarchy mechanism is usable when a tree of objects of the same class is to
be represented. Using the Namespace Hierarchy mechanism, objects of a class, that has an
identifying attribute and a containment reference to itself, are represented by a namespace
hierarchy.

Example Figure 5.31 shows an example of the Namespace Hierarchy mechanism. The
meta model specifies a class Namespace with the attribute name, a String, and a contain-
ment reference children to itself with the cardinality 0..*. The model instantiates this class
with a hierarchy of objects with the names org, codeling, and examples. The correspond-
ing code shows a corresponding namespace hierarchy including the namespaces identified by
org.codeling.examples.
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package org.codeling.examples;
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No code representation

Figure 5.31: Example code for the Namespace Hierarchy Mechanism

Formalization The Namespace Hierarchy mechanism is formalized as follows:

Definition 42: Namespace Hierarchy - Meta Model Notation

The meta model notation of the Namespace Hierarchy mechanism P
represents⇐============⇒

NamespaceHierarchy

MMeta is defined as follows:
The meta model MMeta comprises a class, an attribute, and a containment reference.

class ∈ ClassesMMeta
, id ∈ AttributesMMeta

, r ∈ ContainmentsMMeta

The attributes and references of the meta model are defined as follows:

class.id
isOfType−−−−−−→ String,

class.r
isOfType−−−−−−→ class

Definition 43: Namespace Hierarchy - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 42,
the model notation of the Namespace Hierarchy mechanism (P,E)

represents←−−−−−−−−−−−−→
NamespaceHierarchy

M

is defined as follows:
The model M comprises two objects of the class class of the meta model MMeta.

o1, o2 ∈ OM ; o1, o2
instanceOf−−−−−−−→ class

The parent object references the child object with the containment reference.

o1.r
references−−−−−−−→ o2
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The program declares two namespaces.

n1, n2 ∈ OP ;n1, n2
instanceOf−−−−−−−→ N

The namespaces n1, n2 are named after the values of the model element’s identifying
attributes. The namespace that represents the owning class references the namespace that
represents the owned class.

n1.name
hasV alue−−−−−−→ value(o1.id),

n2.name
hasV alue−−−−−−→ value(o2.id),

n1.children
references−−−−−−−→ n2

The model notation defines the namespaces as entry points.

E = {n1, n2}

Discussion For this mechanism to be applicable, the class to represent must have an identify-
ing attribute of the type String, to be mappable to the name of the code element in programming
languages. At design time the namespace hierarchy can be extracted and is guaranteed to be a
tree (by Constraint 9). The Namespace Hierarchy mechanism is only applicable for tree struc-
tures of identifiable elements. The class must have no attributes but one for its identification.
It is therefore only applicable in special cases, e.g. a namespace concept. This mechanism can
be used for a maximum of one class in a meta model, because no meta model code structures
exist, that could be used to distinguish between two classes.
The entry points of the Namespace Hierarchy mechanism are the namespaces. It is possible

to declare the namespaces’ execution semantics with types, interfaces, or annotations that are
declared within them. An execution runtime might respect the namespaces when mediating
between providers and users of execution semantics within the code, e.g. between components
of different layers. The use of namespace hierarchies is common in most modern programming
languages.

5.6.3 Containment Representation

Integration mechanisms for containment representations can be used to represent containment
references in a meta model and the assignment of targets in a model with program code
structures. The applicability of integration mechanisms for containment references depends on
the reference’s owner to be represented with a specific mechanism. Table 5.3 shows integration
mechanisms for representing containment references in models with program code structures,
and their requirements regarding the notations for the owning classes.

Containment Operation for Types

This mechanism uses an operation signature and an operation for representing a reference,
including the contained object. An annotation is used to mark the operation signature and
operation a representation of the model reference. The Containment Operation Mechanism has
two variants. This variant is used when the reference’s owner class is translated with a type
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Containment Reference Representations
Name Owner

Containment Operation for Types Represented as type
Containment Operation for Interfaces Represented as interface

Table 5.3: An overview of integration mechanisms for representing containment references with
program code structures, and their requirements

declaration. The variant for interfaces (see Definitions 46 and 47) can be used when the owner
class is translated with an interface declaration.

Example An example of this mechanism is shown in Figure 5.32. The meta model comprises
a source class State, which owns a reference transitions to the class Transitions. The target
class specifies an attribute name, a String. The model defines an object of the class State with
the name Ready, which targets an object of the class Transition with the name scanItem with
the reference.
The code specifies the annotation Transitions as a representation of the transition reference.

The type Ready represents the source object of the class State with the Marker Interface mech-
anism. It owns an operation scanItem whose name equals the target object’s name attribute
value. The annotation Transitions is attached to the operation to mark it a representation
of the contained object, including the reference.
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public class Ready implements State {
    @Transitions
   public void scanItem() {

   }
}

public @interface Transitions {}

Entry Point

Figure 5.32: Example code for the Containment Operation for Types mechanism
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Formalization The Containment Operation for Types mechanism is formalized as follows:

Definition 44: Containment Operation for Types - Meta Model Notation

The meta model notation of the Containment Operation for Types mechanism
P

represents⇐===================⇒
ContainmentOperationforTypes

MMeta is defined as follows:

The meta modelMMeta defines a source class, a target class and a containment reference.

classsource, classtarget ∈ ClassesMMeta
; reference ∈ ContainmentsMMeta

The reference is owned by classsource and references classtarget.

classsource.reference
isOfType−−−−−−→ classtarget

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A

The annotation name equals the reference’s name.

annotation.name
hasV alue−−−−−−→ name(reference)

Definition 45: Containment Operation for Types - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in Def-
inition 44, the model notation of the Containment Operation for Types mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

M is defined as follows:

Program structures PReference
lib exist, that represent the meta model MReference

Meta with
the Containment Operation for Types meta model notation. A containment reference is
notated therein with an annotation. The program references these program structures.

PReference
lib

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

MReference
Meta , reference ∈ References

MReference
Meta

,

annotation ∈ O
PReference
lib

, annotation
instanceOf−−−−−−−→ A, PReference

lib ∈ RP

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with a type. The source object’s class owns the reference.
The program references these program structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource ,

objectsource
instanceOf−−−−−−−→ classsource, classsource

has−−→ reference,

typesource ∈ OP source
lib

, typesource
instanceOf−−−−−−−→ T , P source

lib ∈ RP
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The model defines a target object, an instance of the target class. The target class has
an identifying attribute. The source object targets the target object with its reference.

objecttarget ∈ OM , objecttarget
instanceOf−−−−−−−→ classtarget,

classtarget.id
isOfType−−−−−−→ String,

reference
isOfType−−−−−−→ classtarget,

(objectsource, reference)
references−−−−−−−→ objecttarget

The program declares an operation signature and a corresponding operation, that are
owned by the source type.

os ∈ OP , os
instanceOf−−−−−−−→ OS, typesource.operationSignature

references−−−−−−−→ os,

o ∈ OP , o
instanceOf−−−−−−−→ O, typesource.operations

references−−−−−−−→ o,

o.signature
references−−−−−−−→ os

The operation signature’s name equals the value of the target object’s identifying at-
tribute. The annotation of the meta model notation is attached to the operation signature.

os.name
hasV alue−−−−−−→ value(object.id) annotation

attachedTo−−−−−−−→ os

The model notation defines the operation signature and the operation as entry point,
meaning that the signature can be enhanced with further annotations, and the operation
can describe arbitrary behaviour.

E = {os, o}

Discussion For the Containment Operation for Types mechanism to be applicable, the source
object must be represented by a type and the target object must have an identifying attribute. If
the source object references more than one target object with the reference, the model notation
is applied multiple times. Then further operations with annotation attachments are added.
At design time, the reference and its target object can be identified by the annotation

attachment. The mechanism does not allow for multiple contained objects that have the
same name, because the operation signature’s names must not be equal. The model notation
enforces no specific return type or parameter list. When a new code fragment has to be created
following this notation, a return type Void and an empty parameter list should be assumed. An
execution runtime or arbitrary program code can invoke the containment operations to trigger
the execution semantics of the contained object. A variant of the Containment Operation for
Types mechanism was used by Balz in [Bal11, Section 4.1.2.2].

Containment Operation for Interfaces

This variant of the Containment Operation mechanism uses an operation signature for repre-
senting a reference, including the contained object. Again, an annotation is used to mark the
operation signature a representation of the model reference. This mechanism is closely related
to the Containment Operation for Types mechanism. It differs in the required translation of
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the source class. Because the source class is represented with an interface here, as opposed to
a type in the variant for types, only operation signatures, not operations, can be used.
The definition of the meta model notation of the Containment Operation for Interfaces mech-

anism equals the definition of the meta model notation of the Containment Operation mecha-
nism for types. The definition of the model notation deviates slightly from the model notation
of the corresponding model notation. The source object is represented by an interface instead
of a type. Consequently, no operation is defined in the program code, but only an operation
signature.

Example An example of this mechanism is shown in Figure 5.33. The meta model comprises
a source class Interface, which owns a reference operations to the target class Operation. The
model defines an object of the class Interface with the name IBarcodeScanner, which targets
an object of the class Operation with the name scan and the reference operations.
The code specifies the annotation Operations as a representation of the operations reference.

The interface IBarcodeScanner represents the source object with the Static Interface mecha-
nism. It owns an operation signature named scan, equal to the target object’s name attribute
value. The annotation Operations is attached to the operation to mark it a representation of
the reference and contained object.
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@Interface
public interface IBarcodeScanner {
    @Operations
   public String scan();

}

public @interface Operations {}

Figure 5.33: Example code for the Containment Operation for Interfaces mechanism

96



5.6 Integration Mechanisms

Formalization The Containment Operation for Interfaces mechanism is formalized as follows:

Definition 46: Containment Operation for Interfaces - Meta Model Notation

The meta model notation of the Containment Operation for Interfaces mechanism
P

represents⇐======================⇒
ContainmentOperationforInterfaces

MMeta is defined as follows:

The meta modelMMeta defines a source class, a target class and a containment reference.

classsource, classtarget ∈ ClassesMMeta
; reference ∈ ContainmentsMMeta

The reference is owned by classsource and references classtarget.

classsource.reference
isOfType−−−−−−→ classtarget

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A

The annotation name equals the reference’s name.

annotation.name
hasV alue−−−−−−→ name(reference)

Definition 47: Containment Operation for Interfaces - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in Defi-
nition 44, the model notation of the Containment Operation for Interfaces mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

M is defined as follows:

Program structures PReference
lib exist, that represent the meta modelMReference

Meta with the
Containment Operation for Interfaces meta model notation. A containment reference is
notated therein with an annotation. The program references these program structures.

PReference
lib

represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

MReference
Meta , reference ∈ References

MReference
Meta

,

annotation ∈ O
PReference
lib

, annotation
instanceOf−−−−−−−→ A, PReference

lib ∈ RP

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with an interface. The source object’s class owns the
reference. The program references these program structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource ,

objectsource
instanceOf−−−−−−−→ classsource, classsource

has−−→ reference,

interfacesource ∈ OP source
lib

, interfacesource
instanceOf−−−−−−−→ I, P source

lib ∈ RP
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The model defines a target object, an instance of the target class. The target class has
an identifying attribute. The source object targets the target object with its reference.

objecttarget ∈ OM , objecttarget
instanceOf−−−−−−−→ classtarget,

classtarget.id
isOfType−−−−−−→ String,

reference
isOfType−−−−−−→ classtarget,

(objectsource, reference)
references−−−−−−−→ objecttarget

The program declares an operation signature, that is owned by the source interface.

os ∈ OP , os
instanceOf−−−−−−−→ OS, interfacesource.operationSignature

references−−−−−−−→ os

The operation signature’s name equals the value of the target object’s identifying at-
tribute. The annotation of the meta model notation is attached to the operation signature.

os.name
hasV alue−−−−−−→ value(object.id) annotation

attachedTo−−−−−−−→ os

The model notation defines the operation signature as entry point, meaning that the
signature can be enhanced with further annotations.

E = {os}

Discussion For the Containment Operation for Interfaces mechanism to be applicable, the
source object must be represented by an interface and the target class must have an identifying
attribute. If the source object references more than one target object with the reference, the
model notation is applied multiple times. Then further operations with annotation attachments
are added.
At design time, the reference, and its target object can be identified by the annotation.

All implementers of the interface are required to implement the operation. The mechanism
does not allow for multiple contained objects that have the same name, because the operation
signature’s names must not be equal. Implementers of the interface (e.g. via the Static Interface
Implementation mechanism) are required to implement the operation. As in the variant for
types, this variant enforces no specific return type or parameter list. When a new code fragment
has to be created following this notation, a return type Void and an empty parameter list should
be assumed. An execution runtime or arbitrary code can invoke the execution semantics of the
implementers regarding the declared signature.

5.6.4 Reference Representation

Integration mechanisms for reference representations can be used to represent containment or
non-containment references in a meta model and the assignment of targets in a model with
program code structures. The applicability of integration mechanisms for references depend on
the notation of the reference’s owner and target. Table 5.4 shows integration mechanisms for
representing these references with program code structures, and their dependencies.
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Non-Containment Reference Representations
Name Owner Target

Annotated Member Reference Represented as type Represented as type or
interface

Static Interface Implementation Represented as type Static Interface Mechanism
Containment Operation Reference
Annotation Parameter

Containment Operation Represented as type or
interface

Containment Operation Reference
Parameter

Containment Operation Represented as type or
interface

Table 5.4: An overview of integration mechanisms for representing containment or non-
containment references with program code structures, and their requirements

Annotated Member Reference to Type Annotation or Static Interface

The Annotated Member Reference mechanism is based on the idea to represent reference in
the meta model and model as a member reference. An annotation is used to mark the member
reference a representation of the model reference, and to declare the target class by its type.
Based on the reference’s cardinality and the representation of the target class, the mechanism
has a set of variants. The following is the description for Reference Annotations to a target
class that is translated with the Type Annotation or the Static Interface Mechanism. The other
variants handle Reference Annotations that have target classes represented with the Marker
Interface Mechanism with a cardinality x..1 (Definitions 50 and 51) and x..* (Definitions 52
and 53).
The definition of the meta model notation of the Annotated Member Reference to Type

Annotation or Static Interface mechanism equals the definition of the meta model notation of
the Containment Operation mechanisms.

Example An example of the variant with a Static Interface target is shown in Figure 5.34.
The meta model comprises the source class ComponentType, which owns a reference required
to the class Interface. The target class specifies an attribute name, a String. The model defines
an object of the class ComponentType with the name CashDesk, which targets an object of the
class Interface with the name IBarcodeScanner with the reference required.
The code specifies the annotation Required as a representation of the required reference.

The annotation does not own an annotation parameter. The type BarcodeScanner represents
the source object with the Type Annotation mechanism. It owns a member reference named
iBarcodeScanner. The type of the member reference is the interface that represents the target
object with the Static Interface mechanism. The annotation Required is attached to the
reference to mark it a representation of the model reference.
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@ComponentType
public class CashDesk {
    @Required
   IBarcodeScanner iBarcodeScanner;

}

public @interface Required {}

Figure 5.34: Example code for the mechanism Annotated Member Reference to Type Annota-
tion or Static Interface

Formalization This variant of the Annotated Member Reference mechanism is formalized as
follows:

Definition 48: Annotated Member Reference to Type Annotation or Static
Interface - Meta Model Notation

The meta model notation of the Annotated Member Reference to Type Annotation or
Static Interface mechanism P

represents⇐====================⇒
AnnotatedMemberReferenceTA/SI

MMeta is defined as follows:

The meta model MMeta defines a source class, a target class and a reference.

classsource, classtarget ∈ ClassesMMeta
; reference ∈ ReferencesMMeta

The reference is owned by classsource and references classtarget.

classsource.reference
isOfType−−−−−−→ classtarget

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A

The annotation name equals the reference’s name.

annotation.name
hasV alue−−−−−−→ name(reference)
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Definition 49: Annotated Member Reference to Type Annotation or Static
Interface - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 48,
the model notation of the Annotated Member Reference to Type Annotation or Static
Interface mechanism (P,E)

represents←−−−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferenceTA/SI

M is defined as follows:

Program structures PReference
lib exist, that represent the meta model MReference

Meta with
the Annotated Member Reference to Type Annotation or Static Interface meta model
notation. The reference is notated therein with an annotation. The program references
these program structures.

PReference
lib

represents←−−−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferenceTA/SI

MReference
Meta , reference ∈ References

MReference
Meta

,

annotation ∈ O
PReference
lib

, annotation
instanceOf−−−−−−−→ A,

PReference
lib ∈ RP

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with a type. The program references these program
structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource ,

objectsource
instanceOf−−−−−−−→ classsource, typesource ∈ OP source

lib
, P source

lib ∈ RP

Program structures P target
lib exist, that represent the model M target with the Type An-

notation mechanism or the Static Interface mechanism, representing a target object with
a type or interface. The program references these program structures.

P target
lib

represents←−−−−−−−−−→
TypeAnnotation

M target ∨ P target
lib

represents←−−−−−−−−→
StaticInterface

M target,

objecttarget ∈ OMtarget , objecttarget
instanceOf−−−−−−−→ classtarget, elementtarget ∈ OP target

lib
,

elementtarget
instanceOf−−−−−−−→ T ∨ elementtarget

instanceOf−−−−−−−→ I, P target
lib ∈ RP

The reference is owned by the source class. The source object references the target object
with the reference.

classsource
has−−→ reference, (objectsource, reference)

references−−−−−−−→ objecttarget

The program declares a member reference, that is owned by the source type.

mr ∈ OP ,mr
instanceOf−−−−−−−→MR,

typesource.memberReferences
references−−−−−−−→ mr
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The member reference’s type is the type or interface that represents the target object.
It is named after the target’s identifying attribute value. The annotation is attached to
the member reference to mark it a representation of the model reference.

mr
isOfType−−−−−−→ elementtarget,

mr.name
hasV alue−−−−−−→ value(objecttarget.id),

annotation
attachedTo−−−−−−−→ mr

The model notation defines the member reference as entry point, meaning that it can be
enhanced with further annotations.

E = {mr}

Discussion For the Annotated Member Reference to Type Annotation or Static Inter-
face mechanism to be applicable, the source object must be represented by a type, the target
class must be represented with the Type Annotation or the Static Interface mechanism. At
design time, the annotation shows that the member reference represents the model reference’s
target. The target object can be identified based on the type name. This mechanism in all its
variants allows arbitrary code to access the fields.
At runtime, an execution environment should inject an instance of the target type into the

member reference as target. When the target is a Static Interface an execution runtime would
need to identify a valid implementer of the static interface. Which instance to inject is subject
to the execution environment, and depends on the semantics of the target class. Code in the
entry point of the source type can then use the member reference’s target. If operations have
been inserted in the target’s entry point, these can be called to call execution semantics of the
target class.
This variant has some disadvantages. For each target of the reference a member reference

is created, which may cause many member references that make the code hard to read. Also,
when during a model change the targets are changed, the names of the member attributes
change, and code relying on these names may be invalid. The concept behind this mechanism
is known e.g. from CDI where CDI beans reference other CDI beans using an annotation
@Inject [JSR14, Section 3.10].

Annotated Member Reference to Marker Interface for x..1 References

This variant of the Annotated Member Reference mechanism can be used when the target
class is represented with code using the Marker Interface mechanism, and the reference has a
cardinality of 0..1 or 1..1. Instead of using the targeted type directly, the member reference is
typed by the marker interface of the target class.

Example An example of this variant is shown in Figure 5.35. The meta model comprises a
source class StateMachine, which owns a reference initial to the class State. The target class
specifies an attribute name, a String. The model defines an object of the class StateMachine
with the name CashDesk, which targets an object of the class State with the name Ready with
the reference initial.
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The code specifies the annotation Initial as a representation of the initial reference. The
annotation owns a default parameter with the marker interface State as target type. The
interface State (not shown) represents the target class with the Marker Interface mechanism.
The type CashDesk represents the source object with the Marker Interface mechanism. It owns
a member reference named initial. The type of the member reference is the marker interface
State of the target class. The annotation Initial is attached to the reference to mark it a
representation of the model reference. The type Ready is assigned to the default parameter to
declare the referenced object.
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public class CashDesk {
    @Initial(Ready.class)
   State initial;

}

public @interface Inital {
    Class<? extends States> value();
}

Figure 5.35: Example code for the Annotated Member Reference Mechanism to Marker Inter-
face for x..1 References

Formalization This variant of the Annotated Member Reference mechanism is formalized as
follows:

Definition 50: Annotated Member Reference to Marker Interface for x..1
References - Meta Model Notation

The meta model notation of the Annotated Member Reference to Marker Interface for x..1
References mechanism P

represents⇐===================⇒
AnnotatedMemberReferencex..1MI

MMeta is defined as follows:

Program structures P target
lib exist, that represent the meta modelM target

Meta with the Marker
Interface meta model notation. The source class is notated therein with an interface. The
program references these program structures.

P target
lib

represents←−−−−−−−−−−→
MarkerInterface

M target
Meta , classtarget ∈ ClassesMtarget

Meta
,

interfacetarget ∈ OP target
lib

, annotation
instanceOf−−−−−−−→ I, P target

lib ∈ RP
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The meta model MMeta defines a source class and a reference. The reference has a
cardinality of 0..1 or 1..1

classsource ∈ ClassesMMeta
, reference ∈ ReferencesMMeta

,

reference
cardinality−−−−−−−→ 0..1⊕ reference cardinality−−−−−−−→ 1..1

The reference is owned by classsource and references classtarget.

classsource.reference
isOfType−−−−−−→ classtarget

The program declares an annotation with an annotation parameter.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A,

ap ∈ OP , ap
instanceOf−−−−−−−→ AP, annotation has−−→ ap

The annotation name equals the reference’s name. The annotation parameter’s name
equals the name of the target class. Its type is the interface that represents the target
class.

annotation.name
hasV alue−−−−−−→ name(reference),

ap.name
hasV alue−−−−−−→ name(classtarget),

ap.type
references−−−−−−−→ interfacetarget

Definition 51: Annotated Member Reference to Marker Interface for x..1
References - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 50,
the model notation of the Annotated Member Reference to Marker Interface for x..1
References mechanism (P,E)

represents←−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferencex..1MI

M is defined as follows:

Program structures PReference
lib exist, that represent the meta model MReference

Meta with
the Annotated Member Reference to Marker Interface for x..1 References meta model
notation for marker interfaces and x..1 cardinalities. The reference is notated therein with
an annotation. The program references these program structures.

PReference
lib

represents←−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferencex..1MI

MReference
Meta , reference ∈ References

MReference
Meta

,

annotation ∈ O
PReference
lib

, annotation
instanceOf−−−−−−−→ A,

PReference
lib ∈ RP

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with a type. The program references these program
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structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource ,

objectsource
instanceOf−−−−−−−→ classsource, typesource ∈ OP source

lib
, P source

lib ∈ RP

Program structures P target
lib exist, that represent the model M target with the Marker

Interface mechanism, representing a target object with a type that implements a marker
interface. The marker interface represents the reference’s target class. The program
references these program structures.

P target
lib

represents←−−−−−−−−−−→
MarkerInterface

M target, objecttarget ∈ OMtarget , objecttarget
instanceOf−−−−−−−→ classtarget,

interfacetarget ∈ OP target
lib

, interfacetarget
instanceOf−−−−−−−→ I,

typetarget ∈ OP target
lib

, typetarget
instanceOf−−−−−−−→ T , P target

lib ∈ RP

The reference is owned by the source class. The source object references the target object
with the reference.

classsource
has−−→ reference, (objectsource, reference)

references−−−−−−−→ objecttarget

The program declares a member reference, that is owned by the source type.

mr ∈ OP ,mr
instanceOf−−−−−−−→MR,

typesource.memberReferences
references−−−−−−−→ mr

The member reference’s type is the interface that represents the target object. It is
named after the reference’s name. The annotation is attached to the member reference to
mark it a representation of the model reference. The parameter value is set to the targeted
element.

mr
isOfType−−−−−−→ interfacetarget, mr.name

hasV alue−−−−−−→ name(r),

annotation
attachedTo−−−−−−−→ mr, ap

hasV alue−−−−−−→ typetarget

The model notation defines the member reference as entry point, meaning that it can be
enhanced with further annotations.

E = {mr}

Discussion For the Annotated Member Reference to Marker Interface for x..1
References mechanism to be applicable, the source object must be represented by a type, the
target class must be represented with the Marker Interface mechanism, and the reference’s
cardinality must be 0..1 or 1..1.
In contrast to the variant for Type Annotations and Static Interfaces, the name of the

reference stays the same, when the targets in the model are changed. Arbitrary other code,
that uses these references, can therefore rely on the member reference’s name. In contrast to

105



5 Model Integration Concept

the Containment Operation mechanism, this variant of this mechanism allows to reference the
same target multiple times using different references, due to the use of the reference name as
member reference name.
At run time, an execution environment should inject an instance of the target type into the

member reference as target. Which instance to inject is subject to the execution environment,
and depends on the semantics of the target class. Code in the entry point of the source type
can then use the member reference’ target. If operations have been inserted in the marker
interface’s entry point, these can be called to call execution semantics of the target class. The
concept behind this mechanism is e.g. known from EJB, where Enterprise Beans reference
other Enterprise Beans via their interfaces [EJB13, Section 3.4.1].

Annotated Member Reference to Marker Interface for x..* References

This variant is close to the variant to marker interfaces for x..1 references. To respect the
cardinality, the type of the member reference is an array of marker interfaces of the target
class.

Meta Model and Model Program in the Programming Language Java
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public @interface States {
Class<? extends State>[] value();

}

@StateMachine
public class CashDesk {
    @States({Ready.class,
                    Scanning.class })
State[] states;

}

Figure 5.36: Example code for the Annotated Member Reference Mechanism to Marker Inter-
face for x..* References

Example An example of this variant is shown in Figure 5.36. The meta model comprises a
source class StateMachine, which owns a reference states to the class State. The reference has
a cardinality of 0..*. The target class specifies an attribute name, a String. The model defines
an object of the class StateMachine with the name CashDesk, which targets two objects of the
class State with the names Ready and Scanning with the reference states6.
The code specifies the annotation States as a representation of the states reference. It owns

a default parameter with an array of the marker interface State as target type.
6In the running example the state machine references four states. This example has been shortened for a better
readability.
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The types Ready and Scanning (not shown) represent the target objects with the Marker
Interface mechanism. The type CashDesk represents the source object with the Type Annota-
tion mechanism. It owns a member reference named states. The type of the member reference
is an array of the marker interface State of the target class. The annotation States is attached
to the reference to mark it a representation of the model reference. The types Ready and
Scanning are assigned to the default parameter to declare the referenced objects.

Formalization In the following, only the variation of this variant’s formalization from the
Definitions 50 and 51 is given.

Definition 52: Annotated Member Reference to Marker Interface for x..*
References - Meta Model Notation

The meta model notation of the Annotated Member Reference to Marker Interface for x..*
References mechanism P

represents⇐===================⇒
AnnotatedMemberReferencex..∗MI

MMeta is defined as follows:

Program structures P target
lib exist, that represent the meta modelM target

Meta with the Marker
Interface meta model notation. The source class is notated therein with an interface. The
program references these program structures.

P target
lib

represents←−−−−−−−−−−→
MarkerInterface

M target
Meta , classtarget ∈ ClassesMtarget

Meta
,

interfacetarget ∈ OP target
lib

, annotation
instanceOf−−−−−−−→ I,

P target
lib ∈ RP

The meta model MMeta defines a source class and a reference.

classsource ∈ ClassesMMeta
, reference ∈ ReferencesMMeta

The reference is owned by classsource and references classtarget. It has a cardinality of
0..∗ or 1..∗

classsource ∈ ClassesMMeta
, reference ∈ ReferencesMMeta

,

reference
cardinality−−−−−−−→ 0..*⊕ reference cardinality−−−−−−−→ 1..*

The program declares an annotation with an annotation parameter.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A,

ap ∈ OP , ap
instanceOf−−−−−−−→ AP, annotation has−−→ ap
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The annotation name equals the reference’s name. The annotation parameter’s name
equals the name of the target class. Its type is the interface that represents the target
class. The type is an array.

annotation.name
hasV alue−−−−−−→ name(reference), ap.name

hasV alue−−−−−−→ name(classtarget),

ap.type
references−−−−−−−→ interfacetarget, ap.isArrayType

hasV alue−−−−−−→ true

Definition 53: Annotated Member Reference to Marker Interface for x..*
References - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 50,
the model notation of the Annotated Member Reference to Marker Interface for x..*
References mechanism (P,E)

represents←−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferencex..∗MI

M is defined as follows:

Program structures PReference
lib exist, that represent the meta modelMReference

Meta with the
Annotated Member Reference to Marker Interface for x..* References meta model notation
for marker interfaces with x..* cardinalities. The reference is notated therein with an
annotation. The program references these program structures.

PReference
lib

represents←−−−−−−−−−−−−−−−−−−−→
AnnotatedMemberReferencex..∗MI

MReference
Meta , reference ∈ References

MReference
Meta

,

annotation ∈ O
PReference
lib

, annotation
instanceOf−−−−−−−→ A,

PReference
lib ∈ RP

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with a type. The program references these program
structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource ,

objectsource
instanceOf−−−−−−−→ classsource, typesource ∈ OP source

lib
, P source

lib ∈ RP

Program structures P target
lib exist, that represent the model M target with the Marker

Interface mechanism, representing a target object with a type that implements a marker
interface. The marker interface represents the reference’s target class. The program
references these program structures.

P target
lib

represents←−−−−−−−−−−→
MarkerInterface

M target, objecttarget ∈ OMtarget , objecttarget
instanceOf−−−−−−−→ classtarget,

interfacetarget ∈ OP target
lib

, interfacetarget
instanceOf−−−−−−−→ I,

typetarget ∈ OP target
lib

, typetarget
instanceOf−−−−−−−→ T , P target

lib ∈ RP
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The reference is owned by the source class. The source object references the target object
with the reference. The reference has a cardinality of 0..1 or 1..1

classsource
has−−→ reference, (objectsource, reference)

references−−−−−−−→ objecttarget

reference
cardinality−−−−−−−→ 0..1⊕ reference cardinality−−−−−−−→ 1..1

The program declares a member reference, that is owned by the source type.

mr ∈ OP ,mr
instanceOf−−−−−−−→MR,

typesource.memberReferences
references−−−−−−−→ mr

The member reference’s type is the interface that represents the target object. It is an
array type, named after the reference’s name. The annotation is attached to the member
reference to mark it a representation of the model reference. The parameter value is set to
the targeted element.

mr
isOfType−−−−−−→ interfacetarget, mr.name

hasV alue−−−−−−→ name(r),

mr.isArrayType
hasV alue−−−−−−→ true, annotation

attachedTo−−−−−−−→ mr,

ap
hasV alue−−−−−−→ typetarget

The model notation defines the member reference as entry point, meaning that it can be
enhanced with further annotations.

E = {mr}

Discussion For the Annotated Member Reference to Marker Interface for x..*
References mechanism to be applicable, the source object must be represented by a type, the
target class must be represented with the Marker Interface mechanism, and the reference’s
cardinality must be 0..* or 1..*. This variant of this mechanism allows to reference the same
target multiple times using different references, due to the use of the reference name as
member reference name.
At design time, the reference’s targets can be identified by the annotation parameter value.

In contrast to the Containment Operation mechanism, this variant of this mechanism allows
for referencing the same target multiple times using different references, due to the use of the
reference name as member reference name. An empty reference can be represented with an
empty array in the annotation parameter. Arbitrary code can therefore rely on the existence,
type, and name of the member reference. Apart from that, this variant of the Annotated
Member Reference mechanism has the same properties that are discussed for the variant for
x..1 cardinalities.
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Static Interface Implementation

The Static Interface Implementation mechanism requires the source class to be represented
with a type. When the target class is represented with the Static Interface mechanism, the
type that represents the source class can implement the interface to add a representation for
the reference.

Example An example of this mechanism is shown in Figure 5.37. The meta model defines
a source class ComponentType, which owns a reference provided to the class Interface. The
target class specifies an attribute name, a String. The model defines an object of the class
ComponentType with the name BarcodeScanner, which targets an object of the class Interface
with the name IBarcodeScanner with the reference provided.
The code specifies the type BarcodeScanner, which represents the source object with the

Type Annotation mechanism. It implements the interface IBarcodeScanner, which represents
the target object with the Static Interface mechanism.

Meta Model and Model Program in the Programming Language Java
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public class BarcodeScanner implements IBarcodeScanner {

}

No code representation

Figure 5.37: Example code for the Static Interface Implementation mechanism

Formalization The Static Interface Implementation mechanism to is formalized as follows:

Definition 54: Static Interface Implementation - Meta Model Notation

The meta model notation of the Static Interface Implementation mechanism
P

represents⇐==================⇒
StaticInterfaceImplementation

MMeta is defined as follows:

The meta model MMeta comprises a source class, a target class, and a reference between
them.

classsource, classtarget ∈ ClassesMMeta
,
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reference ∈ ReferencesMMeta

The source class owns the reference. The reference targets the target class.

classsource.reference
isOfType−−−−−−→ classtarget

Definition 55: Static Interface Implementation - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in
Definition 54, the model notation of the Static Interface Implementation mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−−→
StaticInterfaceImplementation

M is defined as follows:

Program structures P source
lib exist, that represent the modelM source with a model notation

that represents a source object with a type. The program references these program
structures.

P source
lib

represents←−−−−−→M source, objectsource ∈ OMsource , objectsource
instanceOf−−−−−−−→ classsource,

typesource ∈ OP source
lib

, typesource
instanceOf−−−−−−−→ T , P source

lib ∈ RP

Program structures P target
lib exist, that represent the model M target with the Static

Interface mechanism, representing an object objecttarget
instanceOf−−−−−−−→ classtarget with an

interface interface. The program P references these program structures.

P target
lib

represents←−−−−−−−−→
StaticInterface

M target, objecttarget ∈ OMtarget , interface ∈ OP target
lib

,

interface
instanceOf−−−−−−−→ I, P target

lib ∈ RP

The source object references the target object with the reference.

(objectsource, reference)
references−−−−−−−→ objecttarget

The source type implements the target interface.

typesource
implements−−−−−−−→ interface

The model notation does not define an entry point.

E = ∅

Discussion For the Static Interface Implementation mechanism to be applicable, the source
object must be represented by a type, the target class must be represented with the Static
Interface mechanism. At design time, the target class can be identified by the annotation
attached to the interface in the Static Interface mechanism. All operations of the static interface
need to be implemented by the type. Types that implement a static interface can be instantiated
by an execution runtime and injected e.g. into member references. This mechanism can be used
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to provide execution semantics declared with the Static Interface mechanism (see Definitions 38
and 39).

Containment Operation Reference Annotation Parameter to Type Annotation or Static
Interface for x..1 References

The mechanisms for references above rely on the target being represented as a type or interface.
When a class is represented with an operation, as it is performed when using the Containment
Operation mechanism, these mechanisms are not applicable. The Containment Operation
Reference Annotation Parameter mechanism allows for specifying targets for references of these
classes, by leveraging the annotation introduced by the Containment Operation mechanism.
The mechanism has four variants. Here, the variant for references with a cardinality of 0..1 or
1..1 and targets represented with the Type Annotation or the Static Interface mechanism is
shown. Following the description of this variant, the other variants are for the same type of
targets with reference cardinalities of 0..* or 1..*, and with targets represented with the Marker
Interface mechanism.

Example An example of the Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..1 References is shown in Figure 5.38. The meta
model comprises a source class Operation, which owns a reference executionStrategy to the
class ExecutionStrategy. The target class specifies an attribute name, a String. The model
defines an object of the class Operation with the name scan, which targets an object of the
class ExecutionStrategy with the name ExecuteLocally using the reference executionStrategy.
This execution strategy declares that the operation will be executed on the local processor.
The alternative would be ExecuteInCloud to execute a long running task in a cloud context for
a better performance.
The code shows the Containment Operation Annotation that represents the containment

reference with the type Operation. This mechanism extends the annotation with an annotation
parameter named after the reference name. The parameter references any type.
For the model notation, the code shows a containment operation named scan. The annotation

parameter declared in the meta model notation is set to the type ExecuteLocally, which
represents the corresponding strategy object with the Type Annotation mechanism.
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public @interface Operation {
Class<?> executionStrategy();

}

    @Operations(
      executionStrategy=ExecuteLocally.class)
   public void scan(){

     }

Figure 5.38: Example code for the mechanism Containment Operation Reference Annotation
Parameter to Type Annotation or Static Interface for x..1 References

Formalization This variant of the Containment Operation Reference Annotation Parameter
mechanism is formalized as follows:

Definition 56: Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..1 References - Meta Model Notation

The meta model notation of the Containment Operation Reference Annotation Parame-
ter mechanism P

represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

MMeta is defined as

follows:
Program structures P target

lib exist, that represent the meta model M target
Meta with either the

represents⇐========⇒
TypeAnnotation

or the represents⇐========⇒
StaticInterface

meta model notation, which represents a target class.

The program references these program structures.

P target
lib

represents⇐========⇒
TypeAnnotation

M target
Meta ⊕ P

target
lib

represents⇐========⇒
StaticInterface

M target
Meta ,

classtarget ∈ ClassesMtarget
Meta

, P target
lib ∈ RP

113



5 Model Integration Concept

The meta model MMeta defines a source class and a reference.

classsource ∈ ClassesMMeta
,

reference ∈ ReferencesMMeta
,

The reference is owned by the source class and references the target class. The reference
has a cardinality of 0..1 or 1..1.

classsource.reference
isOfType−−−−−−→ classtarget,

classsource.reference
cardinality−−−−−−−→ 0..1⊕ classsource.reference

cardinality−−−−−−−→ 1..1

The program declares an annotation with an annotation parameter.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A,

ap ∈ OP , ap
instanceOf−−−−−−−→ AP, annotation has−−→ ap

The annotation name equals the reference’s name. The annotation parameter’s name
equals the name of the reference. It declares not type, so that each type declaration can
be referenced by the parameter.

annotation.name
hasV alue−−−−−−→ name(reference),

ap.name
hasV alue−−−−−−→ name(classtarget)

Definition 57: Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..1 References - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in
Definition 56, the model notation of the Containment Operation Reference Annotation
Parameter to Type Annotation or Static Interface for x..1 References mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

M is defined as follows:

Program structures PReference
lib exist, that represent the meta modelMReference

Meta with the

meta model notation represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

. A reference is

notated therein with an annotation parameter. The corresponding annotation is attached
to the operation signature. The program references these program structures.

PReference
lib

represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

MReference
Meta ,

reference ∈ References
MReference

Meta
; annotation, ap ∈ O

PReference
lib

;

annotation
instanceOf−−−−−−−→ A; ap

instanceOf−−−−−−−→ AP;
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annotation.parameters
references−−−−−−−→ ap; annotation

attachedTo−−−−−−−→ os;PReference
lib ∈ RP

Program structures P source
lib exist, that represent the model M source with either the

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

or the represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

model notation, which

represent an source object with an operation signature. The program references these
program structures.

P source
lib

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

⊕ represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

M source,

osource ∈ OMsource , os ∈ OP source
lib

, os
instanceOf−−−−−−−→ OS, P source

lib ∈ RP

Program structures P target
lib exist, that represent the model M target with the Type An-

notation mechanism or the Static Interface mechanism, representing a target object with
a type or interface. The program references these program structures.

P target
lib

represents←−−−−−−−−−→
TypeAnnotation

M target ⊕ P target
lib

represents←−−−−−−−−→
StaticInterface

M target,

otarget ∈ OMtarget , otarget
instanceOf−−−−−−−→ classtarget, typetarget ∈ OP target

lib
,

etarget
instanceOf−−−−−−−→ T ⊕ etarget

instanceOf−−−−−−−→ I, P target
lib ∈ RP

The source object references the target object with the reference.

(osource, reference)
references−−−−−−−→ otarget

The annotation is attached to the operation signature, and its parameter is set to the
target type or interface.

(os, annotation, ap)
hasV alue−−−−−−→ etarget

The model notation defines no entry point

E = ∅

Discussion For the Containment Operation Reference Annotation Parameter to Type Anno-
tation or Static Interface for x..1 References mechanism to be applicable, the source object
must be represented with the Containment Operation mechanism, the target class must be
represented with the Type Annotation or the Static Interface mechanism, and the reference’s
cardinality must be 0..1 or 1..1.
During design time, the target is defined by the annotation parameter value. But the

assignment of targets within the code is not type safe. As the targeted types or interfaces do
not have a common denominator such as types implementing a marker interface, the compiler
will not prevent a developer to enter an invalid type or interface in the program code as target.
When the reference has a cardinality of 0..1, its reference might have no target assigned to

it. In that case, no value would be assigned to the parameter of the attached annotation, which
contradicts Definition 31. In that case a type (or interface) has to be declared that represents
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the empty target. This might be counterintuitive. Java, e.g. allows for setting default values
for annotation parameters. This concept could be used to set such a type or interface as default
target, which is known to a translation or execution runtime.
An execution runtime can access the targeted type or interface using introspection mech-

anisms, and use instances of the type e.g. to evaluate whether the Containment Operation
should be invoked. The program code within the operation can access the value using the same
introspection mechanisms, but no instance of the target type or interface is made available
directly, e.g. via an operation parameter. This would not be possible for targets translated
with the Type Annotation or the Static Interface mechanism with a cardinality of x..1. Such
parameters would be named after the reference or after the target type’s or interface’s name.
None of these might be unambiguous within the list of parameters, but parameters must have
distinguishable names. This is a variant of a code structure used by Balz, e.g. for the target of
transitions in state machines [Bal11, Section 4.1.2.2].

Containment Operation Reference Annotation Parameter to Type Annotation or Static
Interface for x..* References

This variant is for references with a cardinality of 0..* or 1..* and targets translated with
the Type Annotation or the Static Interface mechanism. In contrast to the variant for 0..1 or
1..1 cardinalities, this variant uses an annotation parameter with an array type to represent
multiple targets.

Example An example of the Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..* References is shown in Figure 5.39. The meta
model comprises a source class Operation, which owns a reference rolesAllowed to the class
Role. The target class specifies an attribute name, a String. The model defines an object of
the class Operation with the name scan, which targets one object with the name Cashier, and
one object with the name StoreManager of the class Role with the reference rolesAllowed. The
reference declares that users in the respective roles are allowed to invoke the operation.
The code shows the Containment Operation Annotation that represents the containment

reference towards the class Operation. This mechanism extends the annotation with an an-
notation parameter named after the reference name. The parameter references an array of
any type. For the model notation, the code shows a containment operation named scan. The
annotation parameter declared in the meta model notation is set to an array that contains the
Cashier and the StoreManager type, which represent the corresponding roles with the Type
Annotation mechanism.
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public @interface Operations {
Class<?>[] allowedRoles();

}

    @Operations(
        allowedRoles={Cashier.class,
                                 StoreManager.class})
   public String scan(){

 
     }

Figure 5.39: Example code for the mechanism Containment Operation Reference Annotation
Parameter to Type Annotation or Static Interface for x..* References

Formalization In the following, only the deviation of this variant’s formalization from Defini-
tions 56 and 57 is given.

Definition 58: Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..* References - Meta Model Notation

The meta model notation of the Containment Operation Reference Annotation Parameter
mechanism P

represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..∗

TA/SI

MMeta deviates from

the definition of represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

as follows: follows:

Instead of a cardinality of either 0..1 or 1..1, the reference has a cardinality of either
0..* or 1..*.

classsource.reference
cardinality−−−−−−−→ 0..*⊕ classsource.reference

cardinality−−−−−−−→ 1..*

The annotation parameter declared in the program is of an array type.

ap.isArrayType
hasV alue−−−−−−→ true
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Definition 59: Containment Operation Reference Annotation Parameter to
Type Annotation or Static Interface for x..* References - Model Notation

The model notation of the Containment Operation Reference Annotation Parameter mech-
anism P

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..∗

TA/SI

MMeta varies from the defi-

nition of represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

as follows: follows:

Instead of the meta model notation for 0..1 or 1..1 references, this variant uses the meta
model notation for 0..* or 1..* references.

PReference
lib

represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..∗

TA/SI

MReference
Meta

Discussion For this variant to be applicable, the source object must be represented with
the Containment Operation mechanism, the target class must be represented with the Type
Annotation or the Static Interface mechanism, and the reference’s cardinality must be 0..* or
1..*.
As in the variant for 0..1 or 1..1 cardinalities, the target is defined by the annotation

parameter value at design time. The assignment of targets within the code is also not type
safe. When the reference has a cardinality of 0..*, its reference might have no target assigned
to it. In that case, an empty array can be given as parameter value. The runtime aspects are
analogous to the variant above.

Containment Operation Reference Annotation Parameter to Marker Interface for x..1
References

This variant is for references with a cardinality of 0..1 or 1..1 and targets translated with
the Marker Interface mechanism. In contrast to the variant for Type Annotation or Static
Interface as targets, it leverages the marker interface to introduce type safety.

Example An example of the Containment Operation Reference Annotation Parameter to
Marker Interface for x..1 References is shown in Figure 5.40. The meta model comprises a
source class Transition, which owns a reference target to the class State. The target class
specifies an attribute name, a String. The model defines an object of the class Transition with
the name scanItem, which targets an object of the class State with the name Scanning with
the reference target. This means that when this transition is executed, the next state is the
Scanning state.
The code shows the Containment Operation Annotation that represents the containment

reference towards the class Transition. This mechanism extends the annotation with an anno-
tation parameter named after the reference name. The parameter’s type is the marker interface
that represents the target class.
For the model notation, the code shows a containment operation named scanItem. The

annotation parameter declared in the meta model notation is set to the type Scanning, which
represents the corresponding state with the Marker Interface mechanism.
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public @interface Transition {
Class<? extends State> target();

}

    @Transition(target=Scanning.class)
   public void scanItem(){

 
     }

Figure 5.40: Example code for the mechanism Containment Operation Reference Annotation
Parameter to Marker Interface for x..1 References

Formalization In the following, only the deviation of this variant’s formalization from Defini-
tions 56 and 57 is given.

Definition 60: Containment Operation Reference Annotation Parameter to
Marker Interface for x..1 References - Meta Model Notation

The meta model notation of the Containment Operation Reference Annotation Parameter
mechanism P

represents⇐====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1MI

MMeta deviates from the

definition of represents⇐=====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

as follows: follows:

Instead of representing the target class with the Type Annotation or the Static Inter-
face mechanism, program structures P target

lib exist, that represent the meta model M target
Meta

with the Marker Interface meta model notation. They represent a class target class with a
marker interface. The program references these program structures.

P target
lib

represents⇐=========⇒
MarkerInterface

M target
Meta , classtarget ∈ ClassesMtarget

Meta
, interfacetarget ∈ OP target

lib
,

interfacestarget
instanceOf−−−−−−−→ I, P target

lib ∈ RP
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Instead of targeting any type or interface, the annotation parameter’s type is the marker
interface. 1..*.

ap.type
references−−−−−−−→ interfacetarget

Definition 61: Containment Operation Reference Annotation Parameter to
Marker Interface for x..1 References - Model Notation

The model notation of the Containment Operation Reference Annotation Parameter mech-
anism P

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..1MI

MMeta deviates from the defi-

nition of represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

as follows:

Instead of targeting objects translated with the Type Annotation mechanism or the
Static Interface mechanism, program structures P target

lib exist, that represent the model
M target with the Marker Interface mechanism, which represents a target object with a
type. The program references these program structures.

P target
lib

represents←−−−−−−−−−−→
MarkerInterface

M target, otarget ∈ OMtarget , otarget
instanceOf−−−−−−−→ classtarget,

etarget ∈ OP target
lib

, etarget
instanceOf−−−−−−−→ T , P target

lib ∈ RP

Discussion For this variant to be applicable, the source object must be represented with
the Containment Operation mechanism, the target class must be represented with the Marker
Interface mechanism and the reference’s cardinality must be 0..1 or 1..1.
In contrast to the variant for targets translated with the Type Annotation or Static Inter-

face mechanism, this variant creates type safety for the values of the annotation parameter
using the marker interfaces. When the reference has a cardinality of 0..1, its reference might
have no target assigned to it. In that case, the same solution can be applied as described in
the variant of this mechanism for the Type Annotation or Static Interface mechanism. The
runtime aspects are analogous to the variants above. Other design and runtime aspects are
analogous to in the said variant. The concept of this mechanism has been used by Balz, e.g.
for target of transitions in state machines [Bal11, Section 4.1.2.2].

Containment Operation Reference Annotation Parameter to Marker Interface for x..*
References

This variant is for references with a cardinality of 0..* or 1..* and targets represented with
the Marker Interface mechanism. In contrast to the variant for 0..1 or 1..1 cardinalities, this
variant uses an annotation parameter with an array type to represent multiple targets.

Example An example of the Containment Operation Reference Annotation Parameter to
Marker Interface for x..* References is shown in Figure 5.41. The meta model defines a source
class Transition, which owns a reference contracts to the class Contract. The target class
specifies an attribute name, a String and is translated using the Marker Interface mechanism.

120



5.6 Integration Mechanisms

The model defines an object of the class Transition with the name Ready, which targets one
object with the name StartSaleContract, and one object with the name ScanItemContract of
the class Contract with the reference contracts. The reference declares contracts with pre and
post conditions for the transition. Only when the preconditions of all contracts are fulfilled,
the transition is executed. After execution, the transition guarantees that the post conditions
of all contracts are true. The contracts are reusable. E.g. the ScanItemContract is used by
this transition as well as the transition with the same name from the state Scanning to itself.
The code shows the Containment Operation Annotation that represents the containment

reference towards the class Transition. This mechanism extends the annotation with an anno-
tation parameter named after the reference name. The parameter references an array of the
target marker interface.
For the model notation, the code shows a containment operation named scanItem. The

annotation parameter declared in the meta model notation is set to an array that contains the
types StartSaleContract and ScanItemContract, which represent the corresponding roles
with the Marker Interface mechanism.
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public @interface Transition {
Class<? extends Contract>[] contracts();

}

    @Transitions(contracts={
            StartSaleContract.class,
            ScanItemContract.class})
   public void scanItem(){

     }

Figure 5.41: Example code for the mechanism Containment Operation Reference Annotation
Parameter to Marker Interface for x..* References
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Formalization In the following, only the deviation of this variant’s formalization from Defini-
tions 60 and 61 are given.

Definition 62: Containment Operation Reference Annotation Parameter to
Marker Interface for x..* References - Meta Model Notation

The meta model notation of the Containment Operation Reference Annotation Parameter
mechanism P

represents⇐====================================⇒
ContainmentOperationReferenceAnnotationParameterx..∗MI

MMeta deviates from the

definition of represents⇐====================================⇒
ContainmentOperationReferenceAnnotationParameterx..1MI

as follows:

Instead of a cardinality of either 0..1 or 1..1, the reference has a cardinality of either
0..* or 1..*.

reference
cardinality−−−−−−−→ 0..∗ ⊕ reference cardinality−−−−−−−→ 1..∗

The annotation parameter declared in the program is of an array type.

ap.isArrayType
hasV alue−−−−−−→ true

Definition 63: Containment Operation Reference Annotation Parameter to
Marker Interface for x..* References - Model Notation

The model notation of the Containment Operation Reference Annotation Parameter mech-
anism P

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..∗

TA/SI

MMeta deviates from the def-

inition of represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceAnnotationParameterx..1

TA/SI

as follows:

Instead of the meta model notation for 0..1 or 1..1 references, this variant uses the meta
model notation for 0..* or 1..* references.

PReference
lib

represents⇐====================================⇒
ContainmentOperationReferenceAnnotationParameterx..∗MI

MReference
Meta

Discussion For this variant to be applicable, the source object must be represented with
the Containment Operation mechanism, the target class must be represented with the Marker
Interface mechanism, and the reference’s cardinality must be 0..* or 1..*.
As in the variant for 0..1 or 1..1 cardinalities, the target is defined by the annotation

parameter value at design time. The assignment of targets within the code is also type safe. As
in the variant for targets translated with the Type Annotation or Static Interface mechanism,
when the reference has a cardinality of 0..*, it might have no target assigned. In that case, an
empty array can be given as parameter value. Other design and runtime aspects are analogous
to in the variants above.

Containment Operation Reference Parameter

The Containment Operation Reference Parameter mechanism requires the source class to be
represented with a Containment Operation. The target class is represented with a type or
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interface. An operation parameter, which represents the reference, is added to the containment
operation.

Example An example of this mechanism is shown in Figure 5.42. The meta model comprises
a source class Transition, which owns a reference interfaces to the class Interface. The target
class specifies an attribute name, a String. The model defines an object of the class Transition
with the name scanItem, which references one object of the class Interface with the name
IPrinter and one with the name IStoreServer. These interfaces are provided or required by the
component that is described using the state machine. The transition can invoke the executional
semantics described by operations of these interfaces.
The code specifies the operation scanItem, which represents the source transition with the

Containment Operation for Types mechanism. Its has parameters of the types IPrinter and
IStoreServer, which represent the target objects with the Static Interface mechanism.
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   public String scanItem(IPrinter iPrinter,
                                  IStoreServer iStoreServer){

     }

No code representation

Figure 5.42: Example code for the Containment Operation Reference Parameter mechanism
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Formalization The Containment Operation Reference Parameter mechanism is formalized as
follows:

Definition 64: Containment Operation Reference Parameter - Meta Model
Notation

The meta model notation of the Containment Operation Reference Parameter mechanism
P

represents⇐==========================⇒
ContainmentOperationReferenceParameter

MMeta is defined as follows:

Code structures exist that represent a source class with a Containment Operation meta
model notation. The program references these code structures.

P source
lib

represents⇐===================⇒
ContainmentOperationforTypes

M source
Meta

⊕P source
lib

represents⇐======================⇒
ContainmentOperationforInterfaces

M source
Meta ,

classsource ∈ ClassesMsource , P source
lib ∈ RP

Code structures exist that represent a target class with the Type Annotation or the
Static Interface meta model notation.

P target
lib

represents⇐=====⇒M target
Meta

classtarget ∈ ClassesMtarget
Meta

, elementtarget ∈ OP source
lib

,

elementtarget
instanceOf−−−−−−−→ T ⊕ elementtarget

instanceOf−−−−−−−→ I,
P source
lib ∈ RP

The meta model MMeta comprises a reference between the source and the target class.

reference ∈ ReferencesMMeta
,

classsource.reference
isOfType−−−−−−→ classtarget

Definition 65: Containment Operation Reference Parameter - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in Defini-
tion 64, the model notation of the Containment Operation Reference Parameter mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationReferenceParameter

M is defined as follows:

Program structures P source
lib exist, that represent the model M source with a Containment

Operation model notation. The program references these program structures.

(P source
lib , Esource)

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

M source

⊕(P source
lib , Esource)

represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

M source,

objectsource ∈ OMsource , ossource ∈ OP source
lib

, ossource
instanceOf−−−−−−−→ OS, P source

lib ∈ RP
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Program structures P target
lib exist, that represent the model M target with the a model

notation, that represents the target object with a type or interface. The target object has
an identifying attribute. The program references these program structures.

(P target
lib , Etarget)

represents←−−−−−→M target, objecttarget ∈ OMtarget ,

elementtarget ∈ OP target
lib

, objecttarget
instanceOf−−−−−−−→ classtarget, classtarget.id

isOfType−−−−−−→ String,

elementtarget
instanceOf−−−−−−−→ T ⊕ elementtarget

instanceOf−−−−−−−→ I, P target
lib ∈ RP

Program structures PReference
lib exist, that represents the meta model MReference

Meta with
a the Containment Operation Reference Parameter meta model notation. The program
references these program structures.

PReference
lib

represents⇐==========================⇒
ContainmentOperationReferenceParameter

MReference
Meta ,

reference ∈ References
MReference

Meta
, PReference

lib ∈ RP

The source object references the target object with the reference.

(objectsource, reference)
references−−−−−−−→ objecttarget

The program declares an operation parameter for the target object, and adds it to the
parameter list of the source operation signature. The parameter’s type is the type or
interface that represents the target object. The parameter’s name equals the value of the
identifying attribute of the target object.

op ∈ OP , op
instanceOf−−−−−−−→ OP, op isOfType−−−−−−→ elementtarget,

ossource.parameters has−−→ op, name(op) alue(objecttarget.id)

The model notation does not define an entry point.

E = ∅

Discussion For the Containment Operation Reference Parameter mechanism to be applicable,
the source object must be represented with a Containment Operation mechanism, and the target
class must be represented with a type or an interface.
At design time, the target object can be identified by the operation parameter type. When

a source object references multiple objects with the same name, or same object multiple times
with different references, only one of those references may be translated using this notation.
Otherwise two parameters with the same name would be added to the parameter list. As this
cannot be ensured when integration mechanisms are mapped to meta model elements, it should
be avoided to use this mechanism for multiple references with the same source class.
At run time, the operation and its parameters are available to an execution runtime as well

as to arbitrary program code. The execution semantics of the targeted object are available to
the code in the containment operation’s body. No other mechanism in this thesis provides this
access when the source class is represented with the Containment Operation mechanism.
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5.6.5 Attribute Representation

Integration mechanisms for attribute representations can be used to represent attributes in
a meta model and attribute value assignments in a model with program code structures.
Table 5.5 shows integration mechanisms for representing attributes in models with program
code structures, and their requirements regarding the notations of the attribute owner. The
first three integration mechanisms for attributes, that are defined in the following sections, are
only applicable to attributes which are owned by classes, whose objects are represented with a
type, e.g. with the mechanisms Marker Interface or Type Annotation. The last mechanism is
applicable when containment operations are used as mechanism for the source class.

Attribute Representations
Name Owner

Constant Member Attribute Represented as type
Attribute Annotation Represented as type
Attribute Annotation Parameter Represented as type
Containment Operation Attribute
Annotation Parameter

Represented as containment operation

Table 5.5: An overview of integration mechanisms for representing attributes with program
code structures

Constant Member Attribute

Attributes and attribute value assignment to objects can be represented using member at-
tributes, when the corresponding class is represented by a type declaration, e.g. via the Marker
Interface or the Type Annotation mechanisms. The member attribute is marked with an an-
notation to distinguish it from member attributes that do not represent model attributes.

Example An example of the Constant Member Attribute mechanism is shown in Figure 5.43.
The meta model comprises the source class ComponentType, which owns an attribute parallel
typed Boolean. The model defines an object of the class ComponentType with the name
StoreServer. Its value for the attribute is true.
The code specifies the annotation Attribute for the meta model. The type StoreServer

represents the source object with the Type Annotation mechanism. It owns a member attribute
named parallel, typed Boolean. The annotation Attribute is attached to the member
attribute for marking it a representation of a model attribute using this mechanism. The
example uses additional modifiers from the Java language to make the attribute read-only and
static.
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@ComponentType
public class StoreServer {
    @Attribute
    public static final boolean parallel = true;
}

public @interface Attribute {}

Figure 5.43: Example code for the Constant Member Attribute Mechanism

Formalization The Constant Member Attribute mechanism is formalized as follows:

Definition 66: Constant Member Attribute - Meta Model Notation

The meta model notation of the Constant Member Attribute mechanism
P

represents⇐===============⇒
ConstantMemberAttribute

MMeta is defined as follows:
The meta model MMeta defines an attribute.

attribute ∈ AttributesMMeta

The program declares an annotation.

annotation ∈ OP , annotation
instanceOf−−−−−−−→ A

The annotation is named Attribute.

annotation.name
hasV alue−−−−−−→ Attribute.

Definition 67: Constant Member Attribute - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in
Definition 66, the model notation of the Constant Member Attribute mechanism
(P,E)

represents←−−−−−−−−−−−−−−−→
ConstantMemberAttribute

M is defined as follows:

Program structures PAttribute
lib exist, that represent the meta model MClass

Meta with the
Constant Member Attribute meta model notation. The attribute is notated therein with
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an annotation. The program references these program structures.

PAttribute
lib

represents⇐===============⇒
ConstantMemberAttribute

MAttribute
Meta , attribute ∈ AttributesMAttribute

Meta
,

annotation ∈ OPAttribute
lib

, annotation
instanceOf−−−−−−−→ A, PAttribute

lib ∈ RP

Program structures PClass
lib exist, that represent the modelMClass with a model notation

that represents an object with a type. The program P references these program structures.

PClass
lib

represents←−−−−−→MClass, object ∈ OMClass , object
instanceOf−−−−−−−→ class,

type ∈ OPClass
lib

, type
instanceOf−−−−−−−→ T , PClass

lib ∈ RP

The attribute is owned by class.

class
has−−→ attribute

The program P declares a member attribute ma, that is owned by type.

ma ∈ OP ,ma
instanceOf−−−−−−−→MA, type has−−→ ma

The member attribute’s name and type equals the name and type of attribute. The
marker annotation is assigned to the member attribute.

ma.name
hasV alue−−−−−−→ name(attribute), ma.type

hasV alue−−−−−−→ type(attribute),

annotation
attachedTo−−−−−−−→ ma

The value assigned to the member attribute equals the value assigned to the model
attribute.

ma.value
hasV alue−−−−−−→ value(object.attribute)

The model notation defines the member attribute as entry point. I.e. it can be extended
with annotations.

E = {ma}

Discussion For the Constant Member Attribute mechanism to be applicable, the owning
class must be represented with a type declaration. This can be accomplished by using the
Marker Interface or Type Annotation mechanism. The value can be read by a runtime using
introspection mechanisms or by arbitrary code.
The example in Figure 5.43 uses Java’s modifiers to define the character of the member

attribute. The member attribute is declared public for it to be easily accessible by an execution
runtime or other code. It is declared static, which means that the value is assigned on the
type level instead of the instance level. This mechanism represents the model attribute with
the declaration of the (code) member attribute, not by value assignments to type instances.
Therefore a static member attribute represents the attribute value assignment better.
Following the formalization, it is allowed to change the attribute value at runtime. This

seems unexpected because the models considered in the Model Integration Concept are of a

128



5.6 Integration Mechanisms

static nature. When the underlying programming language has mechanisms for declaring read
only member attributes, such as the final modifier from Java used in the example, these can
be used to protect the value.

Attribute Annotation Parameter

The Attribute Annotation Parameter mechanism uses parameters of annotations to represent
model attributes and their values. This requires that the class that owns the attribute is notated
with the Type Annotation or with the Static Interface mechanism.

Example An example of the Attribute Annotation Parameter mechanism is shown in Fig-
ure 5.44. The meta model comprises the source class ComponentType, which owns an attribute
version typed String. The model defines an object of the class ComponentType with the name
StoreServer. Its value for the attribute is 1..1.

The source class is translated using the Type Annotation mechanism. I.e. it has an
annotation attached that declares its model class. This mechanism extends this annotation
with an annotation parameter named and typed after the attribute. The type StoreServer sets
the attribute value in the attached annotation parameter.

Meta Model and Model Program in the Programming Language Java
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@ComponentType(version="1.1")
public class BarCodeScanner {}

public @interface ComponentType {
    String version();
}

Figure 5.44: Example code for the Attribute Annotation Parameter Mechanism

Formalization The Attribute Annotation Parameter mechanism is formalized as follows:

Definition 68: Attribute Annotation Parameter - Meta Model Notation

The meta model notation of the Attribute Annotation Parameter mechanism
P

represents⇐==================⇒
AttributeAnnotationParameter

MMeta is defined as follows:

Program structures Plib exist, that represent the meta model MClass
Meta with the Type

Annotation meta model notation. The owning class is notated with an annotation by the
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Type Annotation mechanism.

Plib
represents⇐========⇒

TypeAnnotation
MClass

Meta , class ∈ ClassesMClass
Meta

, annotation ∈ OPlib
, Plib ∈ RP

The meta model MMeta comprises an attribute.

attribute ∈ AttributesMMeta

The attribute is owned by class.

class
has−−→ attribute

The program declares an annotation parameter, which is named and typed after the
meta model’s attribute name and type, and owned by the annotation.

ap ∈ OP , ap
instanceOf−−−−−−−→ AP, ap.name

hasV alue−−−−−−→ name(attribute),

ap.type
hasV alue−−−−−−→ value(attribute.type), annotation.parameters

references−−−−−−−→ ap

Definition 69: Attribute Annotation Parameter - Model Notation

For a program P and a model M instanceOf−−−−−−−→ MMeta, with MMeta defined as in
Definition 68, the model notation of the Attribute Annotation Parameter mechanism
(P,E)

represents←−−−−−−−−−−−−−−−−−−→
AttributeAnnotationParameter

M is defined as follows:

Program structures PAttribute
lib exist, that represent the meta model MAttribute with the

meta model notation represents⇐==================⇒
AttributeAnnotationParameter

. An attribute is notated therein with an
annotation parameter. The program references these program structures.

PAttribute
lib

represents⇐==================⇒
AttributeAnnotationParameter

MAttribute
Meta ,

attribute ∈ AttributesMAttribute
Meta

, ap ∈ OPAttribute
lib

, ap
instanceOf−−−−−−−→ AP,

PAttribute
lib ∈ RP

Program structures PClass
lib exist, that represent the model MClass with the Type An-

notation model notation. An object is notated therein with an annotation attached to a
type. The program references these program structures.

(PClass
lib , E)

represents←−−−−−−−−−→
TypeAnnotation

MClass; object ∈ OMClass ; object
instanceOf−−−−−−−→ class;

type, annotation ∈ OPClass
lib

; type
instanceOf−−−−−−−→ T ; annotation

instanceOf−−−−−−−→ A;

PAttribute
lib , PClass

lib ∈ RP

The value assigned to the member attribute equals the value assigned to the annotation
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parameter for the object.

object.attribute
hasV alue−−−−−−→ value(type.annotation.ap)

The model notation does not define an entry point.

E = ∅

Discussion For the Attribute Annotation Parameter mechanism to be applicable, the con-
taining class must be represented by the Type Annotation mechanism. The value can be read
by a runtime using introspection mechanisms.

Attribute Annotation

The Attribute Annotation mechanism is closely related to the Attribute Annotation Parame-
ter mechanism. Instead of adding an annotation parameter to an existing annotation, it uses
an own annotation for an attribute. Also, the underlying notation for the class can be any
notation that translates a class to a type or interface.

Example The meta model defines the source class State, which owns an attribute immediate
typed Boolean. The model defines an object of the class State with the name Scanning. Its
value for the attribute is true. This means that the state machine will immediately fire the
next transition, when it reaches this state.
The attribute is represented in the code with an annotation that is named after the attribute.

The annotation has a default parameter typed after the attribute. The annotation is attached
to the type which represents the source class. Its attribute value is set as value of the default
parameter.

Meta Model and Model Program in the Programming Language Java
M

e
ta

 M
o
d
e
l

M
o
d
e
l

@Immediate(true)
public class Scanning extends State {}

public @interface Immediate {
    boolean value();
}

Figure 5.45: Example code for the Attribute Annotation Mechanism
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Formalization The Attribute Annotation mechanism is formalized as follows:

Definition 70: Attribute Annotation - Meta Model Notation

The meta model notation of the Attribute Annotation mechanism P
represents⇐===========⇒

AttributeAnnotation
MMeta is defined as follows:
The meta model MMeta defines an attribute.

attribute ∈ AttributesMMeta

The program declares an annotation and an annotation parameter.

a, ap ∈ OP , a
instanceOf−−−−−−−→ A, ap instanceOf−−−−−−−→ AP

The annotation is named after the meta model’s attribute name. The annotation
parameter is the default parameter. Its type equals the model attribute’s type.

a.name
hasV alue−−−−−−→ name(attribute),

a.parameters
references−−−−−−−→ ap,

a.defaultParameter
references−−−−−−−→ ap,

ap.type
hasV alue−−−−−−→ type(attribute)

Definition 71: Attribute Annotation - Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 70,
the model notation of the Attribute Annotation mechanism (P,E)

represents←−−−−−−−−−−−→
AttributeAnnotation

M

is defined as follows:
Program structures PAttribute

lib exist, that represent the meta model MAttribute
Meta with the

meta model notation represents⇐===========⇒
AttributeAnnotation

. An attribute is notated therein with an annotation
and its default parameter. The program references these program structures.

PAttribute
lib

represents⇐===========⇒
AttributeAnnotation

MAttribute
Meta ;

attribute ∈ AttributesMAttribute
Meta

; a, ap ∈ OPAttribute
lib

;

a
instanceOf−−−−−−−→ A; ap

instanceOf−−−−−−−→ AP;PAttribute
lib ∈ RP

Program structures PClass
lib exist, that represent the modelMClass with a model notation

that represents an object with a type. The program references these program structures.

(PClass
lib , EClass)

represents←−−−−−→MClass, object ∈ OMClass , object
instanceOf−−−−−−−→ class,

class
has−−→ attribute, type ∈ OPClass

lib
, type

instanceOf−−−−−−−→ T , PClass
lib ∈ RP
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The program attaches the annotation to the type. The value assigned to the attribute
equals the value assigned to the default parameter.

object.attribute
hasV alue−−−−−−→ value(type.a.ap)

The model notation does not define an entry point.

E = ∅

Discussion For the Attribute Annotation mechanism to be applicable, the containing class
must be represented by a type declaration. This can be accomplished by using the Marker In-
terface or Type Annotation mechanism. The value can be read by a runtime using introspection
mechanisms.

Containment Operation Attribute Annotation Parameter

The mechanisms for attributes above require on the target being translated as a type or
interface. When a class is represented with an operation, e.g. using the Containment Operation
mechanism, these mechanisms are not applicable. The Containment Operation Attribute
Annotation Parameter mechanism allows for specifying targets for references of these classes,
be leveraging the annotation introduced by the Containment Operation mechanism. This
mechanism is the equivalent of the Containment Operation Reference Annotation Parameter
mechanism for attributes.

Example An example of this mechanism is shown in Figure 5.46. The meta model defines
a source class Operation, which has an attribute timeResourceDemand, a String. The model
defines an object of the class Operation with the name scanItem, and a value for the said
attribute. The value is a String-based definition of a probability mass function for the time
necessary until an invocation of this operation is finished as it is used in the PCM [BKR09]. In
this example with a probability of 0.1 the operation requires 10 milliseconds, with a probability
of 0.5 it requires 20 milliseconds, and with a probability of 0.2 it requires 50 milliseconds.
The code shows the Containment Operation Annotation that represents the containment ref-

erence towards the class Operation. This mechanism extends the annotation with an annotation
parameter. The parameter is named and typed after the attribute.
The operation scan represents the object that is translated with the Containment Opera-

tion mechanism. The value of the attribute is assigned to the annotation parameter of the
containment operation annotation.
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Meta Model and Model Program in the Programming Language Java
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    @Operations(
       timeResourceDemand=
           "IntPMF[(10;0.3)(20;0.5)(50;0.2)]")
   public String scanItem(){

     }

public @interface Operations {
String timeResourceDemand();

}

Figure 5.46: Example code for the mechanism Containment Operation Attribute Annotation
Parameter

Formalization The Containment Operation Attribute Annotation Parameter mechanism is
formalized as follows:

Definition 72: Containment Operation Attribute Annotation Parameter - Meta
Model Notation

The meta model notation of the Containment Operation Attribute Annotation Parame-
ter mechanism P

represents⇐=================================⇒
ContainmentOperationAttributeAnnotationParameter

MMeta is defined as fol-

lows:
Program structures P owner

lib exist, that represent the meta model Mowner
Meta with the Con-

tainment Operation meta model notation, that represents a reference and a target class
with an annotation. The program P references these program structures.

PClass
lib

represents⇐===================⇒
ContainmentOperationforTypes

MClass
Meta

⊕PClass
lib

represents⇐======================⇒
ContainmentOperationforInterfaces

MClass
Meta ,

referenceClass ∈ ReferencesMClass
Meta

, class ∈ ClassesMClass
Meta

,

annotation ∈ APClass
lib

, PClass
lib ∈ RP
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The meta model MMeta defines an attribute that is owned by the class.

attribute ∈ AttributesMMeta
, classsource

has−−→ attribute

The program declares an annotation parameter. It is owned by the annotation, and
named and typed after the model attribute.

ap ∈ OP , ap
instanceOf−−−−−−−→ AP,

annotation.parameters references−−−−−−−→ ap,

ap.name
hasV alue−−−−−−→ name(attribute),

ap.type
hasV alue−−−−−−→ type(attribute)

Definition 73: Containment Operation Attribute Annotation Parameter -
Model Notation

For a program P and a modelM instanceOf−−−−−−−→MMeta, withMMeta defined as in Definition 72,
the model notation (P,E)

represents←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationAttributeAnnotationParameter

M is defined as

follows:
Program structures P source

lib exist, that represent the model M source with the Contain-
ment Operation meta model notation, which represent a source object with an operation
signature. The program references these program structures.

(P source
lib , Esource)

represents←−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforTypes

M source

⊕(P source
lib , Esource)

represents←−−−−−−−−−−−−−−−−−−−−−−→
ContainmentOperationforInterfaces

M source,

osource ∈ OMsource , os ∈ OP source
lib

, os
instanceOf−−−−−−−→ OS, P source

lib ∈ RP

Program structures PAttribute
lib exist, that represent the meta model MAttribute

Meta with
the meta model notation represents⇐=================================⇒

ContainmentOperationAttributeAnnotationParameter
. An attribute is

notated therein with an annotation parameter. The corresponding annotation is attached
to the operation signature. The program references on these program structures.

PAttribute
lib

represents⇐=================================⇒
ContainmentOperationAttributeAnnotationParameter

MAttribute
Meta ,

attribute ∈ AttributesMAttribute
Meta

, annotation, ap ∈ OPAttribute
lib

,

annotation
instanceOf−−−−−−−→ A, ap instanceOf−−−−−−−→ AP,

annotation.parameters references−−−−−−−→ ap, annotation
attachedTo−−−−−−−→ os, PAttribute

lib ∈ RP

The attribute’s value for the source object equals the value assigned to the parameter in
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the attached annotation.

os.annotation.ap
hasV alue−−−−−−→ value(osource, attribute)

The model notation defines no entry point

E = ∅

Discussion For the Containment Operation Attribute Annotation Parameter mechanism to be
applicable, the source object must be represented with the Containment Operation mechanism.
In the mechanisms presented in this thesis, this is the only way to declare attributes of objects
that are translated as Containment Operations. During design time, the value is defined by
the annotation parameter value.
An attribute might have no value assigned. In that case, no value would be assigned to the

parameter of the attached annotation, which contradicts Definition 31. In that case a value has
to be declared that represents the empty target, e.g. an empty string, 0, or false, depending
on the attribute’s type. Java allows for setting default values for annotation parameters. This
concept could be used to set such a value as default value, which is known to a translation or
execution runtime. This might be unwanted, because an the semantics of an empty string and
a null value for example might differ in the application.
Analogously to the Containment Operation Reference Annotation Parameter mechanism,

an execution runtime can access the value using introspection mechanisms, and use it e.g. to
evaluate whether the Containment Operation should be invoked, or for evaluating these values
during a performance monitoring. The program code within the operation can access the value
using the same introspection mechanisms, but the value is not available directly, e.g. via an
operation parameter.
It would also be possible to add a parameter to the operation, which is typed and named

after the attribute. An execution runtime could then inject the respective value into its calls.
However, the operation and its parameters are available for invocation for arbitrary code, which
could set arbitrary parameter values. Therefore the parameter value at runtime could differ
from the value at design time, which is not intended here.

5.6.6 Summary

This section described and defined a set of integration mechanisms in the boundaries of the
language definition presented in Section 5.4.4. These integration mechanisms can be used as
templates for creating notations for specific languages. The existence of defined mechanisms
allows for reasoning about integrations, and for evaluating the advantages and disadvantages
of the use of particular integration mechanisms within the models to be mapped.
The presented mechanisms have specific advantages and disadvantages as described in the

individual sections. The selection of integration mechanisms depends on how the resulting code
elements should be usable by other code and by execution runtimes. A provided component
interface should be represented using the Static Interface mechanism (the interface) and the
Static Interface Implementation mechanism (the provision) to be usable as expected in the code.
If the provision is e.g. represented with the Containment Operation mechanism, operations
in the interface could only be represented as types targeted in an operation parameter or
annotation, which would not meet developer expectations.
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The presented list of integration mechanisms is not complete. New mechanisms can be added,
which probably have other specific advantages or disadvantages. The programming language
definition 15 is based on the Java Language Specification [GJS+15]. Most mechanisms require
the concept of annotations, which limits the applicability to other languages. For defining
integrations that are better usable with other languages, it might be necessary to revisit the
underlying programming language definition, for creating a foundation that is better usable
with the respective programming language.

5.7 Development of Model-to-Code/Code-to-Model
Transformations and Execution Runtimes

For the integration of meta models and models with program code using the notations described
above, it is required to have a meta model of the architecture implementation language. This
is usually not the case. To use a specific architecture implementation language with the Model
Integration Concept, the following steps need to be executed. Figure 5.47 accompanies the
description as an overview. The figure shows the elements created in the steps described below.
The arrows between the elements declare the data flow.

1. Modelling 
Language Meta 

Model
2. Integration 
Mechanisms2. Mapping

3. Meta Model 
Notation Libraries

4. Model-to-Code / 
Code-to-Model

Transformations
5. Execution Runtime 

Stubs

Data Flow

Figure 5.47: An overview of the elements, that need to be created during the development of
code-to-model and model-to-code transformations and execution runtime stubs in
the Model Integration Concept

1. A meta model that follows the Definitions 1 to 8 have to be created, based on the
architecture implementation language’s specification.

2. A mapping has to be created between the classes, attributes, and references in the meta
model, and integration mechanisms. Where necessary, new integration mechanisms have
to be created.

3. A code library must be implemented, that represents the meta model elements in the
meta model notation of the integration mechanisms. This task can be automated,
by implementing a generic tool that takes a meta model and the chosen integration
mechanisms as parameter, and creates a corresponding code library. Such a tool has been
developed in the context of this thesis (see Section 9.3.3).
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4. Bidirectional model-code transformations must be implemented, that can translate exist-
ing code into a model representation based on the meta model and the chosen integration
mechanisms, and that can translate changes in a model to the code. These transforma-
tions have the following functional requirements:

a) For a given code element, a corresponding model element must be created.

b) When two model elements are given, one from before a change and one from after a
change, the following changes must be made to the program code:

i. When the model element from before a change is empty, new program code must
be created.

ii. When the model element from after a change is empty, the corresponding
program code must be deleted.

iii. When both model elements are available and differ, the corresponding program
code must be changed according to the integration mechanism.

For formally defined integration mechanisms like those presented in Section 5.6, this task
can be automated by implementing a generic tool that takes a meta model and the chosen
integration mechanisms as a parameter, and creates a corresponding set of translations.
For executing these translations an execution framework is necessary. Such tools and
frameworks have been developed in the context of this thesis (see Sections 9.3.4 and 9.2).

5. An execution runtime must exist, that is capable of executing the execution semantics.
Following Balz’ analysis [Bal11, Section 3.1.4], an execution runtime can (a) interpret
structures found in the integrated model. This allows for behaviour that is defined on the
level of the modelling language. E.g. the general behaviour to instantiate component
types can be defined this way, when the behaviour is independent from the specific
component type. It must also (b) execute semantics defined within in entry points of
the notations. E.g. when a component type is started, a specific operation of type
declaration can be invoked. Each component type may declare an individual start-up
operation.

An execution framework can be either available separately from the integrated model, as
it is defined by Balz [Bal11, Section 3.2.3], or be part of the integration mechanism’s
code structure. This is shown in the CoCoME component case study in Section 10.2.3.

For existing standardized architecture implementation languages used in practice, libraries
often already exists as APIs. These APIs can be used to mark code elements e.g. as beans in
JEE. In that case, the meta model notation is already fixed, which means that steps 2 and 3 are
not needed. For these languages the execution runtime also typically already exits in form of a
reference implementation and possibly further implementations of the specification. Therefore
step 5 is also unnecessary in these cases.
It should be noted that architecture implementation languages use a variety of description

styles for their model elements, including annotations, marker interfaces, but also e.g. XML
configuration files. These mechanisms have to be analyzed and understood. It is possible to
describe notations for other languages than programming languages. To do so, the language
must be expressed using the formalism for meta models, or the formalism must be extended
correspondingly. This thesis focuses on notations for object-oriented programming languages.
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5.8 Summary

5.8 Summary

This chapter described the Model Integration Concept as a central part of the Explicitly
Integrated Architecture approach and showed how it integrates model information with program
code. First the foundational elements of the concept were defined: language meta models and
models thereof, of both, modelling languages and programming languages. Then meta model
notations and model notations were defined, which formally describe how a meta model or a
model is represented unambiguously with program code structures. Integration mechanisms
are templates for notations, and can be used in combination with a specific meta model to
build specific notations. A process was described, how translations between meta models
and program code structures of architecture implementation models can be developed using
the Model Integration Concept. The role of the Model Integration Concept in the Explicitly
Integrated Architecture approach is to create a bidirectional mapping between the program code
and the architecture models that ar represented in an architecture implementation language or
in the intermediate languages. The next chapter describes the intermediate language.
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Language

This chapter describes the Intermediate Architecture Description Language (IAL) as a transla-
tion model language between architecture implementation models and architecture specification
models. Figure 6.1 highlights the role of the IAL within the proposed solution.

Implementation 
Model

Program Code

Architecture Model Transformations

Specification
Model

Model 
Integration 
Concept

Is  Translated  To

Model  Layer

Code  Layer

Translation 
Model (IAL)

Figure 6.1: The Intermediate Architecture Description Language highlighted in the overview of
the proposed solution

The IAL is used to represent architecture information independently from the architecture
specification and implementation languages. It has the role to increase the interoperability
of the Explicitly Integrated Architecture approach with different architecture languages, and
to increase its evolvability. Section 6.1 states requirements towards the IAL to fulfill its role.
A central requirement is the extensibility of the language. Section 6.2 describes concepts for
building extensible languages and discusses why existing extensible languages are not suitable
for the Explicitly Integrated Architecture Process. The then following sections describe the
language developed for the process.

6.1 Requirements Towards a Translation Model Language

The IAL has two roles in the Explicitly Integrated Architecture Process. First, it assists
language interoperability by relaxing the n:m relationship between architecture specification
and implementation languages to a n:1:m relationship. It decouples the translations of the
languages from each other within the approach, to make the aspect of architecture model
transformations conceptually more sound. It decreases the number of transformation rules
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necessary to be specified when a new language is integrated into the Explicitly Integrated
Architecture Process. Second, it strengthens the evolvability of the approach. The IAL must
be able to cover the concepts of any architecture languages, including future ones. The language
can fulfill this requirement, when it is possible to extend the language’s meta model with new
elements, and to add properties to existing elements.
The IAL is required to model multiple concerns regarding its elements at the same time.

E.g. a component type has to be declared stateful or stateless, part of a hierarchy or not, and
subject to performance and security constraints, at the same time.
Architecture specification languages and architecture implementation languages have few

commonalities [Mü10]. A minimal set of element types in architecture languages are usually
components and interfaces. The interconnection between components is often an essential part
of architecture descriptions. Component interconnections are usually enabled via interfaces
that are provided and required by components. The actual connection is then modelled with
a connector between two components with compatible interfaces. While some architecture
languages do not explicitly model connectors (e.g. [MDEK95, vOvdLKM00]), these languages
interconnect components via shared interfaces, which implies a connector, even if no first
class element with such a name exists. Therefore, it must be possible to model components,
interfaces, and connectors with the IAL.
At last, technical constraints due to the implementation of the process require the IAL to be

easily usable with tools for Ecore meta models, for making the Ecore ecosystem available for
implementing the IAL, and for parsing and creating models thereof. In summary, we state the
following requirements towards an IAL for the Explicitly Integrated Architecture Process:

IL-R1 It must be possible to extend the meta model with new first class entities.

IL-R2 It must be possible to extend existing elements of the meta model with new properties.

IL-R3 It must be possible to model multiple concerns regarding a meta model element simul-
taneously.

IL-R4 It must be possible to represent components, interfaces, and connectors.

IL-R5 The meta model must be easily usable with tools working with Ecore meta models.

Requirement IL-R4 is fulfilled by most architecture languages. Requirement IL-R5 is a
technical constraint. Where necessary, adapters could be developed to make languages usable
with Ecore enabled tools. The requirements IL-R1, IL-R2, and IL-R3 are the most limiting
factor for finding a suitable language. Section 6.2 describes the strategies and a set of languages
inspected regarding these requirements, and explains why these languages are not suitable for
the Explicitly Integrated Architecture Process.

6.2 Strategies and Language Concepts for Extensibility

The requirement for integrating new first class entities in meta models can only be fulfilled by
extensible languages. Three strategies are identified and evaluated in the context of this thesis,
how this requirement can be fulfilled. The strategies are described in the following sections.
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6.2.1 Placeholders

Special abstract syntax elements can be used as placeholders for arbitrary information.
Acme [GMW97] is a representative language for using placeholders. It has been intended to be
an architecture interchange language. It is primarily used in automated processes as interme-
diate language, but has moved to be an Architecture Description Language (ADL) [TMD09, p.
230]. Acme has a set of basic elements for modelling architectures, primarily components, in-
terfaces (called ports in Acme), and connectors. In architectures modelled with Acme, elements
can be extended with arbitrary key-value pairs called properties.
Listing 6.1 gives an example for such a placeholder in Acme. The example declares

a system CoCoME with two components. The component cashBox declares a property
JavaImplementation, which states a class that implements the component.

1System CoCoME = {
2Component cashBox = {
3Port receiveProductCode;
4Property JavaImplementation: class = org.cocome.CashBox
5}
6Component barcodeScanner = {
7Port scanBarcode;
8}
9Connector scanEvent = {
10Role caller;
11Role callee;
12}
13Attachment cashBox.receiveProductCode to scanEvent.callee;
14Attachment barcodeScanner.scanBarcode to scanEvent.caller;
15}

Listing 6.1: Example for placeholders with Acme

Acme, as a representative of architecture with extensions, does not fulfill all requirements
stated in Section 6.1.

IL-R1 It must be possible to extend the meta model with new first class entities.

It is not possible to extend the language with new first class entities, because a property
is always owned by another first class entity.

IL-R2 It must be possible to extend existing elements of the meta model with new properties.

It is possible to extend language elements with new properties with the properties mech-
anism. However, the concept implies that the extending properties have well-defined
schema. The contents and its semantics are unclear.

IL-R3 It must be possible to model multiple concerns regarding a meta model element simul-
taneously.

The strategy allows for modelling multiple concerns simultaneously by adding arbitrary
information within the placeholder.

IL-R4 It must be possible to represent components, interfaces, and connectors.

First class entities exist for components, interfaces (called ports), and connectors.

IL-R5 The meta model must be easily usable with tools working with Ecore meta models.

While it is possible to create an Ecore meta model for the Acme language, no such meta
model already exists.
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The placeholder strategy allows to extend elements with arbitrary information. It is flexible
to use. It is however not part of the strategy to define a schema for the additional informa-
tion within the boundaries of the underlying language. A supplemental technology, such as
schemata, a parser etc. are necessary to use this strategy in an automated fashion. Due to
these disadvantages this strategy is not chosen for the IAL.

6.2.2 Meta Model Extensions

Languages with meta model extensions declare extension points in meta models, where—on a
model level—arbitrary extensions can be integrated. xADL [DvdHT02] is a representative
language for using meta model extensions. The meta model of xADL is based on XML
schemata. xADL defines a core XML schema, which is extended by schemata for specific
architectural concerns. These extending schemata reference meta model elements from the core,
or from other extending schemata. Depending on the requirements towards the architecture
of a specific system, a set of chosen XML schemata is chosen to build the meta model of the
architecture language. An architecture is designed using xADL by creating XML documents
that are valid regarding the set of XML schemata. One of the predefined XML schemata in
xADL is structure-3.0.xsd. It comprises language elements for modelling components, interfaces,
and connectors. Other predefined schemata concern e.g. behavioural descriptions with state
charts or variability. Other concerns can be developed and integrated as needed.
XML Schema allows for using abstract types and extensions of types, similar to abstract

classes and subclasses in object-oriented programming languages. Subclassing uses inheritance
to extend classes with functionality. With subclassing, classes can inherit attributes and
references from parent classes. The children extend their parents with their own attributes
and references. This allows for using subclasses (in terms of XML subtypes) for extending the
classes in xADL languages. xADL uses this feature for its extension mechanism.
The listings 6.2 to 6.4 give an example using XML and the definition of extensions with

subclasses. Listing 6.2 is an excerpt of xADL’s structure schema. It declares a type structure,
which contains components, connectors, and links. Structures (as well as many other types in
xADL) contain elements of the abstract type core:Extension (see line 16 of Listing 6.2). Here
new elements of other XML schemata can be added. The example in Listing 6.3 shows one such
extension. The implementation schema provides a subtype of the core:Extension type, that
may provide implementation details. The XML document in Listing 6.4 shows the declaration
of a simple architecture with xADL. The component CashBox contains implementation details
using the extension mechanism.
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1<xs:schema xmlns="http ://www.archstudio.org/xadl3/schemas/structure -3.0. xsd"
2xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
3xmlns:core="http ://www.archstudio.org/xadl3/schemas/xadlcore -3.0. xsd"
4targetNamespace="http ://www.archstudio.org/xadl3/schemas/structure -3.0. xsd"
5elementFormDefault="qualified"
6attributeFormDefault="qualified">
7

8<xs:import namespace="http ://www.archstudio.org/xadl3/schemas/xadlcore -3.0. xsd"
9schemaLocation="https :// raw.github.com/isr -uci -edu/ArchStudio5/master/org.

archstudio.xadl3.xadlcore/model/xadlcore -3.0. xsd"/>
10

11<xs:complexType name="Structure">
12<xs:sequence >
13<xs:element name="component" type="Component" minOccurs="0" maxOccurs="unbounded"

/>
14<xs:element name="connector" type="Connector" minOccurs="0" maxOccurs="unbounded"

/>
15<xs:element name="link" type="Link" minOccurs="0" maxOccurs="unbounded"/>
16<xs:element name="ext" type="core:Extension" minOccurs="0" maxOccurs="unbounded"

/>
17</xs:sequence >
18<xs:attribute name="id" type="xs:ID"/>
19<xs:attribute name="name" type="xs:string"/>
20</xs:complexType >
21

22</xs:schema >

Listing 6.2: Excerpt of the xADL 3.0 Structure Schema as an example for meta model extensions
in languages through subclassing1

1<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
2<xs:schema xmlns="http ://www.archstudio.org/xadl3/schemas/implementation -3.0. xsd"
3xmlns:core="http ://www.archstudio.org/xadl3/schemas/xadlcore -3.0. xsd"
4xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
5attributeFormDefault="qualified"
6elementFormDefault="qualified"
7targetNamespace="http ://www.archstudio.org/xadl3/schemas/implementation -3.0.

xsd">
8

9<xs:import namespace="http ://www.archstudio.org/xadl3/schemas/xadlcore -3.0. xsd"
10schemaLocation="https ://raw.github.com/isr -uci -edu/ArchStudio5/master/org.

archstudio.xadl3.xadlcore/model/xadlcore -3.0. xsd"/>
11

12<xs:complexType abstract="true" name="Implementation">
13<xs:attribute name="id" type="xs:ID"/>
14</xs:complexType >
15

16<xs:complexType name="ImplementationExtension">
17<xs:complexContent >
18<xs:extension base="core:Extension">
19<xs:sequence >
20<xs:element maxOccurs="unbounded" minOccurs="0" name="implementation" type="

Implementation"/>
21</xs:sequence >
22</xs:extension >
23</xs:complexContent >
24</xs:complexType >
25</xs:schema >

Listing 6.3: xADL 3.0 Implementation Schema as an example for meta model extensions in
languages through subclassing2

1Excerpt from: https://github.com/isr-uci-edu/ArchStudio5/blob/master/org.archstudio.xadl3.
structure/model/structure-3.0.xsd
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1<?xml version ="1.0" encoding ="UTF -8"?>
2<core:xADL xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
3xmlns="http :// www.archstudio.org/xadl3/schemas/structure -3.0. xsd"
4xmlns:impl="http ://www.archstudio.org/xadl3/schemas/implementation -3.0. xsd"
5xmlns:javaimpl="http ://www.archstudio.org/xadl3/schemas/javaimplementation -3.0. xsd"
6xmlns:core="http ://www.archstudio.org/xadl3/schemas/xadlcore -3.0. xsd">
7<structure id="id1" name="CoCoME">
8<component id="id2" name="CashBox">
9<interface direction="in" id="id3" name="ICashBox"/>
10<impl:implementation xsi:type="javaimpl:JavaImplementation">
11<javaimpl:mainClass javaimpl:className="org.cocome.CashBox"/>
12</component >
13<component id="id4" name="BarcodeScanner">
14<interface direction="out" id="id5" name="IBarcodeScanner"/>
15</component >
16<connector id="id6" name="BarcodeScanner2CashBox">
17<interface direction="in" id="id7" name="IBarcodeScanner"/>
18<interface direction="out" id="id8" name="ICashBox"/>
19</connector >
20<link id="id9" name="[New Link]">
21<point1 >id8 </point1 >
22<point2 >id3 </point2 >
23</link>
24<link id="id10" name="[New Link]">
25<point1 >id7 </point1 >
26<point2 >id5 </point2 >
27</link>
28</structure >
29</core:xADL>

Listing 6.4: xADL 3.0 Architecture as an example for meta model extensions in languages
through subclassing

The meta model extensions strategy allows to extend meta model elements with arbitrary
information. In contrast to the untyped placeholders strategy, it implies a structure, that is
inherent to the underlying language. Tools can therefore interpret and analyse the architecture,
including its extension, as long as they are aware of the extension schemata. The following
requirements of Section 6.1 are fulfilled by xADL:

IL-R1 It must be possible to extend the meta model with new first class entities.

It is possible to extend the language with new first class entities, by adding new XML
schemata. Adding new first class entities is not intended by xADL. In this language (and
its tools) it is only possible to extend classes that provide an extension point.

IL-R2 It must be possible to extend existing elements of the meta model with new properties.

It is possible to extend elements of the language with new properties, by using the
extension mechanism. These extensions are not type safe. All extensions (subclasses
of core:Extension) can be used at an extension point.

IL-R3 It must be possible to model multiple concerns regarding a meta model element simul-
taneously.

xADL allows for modelling multiple concerns upon an element separately by using the
extension mechanism.

2Excerpt from: https://github.com/isr-uci-edu/ArchStudio5/blob/master/org.archstudio.xadl3.
implementation/model/implementation-3.0.xsd
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IL-R4 It must be possible to represent components, interfaces, and connectors.

First class entities exist for components, interfaces, and connectors in the Structure XML
schema.

IL-R5 The meta model must be easily usable with tools working with Ecore meta models.

xADL is based on XML and XML schemata. It is possible to derive Ecore meta models
from XML schemata and Ecore models from XML documents. While this is conceptually
possible, the technical integration imposes additional challenges.

The meta model extension strategy in general is a good fit for the requirements at hand. The
extension mechanism used by xADL, as a representative of architecture languages with meta
model extensions, allows for developing meta model extensions for meta model elements, as
long as it contains an element of the type Extension. It is therefore not possible to develop an
extension for components only. There is no type-safety integrated in the extension mechanism.
The implementation of this strategy by xADL using extensions with unsafe types implies
drawbacks that make the use of xADL unfeasible for the Explicitly Integrated Architecture
Process. Also, while it is in theory possible to add new first class entities using XML schemata,
this is not intended by the implementation of xADL. Due to the stated drawbacks the strategy
is not used for the IAL.

6.2.3 Profiles

Profiles are best known from the context of the UML [Obj15, Section 12.3]. EMF Pro-
files [LWWC12] is a profile extension for Ecore. With profiles, models and meta models can be
extended with additional attributes and references, based on stereotypes. The profiles concept
is a special case of the meta model extension strategy. A profile does not introduce first class
elements without context, but always extend existing classes with stereotypes, which provide
another view onto the extended class.
When a stereotype extends a class, the stereotype can be applied to instances of that class.

The attributes and references of the stereotype are available to objects that have the stereotype
applied, in addition to the attributes and references of the class. Stereotypes are named to make
them identifiable. Multiple stereotypes can be applied to a class, therefore providing multiple
views onto the same subject.
Profiles are collections of stereotypes, classes, attributes, and references, their interrelation-

ships, and their relationships to abstract syntax elements of other meta models. The meta
models that they extend are called base meta models. Profile applications are collections of
stereotype applications, further objects and their interrelationships. The relationship between
profiles, profile applications, meta models, and models is sketched in Figure 6.2.
Figure 6.3 gives an example of a profile on the basis of Ecore, extended with EMF Profiles.

In this example the original meta model consists of one class named ComponentType, which has
two attributes name and version, both of the type String. A new view upon the class should be
established concerning the authorship of component objects. The class is to be extended with
an author. This is achieved using a profile. The profile declares a stereotype named Authored,
which extends the class ComponentType. The stereotype declares an attribute author of the
type String. When the ComponentType is instantiated, and the stereotype Authored is applied
to the instance, a value can be assigned to attribute author for that specific object. The
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extends

Language Meta Model Profile

Stereotype

Profile Application

Class

Language Model

Object
Stereotype
Applicationapplied to

instanceOf instanceOfinstanceOf instanceOf

Figure 6.2: The relationships between profiles, profile applications, meta models, and models

stereotype can be applied to an arbitrary number of objects of the class ComponentType. The
icon to the lower left of the class ComponentType declares, that the class is part of a base meta
model.

<<Stereotype>>

Authored

author : String

0..*

ComponentType

name : String

version : String

Figure 6.3: Example of a profile with a stereotype, that extends a base meta model class

The profile strategy allows to extend elements with arbitrary information. It is flexible,
because arbitrary profiles can be specified, and multiple stereotypes can extend a class. In
contrast to the placeholder strategy, the profile strategy uses a well defined structure for that
additional information. Other than in the meta model extension strategy, the extensions with
stereotypes are type safe, because it is explicitly declared which class can be extended with a
specific stereotype. Profiles can also be a base meta model of other profiles. Therefore profiles
can build upon each other. A stereotype can extend classes, that are part of any base meta
model. This strategy fulfills the requirements as follows:

IL-R1 It must be possible to extend the meta model with new first class entities.

The use of the profile strategy allows for adding arbitrary abstract syntax elements to
a meta model. A profile can define new classes, which can be contained by a stereo-
type. Therefore it is possible to integrate new architectural concepts into an architecture
language defined with profiles.

148



6.2 Strategies and Language Concepts for Extensibility

IL-R2 It must be possible to extend existing elements of the meta model with new properties.

It is possible to extend meta model elements with new properties using the profile strategy.
By declaring and applying stereotypes, new attributes and references can be added to
existing meta model elements.

IL-R3 It must be possible to model multiple concerns regarding a meta model element simul-
taneously.

The profile strategy allows for modelling multiple concerns regarding a model element
simultaneously, by extending a class with multiple stereotypes and applying multiple
stereotypes to an object.

IL-R4 It must be possible to represent components, interfaces, and connectors.

The strategy and EMF Profiles as tool, that implements the strategy, do not fulfil this
requirement for themselves. To fulfill this requirement, a meta model or profiles have to
be created, that allow for modelling these elements.

IL-R5 The meta model must be easily usable with tools working with Ecore meta models.

The profile mechanism can be used with Ecore using EMF Profiles. EMF Profiles is
designed to be usable with the existing ecosystem for Ecore meta models and models.

Four of five requirements are fulfilled by choosing profiles as strategy for extending a meta
model. The remaining requirement can be fulfilled by creating a meta model and profiles
for representing the respective elements. This strategy has been chosen for the Explicitly
Integrated Architecture approach. For using the profiles strategy, it is necessary to define how
profiles integrate with the formalization of meta models and models. In the following sections,
we define how stereotypes are used within the meta model definition of Section 5.4.1.

Stereotypes

Stereotypes are named elements that may have attributes and references. Stereotypes extend
classes.

Definition 74: Stereotypes as Named Elements

A stereotype is a named element. The naming is defined analogously to the Definition 3
of named elements in meta models. For a set Stereotypes of stereotypes and a set N of
labels, the function name that assigns a name to a stereotype is defined as follows:

name : Stereotypes→ N

Definition 75: Stereotypes own Attributes and References

A stereotype has attributes and references. This is defined analogously to Definition 4 of
the respective ownerships for classes in meta models. For a set Stereotypes of stereotypes,
a set Attributes of attributes and a set References of references, we define the relation
has−−→, that declares that a stereotype has the given attribute or reference.
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has−−→⊆ Stereotypes× (Attributes ∪References)

The shorthand notation for ownership of Definition 4 also applies to stereotypes and
their attributes and references. For a stereotype s and an attribute or reference e ∈
Attributes ∪References:

s.e :⇐⇒ e, s
has−−→ e

Instead of the elements, their name can also be used. E.g. for a stereotype s ∈
Stereotypes and an attribute a ∈ Attributes:

s
has−−→ a ∧ name(s) = Authored ∧ name(a) = name⇔ Authored.name = a

Definition 76: Stereotypes extend Classes

A stereotype extends classes. For a set Stereotypes of stereotypes and a set Classes of
classes, we define the relation extends−−−−−→ that declares that a stereotype extends a class.

extends−−−−−→⊆ Stereotypes× Classes

A stereotype can be applied to an object, when the corresponding stereotype extends the
object’s class. When a stereotype is applied to an object, values can be assigned to the attributes
and references of the stereotype for that object.

Definition 77: Stereotypes Applied to Objects

The application of a stereotype to an object is defined with a relation appliedTo−−−−−−→.

appliedTo−−−−−−→⊆ Stereotypes×O

Constraint 15: Constraints for Applying Stereotypes to Objects

A stereotype can only be applied to an object, when the stereotype extends the object’s
class.
Let s be a stereotype and o be an object.

s
appliedTo−−−−−−→ o =⇒ ∃c ∈ Classes : o

instanceOf−−−−−−−→ c ∧ s extends−−−−−→ c

Constraint 16: Assigning Values to Attributes of Stereotypes

When a stereotype is applied to an object, values can be assigned to the stereotype’s
attributes for that object. In the context of profile applications, Definition 12 for assigning
values to attributes is weakened as follows:

(o, a)
has−−→ v =⇒ (∃c ∈ Classes : o

instanceOf−−−−−−−→ c ∧ c has−−→ a)
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∨ (∃s ∈ Stereotypes : s
appliedTo−−−−−−→ o ∧ s has−−→ a)

Constraint 17: Assigning Targets to References of Stereotypes

When a stereotype is applied to an object, targets can be assigned to the stereotype’s
references for that object. In the context of profile applications, Definition 13 for assigning
targets to references is weakened as follows:

(osource, r)
references−−−−−−−→ otarget =⇒ (∃c ∈ Classes : osource

instanceOf−−−−−−−→ c ∧ c has−−→ r)

∨ (∃s ∈ Stereotypes : s
appliedTo−−−−−−→ o ∧ s has−−→ r)

Profiles

Profiles are collections of stereotypes, classes, attributes, and references that have a common
concern. They are applied to a one or more base meta models, meaning that their stereotypes
can extend classes of the base meta model, their references can target classes of the base meta
model, and their attributes can be typed by the data types of the base meta models. Profiles
are modelling language meta models themselves, and can be applied to other profiles.
The definition of a profile’s relations and functions is close to the corresponding definition in

modelling language meta models (see Definition 1). In comparison to the modelling language
meta model definition, references within profiles can also target abstract syntax elements of the
base meta models, the type of attributes within profiles can be part of the base meta models,
and stereotypes extend classes of the base meta models.

Definition 78: Profiles

A profile Profile is a meta model (see Definition 1) extended with stereotypes.

Profile := (B,A,D,L, F ), where

• B is a set of base meta models (possibly including profiles).

• A, D, and L are defined analogously to their definition for modelling language meta
models (see Definition 1)

• the typing function

isOf−−−→: A→ {StereotypeType, ClassType,AttributeType,ReferenceType}

considers Stereotypes in addition to the types of abstract syntax elements in meta
models.

• the set of relations and functions F is based on those of modelling language meta
models, but extended for profiles in the following definitions.
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StereotypesProfile is the set of all stereotypes in the profile Profile.

StereotypesProfile := {a | a ∈ AProfile ∧ a
isOf−−−→ StereotypeType}

Definition 79: Relationship between Abstract Syntax Elements of Profiles and
Modelling Language Meta Models

Let ClassesProfile be the set of classes in a profile, and ClassesB be the set of classes in
the abstract syntax elements of the profile’s base meta models. Further let DProfile be the
set of data types in the profile, and DB the set of data types in the profile’s base meta
models. Then

• extends−−−−−→: Stereotypes→ ClassesProfile ∪ClassesB defines that a stereotype extends
a class of the profile or the base meta model.

• isOfType−−−−−−→: References→ ClassesProfile ∪ ClassesB, defines that a reference of the
profile has a class of the profile or a base meta model as type.a

• isOfType−−−−−−→: Attributes→ DProfiles ∪DB defines that an attribute has a data type of
the profile or a base meta model as type.

aAll relations x isOfType−−−−−−→ y can also be notated as type(x) = y.

Definition 80: Profile Application

A profile application is an instance of a profile, like a model is an instance of a meta model.
It is defined as a tuple

PA := (P,O, V,N, F,R), where

• P is the profile that the application instantiates,

• and O, V , N , F , and R are defined analogously their definition of models (see
Definition 9).

For the set of profile applications ProfileApplications and the set of profiles Profiles,
the function instanceOf−−−−−−−→ declares that a profile application instantiates a profile.

instanceOf−−−−−−−→: ProfileApplications× Profiles

Example

Example 7 shows how profiles and stereotypes are used. This formal description represents
the example given in Figure 6.3. It declares a class ComponentType. The profile declares a
stereotype Authored, that extends ComponentType and adds an attribute author.
Example 8 shows how profile applications are used. The base model MExample is defined on

Example 2. The profile application is depicted in Figure 6.4. It applies the stereotype Authored
to the two objects of the class ComponentType.
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Example 7: Profile Example

The formalization of the profile ProfileExample, represented in Figure 6.3, is defined as
follows. Empty sets are not explicitly stated. The base meta model MExample

Meta is defined
in Example 1.

B := {MExample
Meta }, Stereotypes := {s}, Attributes := {a}

The elements are named as follows:

name(s) = Authored, name(a) = author

The following relations apply:

Authored.author isOfType−−−−−−→ String, Authored.author extends−−−−−→ ComponentType

Figure 6.4: A model with the example profile application

Example 8: Profile Application Example

The example profile application PAExample instanceOf−−−−−−−→ ProfileExample is formalized as
follows. Empty sets are not explicitly stated. The referenced MExample is defined in
Example 2.

P := ProfileExample, R := {MExample}

The following relations apply:

barCodeScanner.author hasV alue−−−−−−→ Alice, cashDesk.author hasV alue−−−−−−→ Bob

6.2.4 Language Management

In addition to the strategies described above, a language with extensions should be subject of
a management task. The existence of language extensions should be registered and described,
so that all language users can have an overview of the possible expressiveness, including which
extensions exclude or require each other.
As an example for mutual exclusion, consider the Palladio Component Model

(PCM) [BKR09], which describes hierarchical component instantiation, while Enterprise Java
Beans (EJB) [EJB09] describes a flat component instantiation. When an intermediate

153



6 Intermediate Architecture Description Language

language wants to describe such architectures, it must ensure that the architecture is
not invalid, when it is declared flat and hierarchical at the same time. An example for
mutual requirement can be event-based interfaces and event-based connectors. Event-based
connectors are only useful when event-based interfaces are present. Language management
declares such exclusions and requirements. When a model is used, a valid subset of the model
has to be interpreted.

6.3 Meta Model Overview

The Explicitly Integrated Architecture Process uses the general purpose architecture language
Intermediate Architecture Description Language (IAL) to translate between architecture im-
plementation and specification languages. The IAL comprises a language kernel extended with
profiles. The kernel defines the common meta model elements of all architectures, that are
described with the IAL. The profiles extend the kernel with meta model elements of specific
concerns. The kernel is described in Section 6.4. Section 6.5 describes the profiles and their
interrelationships.

6.4 Language Kernel

Figure 6.5: The kernel of the Intermediate Architecture Description Language

Figure 6.5 shows the kernel of the IAL. The Architecture is the root node that represents
a software architecture comprising interconnected components. The class ComponentType
represents a static design-time component description. The component type has an attribute
name for declaring a component type name. The class Interface can be used as an abstract
definition of an interface for a component. It does not imply a structure or a specific behaviour
of the interface. It can therefore represent different styles of interfaces, e.g. a procedure call
interface or an event-based interface. Interfaces are named. Component types can provide and
require interfaces via the Provision and Requirement elements.
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The class Component Instance represents the runtime view on components types. When a
component type is executed, a component instance is created. The provision and requirement
of interfaces are instantiated respectively. At design time, instances can be representatives of
several instances (see Section 6.5.4).
The language kernel is formalized as a modelling language meta model as follows:

Definition 81: Intermediate Architecture Description Language Kernel

The meta model of the Intermediate Architecture Description LanguageMKernel
Meta is defined

as follows:
Classes := {cArch, cInt, cCT , cCI , cReq, cProv, cReqI , cProvI}

Attributes := {aintname, a
ct
name}

References :=

{rarch2ci, rarch2ct, rarch2int, rci2ct, rci2provi, rci2reqi,

rct2req, rct2prov, rprov2int, rprovi2prov, rreq2int, rreqi2req}

Containment := {rarch2ci, rarch2ct, rarch2int, rci2provi, rci2reqi, rct2req, rct2prov}

The elements are named as follows:

name(cArch) = Architecture, name(cCI) = ComponentInstance,

name(cCT ) = ComponentType, name(cInt) = Interface,

name(cProv) = Provision, name(cProvI) = ProvisionInstance,

name(cReq) = Requirement, name(cReqI) = RequirementInstance,

name(aintname) = name, name(actname) = name,

name(rarch2ci) = componentInstances, name(rarch2ct) = componentTypes,

name(rarch2int) = interfaces, name(rci2provi) = provisions,

name(rci2reqi) = requirements, name(rci2ct) = type,

name(rct2req) = requiredInterfaces, name(rct2prov) = providedInterfaces,

name(rprov2int) = interface, name(rprovi2prov) = provision,

name(rreq2int) = interface, name(rreqi2req) = requirement

The attributes and references are defined as follows:

Architecture.componentInstances
isOfType−−−−−−→ ComponentInstance,

Architecture.componentTypes
isOfType−−−−−−→ ComponentType,

Architecture.interfaces
isOfType−−−−−−→ Interface,
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ComponentInstance.provisions
isOfType−−−−−−→ ProvisionInstance,

ComponentInstance.requirements
isOfType−−−−−−→ RequirementInstance,

ComponentInstance.type
isOfType−−−−−−→ ComponentType,

ComponentInstance.type
cardinality−−−−−−−→ 1..1,

ComponentType
has−−→ actname,

ComponentType.name
isOfType−−−−−−→ String,

ComponentType.providedInterfaces
isOfType−−−−−−→ Provision,

ComponentType.requiredInterfaces
isOfType−−−−−−→ Requirement,

Interface
has−−→ aintname,

Interface.name
isOfType−−−−−−→ String,

Provision.interface
isOfType−−−−−−→ Interface,

Provision.interface
cardinality−−−−−−−→ 1..1,

P rovisionInstance.provision
isOfType−−−−−−→ Provision,

ProvisionInstance.provision
cardinality−−−−−−−→ 1..1,

Requirement.interface
isOfType−−−−−−→ Interface,

Requirement.interface
cardinality−−−−−−−→ 1..1,

RequirementInstance.requirement
isOfType−−−−−−→ Requirement,

RequirementInstance.requirement
cardinality−−−−−−−→ 1..1

6.5 Language Profiles

An architecture modelled with the IAL comprises elements of the kernel and elements of profiles.
The kernel includes the core aspects of architectural descriptions in the terms of this thesis –
components and interfaces. Profiles add further concerns to the architecture language. Such
concerns include e.g. different types of connectors, component hierarchies, types of interfaces,
or quality aspects.
Architecture models of the IAL may include inconsistent information. E.g. an architecture

can include information about a deep component hierarchy, and at the same time include the
information that the architecture is flat. The semantics of this model is based on the interpreter.
Interpreting a profile is optional within the boundaries of exclusions and requirements between
profiles. Therefore in the example given above, an architecture can be interpreted as a deep
component type hierarchy when an interpreter handles deep hierarchies. When the interpreter
can only handle flat hierarchies, the profile for deep hierarchies can be ignored, and the profile
for flat hierarchies can be used as the source of information. The architecture is now interpreted,
and possibly changed with a view on a flat hierarchy of component types, without loosing the
information about the actual hierarchy. Profiles are not always independent, but can require
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or exclude each other. E.g. when a profile declaring event-based connectors is interpreted,
it might be require to also interpret event-based interfaces. When a component hierarchy is
interpreted to be flat, it cannot at the same time be interpreted as deep.
Profiles can be categorized regarding their abstract concern. E.g. the profiles Flat Component

Hierarchy, and Scoped Component Hierarchy both handle the abstract concern of the component
hierarchy, or Time Resource Demand and Security Levels both handle software quality concerns.
Some categories are mandatory, meaning that at least one profile has to be used when an
architecture is described. One kind of component type hierarchy must be chosen. Some
categories contain only optional profiles. E.g. no software quality profile is necessary to be
used.
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Figure 6.6: An overview of profiles of the Intermediate Architecture Description Language and
their interrelationships

Figure 6.6 shows the profiles of the IAL, and their interrelationships regarding their inter-
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pretation. The rectangles are categories of profiles, which share an abstract concern. The
rectangles with rounded corners represent profiles. Mandatory categories (which have a solid
border in Figure 6.6) require at least one profile to be used. Arrows between profiles show
whether the interpretation of a profile requires or excludes the interpretation of another profile.
An arrow with a dashed line defines that when the source of the arrow is interpreted, it is
required that its target is also interpreted. An arrow with a solid line defines that when the
source of the arrow is interpreted, it is excluded that its target is interpreted. The reasons
for these requirements and exclusions is stated in the sections describing the corresponding
profiles. The following sections describe and formalize the current profiles and categories in
the Intermediate Architecture Description Language. An example for the application of each
profile is given in Appendix C. Considering the objective of the language, in the future more
profiles and categories can be added.

6.5.1 Interface Types

In the language kernel the interface definition is of an abstract nature. The following profiles
describe different types of interfaces.

Operation Interfaces

The Operation Interfaces profile (see Figure 6.7) declares operations that can be invoked
by their clients. Operations have parameters and return types. Operations and operation
parameters are named. Operation interfaces are very common in software architectures, both
in architecture implementation and architecture specification languages. Examples are Session
Beans in Enterprise JavaBeans (EJB) [EJB13], where beans invoke each other’s operations,
or the Palladio Component Model [BKR09], an architecture specification language, which
has operations in interfaces as entities and behaviour specifications that declare operation
invocations.
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The OperationInterface stereotype can be applied to an interface to give it the role of an
operation interface. This profile requires the use of the Operation Call Connector profile (see
Definition 96) for connecting the requirements and provisions of operation-based interfaces.

Figure 6.7: The Operation Interfaces profile of the IAL

Formalization Definition 82 gives a formal description of the profile.

Definition 82: Interface Type Operations Profile

The Interface Type Operations profile POperationInterfaces is defined as follows. Empty sets
are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sOpInt}

Classes := {cOp, cOpPar}

Attributes := {aOp_retTyp, aOp_name, aOpPar_typ, aOpPar_name}

References := {rOpInt_op, rOp_par}

Containments := {rOpInt_op, rOp_par}

The elements are named as follows:

name(sOpInt) = OperationInterface,
name(cOp) = Operation,

name(cOpPar) = OperationParameter,
name(aOp_retTyp) = returnType,
name(aOp_name) = name,
name(aOpPar_typ) = type,

name(aOpPar_name) = name,
name(rOpInt_op) = operations,
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name(rOp_par) = parameters

The stereotypes extend the following classes:

OperationInterface extends−−−−−→ Interface

The attributes and references are defined as follows:

Operation.returnType isOfType−−−−−−→ Datatype,

Operation.name isOfType−−−−−−→ String,

OperationParameter.type isOfType−−−−−−→ Datatype,

OperationParameter.name isOfType−−−−−−→ String,

OperationInterface.operations isOfType−−−−−−→ Operation,

Operation.parameters isOfType−−−−−−→ OperationParameter

Event Interfaces

The Event Interfaces profile (see Figure 6.8) declare events and event parameters. Components
that provide an event-based interface reacts on these events. Components requiring an event-
based interface triggers these events. Events and their parameters are named. Event parameters
are typed. Just like operation interfaces, event interfaces are common in software architectures,
both in architecture implementation and architecture specification languages. Examples are
Message-Driven Beans in EJB, where beans invoke each other’s operations, or the Palladio
Component Model, an architecture specification language, which has operations in interfaces
as entities and behaviour specifications that declare operation invocations.
The EventInterface stereotype can be applied to an interface to give it the role of an event-

based interface. This profile requires the use of the Event Dispatcher Connector profile for
connecting the requirements and provisions of event-based interfaces.

Figure 6.8: The Event Interfaces profile of the IAL
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Formalization Definition 83 gives a formal description of the profile.

Definition 83: Interface Type Events Profile

The Interface Type Events profile PEventInterfaces is defined as follows. Empty sets are not
explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sEvInt}

Classes := {cEv, cEvPar}

Attributes := {aEv_name, aEvPar_name, aEvPar_typ}

References := {rEvInt_ev, rEv_par}

Containments := {rEvInt_ev, rEv_par}

The elements are named as follows:

name(sEvInt) = EventInterface,
name(cEv) = Event,

name(cEvPar) = EventParameters,
name(aEv_name) = name,

name(aEvPar_name) = name,
name(aEvPar_typ) = type,
name(rEvInt_ev) = events,
name(rEv_par) = parameters

The stereotypes extend the following classes:

EventInterface extends−−−−−→ Interface

The attributes and references are defined as follows:

Event.name isOfType−−−−−−→ String,

EventParameters.name isOfType−−−−−−→ String,

EventParameters.type isOfType−−−−−−→ Datatype,

EventInterface.events isOfType−−−−−−→ Event,

Event.parameters isOfType−−−−−−→ EventParameters

6.5.2 Interface Hierarchy

These profiles consider where interfaces are declared within the architecture. The interpretation
of these profiles exclude each other, so that an interface hierarchy can only be interpreted as
either shared interface hierarchy, or scoped interface hierarchy.
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Shared Interface Hierarchy

In the Shared Interface Hierarchy profile (see Figure 6.9), all interfaces are declared within the
same scope, so that there are no visibility constraints. Shared interface hierarchies are known
e.g. from the Java Enterprise Edition, where no kind of component or interface hierarchy is
defined. As an example for specification languages, the PCM uses a shared repository, where
all interfaces of a system are stored.
The stereotype SharedInterfacesArchitecture can be applied to an architecture to signal that

this hierarchy type is modelled. The kernel already declares the Interface class as a child of
the Architecture class. Therefore no more information is necessary.

Figure 6.9: The Shared Interface Hierarchy profile of the IAL

Formalization Definition 84 gives a formal description of the profile.

Definition 84: Interface Hierarchy Shared Profile

The Interface Hierarchy Shared profile PSharedInterfaceHierarchy is defined as follows. Empty
sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sSharIntAr}

The elements are named as follows:

name(sSharIntAr) = SharedInterfacesArchitecture

The stereotypes extend the following classes:

SharedInterfacesArchitecture extends−−−−−→ Architecture

Scoped Interface Hierarchy

In the Scoped Interface Hierarchy profile (see Figure 6.10), each interface is declared within
the scope of a component type or within the scope of the architecture. This means that
the interface can only be required or provided by component types that are children of this
component type declaration or architecture and – when there is a deeper hierarchy of component
types – within deeper levels. The stereotype ScopedInterfacesArchitecture can be applied to
an architecture to signal that this hierarchy type is modelled. Additionally, the stereotype
ScopedInterfacesComponentType can be applied to a component type to add information about
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the scope of an interface. A ScopedInterfacesComponentType references interfaces that are
declared within its component type’s scope. Scoped interface hierarchies are used primarily
in architecture specification languages. E.g. in the UML [Obj15] components can declare
interfaces as so-called packagedElements within their scope.

This profile requires the use of the Delegation Connector profile (see Definition 98), for
forwarding provisions and requirements of interfaces to subcomponents. This profile excludes
the Flat Component Hierarchy profile (see Definition 86). It declares interfaces in the scope of
component types, and these interfaces can only be provided or required by component types
declared within the same scoped. It would not be possible for a component type to provide or
require a child interface of another component type in a flat component type hierarchy.

Figure 6.10: The Scoped Interface Hierarchy profile of the IAL

Formalization Definition 85 gives a formal description of the profile.

Definition 85: Interface Hierarchy Scoped Profile

The Interface Hierarchy Scoped profile PScopedInterfaceHierarchy is defined as follows. Empty
sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sScIntCompTyp, sScIntAr}

References := {rScIntCompTyp_chilInt, rScIntAr_systInt}

The elements are named as follows:

name(sScIntCompTyp) = ScopedInterfacesComponentType,
name(sScIntAr) = ScopedInterfacesArchitecture,

name(rScIntCompTyp_chilInt) = childInterfaces,
name(rScIntAr_systInt) = systemInterfaces

The stereotypes extend the following classes:

ScopedInterfacesComponentType extends−−−−−→ ComponentType,

ScopedInterfacesArchitecture extends−−−−−→ Architecture
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The attributes and references are defined as follows:

ScopedInterfacesComponentType.childInterfaces isOfType−−−−−−→ Interface,

ScopedInterfacesArchitecture.systemInterfaces isOfType−−−−−−→ Interface

6.5.3 Component Hierarchy

These profiles consider the type of hierarchy for component types. The interpretation of these
profiles exclude each other, so that a component hierarchy can only be interpreted as either
flat, shared, or scoped.

Flat Component Hierarchy

In this profile (see Figure 6.11) component types and their instances are all located in the
same scope. Flat component hierarchies are rather common in architecture implementation
languages. Examples for such languages used broadly in practice are the JEE or OSGi [The14].
The stereotype HierarchicalArchitectureFlat can be applied to an architecture to denote a

flat component hierarchy. This profile excludes the Scoped Interface Hierarchy profile (see
Definition 85). The profile Scoped Interface Hierarchy declares interfaces in the scope of
component types, and these interfaces can only be provided or required by component types
declared within the same scope. It would not be possible for a component type to provide or
require a child interface of another component type in a flat component type hierarchy.

Figure 6.11: The Flat Component Hierarchy profile of the IAL

Formalization Definition 86 gives a formal description of the profile.

Definition 86: Component Hierarchy Flat Profile

The Component Hierarchy Flat profile PFlatComponentHierarchy is defined as follows. Empty
sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sHierArF l}

The elements are named as follows:

name(sHierArF l) = HierarchicalArchitectureFlat
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The stereotypes extend the following classes:

HierarchicalArchitectureFlat extends−−−−−→ Architecture

Scoped Component Hierarchy

The Scoped Component Hierarchy profile (see Figure 6.12) describes a hierarchical component
type architecture. The architecture and each component type are a scope, under which com-
ponent instances and other component types can be declared. Scoped component hierarchies
are commonly provided in architecture specification languages. As an example, UML provides
scoped component hierarchies.
The stereotype HierarchicalArchitectureScoped can be applied to an architecture to signal

that a scoped component hierarchy is modelled. An architecture has at least one component
type as system type. The stereotype HierarchicalComponentTypeScoped can be applied to
component types. These component types can reference other component types as child types
and instances of these types as child instances. System instances are component instances in
the top level scope.

Figure 6.12: The Scoped Component Hierarchy profile of the IAL

Formalization Definition 87 gives a formal description of the profile.

Definition 87: Component Hierarchy Scoped Profile

The Component Hierarchy Scoped profile PScopedComponentHierarchy is defined as follows.
Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sHierCompTypSc, sHierArSc}
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References := {rHierCompTypSc_chilInst, rHierCompTypSc_chilTyp,

rHierArSc_systTyp, rHierArSc_systInst}

The elements are named as follows:

name(sHierCompTypSc) = HierarchicalComponentTypeScoped,
name(sHierArSc) = HierarchicalArchitectureScoped,

name(rHierCompTypSc_chilInst) = childInstances,
name(rHierCompTypSc_chilTyp) = childTypes,

name(rHierArSc_systTyp) = systemTypes,
name(rHierArSc_systInst) = systemInstances

The stereotypes extend the following classes:

HierarchicalComponentTypeScoped extends−−−−−→ ComponentType,

HierarchicalArchitectureScoped extends−−−−−→ Architecture

The attributes and references are defined as follows:

HierarchicalComponentTypeScoped.childInstances isOfType−−−−−−→ ComponentInstance,

HierarchicalComponentTypeScoped.childTypes isOfType−−−−−−→ ComponentType,

HierarchicalArchitectureScoped.systemTypes cardinality−−−−−−−→ 1..∗,

HierarchicalArchitectureScoped.systemTypes isOfType−−−−−−→ ComponentType,

HierarchicalArchitectureScoped.systemInstances isOfType−−−−−−→ ComponentInstance

Shared Context Component Hierarchy

In this profile (see Figure 6.13), component types are all declared within the same scope.
Component types in this profile can be composed by child component instances. When a parent
component type is instantiated in the running system, its child instances are also created.
Therefore a hierarchy of component instances is modelled. The PCM is an example for an
architecture specification language with a shared context component hierarchy.
The stereotype HierarchicalArchitectureSharedContext can be applied to an architecture to

signal that a shared context component hierarchy is modelled. Such an architecture declares
system instances, i.e. component instances that exist when the system is instantiated. The
stereotype HierarchicalComponentTypeSharedContext can be applied to a component type.
Such a component type can reference component instances as child instances.
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Figure 6.13: The Shared Context Component Hierarchy profile of the IAL

Formalization Definition 88 gives a formal description of the profile.

Definition 88: Component Hierarchy Shared Profile

The Component Hierarchy Shared profile PSharedContextComponentHierarchy is defined as
follows. Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sHierArSharCont, sHierCompTypSharCont}

References := {rHierArSharCont_systInst, rHierCompTypSharCont_chilInst}

The elements are named as follows:

name(sHierArSharCont) = HierarchicalArchitectureSharedContext,
name(sHierCompTypSharCont) = HierarchicalComponentTypeSharedContext,

name(rHierArSharCont_systInst) = systemInstances,
name(rHierCompTypSharCont_chilInst) = childInstances

The stereotypes extend the following classes:

HierarchicalArchitectureSharedContext extends−−−−−→ Architecture,

HierarchicalComponentTypeSharedContext extends−−−−−→ ComponentType

The attributes and references are defined as follows:

HierarchicalArchitectureSharedContext.systemInstances isOfType−−−−−−→ ComponentInstance,

HierarchicalComponentTypeSharedContext.childInstances isOfType−−−−−−→ ComponentInstance
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6.5.4 Component Instantiation

When a component-based software is executed, the component types are instantiated. I.e.
executable units are created that represent the modelled functionality at run time. How
component types are instantiated varies. For some component types, a statically defined
fix number of instances are created. For other component types the number of instances is
dynamically chosen, e.g. one instance per user session or the number of instances is based on
the load, so when the load increases new instances can be created to cover the load. The static
representation of how component types are instantiated is modelled using the following profiles.
These profiles can be used simultaneously in an architecture, albeit it is not allowed to declare
multiple of these stereotypes on the same component type.

Fixed Component Instantiation

In the Fixed Component Instantiation profile (see Figure 6.14), the amount of instances of a
component type is declared statically in the model, and cannot change at run time. When the
component type is instantiated that exact number of instances must be created. Declaring com-
ponent instances explicitly seems to be more common in architecture specification languages,
than in architecture implementation languages. E.g. in PCM or the UML, a fixed number of
instances can be declared. In architecture implementation languages it is sometimes possible to
declare singleton component types. These types are instantiated exactly once. This is a special
case of a fixed number of component instances. Examples for this kind of instantiation are
application scoped beans in CDI. Architecture languages that allow for declaring component
instances explicitly seem to be more common To model a fixed component instantiation, the
stereotype ComponentInstancesFixedType has to be applied to a component type.

Figure 6.14: The Fixed Component Instantiation profile of the IAL

Formalization Definition 89 gives a formal description of the profile.

Definition 89: Component Instantiation Fixed Profile

The Component Instantiation Fixed profile PFixedComponentInstantiation is defined as follows.
Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sCompInstF ixTyp}

References := {rCompInstF ixTyp_inst}
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The elements are named as follows:

name(sCompInstF ixTyp) = ComponentInstancesFixedType,
name(rCompInstF ixTyp_inst) = instances

The stereotypes extend the following classes:

ComponentInstancesFixedType extends−−−−−→ ComponentType

The attributes and references are defined as follows:

ComponentInstancesFixedType.instances isOfType−−−−−−→ ComponentInstance

Per Session Component Instantiation

In the Per Session Component Instantiation profile (see Figure 6.15) a new component instance
is created for each user session. Instantiations per user session is known from architecture
implementation languages from the domain of information systems, where server-side user
sessions are handled. JEE e.g. provides stateful session beans for this case. In architecture
specification languages, this type of component instantiation is uncommon. To model this
instantiation type, the stereotype ComponentInstancePerSessionType has to be applied to a
component type.

Figure 6.15: The Per Session Component Instantiation profile of the IAL

Formalization Definition 90 gives a formal description of the profile.

Definition 90: Component Instantiation Persession Profile

The Component Instantiation Persession profile PPerSessionComponentInstantiation is defined
as follows. Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sCompInstPerSessionTyp}

References := {rCompInstPerSessionTyp_inst}

The elements are named as follows:

name(sCompInstPerSessionTyp) = ComponentInstancePerSessionType,
name(rCompInstPerSessionTyp_inst) = instances
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The stereotypes extend the following classes:

ComponentInstancePerSessionType extends−−−−−→ ComponentType

The attributes and references are defined as follows:

ComponentInstancePerSessionType.instances isOfType−−−−−−→ ComponentInstance

Pooled Component Instantiation

The Pooled Component Instantiation profile (see Figure 6.16) can be used to model an instan-
tiation behaviour, where a pool of instances should be available. This instantiation type is
often used in architecture implementation languages for creating access to components with a
high performance. E.g. in EJB, stateless session beans can be used to create this behaviour.
To model such an instantiation behaviour, the stereotype ComponentInstancePooledType can

be applied to a component type. The minimal and maximal number of instances can be given.
The referenced component instance is a representative of the pool elements at design time.
The algorithm to choose the number of instances is represented by the PoolingStrategy. Its
implementation is subject to the execution runtime.

Figure 6.16: The Pooled Component Instantiation profile of the IAL

Formalization Definition 91 gives a formal description of the profile.

Definition 91: Component Instantiation Pooled Profile

The Component Instantiation Pooled profile PPooledComponentInstantiation is defined as fol-
lows. Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sCompInstPoolTyp}

Classes := {cPoolSt}

Attributes := {aCompInstPoolTyp_minimumInst, aCompInstPoolTyp_maxInst}

References := {rCompInstPoolTyp_rep, rCompInstPoolTyp_st}
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Containments := {rCompInstPoolTyp_st}

The elements are named as follows:

name(sCompInstPoolTyp) = ComponentInstancePooledType,
name(cPoolSt) = PoolingStrategy,

name(aCompInstPoolTyp_minimumInst) = minimumInstances,
name(aCompInstPoolTyp_maxInst) = maximumInstances,

name(rCompInstPoolTyp_rep) = representative,
name(rCompInstPoolTyp_st) = strategy

The stereotypes extend the following classes:

ComponentInstancePooledType extends−−−−−→ ComponentType

The attributes and references are defined as follows:

ComponentInstancePooledType.minimumInstances isOfType−−−−−−→ Int,

ComponentInstancePooledType.maximumInstances isOfType−−−−−−→ Int,

ComponentInstancePooledType.representative cardinality−−−−−−−→ 1..1,

ComponentInstancePooledType.representative isOfType−−−−−−→ ComponentInstance,

ComponentInstancePooledType.strategy cardinality−−−−−−−→ 1..1,

ComponentInstancePooledType.strategy isOfType−−−−−−→ PoolingStrategy

6.5.5 Component State

The component state profiles model whether a component is stateful or stateless. While it
is not allowed to declare multiple of these stereotypes on the same component type, these
profiles can be used simultaneously in an architecture. Stateful components are e.g. used in
JEE architectures. Many languages do not explicitly distinguish between stateful and stateless
components. But some languages declare e.g. state machines as behaviour, which implies a
statefulness.
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Stateful Components

The Stateful Components profile (see Figure 6.17) can declare stateful components. A stateful
component has a state, and its behaviour changes based on the state. To denote a component
type stateful the stereotype StatefulComponentType can be applied to it.

Figure 6.17: The Stateful Components profile of the IAL

Formalization Definition 92 gives a formal description of the profile.

Definition 92: Component State Stateful Profile

The Component State Stateful profile PStatefulComponents is defined as follows. Empty sets
are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sStCompTyp}

The elements are named as follows:

name(sStCompTyp) = StatefulComponentType

The stereotypes extend the following classes:

StatefulComponentType extends−−−−−→ ComponentType

Stateless Components

The Stateless Components profile (see Figure 6.18) can declare stateless components. A
stateless component does not change its behaviour based on a state. It may however technically
have a state that does not change the functionality. E.g. it can have a cache of data that is filled
over time to increase the performance. To denote a component type stateful the stereotype
StatelessComponentType can be applied to it.

Figure 6.18: The Stateless Components profile of the IAL
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Formalization Definition 93 gives a formal description of the profile.

Definition 93: Component State Stateless Profile

The Component State Stateless profile PStatelessComponents is defined as follows. Empty
sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sStCompTyp}

The elements are named as follows:

name(sStCompTyp) = StatelessComponentType

The stereotypes extend the following classes:

StatelessComponentType extends−−−−−→ ComponentType

6.5.6 Behaviour

Behaviour profiles can be used to give component types a formal behaviour description. One
behaviour profile has been created in this thesis, to give an example how such profiles work and
integrate with the structural profiles.

State Machine

State machines are formal descriptions of behaviour, based on states and transitions between
states. The State Machine profile (see Figure 6.19) implements state machines based on the
description of Peled et al. in [PGS01], without channels.
The stereotype StateMachineBasedComponentType can be applied to a component type.

Such a component type has a StateMachine object that represents the component’s state
machine. The StateMachine class has named States, one of which is the initial state. States
have named Transitions which can be triggered. The triggering of a transition is guarded
by a Guard, which evaluates based on the context, whether a transition may be triggered.
Triggering an execution leads to another state, the targetState. The StateMachine class has an
actor, which acts as an interface between the state machine and the context. The actor can
be used by a Guard before the execution of Transitions to validate that a transition can be
triggered. During the execution of a transition, the actor can be used to influence the context.
The use of this profile does not exclude the use of the profile Stateless Components. It

would be a contradiction to use the stereotype StatelessComponentType on a component type
which has a state machine applied, but other component types might still be stateless. It is
not strictly necessary to apply the StatefulComponentType stereotype to component types with
state machines.
This profile for state machines is based on the Balz’s ideas (see Section 3.2.4). In contrast to

that related work, the state machines in this profile do not explicitly declare variables. Instead,
the actor may include variables that can be set.
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Figure 6.19: The State Machine profile of the IAL

Formalization Definition 94 gives a formal description of the profile.

Definition 94: State Machine Profile

The State Machine profile PStateMachine is defined as follows. Empty sets are not explicitly
stated:

B := {MKernel
Meta }

Stereotypes := {sStMacBasedCompTyp}

Classes := {cStMac, cSt, cTr, cGuar}

Attributes := {aStMac_name, aSt_name, aTr_name}

References := {rStMacBasedCompTyp_stMac, rStMac_st, rSt_tr,

rTr_tarSt, rTr_guar, rStMac_initSt}

Containments := {rStMacBasedCompTyp_stMac, rStMac_st, rSt_tr, rTr_guar}

The elements are named as follows:

name(sStMacBasedCompTyp) = StateMachineBasedComponentType,
name(cStMac) = StateMachine,

name(cSt) = State,
name(cTr) = Transition,

name(cGuar) = Guard,
name(aStMac_name) = name,

name(aSt_name) = name,
name(aTr_name) = name,

name(rStMacBasedCompTyp_stMac) = stateMachine,
name(rStMac_st) = states,

name(rSt_tr) = transitions,
name(rTr_tarSt) = targetState,
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name(rTr_guar) = guard,
name(rStMac_initSt) = initialState

The stereotypes extend the following classes:

StateMachineBasedComponentType extends−−−−−→ ComponentType

The attributes and references are defined as follows:

StateMachine.name isOfType−−−−−−→ String,

State.name isOfType−−−−−−→ String,

Transition.name isOfType−−−−−−→ String,

StateMachineBasedComponentType.stateMachine cardinality−−−−−−−→ 1..1,

StateMachineBasedComponentType.stateMachine isOfType−−−−−−→ StateMachine,

StateMachine.states isOfType−−−−−−→ State,

State.transitions isOfType−−−−−−→ Transition,

Transition.targetState cardinality−−−−−−−→ 1..1,

Transition.targetState isOfType−−−−−−→ State,

Transition.guard cardinality−−−−−−−→ 0..1,

Transition.guard isOfType−−−−−−→ Guard,

StateMachine.initialState cardinality−−−−−−−→ 1..1,

StateMachine.initialState isOfType−−−−−−→ State

6.5.7 Connectors

The connectors profiles handle connections between components, based on the type of interfaces.

Connector

Connectors connect provisions with requirements, or delegate requirements or provisions. Be-
cause not all architecture languages use explicit connectors, the connectors are modelled as
a profile. The Connector profile (see Figure 6.20) declares the existence of a connector type,
connectors, and connector instances. ConnectorTypes are distinguished by names. They imply
protocols and connection properties. An example is a Web Service connector. The semantics of
the connector type are not modelled in this profile. Connectors can be used to connect interface
requirements to provisions, while ConnectorInstances can be used to connect the correspond-
ing requirement instances to provision instance. Connectors and their instances are abstract in
the context of this profile and are refined using subsequent profiles. The specializing profiles
for connectors can be used simultaneously within an architecture. It is not allowed to apply
multiple specialization stereotypes to the same connector. All specializing connector profiles in
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this section require the common connector profile, because they reference its classes.

Figure 6.20: The Connector profile of the IAL

Formalization Definition 95 gives a formal description of the profile.

Definition 95: Connector Profile

The Connector profile PConnector is defined as follows. Empty sets are not explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sArWitConnec}

Classes := {cConnecTyp, cConnec, cConnecInst}

Attributes := {aConnecTyp_name}

References := {rConnec_typ,

rArWitConnec_connecTyp,

rArWitConnec_connec,

rArWitConnec_connecInst,

rConnecInst_typ}

Containments := {rArWitConnec_connecTyp, rArWitConnec_connec, rArWitConnec_connecInst}

The elements are named as follows:

name(sArWitConnec) = ArchitectureWithConnectors,
name(cConnecTyp) = ConnectorType,

name(cConnec) = Connector,
name(cConnecInst) = ConnectorInstance,
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name(aConnecTyp_name) = name,
name(rConnec_typ) = type,

name(rArWitConnec_connecTyp) = connectorTypes,
name(rArWitConnec_connec) = connectors,

name(rArWitConnec_connecInst) = connectorInstances,
name(rConnecInst_typ) = type

The stereotypes extend the following classes:

ArchitectureWithConnectors extends−−−−−→ Architecture

The attributes and references are defined as follows:

ConnectorType.name isOfType−−−−−−→ String,

Connector.type cardinality−−−−−−−→ 1..1,

Connector.type isOfType−−−−−−→ ConnectorType,

ArchitectureWithConnectors.connectorTypes isOfType−−−−−−→ ConnectorType,

ArchitectureWithConnectors.connectors isOfType−−−−−−→ Connector,

ArchitectureWithConnectors.connectorInstances isOfType−−−−−−→ ConnectorInstance,

ConnectorInstance.type cardinality−−−−−−−→ 1..1,

ConnectorInstance.type isOfType−−−−−−→ Connector

Operation Call Connector

The Operation Call Connector profile (see Figure 6.21) is used to declare operation call inter-
connections. The stereotype OperationCallConnector can be applied to a Connector. It inter-
connects exactly one interface requirement with exactly one interface provision. The stereotype
OperationCallConnectorInstance can be applied to a ConnectorInstance. It interconnects ex-
actly one interface requirement instance with exactly one interface provision instance.
The profile requires the interconnected requirements and provisions and their instances to be

based on operation interfaces as they are defined in Definition 82.
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Figure 6.21: The Operation Call Connector profile of the IAL

Formalization Definition 96 gives a formal description of the profile.

Definition 96: Connector Operation Call Profile

The Connector Operation Call profile POperationCallConnector is defined as follows. Empty
sets are not explicitly stated:

B := {PConnector,M
Kernel
Meta }

Stereotypes := {sOpCalConnec, sOpCalConnecInst}

References := {rOpCalConnec_req, rOpCalConnec_pr,

rOpCalConnecInst_req, rOpCalConnecInst_pr}

The elements are named as follows:

name(sOpCalConnec) = OperationCallConnector,
name(sOpCalConnecInst) = OperationCallConnectorInstance,
name(rOpCalConnec_req) = requirement,
name(rOpCalConnec_pr) = provision,

name(rOpCalConnecInst_req) = requirement,
name(rOpCalConnecInst_pr) = provision
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The stereotypes extend the following classes:

OperationCallConnector extends−−−−−→ Connector,

OperationCallConnectorInstance extends−−−−−→ ConnectorInstance

The attributes and references are defined as follows:

OperationCallConnector.requirement cardinality−−−−−−−→ 1..1,

OperationCallConnector.requirement isOfType−−−−−−→ Requirement,

OperationCallConnector.provision cardinality−−−−−−−→ 1..1,

OperationCallConnector.provision isOfType−−−−−−→ Provision,

OperationCallConnectorInstance.requirement cardinality−−−−−−−→ 1..1,

OperationCallConnectorInstance.requirement isOfType−−−−−−→ RequirementInstance,

OperationCallConnectorInstance.provision cardinality−−−−−−−→ 1..1,

OperationCallConnectorInstance.provision isOfType−−−−−−→ ProvisionInstance

Event Dispatcher Connector

The Event Dispatcher Connector profile (see Figure 6.22) is used to declare event-based compo-
nent interconnections. The stereotype EventDispatcherConnector can be applied to a Connec-
tor. It interconnects an arbitrary number of interface requirements with an arbitrary number
of interface provisions. The stereotype EventDispatcherConnectorInstance can be applied to
a ConnectorInstance. It interconnects an arbitrary number of interface requirement instances
with an arbitrary number of interface provision instances.
The profile requires the interconnected requirements and provisions and their instances to be

used on event-based interfaces as they are defined in Definition 83.

Formalization Definition 97 gives a formal description of the profile.

Definition 97: Connector Events Profile

The Connector Events profile PEventDispatcherConnector is defined as follows. Empty sets
are not explicitly stated:

B := {PConnector,M
Kernel
Meta }

Stereotypes := {sEvDispConnec, sEvDispConnecInst}

References := {rEvDispConnec_rec, rEvDispConnec_issuer,

rEvDispConnecInst_issuer, rEvDispConnecInst_rec}
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The elements are named as follows:

name(sEvDispConnec) = EventDispatcherConnector,
name(sEvDispConnecInst) = EventDispatcherConnectorInstance,
name(rEvDispConnec_rec) = receiver,

name(rEvDispConnec_issuer) = issuer,
name(rEvDispConnecInst_issuer) = issuer,
name(rEvDispConnecInst_rec) = receiver

The stereotypes extend the following classes:

EventDispatcherConnector extends−−−−−→ Connector,

EventDispatcherConnectorInstance extends−−−−−→ ConnectorInstance

The attributes and references are defined as follows:

EventDispatcherConnector.receiver isOfType−−−−−−→ Requirement,

EventDispatcherConnector.issuer isOfType−−−−−−→ Provision,

EventDispatcherConnectorInstance.issuer isOfType−−−−−−→ ProvisionInstance,

EventDispatcherConnectorInstance.receiver isOfType−−−−−−→ RequirementInstance

Delegation Connector

The Delegation Connector profile (see Figure 6.23) is used to declare a delegation of provisions
and requirements as well as their instances from a parent to a child. Delegation connectors con-
nect interface requirements of a parent component type with interface requirements of its child

Figure 6.22: The Event Dispatcher Connector profile of the IAL
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component type. To do so, the stereotype RequirementDelegationConnector can be applied to
a Connector. The connector then declares the inner requirement that requires an interface, but
it cannot be resolved within that scope, and the outer requirement, which is the delegatee and
therefore gives the requirement to the higher level. Analogously the delegation of provisions
is handled with the stereotype ProvisionDelegationConnector. The delegation of a provision
means that incoming requests, events, etc. from the parent component are forwarded to a
provision within the component type. For instances the stereotypes RequirementDelegation-
ConnectorInstance and ProvisionDelegationConnectorInstance can be used.

Figure 6.23: The Delegation Connector profile of the IAL

Formalization Definition 98 gives a formal description of the profile.

Definition 98: Delegation Connector Profile

The Connector Delegation profile PDelegationConnector is defined as follows. Empty sets are
not explicitly stated:

B := {PConnector,M
Kernel
Meta }

Stereotypes := {sReqDelConnec, sPrDelConnec, sReqDelConnecInst, sPrDelConnecInst}

References := {rReqDelConnec_out, rReqDelConnec_inner, rPrDelConnec_out,

rPrDelConnec_inner, rReqDelConnecInst_out, rReqDelConnecInst_inner,

rPrDelConnecInst_out, rPrDelConnecInst_inner}

The elements are named as follows:

name(sReqDelConnec) = RequirementDelegationConnector,
name(sPrDelConnec) = ProvisionDelegationConnector,

name(sReqDelConnecInst) = RequirementDelegationConnectorInstance,
name(sPrDelConnecInst) = ProvisionDelegationConnectorInstance,
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name(rReqDelConnec_out) = outer,
name(rReqDelConnec_inner) = inner,
name(rPrDelConnec_out) = outer,

name(rPrDelConnec_inner) = inner,
name(rReqDelConnecInst_out) = outer,

name(rReqDelConnecInst_inner) = inner,
name(rPrDelConnecInst_out) = outer,

name(rPrDelConnecInst_inner) = inner

The stereotypes extend the following classes:

RequirementDelegationConnector extends−−−−−→ Connector,

ProvisionDelegationConnector extends−−−−−→ Connector,

RequirementDelegationConnectorInstance extends−−−−−→ ConnectorInstance,

ProvisionDelegationConnectorInstance extends−−−−−→ ConnectorInstance

The attributes and references are defined as follows:

RequirementDelegationConnector.outer cardinality−−−−−−−→ 1..1,

RequirementDelegationConnector.outer isOfType−−−−−−→ Requirement,

RequirementDelegationConnector.inner cardinality−−−−−−−→ 1..1,

RequirementDelegationConnector.inner isOfType−−−−−−→ Requirement,

ProvisionDelegationConnector.outer cardinality−−−−−−−→ 1..1,

ProvisionDelegationConnector.outer isOfType−−−−−−→ Provision,

ProvisionDelegationConnector.inner cardinality−−−−−−−→ 1..1,

ProvisionDelegationConnector.inner isOfType−−−−−−→ Provision,

RequirementDelegationConnectorInstance.outer cardinality−−−−−−−→ 1..1,

RequirementDelegationConnectorInstance.outer isOfType−−−−−−→ RequirementInstance,

RequirementDelegationConnectorInstance.inner cardinality−−−−−−−→ 1..1,

RequirementDelegationConnectorInstance.inner isOfType−−−−−−→ RequirementInstance,

ProvisionDelegationConnectorInstance.outer cardinality−−−−−−−→ 1..1,

ProvisionDelegationConnectorInstance.outer isOfType−−−−−−→ ProvisionInstance,

ProvisionDelegationConnectorInstance.inner cardinality−−−−−−−→ 1..1,

ProvisionDelegationConnectorInstance.inner isOfType−−−−−−→ ProvisionInstance
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6.5.8 Datatypes

The datatypes profiles handle the existence of data types and their integration with other
profiles.

Datatypes Common

The Datatypes Common profile (see Figure 6.24) is used to describe data types within the ar-
chitecture. Data types are named elements that can be used to type e.g. operation parameters.
They can have sub- and super types and operations with parameters.
The stereotype ArchitectureWithCommonDataTypes can be applied to an architecture to

model that it declares data types. Data types have named DataTypeOperations that can be
executed on the instances of data types at run time. These operations can have either a primitive
type or a data type in the terms of this profile as return type. If a data type is declared as
return type in terms of this profile, a value of the primitive type is ignored. Operations also
have named DataTypeOperationParameters. These parameters are also of either a primitive
type or a data type as type. Data types may have super types, which means that the subtypes
inherit its operations. All profiles that specialize the Datatypes Common profile require this
profile. Data types are common in architecture languages. They exist e.g. in JEE as entity
beans, in PCM as data types.

Figure 6.24: The Datatypes Common profile of the IAL

Formalization Definition 99 gives a formal description of the profile.
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Definition 99: Datatype Common Profile

The Datatype Common profile PDatatypesCommon is defined as follows. Empty sets are not
explicitly stated:

B := {MKernel
Meta }

Stereotypes := {sArWitCommonDatTyp}

Classes := {cDatTyp, cDatTypOp, cDatTypOpPar}

Attributes := {aDatTyp_name, aDatTypOp_retTyp, aDatTypOp_name,

aDatTypOpPar_typ, aDatTypOpPar_name}

References := {rArWitCommonDatTyp_datTyp, rDatTyp_op, rDatTypOp_par,

rDatTypOpPar_apParTyp, rDatTypOp_apRetTyp, rDatTyp_supTyp}

Containments := {rArWitCommonDatTyp_datTyp, rDatTyp_op, rDatTypOp_par}

The elements are named as follows:

name(sArWitCommonDatTyp) = ArchitectureWithCommonDataTypes,
name(cDatTyp) = DataType,

name(cDatTypOp) = DataTypeOperation,
name(cDatTypOpPar) = DataTypeOperationParameter,
name(aDatTyp_name) = name,

name(aDatTypOp_retTyp) = returnType,
name(aDatTypOp_name) = name,
name(aDatTypOpPar_typ) = type,

name(aDatTypOpPar_name) = name,
name(rArWitCommonDatTyp_datTyp) = dataTypes,

name(rDatTyp_op) = operations,
name(rDatTypOp_par) = parameters,

name(rDatTypOpPar_apParTyp) = applicationParameterType,
name(rDatTypOp_apRetTyp) = applicationReturnType,

name(rDatTyp_supTyp) = superType

The stereotypes extend the following classes:

ArchitectureWithCommonDataTypes extends−−−−−→ Architecture

The attributes and references are defined as follows:

DataType.name isOfType−−−−−−→ String,
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DataTypeOperation.returnType isOfType−−−−−−→ Datatype,

DataTypeOperation.name isOfType−−−−−−→ String,

DataTypeOperationParameter.type isOfType−−−−−−→ Datatype,

DataTypeOperationParameter.name isOfType−−−−−−→ String,
ArchitectureWithCommonDataTypes.

dataTypes isOfType−−−−−−→ DataType,

DataType.operations isOfType−−−−−−→ DataTypeOperation,

DataTypeOperation.parameters isOfType−−−−−−→ DataTypeOperationParameter,
DataTypeOperationParameter.

applicationParameterType cardinality−−−−−−−→ 0..1,

DataTypeOperationParameter.

applicationParameterType isOfType−−−−−−→ DataType,

DataTypeOperation.applicationReturnType cardinality−−−−−−−→ 0..1,

DataTypeOperation.applicationReturnType isOfType−−−−−−→ DataType,

DataType.superType cardinality−−−−−−−→ 0..1,

DataType.superType isOfType−−−−−−→ DataType

Datatypes Operations

The Datatypes Operations profile (see Figure 6.25) allows to use the data types that were in-
troduced in the Datatypes Common profile as return values of operations from the Operation
Interfaces profile (see Definition 82), and as parameter types thereof. When the stereotype Op-
erationWithDataType is applied, a data type must be set as return type, and the primitive type
of the Operation Interfaces profile is ignored. The stereotype OperationParameterDataType
works analogously for operation parameters. This profile requires the use of the Operation
Interfaces profile, so that its stereotype can be applied to an operation interface.

Figure 6.25: The Datatypes Operations profile of the IAL
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Formalization Definition 100 gives a formal description of the profile.

Definition 100: Datatype Operations Profile

The Datatype Operations profile PDatatypesOperations is defined as follows. Empty sets are
not explicitly stated:

B := {POperationInterfaces, PDatatypesCommon}

Stereotypes := {sOpWitDatTyp, sOpParDatTyp}

References := {rOpWitDatTyp_retTyp, rOpParDatTyp_typ}

The elements are named as follows:

name(sOpWitDatTyp) = OperationWithDataType,
name(sOpParDatTyp) = OperationParameterDataType,

name(rOpWitDatTyp_retTyp) = returnType,
name(rOpParDatTyp_typ) = type

The stereotypes extend the following classes:

OperationWithDataType extends−−−−−→ Operation,

OperationParameterDataType extends−−−−−→ OperationParameter

The attributes and references are defined as follows:

OperationWithDataType.returnType cardinality−−−−−−−→ 1..1,

OperationWithDataType.returnType isOfType−−−−−−→ DataType,

OperationParameterDataType.type cardinality−−−−−−−→ 1..1,

OperationParameterDataType.type isOfType−−−−−−→ DataType

Datatypes Events

Analogously to the Datatypes Operations profile for operations, the Datatypes Events pro-
file (see Figure 6.26) allows to use the data types that were introduced in the Datatypes
Common profile as parameters of events from the Event Interfaces profile (see Definition 83).
When the stereotype EventParameterDataType is applied, a data type must be set as a type,
and the primitive type of the profile Event Interfaces is ignored. This profile requires the use
of the Event Interfaces profile, so that its stereotype can be applied to an event interface.
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Figure 6.26: The Datatypes Events profile of the IAL

Formalization Definition 101 gives a formal description of the profile.

Definition 101: Datatype Events Profile

The Datatype Events profile PDatatypesEvents is defined as follows. Empty sets are not
explicitly stated:

B := {PEventInterfaces, PDatatypesCommon}

Stereotypes := {sEvParDatTyp}

References := {rEvParDatTyp_typ}

The elements are named as follows:

name(sEvParDatTyp) = EventParameterDataType,
name(rEvParDatTyp_typ) = type

The stereotypes extend the following classes:

EventParameterDataType extends−−−−−→ EventParameters

The attributes and references are defined as follows:

EventParameterDataType.type cardinality−−−−−−−→ 1..1,

EventParameterDataType.type isOfType−−−−−−→ DataType

6.5.9 Deployment

The Deployment profile (see Figure 6.27) is used to describe the deployment of component
instances and the packaging of component types into deployment fragments. Architecture
implementation languages do not include deployment information, because the implementation
can usually be run in multiple deployment configurations at run time. Specification languages
use deployment information for analysis purposes. An example for deployment information in
architecture specification languages is PCM. Deployment information related to the run time.
For describing deployment information, ArchitectureWithDeploymentFragments can be ap-

plied to an architecture. It owns deployment fragments, resource containers and allocation
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contexts. DeploymentFragments are named elements that represent a deployable unit of an ap-
plication, e.g. an executable, a library, or a JAR file. Deployment fragments are hierarchically
organized and reference the component types that they contain.
ResourceContainers are named containers that can execute component instances. Examples

for such containers are hosts or application servers. AllocationContexts map component in-
stances to resource containers. The mapping means that a component instance is executed
on the given resource container. For each component instance only one allocation context is
allowed.

Figure 6.27: The Deployment profile of the IAL

Formalization Definition 102 gives a formal description of the profile.

Definition 102: Deployment Profile

The Deployment profile PDatatypesEvents is defined as follows. Empty sets are not explicitly
stated:

B := {MKernel
Meta }

Stereotypes := {sArWitDepFr}

Classes := {cDepFr, cResourCont, cAlCont}

Attributes := {aDepFr_name, aResourCont_name}

References := {rArWitDepFr_depFr, rDepFr_chil, rDepFr_compTyp, rArWitDepFr_resourCont,

rArWitDepFr_alCont, rAlCont_resourCont, rAlCont_compInst}

Containments := {rArWitDepFr_depFr, rDepFr_chil,

rArWitDepFr_resourCont, rArWitDepFr_alCont}
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The elements are named as follows:

name(sArWitDepFr) = ArchitectureWithDeploymentFragments,
name(cDepFr) = DeploymentFragment,

name(cResourCont) = ResourceContainer,
name(cAlCont) = AllocationContext,

name(aDepFr_name) = name,
name(aResourCont_name) = name,
name(rArWitDepFr_depFr) = deploymentFragments,

name(rDepFr_chil) = children,
name(rDepFr_compTyp) = componentTypes,

name(rArWitDepFr_resourCont) = resourceContainers,
name(rArWitDepFr_alCont) = allocationContexts,
name(rAlCont_resourCont) = resourceContainer,
name(rAlCont_compInst) = componentInstance

The stereotypes extend the following classes:

ArchitectureWithDeploymentFragments extends−−−−−→ Architecture

The attributes and references are defined as follows:

DeploymentFragment.name isOfType−−−−−−→ String,

ResourceContainer.name isOfType−−−−−−→ String,
ArchitectureWithDeploymentFragments.

deploymentFragments isOfType−−−−−−→ DeploymentFragment,

DeploymentFragment.children isOfType−−−−−−→ DeploymentFragment,

DeploymentFragment.componentTypes isOfType−−−−−−→ ComponentType,
ArchitectureWithDeploymentFragments.

resourceContainers isOfType−−−−−−→ ResourceContainer,
ArchitectureWithDeploymentFragments.

allocationContexts isOfType−−−−−−→ AllocationContext,

AllocationContext.resourceContainer cardinality−−−−−−−→ 1..1,

AllocationContext.resourceContainer isOfType−−−−−−→ ResourceContainer,

AllocationContext.componentInstance cardinality−−−−−−−→ 1..1,

AllocationContext.componentInstance isOfType−−−−−−→ ComponentInstance
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6.5.10 Namespace

The Namespace profile (see Figure 6.28) introduces namespaces into the IAL. Namespaces are
hierarchically organized named elements. Interfaces and component types can be related to
namespaces to collect semantically coupled elements. This profile can be used to represent
namespaces as they are e.g. used in Java applications. In Java these namespaces are called
packages. The stereotype ArchitectureWithNamespaces is used to signal that components and
interfaces are located within specific namespaces.

Figure 6.28: The Namespace profile of the IAL

Formalization Definition 103 gives a formal description of the profile.

Definition 103: Namespaces Profile

The Namespaces profile PDatatypesEvents is defined as follows. Empty sets are not explicitly
stated:

B := {MKernel
Meta }

Stereotypes := {sArWitNamesp}

Classes := {cNamesp}

Attributes := {aNamesp_name}

References := {rArWitNamesp_rootNamesp, rNamesp_chil, rNamesp_int, rNamesp_compTyp}

Containments := {rArWitNamesp_rootNamesp, rNamesp_chil}

The elements are named as follows:

name(sArWitNamesp) = ArchitectureWithNamespaces,
name(cNamesp) = Namespace,

name(aNamesp_name) = name,
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name(rArWitNamesp_rootNamesp) = rootNamespaces,
name(rNamesp_chil) = children,
name(rNamesp_int) = interfaces,

name(rNamesp_compTyp) = componentTypes

The stereotypes extend the following classes:

ArchitectureWithNamespaces extends−−−−−→ Architecture

The attributes and references are defined as follows:

Namespace.name isOfType−−−−−−→ String,

ArchitectureWithNamespaces.rootNamespaces isOfType−−−−−−→ Namespace,

Namespace.children isOfType−−−−−−→ Namespace,

Namespace.interfaces isOfType−−−−−−→ Interface,

Namespace.componentTypes isOfType−−−−−−→ ComponentType

6.5.11 Software Quality

The software quality profiles consider quality concerns of the architecture. As examples how
quality profiles integrate with the IAL, two quality concerns are defined: performance in terms
of time resource demand and security in terms of secure information flow properties.

Time Resource Demand

The Time Resource Demand profile (see Figure 6.29) describes the resource demand of opera-
tions in operation-based interfaces as they are defined in Definition 82. Time resource demands
on operations are e.g. used in PCM, where static values, or probability functions can be stated
for declaring resource demands. The stereotype TimeResourceDemand can be applied to op-
erations. It takes as attribute a duration of operations. In this exemplary profile, no specific
notation is defined. The duration can be given in milliseconds, seconds, or e.g. as probability
function.

Figure 6.29: The Time Resource Demand profile of the IAL

Formalization Definition 104 gives a formal description of the profile.

191



6 Intermediate Architecture Description Language

Definition 104: Time Resource Demand Profile

The Quality Time profile PT imeResourceDemand is defined as follows. Empty sets are not
explicitly stated:

B := {POperationInterfaces}

Stereotypes := {sT imeResourDemand}

Attributes := {aT imeResourDemand_dur}

The elements are named as follows:

name(sT imeResourDemand) = TimeResourceDemand,
name(aT imeResourDemand_dur) = duration

The stereotypes extend the following classes:

TimeResourceDemand extends−−−−−→ Operation

The attributes and references are defined as follows:

TimeResourceDemand.duration isOfType−−−−−−→ String

Secure Information Flow

The Secure Information Flow profile (see Figure 6.30) defines the information necessary to
implement the secure information flow (SIF) concept [RJ12, Smi07]. With SIF annotations,
software defines security levels, ordered by a partially ordered set (POSET). Executable units
define a minimal security level under which they are allowed to be executed. An execution
always happens in the context of a security level (security context). The execution of an
executable unit is only allowed when the security context of the execution is the same as the
declared security level of the executable unit, or higher in the POSET. This description can be
the basis for a SIF analysis as described by Mantel [Man03].
In this profile, executable units are interfaces and operations. Existing security levels and

the POSET are declared in component types and namespaces. Therefor the stereotype Def-
SecurityLevels can be applied to component types or namespaces. It contains a set of Secu-
rityLevelEntities which represent named security levels. A set of SecurityLevelPosets, owned
by the DefSecurityLevels stereotype, bring the security level entities in a partial order.
The stereotype SecurityLevel can be applied to interfaces and operations. It references

SecurityLevelEntities, which are owned by the component type or namespace, that the interface
or operation belongs to. The referenced security level entity represents the security context in
which an interface or an operation is allowed to be used. The stereotype SIFProperty declares
Basic Security Predicates (BSP) [Man03, Chapter 3]. BSPs are security predicates for secure
information flows. An example is the property is Strict Removal (SR), which describes that it
is required that no information about confidential events can be inferred from publicly visible
events. The names of the upper and lower BSPs are entered as attributes. Tools can use this
information for analysing secure information flow properties. This profile requires operation
type interfaces (see Definition 82), and the Namespaces profile (see Definition 103).
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Figure 6.30: The Secure Information Flow profile of the IAL

Formalization Definition 105 gives a formal description of the profile.

Definition 105: Secure Information Flow Profile

The Secure Information Flow profile PSecureInformationF low is defined as follows. Empty
sets are not explicitly stated:

B := {MKernel
Meta , PNamespace, POperationInterfaces}

Stereotypes := {sDefSecLev, sSecLev, sSIFPr}

Classes := {cSecLevPoset, cSecLevEnt}

Attributes := {aSecLevEnt_name, aSIFPr_up, aSIFPr_low}

References := {rDefSecLev_poset, rSecLevPoset_up, rSecLevPoset_low,

rDefSecLev_secLevEnt, rSecLev_secLev}

Containments := {rDefSecLev_poset, rDefSecLev_secLevEnt}

The elements are named as follows:

name(sDefSecLev) = DefSecurityLevels,
name(sSecLev) = SecurityLevel,
name(sSIFPr) = SIFProperty,

name(cSecLevPoset) = SecurityLevelPoset,
name(cSecLevEnt) = SecurityLevelEntity,
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name(aSecLevEnt_name) = name,
name(aSIFPr_up) = upper,
name(aSIFPr_low) = lower,

name(rDefSecLev_poset) = posets,
name(rSecLevPoset_up) = upper,
name(rSecLevPoset_low) = lower,

name(rDefSecLev_secLevEnt) = securityLevelEntities,
name(rSecLev_secLev) = securityLevel

The stereotypes extend the following classes:

DefSecurityLevels extends−−−−−→ ComponentType,

DefSecurityLevels extends−−−−−→ Namespace,

SecurityLevel extends−−−−−→ Interface,

SecurityLevel extends−−−−−→ Operation,

SIFProperty extends−−−−−→ Namespace,

SIFProperty extends−−−−−→ ComponentType

The attributes and references are defined as follows:

SecurityLevelEntity.name isOfType−−−−−−→ String,

SIFProperty.upper isOfType−−−−−−→ String,

SIFProperty.lower isOfType−−−−−−→ String,

DefSecurityLevels.posets isOfType−−−−−−→ SecurityLevelPoset,

SecurityLevelPoset.upper cardinality−−−−−−−→ 1..1,

SecurityLevelPoset.upper isOfType−−−−−−→ SecurityLevelEntity,

SecurityLevelPoset.lower cardinality−−−−−−−→ 1..1,

SecurityLevelPoset.lower isOfType−−−−−−→ SecurityLevelEntity,

DefSecurityLevels.securityLevelEntities cardinality−−−−−−−→ 1..∗,

DefSecurityLevels.securityLevelEntities isOfType−−−−−−→ SecurityLevelEntity,

SecurityLevel.securityLevel cardinality−−−−−−−→ 1..1,

SecurityLevel.securityLevel isOfType−−−−−−→ SecurityLevelEntity

This section presented a set of profiles for the IAL, for describing common architectural
concerns. The IAL can be subject to evolution by creating new profiles, by extending the
kernel, or by evolving existing profiles.
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6.6 Evaluation Regarding the Requirements Towards a
Transformation Model Language

As argued in Section 6.2.3, the selection of the profiles strategy and EMF Profiles as technology
for the IAL lays the basis for fulfilling the requirements IL-R1, IL-R2, IL-R3, and IL-R5. The
IAL, as it is described in this section, fulfills the requirements as follows:

IL-R1 It must be possible to extend the meta model with new first class entities.

The use of the profile strategy allows for adding arbitrary abstract syntax elements to a
meta model. A profile can define new classes, which can be contained by a stereotype.
The IAL can be extended by creating profiles with stereotypes that extend classes of the
language kernel or of other profiles in the IAL. Therefore the language is prepared to
integrate arbitrary architectural concepts.

IL-R2 It must be possible to extend existing elements of the meta model with new properties.

It is possible to extend meta model elements with new properties using the profile strategy.
By declaring and applying stereotypes, new attributes and references can be added to
existing meta model elements.

IL-R3 It must be possible to model multiple concerns regarding a meta model element simul-
taneously.

The profile strategy allows for modelling multiple concerns regarding a model element
simultaneously, by extending a class with multiple stereotypes and applying multiple
stereotypes to an object. It is also possible to model conflicting information—e.g. flat
and scoped component type hierarchies—simultaneously. An interpreter decides, which
information is to be used in the specific context.

IL-R4 It must be possible to represent components, interfaces, and connectors.

First class entities exist for components and abstract interfaces in the language kernel.
Connectors are declared in the profile Connector, and specialized interfaces are declared
in their own profiles.

IL-R5 The meta model must be easily usable with tools working with Ecore meta models.

Meta models, as they are declared in Section 5.4.1, can be represented using a subset of
Ecore. Profiles as they are defined for the IAL can be represented using EMF Profiles.
An implementation of the IAL exists using Ecore and EMF profiles (see Section 9.2). All
Ecore tools are usable with the meta model and its models.

6.7 Summary

This chapter first discussed the requirements for an architecture translation model language
in the Explicitly Integrated Architecture Process and strategies, that allow to fulfill these
requirements. The Intermediate Architecture Description Language, an architecture translation
model language that is built to satisfy these requirements, was presented. First, an overview of
the language was given, including the interdependencies between profiles of the IAL. Then the
language’s kernel and the profiles were described in detail. At last the language was evaluated
regarding the requirements.
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The role if the IAL in the Explicitly Integrated Architecture approach is that of an inter-
mediate language for transformations between architecture implementation and specification
languages. The next chapter describes these transformations.
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This chapter describes the model transformations between architecture specification languages,
the Intermediate Architecture Description Language and architecture implementation lan-
guage languages. Figure 7.1 highlights the transformations within the proposed solution.

Implementation 
Model

Program Code

Architecture Model Transformations

Specification
Model

Model 
Integration 
Concept

Is  Translated  To

Model  Layer

Code  Layer

Translation 
Model (IAL)

Figure 7.1: The architecture model transformations highlighted in the overview of the proposed
solution

Two types of architecture model transformations are part of the Explicitly Integrated Archi-
tecture Process. First, transformations between architecture specification languages and the
IAL as well as transformations between architecture implementation languages and the IAL are
used to create a mapping between architecture specifications and implementations on a model
level. Second, transformations within the IAL allow for translating between different related
profiles of the IAL. The following sections present these types of transformations.

7.1 Transformations Between Specification or Implementation
Languages and the Intermediate Architecture Description
Language

The Explicitly Integrated Architecture Process translates between architecture specification
and implementation languages. The IAL is used to reduce the number of transformations to
define. Therefore translations between architecture specification and implementation languages
and the IAL are defined. These transformations are exogenous, i.e. they translate models of
one meta model into models of another meta model [MVG06].
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Figure 7.2: Example triple rule between the Palladio Component Model (left) and the
IAL (right). The center is a correspondence graph, that relates source graph el-
ements to target graph elements.

7.1.1 Example of a Transformation between an architecture language and the
IAL

Transformations between architecture languages and the IAL can be defined in any model
transformation technique that allows for exogenous transformations. In the implementation
of the tool that accompanies this thesis, triple graph grammars (TGG) [Sch94] based on
attributed, typed graphs [BET12], are used. In these typed graphs the graphs are models and
the type graphs are meta models in the terms of this thesis. A TGG comprises triple rules, which
declare how two graphs can be produced in alignment. Figure 7.2 gives an example of such a
triple rule, which is used to translate bidirectionally between a BasicComponent in the Palladio
Component Model (PCM) and a ComponentType in the IAL. It comprises a source graph, that
is a model of the Palladio Component Model language, a target graph, that is a model of the
IAL, and a correspondence graph, which is a model of a special correspondence language meta
model, for relating source graph elements in the triple graph to target graph elements. The
PCM model declares an object of the class BasicComponent, with an attribute entityName.
The attribute is expected to have a value, that is caught in the variable name. The IAL
model declares an object of the class ComponentType with an attribute name. The attribute
is expected to have a value, that is named in the variable name. The IAL model declares that
the stereotype HierarchicalComponentTypeSharedContext is applied to the component type.
The object of the class Trace in the correspondence graph relates the BasicComponent to the
ComponentType.
The triple rule is a basis from which operational rules are derived [HEGO10, SG14a]. Oper-

ational rules can be executed upon a given triple graph. A triple graph is a set of graphs: The
source graph, the correspondence graph and the target graph. Forward translation, backward
translation, correspondence check, and integration rules can be derived. Forward translation
rules are used to create a target graph based on a source graph. Backward translation rules
are used to create source graphs based on a target graph. Consistency check rules are used
to check whether each element on each side has a correspondence on the other side via the
correspondence graph. Integration rules create a correspondence graph based on given source
and target graphs. Figure 7.3 shows an operational forward transformation rule which has been
derived from the triple rule in Figure 7.2. The <tr> signs mean that a match is searched for
this node or edge in the original triple graph. The <++> signs mean that these nodes or edges
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Figure 7.3: Example operational forward transformation rule between the Palladio Component
Model (left) and the IAL (right), based on the triple rule in Figure 7.2.

are to be created.
Figure 7.2 declares that a graph comprising one node of the type BasicComponent in the

source graph of the triple graph is to be translated. When such a subgraph is found in the source
graph, nodes of the types ComponentType and HierarchicalComponentTypeSharedContext are
created in the target graph with the given relations. The value of the attribute name of the
ComponentType node is set to the value of the entityName to be translated.

7.1.2 Example of the Propagation of Changes between Models of an
architecture language and the IAL

Forward and backwards transformations cannot be used for deleting nodes. To do so, a forward
propagation or backwards propagation can be used as actions upon the triple graphs [SG14c,
SG14b]. Such a propagation is a set of steps. During a forward propagation, first a consistency
check is executed. All nodes and edges on the target graph, that have no corresponding element
on the source graph as defined by the triple rules, are deleted. Then forward rules are executed
for each node on the source graph that has no correspondence. As a result, changes in the
source graph, including creations, changes, and deletions, are propagated to the target graph.
The backwards propagation works likewise.
Figure 7.4 shows the execution of a forward propagation an example, based on the triple rule

in Figure 7.2. Initially, the triple graph contains two PCM BasicComponents A, and B, which
have corresponding ComponentTypes in the IAL. Then the basic component B is removed, and
a new basic component C is created. The forward propagation removes the component type
B from the IAL model and the dangling trace element. Then it creates a new IAL component
type C with a corresponding trace element. The elements regarding component type A remain
unchanged. All transformations defined in this thesis are available on the data medium attached
to this thesis (see Appendix B).

7.2 Transformations Between IAL Profiles

The IAL comprises several profiles that are mutually exclusive (see Section 6.5). As an example,
when an architecture is modelled with the IAL profile Scoped Component Hierarchy (see
Definition 87) and, at the same time with the profile Shared Context Component Hierarchy
(see Definition 88), this information would be inconsistent. An architecture cannot at the same
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1. Initial Triple Graph

2. Removed Basic Component B, Added Basic Component C

3. After Forward Propagation

Figure 7.4: Example forward propagation between a Palladio Component Model model (left)
and a model of the IAL (right), based on the triple rule in Figure 7.2.

time be a flat component type hierarchy and a deep component type hierarchy. Nevertheless, an
architecture can be expressed in an architecture implementation language that defines scoped
context component hierarchies, and should be viewed in an architecture language that can
only model flat component hierarchies. To respect these situations, the Explicitly Integrated
Architecture Process defines transformations between IAL profiles, which are called inter-profile
transformations further on.
An inter-profile transformation is only possible for mutually exclusive profiles. E.g. a

shared component architecture can be translated into a scoped component architecture, but the
component hierarchy is not concerned with the interface type. Therefore a translation between
a scoped component hierarchy and typed interfaces is not defined. This limits the number
of inter-profile transformations that are necessary. Figure 7.5 shows the mutually exclusive
profiles and transformations between them.
The inter-profile transformations are monotonic productions [Sch94]. This means that only

new elements are created during the transformation. No information is lost, but it leaves
inconsistent information in the model. This inconsistency is resolved by the language transfor-
mations between architecture languages and the IAL for specific languages. They only consider
the information they require for the translation.
Figure 7.6 shows an example how these transformations are used within the Explicitly

Integrated Architecture Process. In this example, an excerpt of an implemented architecture
is modelled using the profile for scoped component type hierarchies (step 1). It contains two
component types. The component type A has the component type B as child component using
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Component 
Hierarchy

Shared

Scoped
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Interface 
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Shared
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Inter-Profile
Transformations

Figure 7.5: Transformations between IAL profiles. Each arrow shows between which profiles
transformations have been specified.

the said profile. The model is translated into a view with a shared component type hierarchy
(step 2), because the target language cannot express scoped hierarchies. This translation
adds the shared context hierarchy, without removing the scoped hierarchy information. The
targeted language is then used to change the component type B. The component type’s name is
changed to C (step 3). The profile Scoped Component Hierarchy is ignored in this step. When
the architecture is translated into the source language again, the shared context component
hierarchy is ignored. Step 4 shows the result of the translation. The child component relation
still exists, although the language that was used to change the model is not designed to
handle child type relationships. In the following sections, the inter-profile transformations
are described.

7.2.1 Component Hierarchy

All three profiles dealing with in the component hierarchy are mutually exclusive.

Scoped to Shared Component Hierarchy

Figure 7.7 shows the inter-profile transformation for translating architectures with the profile
Scoped Component Hierarchy (see Definition 87) to use the profile Shared Context Component
Hierarchy (see Definition 88). The example in Figure 7.6 is based on this transformation. The
description is based on the model transformation tool Henshin [ABJ+10b], but other tools
for in-place graph transformations are also usable. The transformation shown in Figure 7.7
converts an architecture with a scoped component hierarchy into an architecture with a shared
context hierarchy. In the Scoped Component Hierarchy profile, component types own child
component types and instances of child component types. The Shared Context Component
Hierarchy profile declares all component types on the same level.
The execution is organized by the sequential unit called main. A sequential unit declares

in which order rules are executed. When for any rule within a sequential unit no match is
found, the translation ends. First the rule architecture is executed, which adds a stereotype
HierarchicalArchitectureSharedContext to the architecture. The transformations are designed
to be idempotent. I.e. they can be executed multiple times. They only add information when it
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Step 1
Import

Step 2
Transform Scoped to Shared

Step 3
Change Name of B to C

Step 4
View Result

Figure 7.6: An excerpt of an architecture, that is transformed between the IAL profile Scoped
Component Hierarchy and the profile Shared Context Component Hierarchy. A
change within the shared context view is propagated without loosing information
about the scoped component type hierarchy.

is missing. They will therefore not duplicate existing information. The rule componentType is
a multi-rule [ABJ+10a, BEE+10], as denoted by the stars on the operators (preserve*, forbid*,
create* ). Multi-rules are executed as often as there is a match to be found. The rule therefore
adds the stereotype HierarchicalComponentTypeSharedContext to each component type. The
rule childInstances contains nested multi-rules. It ensures that in both profiles, the child
instances are set consistently. In the operators, a slash-separated path is appended to the
star notation. Each path fragment symbolizes a nesting. I.e. the component type and the
stereotypes are on the same level. This part of the rule is executed as often as a match can
be found for these elements. When such a match is found, the rule containing the component
instance is executed. For every component type which has both stereotypes attached, a child
instance relationship is searched for in the scoped profile, and created consistently in the shared
profile. The rule sytemInstances ensures that all system instances of the scoped hierarchy
architecture are also set to be system instances in the shared context hierarchy architecture.

Shared to Scoped Component Hierarchy

Figure 7.8 shows the transformation from the profile of shared (see Definition 88) to the profile
of scoped component hierarchies (see Definition 87). The sequential unit main organizes the
execution. First, the rule architecture is used to ensure that a stereotype HierarchicalArchi-
tectureScoped is applied to the architecture element. Then the rule componentType ensures
that each component type has the stereotype HierarchicalComponentTypeScoped, so that it can
define child component types within its scope. The rule noParentMeansSystemType makes sure
that all types that have no parent type are marked as system types. Next the rule childInstances
synchronizes the child instances between the two profiles. At last the rule noParentMeansSys-
temInstance declares all component instances that have no parent type to be system instances.
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Figure 7.7: The inter-profile transformation scoped to shared component hierarchy

Figure 7.8: The inter-profile transformation shared to scoped component hierarchy
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Figure 7.9: The inter-profile transformation shared to flat component hierarchy

Figure 7.10: The inter-profile transformation scoped to flat component hierarchy

Shared to Flat Component Hierarchy

Figure 7.9 shows the transformation from the profile of shared (see Definition 88) to the profile
of flat component hierarchies (see Definition 86). The sequential unit main organizes the
execution. The only rule architecture applies the stereotype HierarchicalArchitectureFlat to
the architecture.

Scoped to Flat Component Hierarchy

Figure 7.10 shows the transformation from the profile of scoped (see Definition 87) to the
profile of flat component hierarchies (see Definition 86). The sequential unit main organizes
the execution. The only rule architecture applies the stereotype HierarchicalArchitectureFlat
to the architecture.

Flat to Shared Component Hierarchy

Figure 7.11 shows the transformation from the profile of flat (see Definition 86) to the profile of
shared (see Definition 88) component hierarchies. The sequential unitmain organizes the execu-
tion. First, the rule architecture applies the stereotype HierarchicalArchitectureSharedContext
to the architecture element. The rule componentTypes adds the stereotype HierarchicalCom-
ponentTypeSharedContext to each component type. At last, the rule systemInstances marks all
component instances as system instances that have no parent component type.
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Figure 7.11: The inter-profile transformation flat to shared component hierarchy

Flat to Scoped Component Hierarchy

Figure 7.12 shows the transformation from the profile of flat (see Definition 86) to the profile
of scoped component hierarchies (see Definition 87). The sequential unit main organizes the
execution. First, the rule architecture applies the stereotype HierarchicalArchitectureScoped to
the architecture element. The rule componentTypes applies the stereotype HierarchicalCom-
ponentTypeScoped to each component type. Next the rule noParentMeansSystemType marks
every component type that has no parent type a system type. Analogously the rule noPar-
entMeansSystemInstance marks every component instance that has not parent type a system
instance.

7.2.2 Interface Hierarchy

The interface hierarchy profiles are mutually exclusive. An architecture cannot at the same
time define interfaces as children of component types and interfaces in a shared repository on
the same level.

Scoped to Shared Interface Hierarchy

Figure 7.13 shows the transformation from the profile of scoped (see Definition 85) to the
profile of shared interface hierarchies (see Definition 84). The execution is also organized by
the sequential unitmain, which only executes the rule architecture. The rule creates a stereotype
SharedInterfacesArchitecture and applies it to the architecture element, if none exists prior to
the rule execution.

Shared to Scoped Interface Hierarchy

Figure 7.14 shows the transformation from the profile of shared (see Definition 84) to the
profile of scoped interface hierarchies (see Definition 85). This transformation is more complex
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Figure 7.12: The inter-profile transformation flat to scoped component hierarchy

Figure 7.13: The inter-profile transformation from a scoped to a shared interface hierarchy
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Figure 7.14: The inter-profile transformation from a shared to a scoped interface hierarchy

than the transformation in Section 7.2.2, because more elements and references have to be
created. The sequential unit main organizes the execution. First, the rule architecture is
used to ensure that a stereotype ScopedInterfacesArchitecture is applied to the architecture
element. Then the rule interfaces ensures that each component type has the stereotype
ScopedInterfacesComponentType, so that it can define interfaces within its scope. The rule
noParentMeansSystemInterface marks all interfaces that are not child interfaces of a component
type as system interfaces. After the transformation all interfaces are defined within the same
scope. This is semantically equivalent to a shared interface hierarchy.

7.2.3 Other Profiles

Not all possible transformations make sense. It would be possible to translate between
operation-based and event-based interfaces, connectors and data types. Operation-based and
event-based handling of messages are alternative styles of messaging. There are two reasons
for not providing this transformation: First, the analysis of an operation-based system that
is modelled using events – or vice versa – would not be as reliable as it would be wished for.
Second, this translation is not defined because the profiles are not mutually exclusive. Some
architecture languages allow for both styles of communication. E.g. EJB uses Session Beans
for operation-based communication and Message-Driven Beans for event-based communication.
Consider an AIL, which allows for both operation-based and event-based communication, and
a specification language that allows only for event-based communication. In an exemplary
system, the translation would be processed as follows:

1. The AIL describes an operation-based interface. A translation of the code to the specifi-
cation language is started.
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2. In an inter-profile transformation, the operation-based interface is transformed to an
event-based interface. The architecture specification now contains both stereotypes,
event-based and operation-based, in the IAL.

3. The specification language only handles event-based communication. The interface is
edited in this view. Afterwards the transformation is started from the specification
language view to code.

4. No inter-profile transformation is triggered, because the target language handles both
communication styles.

It is now unclear how the code should be structured: event-based or operation-based. Both
stereotypes exist and can be handled by the architecture implementation language.

7.2.4 Profile Activation

When a translation between two architecture languages is executed, the transformations might
expect information of specific profiles. E.g. a PCM transformation expects deployment informa-
tion using the stereotype ArchitectureWithDeploymentFragments. When the source language
does not provide deployment information, this stereotype is not applied to the architecture
object.
The possible lack of information can either be handled by each transformation definition

between the IAL and an architecture language, or by the process in the context of inter-profile
transformations. To create a unified handling of missing stereotypes, in the approach at hand
the latter variant has been chosen. Therefore, in the context of inter-profile transformations,
additional transformations for adding missing stereotypes are executed. These transformations
are called profile activation transformations.
During the translation between two architecture languages, it is known which profiles each

language uses in the transformations towards or from the IAL. This information is used to
determine which profile activation transformations need to be executed. In the example given
above, the profile activation for the Deployment profile is executed. The transformation is
shown in Figure 7.15. The transformation adds the stereotype ArchitectureWithDeployment-
Fragments if it does not exist. These transformations exist for all profiles in optional categories
(see Section 6.5), that apply stereotypes to the architecture. The transformations between the
IAL and architecture languages can therefore rely on these stereotypes to be applied to the
architecture object.

Figure 7.15: The profile activation transformation for the Deployment profile
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7.3 Summary

This chapter described where architecture models have to be translated during the Explicitly
Integrated Architecture Process. Bidirectional exogenous transformations translate between
Architecture Description Languages, architecture implementation languages, and the IAL.
Triple graph grammars are a good utility to implement these transformations. Inter-profile
transformations translate between profiles of the IAL. This chapter described the different
kinds of transformations and gave examples how transformations are defined and executed in
the context of the proposed solution. The next chapter describes the use of the architecture
model transformations and the other parts of the proposed solution in the Explicitly Integrated
Architecture Process.
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8 Explicitly Integrated Architecture Process

The Explicitly Integrated Architecture Process [Kon16] provides means to change architec-
turally relevant program code at design time with architecture specification languages, and
automatically propagate the changes to the program code. Architecture model information
must on the one hand be extracted from the code, and on the other hand integrated with the
program code after changing or creating the specification model.

8.1 Process Overview

The Explicitly Integrated Architecture Process is visualized in Figure 8.1. It can be started
either from program code that complies to an implementation model – including code that has
not been developed using the process yet – or from either a new, or an extracted specification
model. When the process is started from a specification model, it is assumed that the software
is built from scratch by developing a specification model, or that the specification model has
already been extracted from the program code using the process. When the process is started
from the program code, it is assumed that the software is developed in compliance with an
architecture implementation language, or has already been developed using the process, and
therefore compliant program code exists.

Translation 
Model
ó

Specification 
Model

Inter-Profile 
Transformations

Program Code
ó

Translation
Model

Architecture Model Transformations
Model Integration Concept

Program 
Code

Specification 
Model

Step 1 Step 2 Step 3

Step 6 Step 5 Step 4

Figure 8.1: Overview of the Explicitly Integrated Architecture Process
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8.2 Process Steps

The process defines three main steps for each direction. For extracting a specification model,
the following steps are executed:

Step 1 extraction of a translation model from the program code via an implementation model;

Step 2 translation of the translation model according to the necessities of the involved lan-
guages, by executing inter-profile transformations;

Step 3 translation of the translation model into a specification model.

For integrating the specification model with the code, reverse steps are executed:

Step 4 translation of the specification model into a translation model;

Step 5 translation of the translation model according to the necessities of the involved lan-
guages, by executing inter-profile transformations;

Step 6 integration of the translation models with program code via an implementation model.

The following describes the steps with mode details. An example of the process in given in
Section 4.4 on page 37. For this description, we assume that the process is started from existing
program code.

1. Program Code to Translation Model: In the activity Program Code to Translation Model
a translation model is created based on the program code. The activity comprises three
subactivities, as shown in Figure 8.2. First, in the subactivity Code to Implementation
Model the code is translated into an implementation model using the Model Integra-
tion Concept. Then, in the subactivity Implementation Model to Translation Model, a
translation model is created from the implementation model using architecture model
transformations. In the subactivity Code to Translation Model architecture information
in the program code that cannot be expressed with the implementation model language
is added to the translation model using the Model Integration Concept. The activity
Code to Translation Model results in a translation model that represents the architecture
of the code. These code-to-model translations are described in detail in Chapter 5. The
Intermediate Architecture Description Language as language for the translation model is
described in Chapter 6. The model-to-model translations are described in Section 7.1.

2. Inter-Profile Transformations: As shown in [Mü10], languages for software architecture
have different kinds of information they are able to describe. The IAL handles these differ-
ences by splitting its meta model into different profiles. Depending on the target language
to translate an IAL model into, some profiles are interpreted, while others are not. When
the architecture implementation language and the architecture specification language in
the process have such differences, it is necessary to translate between them. E.g. a flat
component architecture can be represented in a hierarchical way with one hierarchical
level. This is done in the activity Inter-Profile Transformations. The transformations do
not delete the original information, therefore no information is lost. The IAL is described
in Chapter 6. The inter-profile transformations are described in Section 7.2.
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Figure 8.2: Subactivities of the steps 1 and 6 of the Explicitly Integrated Architecture Process

3. Translation Model to Specification Model: In this activity, the translation model is trans-
lated into a specification model. This translation is described in Section 7.1.

When the specification model is available, it can be viewed, analyzed, and changed with its
original tools. The changed model can then be integrated with the existing program code as
follows:

4. Specification Model to Translation Model: In this activity, the changes in the specifica-
tion model are propagated to the translation model. This translation is described in
Section 7.1.

5. Inter-Profile Transformations: The counterparts of the inter-profile transformations
above are now executed, e.g. to flatten a hierarchical architecture. In this example,
the information about the flat hierarchy remains untouched. The inter-profile transfor-
mations are described in Section 7.2.

6. Translation Model to Code: This activity comprises two subactivities. In the subactivity
Translation Model to Implementation Model, the translation model is translated into an
implementation model. In the subactivity Translation Model & Implementation Model
to Code both models are taken as input to propagate the model changes to the program
code. The integration is described in Chapter 5. The result of this activity is the program
code that is changed according to the model changes in the specification model.

8.3 Summary

This chapter described the Explicitly Integrated Architecture Process. The process is used
to integrate architecture model information with program code, extract this information, and
create a temporary specification model view. Changes in this model can be propagated to the
program code with the process.
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9 Implementation

This chapter describes the implementation of tools in the context of the Explicitly Integrated
Architecture Process. In Section 9.1 the running example of Section 5.6.1 is revisited. Then two
tools are described using the running example: The tool Codeling executes the Explicitly Inte-
grated Architecture Process (see Chapter 8). It supports the development of transformations
between the code and the model representation of model notations, inter-profile transforma-
tions, and bidirectional architecture model transformations with libraries. As described in
Section 5.7, several artefacts can be generated based on the formal definitions of integration
mechanisms: meta model notation libraries, which contain the program code structures that
represent meta models; model notation transformations, which translate between code and
model views, based on the definition of notations of the Model Integration Concept (see Chap-
ter 5); and execution runtime stubs, that use the generated program code to instantiate model
elements in a running program. A code generation tool has been implemented to generate these
artefacts. Codeling and the code generation tool share artefacts in an input/output relation.
Figure 9.1 shows the artefacts that the implemented tools use as input and output.
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Figure 9.1: An overview of the tools and the artefacts they use as input and output

Codeling (see Section 9.2) is the tool for executing the Explicitly Integrated Architecture
Process. It creates architecture specification model views upon program code, propagates
changes in the model to the code representation, and can migrate program code from one
architecture implementation language to another. Libraries in the context of Codeling support
the development and execution of model notation transformations and architecture model
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transformations, including inter-profile transformations.
The code generation tool (see Section 9.3) exploits the definition of integration mechanisms

for the Model Integration Concept. The tool takes a language meta model as input. The
tool’s user maps integration mechanisms to elements of meta model elements. A library of
abstract transformations and execution runtimes has been developed, which decreases the
effort for creating transformations and execution runtimes for meta model elements, that are
translated using the integration mechanisms. Based on the library of abstract transformations
and execution runtimes for integration mechanisms, the code generation tool then generates
a meta model notation library, model notation transformations, and execution runtime stubs.
The integration of the generated code with Codeling is described in Section 9.3.7. A strategy
for developing transformations is described in Section 9.4, before the chapter is summarized in
Section 9.5.

9.1 Running Example

The following describes an example, that will be used as an illustrator for the functionality of
the prototype tools. It is a simplified version of the running example in Section 5.6.1. In the
running example, a simple software system is described with interconnected components and
a state machine. Figure 9.2 show the meta model of the running example with elements for
architectural structures on the upper side, and a state machine at the bottom. The structural
part describes an architecture with components that have business operations. Components
can reference other components. When a component has a reference to another component, it
may invoke its operations. Component behaviour can be described with a state machine. A
state machine contains a list of states and has an initial state. A state has a list of transitions
that target a next state. All classes in the meta model but the architecture have an attribute
name.
The example system (see Figure 9.3) is an excerpt of a store software, based on the CoCoME

system [HKW+08]. It consists of two components CashDesk and BarcodeScanner. The bar
code scanner has an operation scanCode to scan a bar code. The cash desk can be used to
add items to a virtual shopping cart for billing. It therefor references the bar code scanner. It
provides the operations addItemToCart and checkout.

Figure 9.2: The structure and behavior meta model of the running example
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Figure 9.3: The implementation model representation of the original architecture in the running
example

The behaviour of the cash desk is designed as a state machine. The initial state is Ready,
which describes that the cash desk is ready for a new sale. When an item is scanned, it is in
the state WithinSale. It remains in this state during subsequent scans until the sale is finished.
Then it returns to the Ready state.

The code comprises representations of the specification elements, including implementation
details. Components are translated using type declarations with an annotation Stateful,
as declared by the EJB specification. This is close to the Type Annotation mechanism.
Referenced components are notated with a field with the type that represents the targeted
component as field type, and an annotation EJB, again, as declared by the EJB specification.
This representation is close to the Annotated Member Reference mechanism. A state machine
of a component is represented as a field with the annotation Statemachine. The type of the
field is a representation of the state machine model element, following the Annotated Member
Reference mechanism. Business operations are methods of components with the annotation
Operations, as described by the Containment Operation mechanism. A state machine is
notated with the Type Annotation mechanism, with states and the initial state translated
with the Annotated Member Reference mechanism. A state has its transitions as containment
operations. The transition’s targets are translated via the Containment Operation Reference
Annotation Parameter mechanism. Table 9.1 gives an overview of the mechanisms and notation
details as a reference.
Listing 9.1 shows an excerpt of the code that implements the cash desk component with

the Type Annotation notation. The package declaration and imports are not shown. The
type CashDesk represents the component. It has an Annotated Member Reference field to the
type that represents its state machine, and a representation of the reference to the bar code
scanner. The init method is not part of the architectural description in the sense of this
thesis. It initializes a runtime for the cash desk state machine. The annotation PostConstruct
is described in the EJB specification. The method with this annotation is executed after the
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Meta Model Element Integration Mechanism or Notation Details
Architecture Ninja Singleton
→ all attributes and references Included in the owner’s mechanism
Component Stateful annotation applied to a type (Type Annotation with specific

annotation)
→ references EJB annotation applied to a member reference (Annotated Member Reference

to Type Annotation or Static Interface with specific annotation)
→ statemachine Statemachine annotation applied to a member reference (Annotated Member

Reference to Type Annotation or Static Interface with specific annotation)
→ operations Containment Operation for Types
StateMachine Type Annotation
→ states Annotated Member Reference to Marker Interface for x..* References
→ initial Annotated Member Reference to Marker Interface for x..1 References
State Type Annotation
→ transitions Containment Operation for Types
Transition Contained in State.transitions
→ target Containment Operation Reference Annotation Parameter to Marker Inter-

face for x..1 References
BusinessOperation Contained in Component.operations

Table 9.1: The mapping of meta model elements and integration mechanisms for the implemen-
tation’s running example

component is initialized. The business operation addItemToCart uses the reference to the bar
code scanner to scan an item and adds the result to a list. It then triggers the transition
scanItem in the state machine. The business operation checkout clears the list of items to
simulate a successful sale, and triggers the finishSale transition in the state machine.
Listing 9.2 shows the cash desk’s state machine in the Type Annotation notation. It owns

two references in the Annotated Member Reference notation: The list of owned states and the
initial state. In Listing 9.3 the state WithinSale is notated using the Marker Interface notation.
It owns two transitions with the Containment Operation notation with their targets in the
Containment Operation Reference Annotation Parameter notation.

9.2 Codeling - The Explicitly Integrated Architecture
Process Tool

Codeling implements the Explicitly Integrated Architecture Process within the Eclipse IDE. It
can therefore be used to create architecture specification language views upon program code,
propagate changes in the specification model to the underlying program code; and to migrate
program code that complies to an architecture implementation language to another architecture
implementation language. Therefor Codeling requires specific transformation definitions for ar-
chitecture implementation and specification languages. The following sections first describe a
use case for Codeling in the running example (Section 9.2.1). Then the architecture is described
in Section 9.2.2. Section 9.2.3 describes the implementation of the Explicitly Integrated Ar-
chitecture Process in Codeling. Section 9.4 describes a strategy for developing transformations
for codeling. At last, the extensibility of Codeling is described in Section 9.2.5.
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1@Stateful
2public class CashDesk {
3final LinkedList <String > items = new LinkedList <>();
4StateMachineRuntime <CashDeskStateMachine > smr;
5

6@Statemachine
7CashDeskStateMachine cashDeskStateMachine;
8

9@EJB
10BarcodeScanner barcodeScanner;
11

12@PostConstruct
13public void init() throws IntegratedModelException {
14//... initializing the state machine runtime
15}
16

17@Operations
18public void addItemToCart () throws IntegratedModelException {
19items.add(barcodeScanner.scanItem ());
20smr.executeTransition("scanCode");
21}
22

23@Operations
24public void checkout () throws IntegratedModelException {
25items.clear(); // Execute a real sale
26smr.executeTransition("finishSale");
27}
28}

Listing 9.1: The original implementation of the component CashDesk in the running example

1@StateMachine
2public class CashDeskStateMachine {
3@Initial(Ready.class)
4State initial;
5

6@States ({ Ready.class , WithinSale.class})
7State [] states;
8}

Listing 9.2: The original implementation of the state CashDeskStateMachine in the running
example

1public class WithinSale implements State {
2@Transition(target = WithinSale.class)
3public void scanCode () {
4Logging.log(LogLevel.MODEL , "Executing␣transition␣’scanCode ’␣from␣state"+
5"’WithinSale ’.");
6}
7

8@Transition(target = Ready.class)
9public void finishSale () {
10Logging.log(LogLevel.MODEL , "Executing␣transition␣’finishSale ’␣from␣state␣’

WithinSale ’.");
11}
12}

Listing 9.3: The original implementation of the WithinSale state in the running example
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Figure 9.4: Selecting the architecture implementation and specification language for the trans-
lation in Codeling

9.2.1 Use Case - Evolving a Model of the Running Example

To start the process, Codeling provides a menu item "Start Explicitly Integrated Architecture
Process" in the Eclipse IDE in the context menu of a project.
Upon using the menu item, the user has to choose the architecture implementation language,

that the underlying code complies to, and the architecture specification or implementation
language to translate it into. Figure 9.4 shows the selection dialogue. In the running example,
the selected languages are EJB with State Machine Example and UML for the EJB with State
Machine Example. These language definitions have been specifically implemented for this
example. The code is then translated into the selected specification language. In-between,
a set of intermediate models is created and transformed, following the Explicitly Integrated
Architecture Process. The code, transformations, and extracted models for the running example
are available on the data medium attached to this thesis (see Appendix B).
In step 1.1 of the Explicitly Integrated Architecture Process, the model representation of

the code is created using the generated transformations based on the integration mechanism
(where applicable) and individually developed transformations, where generated transforma-
tions do not fit. The notation for components and their references do not exactly follow exist-
ing mechanisms. Their representation is taken from the EJB specification. The notation for
components implies an annotation on a type declaration, just as it is declared in the Type An-
notation mechanism. However, the annotation name Stateful does not match the annotation
name Component required by the mechanism. The extracted model is shown in Figure 9.3 on
page 217.
During this step, the notation’s main program code element, the type declaration in the case

of the Type Annotation mechanism, and the corresponding model element of the architecture
implementation language are stored in an ID registry for later use. This is necessary for
identifying when a model element is changed in an identifying part. E.g. when in the model
the component name is changed, it must be known which type represented the component
before the change, so that the type can be renamed. Listing 9.4 shows the corresponding entry
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Figure 9.5: The original translation model of the architecture in the running example

in the registry file. It contains four columns, separated by a $ sign. The first column states an
unambiguous identifier for the element, throughout the complete process. The second column
is an unambiguous identifier for the code element. The third column contains an unambiguous
identifier for the implementation model element, which uses the location of the element in
the model as identifier. This is necessary, because not all meta models declare an identifying
attribute for all classes. The fourth column is currently empty. It will contain an unambiguous
identifier for the translation model element in the next step.

1ibuadz878a7sdaduh$runningExample>org.codeling.example.CashDesk$/0/@components.0$

Listing 9.4: The ID registry entry for the translated CashDesk component after step 1.1

In step 1.2, the implementation model is translated into a translation model using the IAL
(see Chapter 6). Figure 9.5 shows the representation of the architecture in the intermediate
language. The ID registry entry is extended with an identifier for the newly created translation
model element. Listing 9.5 shows the extended ID registry entry.

1ibuadz878a7sdaduh$runningExample>org.codeling.example.CashDesk$/0/@components.0$/0/
@componentTypes.0

Listing 9.5: The ID registry entry for the translated CashDesk component
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Figure 9.6: The original translation model of the architecture in the running example with
component type hierarchy information

In step 1.3, component type hierarchy information is translated from the program code
directly into the translation model. In the running example, no such information is included
at the moment.
In step 2, the inter-profile transformations prepare the translation model for a UML repre-

sentation. UML allows to describe hierarchical component type architectures. Figure 9.6 shows
the representation of the architecture in the intermediate language after the inter-profile trans-
formations. The new elements in the upper left side declare the scoped hierarchy definition.
In step 3, the translation model is translated into the specification model. In the example

this is a UML model. UML diagrams based on this model is shown in Figure 9.7. A component
diagram shows the components, their interfaces, and how they are interconnected. A UML
state chart shows the state machine.
To follow the model elements during changes, the specification language must provide a

mechanism to relate an ID to the element. In the running example, the ID is stored as structured
comments attached to each element. The comments are not shown in the figure. In the running
example the following changes are made to the architecture.
(1) The bar code scanner is declared to be a child component of the cash desk component.
(2) A new operation closeDesk is declared for the cash desk.
(3) The state chart is changed to include a new state AwaitingPayment.
(4) The transition finishSale now targets the new state instead of Ready.
(5) A new transition paymentReceived is introduced from AwaitingPayment to Ready instead.

Figure 9.8 shows the changed UML diagrams. On saving the modelling file, the specification
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Figure 9.7: The original specification model of the architecture in the running example

Figure 9.8: The changed specification model of the architecture in the running example
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model representation is translated into the code representation automatically.
In step 4, the changes in the model are propagated to the former translation model of

step 2 (see Figure 9.9). (1) The component type CashDesk now has the component type
BarcodeScanner as child component type. The bar code scanner is now not a system type
of the architecture element anymore. (2) The operation interface stereotype of the interface
CashDesk now has a new operation closeDesk. The state machine now has (3) a new state and
(5) transition. (4) The transition finishSale has the new state as target.
The model element identifiers in the ID registry entries use the model structure to identify

elements. When an element is moved within this structure, the identifier is not valid anymore.
Therefore the ID registry entry is updated during this step. In Listing 9.6 the identifier in the
third column is changed to reflect such a movement of a translation model element. In Listing
9.5 the identifier was /0/@componentTypes.0, identifying the first model root /0, then the first
child of that model root of the containment reference componentTypes @componentTypes.0.
After the change, the identifier points to the second component type @componentTypes.1,
because it has been moved internally during the translation process.

1ibuadz878a7sdaduh$runningExample>org.codeling.example.CashDesk$/0/@components.0$/0/
@componentTypes.1

Listing 9.6: The ID registry entry for the translated CashDesk component after step 4

In step 5, inter-profile transformations are executed to prepare the translation model for the
architecture implementation language. This would add information about the flat architecture
to the model. In the running example no changes are applied, because the information already
exists.
In step 6.1, the translation model is translated into a representation in the architecture

implementation language (see Figure 9.10). Compared to the original architecture in Figure 9.5,
the changed implementation model includes the changes made in the specification language.
The component type hierarchy is missing, because the implementation language is unable to
express component type hierarchies.
Analogously to step 4, in this step model elements can be moved within the model structure.

The ID registry entry is adapted accordingly. Listing 9.7 shows that the implementation model
element moved from the first child /0/@components.0 to the third /0/@components.2.

1ibuadz878a7sdaduh$runningExample>org.codeling.example.CashDesk$/0/@components.2$/0/
@componentTypes.1

Listing 9.7: The ID registry entry for the translated CashDesk component after step 6.1

In step 6.2, the architecture implementation model is translated into program code. Therefor
the transformations of step 1.1 are executed in the opposite direction: towards the code.
For each model element the transformations evaluate whether a code structure exists, that
represents this model element. For this evaluation, an ID registry entry for the implementation
model element is searched. If no such code structure exists, a corresponding code structure is
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Figure 9.9: The translation model of the changed architecture in the running example

Figure 9.10: The architecture implementation model of the changed architecture in the running
example
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created. If a corresponding core structure already exists, it is updated if the model element
has been changed. When a model element has been deleted, the corresponding code structure
is deleted. Listing 9.8 shows the cash desk state machine type after the changes. Compared to
the original type (Listing 9.2), the annotation of the states representation additionally declares
a reference to the new state AwaitingPayment.

1@StateMachine
2public class CashDeskStateMachine {
3@Initial(Ready.class)
4State initial;
5

6@States ({ Ready.class , WithinSale.class , AwaitingPayment.class})
7State[] states;
8}

Listing 9.8: The changed implementation of the CashDeskStateMachine in the running example

Listing 9.9 shows the changed cash desk type. In comparison to the original architecture, it
includes the new business operation closeDesk.

1@Stateful
2public class CashDesk {
3final LinkedList <String > items = new LinkedList <>();
4StateMachineRuntime <CashDeskStateMachine > smr;
5

6@Statemachine
7CashDeskStateMachine cashDeskStateMachine;
8

9@Child
10@EJB
11BarcodeScanner barcodeScanner;
12

13@PostConstruct
14public void init() throws IntegratedModelException {
15//... initializing the state machine runtime
16}
17

18@Operations
19public void addItemToCart () throws IntegratedModelException {
20items.add(barcodeScanner.scanItem ());
21smr.executeTransition("scanCode");
22}
23

24@Operations
25public void checkout () throws IntegratedModelException {
26// Execute a real sale
27items.clear();
28smr.executeTransition("finishSale");
29}
30

31@Operations
32public void closeDesk (){}
33}

Listing 9.9: The changed implementation of the component CashDesk in the running example

The hierarchy between the cash desk component type and the bar code scanner component
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type are translated into code in step 6.3. In this step, information from the translation model,
which cannot be expressed in the architecture implementation language, is translated into the
code. Listing 9.9 shows the annotation Child on the field barcodeScanner, which expresses
the component type hierarchy between the two interrelated component types.
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The transition finishSale has a new target. This is expressed in the code as a changed
annotation parameter as shown in Listing 9.10.

1public class WithinSale implements State {
2@Transition(target = WithinSale.class)
3public void scanCode () {
4Logging.log(LogLevel.MODEL ,"Executing␣transition␣’scanCode ’␣from␣state␣’WithinSale

’.");
5}
6

7@Transition(target = AwaitingPayment.class)
8public void finishSale () {
9Logging.log(LogLevel.MODEL ,"Executing␣transition␣’finishSale ’␣from␣state␣’

WithinSale ’.");
10}
11}

Listing 9.10: The implementation of the changed WithinSale state in the running example

Listing 9.11 shows the program code of the Marker Interface model notation for the newly
created state AwaitingPayment with the transition paymentReceived notated as Containment
Operation, and the target Ready notated as Containment Operation Reference Annotation
Parameter.

1public class AwaitingPayment implements State {
2@Transition(target = Ready.class)
3public void paymentReceived () {}
4}

Listing 9.11: The implementation of the new AwaitingPayment state in the running example

9.2.2 Architecture

This section gives an overview of the structural architecture of Codeling and its components
and libraries to support the development of plugins for architecture implementation and spec-
ification languages. The structural architecture (see Figure 9.11) of Codeling comprises the
following components:

User Interface The user interface of Codeling contains a menu item Start Explicitly Integrated
Architecture Process in the Eclipse Project Explorer view to trigger the Explicitly Inte-
grated Architecture Process. The menu item can be used, when a set of projects in the
IDE are selected. The selected projects are the input for the translation process. Upon
using the menu item, a language selection dialogue opens to choose the source and the
target language of the translation (see Figure 9.4). On the left side of the dialogue, the
architecture implementation language has to be chosen, in which the selected projects
are implemented. The dialogue shows all registered implementation languages with their
name and version in this box. On the right side of the dialogue, the target language can
be chosen. The dialogue initially shows all registered specification language with their
name and version. It is also possible to select the entry None, in which case only step
1 (Program Code to Implementation Model) of the process is executed. To execute an
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implementation migration, the check box Target Implementation Language can be acti-
vated. The list of target languages then offers all registered architecture implementation
languages.

Language Registry The language registry component collects all language definitions available
in the system. It contains the interface ILanguageRegistry and abstract types as the
basis for declaring architecture implementation or specification language definitions. The
interface contains operations for adding language definitions to the registry, and for
receiving registered languages.

Language Plugins Language plugins are components that provide specific language definitions
for architecture implementation or specification languages, and register them at the lan-
guage registry. These language implement specific architecture model transformations for
architecture implementation languages, or model notation transformations for architec-
ture implementation languages. A set of libraries has been developed in the context of
Codeling, to support the development of language plugins. The library Java Transforma-
tions supports the development and execution of bidirectional model-code transformations
for the Java programming language. The libraries Henshin and HenshinTGG support
the execution of Henshin and HenshinTGG transformations.

Inter-Profile Transformations The Inter-Profile Transformation component provides the in-
terface IInterProfileTransformations as means for executing inter-profile transforma-
tions. It can also determine, which inter-profile transformations (including profile activa-
tion transformations) should be executed, based on the source and the target languages
of the translation.

Transformation Manager The Transformation Manager coordinates the execution
of the Explicitly Integrated Architecture Process. It provides an interface
ITransformationManager to trigger the translation of program code into the
architecture languages and back. It uses language plugins to execute the architecture
model transformations. For executing inter-profile transformations, it uses the
corresponding component.

The following libraries are used throughout the whole tool. They are not shown in Figure 9.11:

IAL Meta Model The IAL meta model contains an implementation of the Intermediate Archi-
tecture Description Language (see Chapter 6) using Ecore for the language’s kernel and
EMF Profiles for the profiles.

Utilities The utilities contain functionality used by most other libraries and components, such
as a common interface for logging within the application.

The following libraries are the basis for the implementation and execution of language plugins
and transformations. In Figure 9.11 these libraries have a name starting with Language Base.
They are describe in detail in Section 9.2.3.

Model Integration Concept The Model Integration Concept library contains an abstract type
for executing bidirectional model-code transformations in the context of Codeling.
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Figure 9.11: An overview of the components and libraries of Codeling

Java Integration Mechanisms The Java Integration Mechanisms library contains definitions
of an excerpt of the integration mechanisms described in Section 5.6, implemented for the
Java programming language.

Java Transformations The Java Transformations library contains abstract types and utilities
for implementing model-code transformations based on the Java programming language.
It also implements abstract transformations for notations based on integration mecha-
nisms.

Model Transformations The Model Transformations library contains an abstract type for
executing model transformations in the context of Codeling.

Henshin The Henshin library contains an API for executing Henshin transformations in the
context of Codeling.

HenshinTGG The HenshinTGG library contains an API for executing HenshinTGG transfor-
mations in the context of Codeling, and an abstract type for defining language plugins
with architecture model transformations based on HenshinTGG.

Table 9.2 gives an overview of mappings between the components and libraries states in this
section, an the code artefacts that contains them in the Codeling program code.

9.2.3 Implementation Details

This section describes the structure and behaviour of Codeling in the context of the use case
shown in Section 9.2.1, where a simple EJB implementation of a cash desk with a bar code
scanner is translated to UML. The specification is changed in the model view, resulting in the
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Component / Library Code Artefact
Component: User Interface Package org.codeling.ui in the project org.codeling.core
Component: Language Registry Package org.codeling.languageregistry in the project

org.codeling.core
Component: Language Plugins Multiple projects in the folder Language Integration
Component: Inter-Profile Transformations Package org.codeling.interprofile in the project

org.codeling.core
Component: Transformation Manager Package org.codeling.transformationmanager in the project

org.codeling.core

Library: Utilities Package org.codeling.utils in the project org.codeling.utils
Library: IAL Meta Model Project org.codeling.ial.mm
Library: Model Integration Concept Package org.codeling.lang.base.mic in the project

org.codeling.core
Library: Java Integration Mechanisms Project org.codeling.mechanisms
Library: Java Transformations Package org.codeling.lang.base.java in the project

org.codeling.lang.base.java
Library: Model Transformations Package org.codeling.lang.base.modeltrans in the project

org.codeling.core
Library: Henshin Package org.codeling.lang.base.modeltrans.henshin in the

project org.codeling.core
Library: HenshinTGG Package org.codeling.lang.base.modeltrans.henshintgg in the

project org.codeling.core

Table 9.2: An overview of the code artefacts, that implement the components and libraries in
Codeling

changes being propagated into the program code. The description in this section is separated
into the different steps of the process. The translation process of program code into a model
representation (or another implementation language during an implementation migration) is
triggered via the UI after the selection of the involved languages, as described in Section 9.2.2.
The UI therefor uses the transformation manager via the interface ITransformationManager,
and executes the method corresponding to the target language, i.e extractModelFromCode for
a translation into a specification language, or migrateImplementation for a translation into
another implementation language.
The transformation manager component contains task definitions for each translation direc-

tion: program code to specification model, specification model to code, and implementation
migration. Each of the process steps is also implemented as task, so that the more coarse
grained tasks can reuse the sub tasks of the single steps. All these tasks extend Eclipse’s Jobs
framework, which makes them executable in the background of a running Eclipse platform.
In the running example the method extractModelFromCode of the transformation manager

is called for translating the program code into a specification model. The UI provides the
transformation manager with the source and the target language, and the paths to the projects
in the IDE, that contain the program code to be translated. The transformation manager starts
the ModelExtractionTask, which subsequently starts all necessary tasks for each step.

Step 1.1 – Program Code to Implementation Model

Step 1.1 is implemented in the ProgramCodeToImplementationModelTask type. When exe-
cuted, this task first creates an empty IDRegistry. The ID registry is part of the Utilities
library, because it is used throughout the whole application and in individual language plug-
ins. This step makes use of generic implementation language definitions, which are abstract
types for accessing individual translation logic. Figure 9.12 accompanies this description as an
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Figure 9.12: An overview of the messages between the different part of the Codeling implemen-
tation during step 1.1 and their order

overview. It shows the messages between the parts of the Codeling implementation during this
step, and their order. These role of these parts and the messages are described in this section.
To actually execute the translation, the corresponding method of the implementation language
definition is called by the task. A framework for bidirectional Java-to-Model transformations
has been developed in the context of Codeling, to support the systematic development of such
translations. The framework builds upon a library with an abstract type that acts as interface
towards the model integration concepts for Codeling, and a library of integration mechanisms.

Implementation Language Definitions The LanguageDefinition is an abstract type of the
language registry. It is the root type for all definitions of languages to be used in Codeling.
It declares a human readable name, a unique symbolic name, and a version of the defined
language. Figure 9.13 shows the type hierarchy for language definitions in the context of
the implementation language in the running example. Its types will be described in the
remainder of this section. When a method is shown twice in this figure, it is declared in
the supertype, and implemented in the subtype. The ImplementationLanguageDefinition
declares abstract methods for executing the steps 1.1 to 1.3 and 6.1 to 6.3 of the Explicitly
Integrated Architecture Process. Implementation language definitions need to implement
these steps. The translation of step 1.1 is declared in the method transformCodeToIM
of the type ImplementationLanguageDefinition. This method is called by the
ProgramCodeToImplementationModelTask, and implemented by the specific implementation
language definition type.

Java Integration Mechanisms Library The Java Integration Mechanisms library contains
definitions of an excerpt of integration mechanisms, implemented with the Xtend programming
language1. Mechanisms are Xtend type declarations, which are compatible with Java type
declarations. Besides listing existing mechanisms, these types declare methods for generating

1Xtend – http://www.eclipse.org/xtend/
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LanguageDefinition
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getSelectedProfiles()

Figure 9.13: The type hierarchy of implementation language definitions

code based on the mechanism, and provide methods for evaluating the compatibility of the
use of mechanisms in a meta model, both for the code generation tool (see Section 9.3). In
the context of Codeling, these mechanism definitions can be used to find out whether a meta
model element is translated using a specific mechanism. This is needed e.g. to find out whether
a member reference of an Annotated Member Reference notation needs to be declared as an
interface (when the targeted class is represented with the Marker Interface mechanism) or a
type (when the targeted class is represented with the Type Annotation mechanism).
Figure 9.14 gives an overview of the type declarations for integration mechanism definitions in

the context of Codeling. The abstract type Mechanism is the root of all mechanism declarations.
It declares a method getName that returns the mechanism name. The method canHandle re-
turns whether the given Java element is an instance of a meta model element, that is translated
with the integration mechanism. The abstract types ClassMechanism, AttributeMechanism,
ReferenceMechanism, and ContainmentMechanism are the basis for mechanisms of the respec-
tive abstract syntax elements of language meta models. They declare Ecore elements for the
abstract syntax elements they represent.
The specific mechanism types implement the abstract methods. Listing 9.12 shows an

excerpt of the Type Annotation mechanism definition type for Codeling. It extends the type
ClassMechanism, because the Type Annotation is a class mechanism. The method getName
returns the mechanism’s name. The method canHandle first ensures that the code element
represents a type declaration. Then it validates that the declared type has an annotation
attached to it, which has the name of the meta model element. If both is true, the code
element represents the model element with the Type Annotation mechanism.

Framework for Bidirectional Java-to-Model Transformations A framework for implement-
ing the translations between Java-based program code and languages with Ecore-based meta
models has been implemented for Codeling. This framework is located in the library Language
Base: Java Transformations. The type JavaBasedImplementationLanguageDefinition ex-
tends the ImplementationLanguageDefinition and implements the necessary interaction with
the framework, including the method transformCodeToIM for step 1.1, so that specific archi-
tecture implementation language definitions only need to configure the execution.
Listing 9.12 shows an excerpt of the implementation language definition of the running

example. In the constructor a mapping between integration mechanisms and meta model classes
is created. This mapping can be used during the transformation, e.g. during the translation
of a model notation, that follows the Annotated Member Reference mechanism. The program
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Figure 9.14: The type hierarchy of integration mechanisms in the Java Integration Mechanisms
library with some specific mechanisms

1class TypeAnnotationMechanism extends ClassMechanism {
2

3[...]
4

5override getName () {
6"Type␣Annotation"
7}
8

9override canHandle(IJavaElement codeElement , ENamedElement metaModelElement) {
10return codeElement instanceof IType &&
11(codeElement as IType).getAnnotation(metaModelElement.name).exists;
12}
13}

Listing 9.12: An excerpt of the Type Annotation mechanism definition type for Codeling,
implemented with the Xtend programming language

234



9.2 Codeling - The Explicitly Integrated Architecture Process Tool

code in the model notation of this mechanism depends on the mechanism, that is used for the
reference’s target class. Finally the constructor declares an order in which non-containment
references are translated. In the example, a specific ordering is not necessary. The method
createRootTransformationInstance creates an instance of a transformation type for the root
of the architecture implementation language (message number 2 in Figure 9.12). The cross
reference order is made available via the method getCrossReferenceOrder (message number
3 in Figure 9.12).

1public class EjbWithStatemachineLanguage extends
JavaBasedImplementationLanguageDefinition {

2

3public EjbWithStatemachineLanguage () {
4ejbWithSMPackage.eINSTANCE.getName (); // Initialize the Ecore package
5

6// Create the mechanism mapping
7MechanismsMapping m = MechanismsMapping.getInstance ();
8ejbWithSMPackage i = ejbWithSMPackage.eINSTANCE;
9m.put(i.getStateMachine (), TypeAnnotationMechanism.class);
10m.put(i.getState (), MarkerInterfaceMechanism.class);
11m.put(i.getStateMachine_States (), AnnotatedMemberReferenceMechanism.class);
12m.put(i.getStateMachine_Initial (), AnnotatedMemberReferenceMechanism.class);
13m.put(i.getState_Transition (), ContainmentOperationMechanism.class);
14m.put(i.getTransition_Target (), NinjaSingletonContainmentReferenceMechanism.class);
15

16[...]
17

18// Add all EClasses to the cross references. The order is irrelevant
19for (final EClassifier c : ejbWithSMPackage.eINSTANCE.getEClassifiers ())
20if (c instanceof EClass)
21crossReferenceOrder.add(( EClass) c);
22

23}
24

25@Override
26public AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >

createRootTransformationInstance () {
27return new ArchitectureTransformation ();
28}
29

30[...]
31}

Listing 9.13: An excerpt of the implementation language definition type for the running
example, that configures the bidirectional Java to Ecore transformations

The now configured translation of step 1.1 is triggered by the
JavaBasedImplementationLanguageDefinition. It executes a Java code to model
transformation (messages number 4 and 5 in Figure 9.12), which it configures using
the program code’s projects, the ID registry, a root transformation instance, and a
non-containment reference order as defined by the specific implementation language definition.
General structures and types for bidirectional model-code transformations based on the
Model Integration Concept are implemented in the Model Integration Concept library. The
transformation results are collected after the transformation finished (message number 6 in
Figure 9.12).
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Model Integration Concept Library The Model Integration Concept library contains an
abstract type ModelIntegrationConceptTransformation for defining bidirectional model-code
transformations. Such a transformation takes a list of project paths and an IDRegistry as
input. Once successfully executed, it returns a TransformationResult, which includes the
resulting model and the updated IDRegistry. The type TransformationResult is contained
in the Utilities library, because it is used throughout the whole application and within the
individual language plugins.

Java Transformations Library The Java Transformations library is the basis for
bidirectional code transformations between Java code and architecture implementation
language models. The type JavaToModelTransformation extends the abstract type
ModelIntegrationConceptTransformation of the Model Integration Concept library and
executes the actual transformations. The transformations between Java code and Ecore
models in the context of Codeling is designed as follows: For each meta model class,
attribute, and reference, a transformation type has to be implemented. The root type of all
such transformations is the type AbstractModelCodeTransformation. This type extends
java.util.concurrent.RecursiveAction. It is therefore prepared to be a concurrently
running task in Java’s java.util.concurrent.ForkJoinPool. The ForkJoinPool is a pool of
worker threads that execute tasks. In the default configuration, the number of threads, that
are concurrently executed by the pool, is always less or equal to the number of processing
cores on the executing machine. Worker threads within the pool take one task at a time.
These tasks are allowed to create further tasks in the pool, building a tree of tasks to be
performed. This structure allows the subtypes of AbstractModelCodeTransformation to be
executed concurrently and to spawn child transformations.
Figure 9.15 gives an overview of the type hierarchy of transformations in this library, focused

on the steps 1.1 to 1.3. The types, attributes, and methods shown in this figure are described in
the respective steps. Codeling distinguishes between class, attribute, and reference transforma-
tions based on integration mechanisms. The abstract types ClassMechanismTransformation,
AttributeMechanismTransformation, and ReferenceMechanismTransformations are the ba-
sis for model notation transformations for their types of meta model elements. They store a
reference to the meta model element to be translated.
A transformation of code into a model representation is executed as follows: A root trans-

formation object first translates the root code element—usually the projects at the given
paths—into a model representation, the root node of the targeted model, using the method
transformToModel. The transformation objects stores references to a primary code element
(e.g. a type declaration for the Type Annotation mechanism) and the corresponding model
element, effectively creating a mapping between the code and the model.
After the translation, the transformation object is added to a transformation object reg-

istry called FindTranslatedElements. This registry can be used later to retrieve model ele-
ments, that represent specific code elements or vice versa. At last, the transformation creates
child transformation objects for its attributes and containment references using the method
createChildTransformationsToModel and adds them to the pool of tasks.
Transformations for classes have transformations for their attributes and containment refer-

ences as child transformations. Transformations for attributes have no child transformations.
Reference transformations, including containment reference transformations, have transforma-
tions for their target objects as child references. The ReferenceMechanismTransformations
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Figure 9.15: Excerpt of the type hierarchy of transformations in the bidirectional model-code
transformation framework, with attributes and methods for the steps 1.1 and 1.3

changes the execution order for transformations. If a containment reference is translated from
a code to a model representation, the targets of the reference do not exist, because they have
not been translated yet. Therefore the ReferenceMechanismTransformations first submits
the translation for the target objects to the thread pool and awaits their results. Then the
reference notation can be translated.
Listing 9.14 shows the ComponentTransformation of the running example. It extends

the TypeAnnotationTransformation for the Component class in the example meta model.
The constructor stores the parent transformation and specifies the Component class as
translated meta model element. The method doCreateChildTransformationsToModel
add instances of child transformations to a result list, for the attributes (none in the
example) and containment references owned by the Component class. The method
doCreateCrossReferencesTransformations adds an instance of the transformation for the
non-containment reference called references. The methods hasExpectedAnnotation and
getNewAnnotationName configure the supertype TypeAnnotationTransformation, which is
shown in Listing 9.15. The notation for the Component does not exactly comply to the Type
Annotation mechanism, because the annotation for the type is not called Component, but
the notation relies on the existing API for EJB. The expected annotation can be changed
using these methods. The method hasExpectedAnnotation evaluates whether they given
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type declaration has one of the EJB session bean annotations attached. The method
getNewAnnotationName returns an annotation for newly created components in code.
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1public class ComponentTransformation extends TypeAnnotationTransformation <Component > {
2

3public ComponentTransformation(
4AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >

parentTransformation) {
5super(parentTransformation , ejbWithSMPackage.eINSTANCE.getComponent ());
6}
7

8@Override
9public void doCreateCrossReferencesTransformations(
10List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
11result.add(new ReferencesTransformation(this));
12}
13

14@Override
15protected void doCreateChildTransformationsToModel(
16List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
17result.add(new StatemachineTransformation(this));
18result.add(new OperationsTransformation(this));
19}
20

21@Override
22public boolean hasExpectedAnnotation(IType type) {
23List <String > ls = Arrays.asList("Stateful", "javax.ejb.Stateful", "Stateless", "

javax.ejb.Stateless",
24"Singleton", "javax.ejb.Singleton");
25for (String s : ls) {
26if (type.getAnnotation(s).exists ())
27return true;
28}
29return false;
30}
31

32@Override
33protected String getNewAnnotationName () {
34return "javax.ejb.Stateful";
35}
36}

Listing 9.14: The bidirectional Java-to-Model transformation for the Component class in the
meta model of the running example

Listing 9.15 shows an excerpt of the generic transformation type for the Type Annotation
mechanism. In the method transformToModel it creates a model element and sets the name
attribute according to the definition of the Type Annotation mechanism. The excerpt also
shows the default implementation of the method hasExpectedAnnotation. The name of the
class is used as annotation name. This annotation must be created in a corresponding library
for the result to compile.
After translating all class, attribute, and containment notations, all objects of the target

model exist. Now the transformation framework revisits all class transformation objects. For
each of these transformations, translations for non-containment references are created and
invoked, following the ordering given by the specific implementation language definition. After
the code-to-model transformations, all translated code and model elements are registered in
the ID registry. The results are wrapped in a TransformationResult object, which comprises
the implementation model and the ID registry.
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1abstract class TypeAnnotationTransformation <ELEMENTECLASS extends EObject > extends
ClassMechanismTransformation <ELEMENTECLASS , IType > {

2

3override transformToModel () throws CodelingException {
4// Create element
5modelElement = eClass.EPackage.EFactoryInstance.create(eClass);
6

7// Set name attribute value
8val String name = codeElement.elementName;
9setNameAttributeValue(modelElement , name);
10

11return modelElement;
12}
13

14public def boolean hasExpectedAnnotation(IType type) {
15return type.getAnnotation(
16eClass.name.toFirstUpper
17).exists;
18}
19

20[...]
21

22}

Listing 9.15: An excerpt of the abstract bidirectional Java-to-Model transformation for the
Type Annotation mechanism, implemented with the Xtend programming language

Step 1.2 – Implementation Model to Translation Model

The task for step 1.2 of the process uses the method transformIMToTM of the type
ImplementationLanguageDefinition to execute the model-to-model transformation. The
Model Transformations library contains an API for executing model transformations in
the context of Codeling in the form of an abstract type ModelTransformation. The
language definitions developed in this thesis implement the transformations of this step using
HenshinTGG. Figure 9.16 gives an overview of the messages during the execution of this task.
To execute these transformations, a utility type named

HenshinTGGBasedLanguageDefinitionHelper exists, which implements this
recurring logic. In this step, first a model is translated into a translation model representation
using HenshinTGG. Then, the newly created translation model elements are added to the ID
registry. Thereby a mapping is created between program code structures, the implementation
model element they represent, and the translation model element they represent. Listing 9.16
shows an excerpt of the implementation language definition of the running example, that
triggers the translation from the implementation model to the translation model with the
HenshinTGGBasedLanguageDefinitionHelper.
The HenshinTGG tool is used programmatically during this translation. The library

HenshinTGG contains the type HenshinTGGTransformation, an implementation of the abstract
ModelTransformation type, for executing HenshinTGG transformations within Codeling. It
includes the execution of TGG transformations using the HenshinTGG engine, and the prop-
agation of IDs between the ID registry and the models. As no generic API for HenshinTGG
existed at the time of developing Codeling, such a generic API for HenshinTGG has been
developed in this context, so that HenshinTGG can be used without using its user interface.
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Figure 9.16: An overview of the messages between the different part of the Codeling implemen-
tation during step 1.2 and their order

1public class EjbWithStateMachineLanguage extends
JavaBasedImplementationLanguageDefinition {

2

3final URI henshinTGGFileURI = URI.createPlatformPluginURI(
4"/" + FrameworkUtil.getBundle(getClass ()).getSymbolicName () + "/AIL2IAL.henshin",

true);
5

6[...]
7

8@Override
9public TransformationResult transformIMToTM(List <EObject > cmRoots , IDRegistry

idRegistry) throws CodelingException {
10return new HenshinTGGBasedLanguageDefinitionHelper ().transformCMToIL(this ,

henshinTGGFileURI , cmRoots ,
11idRegistry , monitor);
12}
13

14[...]
15

16}

Listing 9.16: An excerpt of the implementation language definition type for the running
example, that triggers the translation from the implementation model to the
translation model with HenshinTGG
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The input for a HenshinTGG transformation in Codeling is an existing model to be trans-
lated, a language definition (the second language is always the Intermediate Architecture De-
scription Language), a HenshinTGG rule file, and a direction: forward or backward. It first
loads the model into the TGG engine, executes the TGG rules in the rule file, and exports
the desired model from the TGG engine. The desired model is determined by the declared
transformation direction. After a forward transformation the target model of the triple graph
is exported. After a backward transformation the source model is exported. In step 1.2, the
translation is directed from the implementation model to a translation model. Therefore the
translation model is exported. The results are wrapped in a TransformationResult object,
which comprises the translation model and the updated ID registry.

Step 1.3 – Program Code to Translation Model

The task for step 1.3 of the process uses the method transformCodeToTM of the type
ImplementationLanguageDefinition to extract translation model information from the pro-
gram code, which cannot be expressed in the architecture implementation language. Figure 9.17
gives an overview of the messages during the execution of this task. The framework for bidi-
rectional Java-to-Model transformations is used for these translations. In the framework, these
transformations are called IAL transformations, because they translate between the IAL and
the program code directly.

Language RegistryTransformation
Manager

Language Plugins Language Base: Java Transformations

Implementation
Language
Definition

ProgramCodeTo
ToTranslationModel

Task

EjbWithStateMachine
Language

JavaBasedImplementation
LanguageDefinition

JavaToModel
Transformation

Model Integration Concept

ModelIntegrationConcept
Transformation

1. transformCodeToTM

2. createIAL
TranslationInstance

3. getCrossReferenceOrder

4. execute

5. doExecute

6. getTransformationResults

Figure 9.17: An overview of the messages between the different part of the Codeling implemen-
tation during step 1.3 and their order

Framework for Bidirectional Java-to-Model Transformations The type
JavaBasedImplementationLanguageDefinition implements the method transformCodeToTM
(see Listing 9.17). It takes the list of projects, an ID registry, the architecture implementation
model, and the translation model as input. For each entry in the ID registry the
implementation model element and the translation model element are resolved. Then for
each implementation model element, IAL transformation instances are created, configured,
and executed using the ModelToJavaTransformation type as executor, following the same
process as the translation in step 1.1. Due to technical constraints of the EMF Profiles
implementation, the profile applications are created in a separate file. This file is merged after
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the translation, so that the resulting model needs to be aggregated into one file. At last, the
results are wrapped with a TransformationResult object, containing the updated translation
model and the updated ID registry.

1public abstract class JavaBasedImplementationLanguageDefinition extends
ImplementationLanguageDefinition {

2[...]
3

4public TransformationResult transformCodeToTM(List <IJavaProject > projects , List <
EObject > imRoots ,

5List <EObject > tmRoots , IDRegistry idRegistry) throws CodelingException {
6idRegistry.getRegistryEntries ().keySet ().stream ().forEach(id -> {
7final EObject imElement = idRegistry.getImplementationModelElement(id, imRoots);
8if (imElement == null)
9// If this element has not implementation model representation , ignore it.
10return;
11

12final EObject tmElement = idRegistry.getTranslationModelElement(imElement ,
tmRoots);

13final List <? extends IALTransformation <?, ?>> ialTransformations =
createIALTransformationInstance(imElement);

14if (ialTransformations != null)
15ialTransformations.stream ().forEach(t -> {
16t.setIDRegistry(idRegistry);
17t.setModelElement(imElement);
18t.getIALHolder ().setFoundationalIALElement(tmElement);
19

20JavaToModelTransformation executor = new JavaToModelTransformation(projects ,
idRegistry , (AbstractModelCodeTransformation <?, ?>) t, null);

21executor.execute(monitor);
22});
23});
24

25// Create a temporary profile application file for using the emf profiles facade.
26final Resource applicationResource = getResource(rSet ,
27CodelingConfiguration.DEBUG_MODELDIR_PATH + "profile -application.pa.xmi");
28mergeStereotypeApplicationsWithILModel(tmRoots , applicationResource);
29return new TransformationResult(tmRoots , idRegistry);
30}
31

32[...]
33}

Listing 9.17: An excerpt of the generic implementation for translating program code to
translation model elements. Exception handling has been removed for readability
reasons.
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IAL Transformations IAL transformations in the framework are subtypes of
the AbstractModelCodeTransformation, that additionally implement an interface
IALTransformation. The interface defines three methods. The method getIALHolder
returns an object that holds references to IAL model and code elements. For this step,
the holder references the current foundational translation model element – i.e. the IAL
model element, that represents the implementation model element, and the code element
that represents the translation model element, i.e the result of this step. The method
resolveTranslatedIALElement returns the translation model element, which the IAL
transformation type translates. the method codeFragmentExists returns whether the code
fragment for the transformation model element is attached to the underlying program code.
These methods are used to configure the IAL transformations, so that the translation model
element and code element are available during the transformation.

The implementation language definition declares which transformation types are to be instan-
tiated. When the translation model contains information, that the implementation language
cannot express, this information is always attached to an implementation model element. In
the running example, the parent-child relationship between components should be represented.
The implementation model class, that this information should be attached to, is the Compo-
nent. This class is translated to a ComponentType of the IAL in step 1.2. In the translation
model a parent-child relationship between two components is declared in the profile Scoped
Component Hierarchy (see Definition 87). The profile contains a stereotype HierarchicalCom-
ponentTypeScoped, that can be applied to component types. It contains a reference childTypes
towards component types. Listing 9.18 shows an excerpt of the language definition, where this
aspect is declared. In the constructor of the language definition type, a map is filled. The
map’s key is the implementation model element. The value is a tuple that contains the IAL
abstract syntax element (the reference childTypes in the example) and a list of transformation
types.

1public class EjbWithStatemachineLanguage extends
JavaBasedImplementationLanguageDefinition {

2

3public EjbWithStatemachineLanguage () {
4[...]
5

6// Create the map of model elements to reference transformations
7ialTransformations.put(i.getComponent (), new IALTransformationTuple(
8ProfilesUtils.getEReference(Profiles.COMPONENTS_HIERARCHY_SCOPED.load(),
9"HierarchicalComponentTypeScoped", "childTypes"),
10Arrays.asList(ChildTransformation.class)));
11

12[...]
13}
14

15[...]
16}

Listing 9.18: An excerpt of the implementation language definition type for the running
example, that configures the bidirectional Java to Ecore transformations
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Figure 9.18: An overview of the messages between the different part of the Codeling implemen-
tation during step 2 and their order

Step 2 – Inter-Profile Transformations

For executing step 2 of the process, the task
InterProfileTransformationToImplementationModelTask uses the compo-
nent Inter-Profile Transformations (see Figure 9.18). The interface provides a method
transform, which takes the source and the target language as input, as well as a source
model, and an ID registry object. The component first requests the profiles used by
the languages by using the corresponding method getSelectedProfiles of the language
definitions. The language matcher within the component then determines, which inter-profile
transformations and profile activation rules need to be executed. The corresponding rule files
are then executed sequentially. When languages define architecture model transformations
using HenshinTGG, the profiles used by the language are declared within the HenshinTGG
rule file. The profiles need to be imported in the rule file for making their elements available
to the rules. The type HenshinTGGBasedLanguageDefinitionHelper provides a default
implementation, which extracts the profiles from the rule file. Languages that define
architecture model transformations using HenshinTGG therefore do not need to explicitly
implement this method.
The translation is executed by the type HenshinTransformation of the Henshin library. It

is an implementation of the abstract type ModelTransformation, which has been described
in step 1.2. For the translation, it takes a rule file URI and a translation model as input.
By convention the rules must always have a unit or rule named main, which is executed
by the HenshinTransformation type. After the transformation, the results are wrapped in
a TransformationResult object, which comprises the updated translation model, and an
unchanged ID registry.

Step 3 – Translation Model to Specification Model

The task for step 3 of the process uses the method transformToSM of the type
SpecificationLanguageDefinition to execute the model-to-model transformation from
the translation model to the specification model (see Figure 9.19). This step reuses the
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Figure 9.19: An overview of the messages between the different part of the Codeling implemen-
tation during step 3 and their order

implementation for HenshinTGG transformations, that have already been described in step
1.2. In this step of the running example, the architecture specification language UML is
targeted. To make this language available in Codeling, a SpecificationLanguageDefinition
has to be implemented. Figure 9.20 shows the type hierarchy for specification language
definitions in the running example. The SpecificationLanguageDefinition declares
abstract methods for executing the steps 3 and 4 of the Explicitly Integrated Architecture
Process. Specification language definitions need to implement these steps.
The translation of step 3 is declared in the method transformToSM of the type

SpecificationLanguageDefinition. Listing 9.19 shows the specification language
definition for the UML as defined in the running example. It extends the type
HenshinTGGBasedLanguageDefinition, which contains the default implementation for
architecture model transformations with HenshinTGG. The specific language definition
declares a HenshinTGG rule file, which is used by the super type. The UML meta model is
part of the Eclipse Modeling Framework. It does not declare an identifying attribute for
all elements. Thus the methods setID and getID have to be overridden. In the running
example, structured comments are used to attach an ID to UML model elements. The type
SpecificationLanguageDefinition also declares a method transformationCompleteHook,
which is automatically called by the task during this step, after the transformation is
completed. This method can be implemented by a specific specification language definition,
e.g. to create diagrams from the resulting specification model or to split the specification
model into multiple files, as it might be required for its editor.
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1public class EjbWithStateMachineLanguageUML extends HenshinTGGBasedLanguageDefinition {
2

3final static URI henshinTGGFileURI = URI.createPlatformPluginURI(
4"/" + FrameworkUtil.getBundle(EjbWithStateMachineLanguageUML.class).

getSymbolicName () + "/IAL2UML.henshin",
5true);
6

7public EjbWithStateMachineLanguageUML () {
8super(henshinTGGFileURI);
9}
10

11/**
12* Creates a comment in the UML model to save the element ’s id in Codeling
13*/
14@Override
15public void setID(EObject object , String id) {
16Comment comment = UMLFactory.eINSTANCE.createComment ();
17comment.setBody("Codeling -ID:␣" + id);
18(( Element) object).getOwnedComments ().add(comment);
19}
20

21/**
22* Retrieves the id from a comment in the UML model as it was stored by setID.
23*/
24@Override
25public String getID(EObject object) {
26for (Comment c : (( Element) object).getOwnedComments ())
27if (c.getBody ().matches("Codeling -ID:␣.+"))
28return c.getBody ().substring("Codeling -ID:␣".length ());
29return null;
30}
31}

Listing 9.19: The transformation of a translation model to a specification model via
HenshinTGG

LanguageDefinition
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version:String
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transformationToCodePreStartHook(...)
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getSelectedProfiles()
transformToSM(...)
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EjbWithStateMachineLanguageUML

getID()
setID(...)

henshinTGGFileURI:URI henshinTGGFileURI:URI

Figure 9.20: The type hierarchy of specification language definitions
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The super type delegates the actual transformation to the method transformTMtoSM of the
type HenshinTGGBasedLanugageDefinitionHelper. The trigger of this process is shown in
Listing 9.20. First, the HenshinTGG API of Codeling is used to execute a forward trans-
lation as defined by the HenshinTGG file for the specification language. Then the IDs of
the newly created translation model elements are added to the corresponding ID registry el-
ements. The result of step 3 is a file named specification-model.xmi in a project named
architecture-carrying-code-temp, which contains the specification model.

1public class HenshinTGGBasedLanguageDefinitionHelper {
2

3[...]
4

5public TransformationResult transformTMToSM(HenshinTGGBasedLanguageDefinition
henshinTGGBasedLanguageDefinition ,

6URI henshinTGGFileURI , List <EObject > tmRoots , IDRegistry idRegistry ,
IProgressMonitor monitor) {

7final HenshinTGGTransformation task = new HenshinTGGTransformation(
henshinTGGBasedLanguageDefinition ,

8henshinTGGFileURI , "Transforming␣Translation␣Model␣to␣Specification␣Model",
TGGDirection.FORWARD , idRegistry , tmRoots);

9TransformationResult result = task.execute(monitor);
10task.propagateIDsFromRegistryToModel ();
11return result;
12}
13

14[...]
15}

Listing 9.20: The transformation of a translation model to a specification model via
HenshinTGG

The model is now ready to be changed in an editor. In the running example an Ecore-based
UML model has been created. An example for an editor that can handle UML models specified
with the UML meta model for Ecore is Papyrus2. After changing the model as described
in the use case in Section 9.2.1, the changed model is translated to the code using the task
IntegrateModelTask, which executes the following steps.

Step 4 – Specification Model to Translation Model

The task for step 4 of the process uses the method transformToTM of the type
SpecificationLanguageDefinition to execute the model-to-model transformation from the
specification model to the translation model. This step also reuses the implementation for
HenshinTGG transformations, that have already been described in step 1.2. Figure 9.21 gives
an overview of the messages during the execution of this task.
In step 3, the method transformationCompleteHook, was executed automatically after the

transformation. In this step, the counterpart transformationToCodePreStartHook is called
before the translation. This can be used e.g. to aggregate a model that has been edited in
multiple files, which have been created from the specification model after step 3.
In this step the changes in the specification model are propagated to the translation model.

First the translation model and the ID registry resulting from step 2 is loaded. They represent
2Papyrus – A UML Editor based on Eclipse – https://www.eclipse.org/papyrus/
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Figure 9.21: An overview of the messages between the different part of the Codeling implemen-
tation during step 4 and their order

the system’s architecture before the change. These and the changed specification model are
used as input for the method transformToTM of the type SpecificationLanguageDefinition.
The actual translation is forwarded to the type HenshinTGGBasedLanguageDefinitionHelper,
which implements this logic (see Listing 9.21). The transformation file, the changed specifica-
tion model, the original translation model, and the original ID registry are used as input. First,
a backwards translation is executed. This translates the specification model into a translation
model. This translation model only contains model elements of profiles, that the specification
language uses. In the running example, the architecture implementation language describes a
flat component hierarchy, while the specification language describes a scoped component hier-
archy. The profile application HierarchicalArchitectureFlat is not translated to the translation
model, because the specification language does not use that profile, and therefore the spec-
ification model does not have this information. These elements and all their attributes and
references are recovered from the original, unchanged translation model, which was the result
of step 2, using the type RecoverPriorModelElements. At last the IDs of all newly created
elements are added to the ID registry, and all ID registry entries of deleted elements are re-
moved. The result of step 4 is wrapped in a TransformationResult object, which contains the
translation model and the updated ID registry.
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1public class HenshinTGGBasedLanguageDefinitionHelper {
2

3[...]
4

5public TransformationResult transformSMToTM(HenshinTGGBasedLanguageDefinition
henshinTGGBasedLanguageDefinition ,

6URI henshinTGGFileURI , List <EObject > tmRoots , List <EObject > preChangeTMRoots ,
IDRegistry idRegistry ,

7IProgressMonitor monitor) {
8

9// Execute =Backwards Propagation=
10final HenshinTGGTransformation bwppgTask = new HenshinTGGTransformation(

henshinTGGBasedLanguageDefinition ,
11henshinTGGFileURI , "Executing␣Backwards␣Propagation␣Rules␣for␣Specification␣

Model␣to␣Translation␣Model",
12TGGDirection.BACKWARD_PROPAGATION , idRegistry , tmRoots);
13final TransformationResult result = bwppgTask.execute(monitor);
14

15// Recover elements lost during the translation
16Models.store(result.getModelRoots (), CodelingConfiguration.DEBUG_MODELDIR_PATH + "

tmp -recover -TM.xmi");
17new RecoverPriorModelElements ().recoverAll(preChangeTMRoots , result.getModelRoots ()

,
18henshinTGGBasedLanguageDefinition , result.getIdRegistry (), idRegistry);
19

20// Update the id registry
21List <String > updatedIDs = bwppgTask.propagateIDsFromModelToRegistry ();
22Set <String > deletedIDs = idRegistry.getAllIds ();
23deletedIDs.removeAll(updatedIDs);
24idRegistry.deleteEntries(deletedIDs);
25

26return result;
27}
28

29[...]
30}

Listing 9.21: The propagation changes in the specification model to the transformation model
via HenshinTGG
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Step 5 – Inter-Profile Transformations

For executing step 5 of the process, the task
InterProfileTransformationToSpecificationModelTask uses the compo-
nent Inter-Profile Transformations. This step works analogously to step 2 (Inter-Profile
Transformations in the code-to-model direction), but the source and target languages are
swapped. Figure 9.22 gives an overview of the messages during the execution of this task.
After the transformation, the results are wrapped in a TransformationResult object, which
comprises the updated translation model, and an unchanged ID registry.

Step 6.1 – Translation Model to Implementation Model

The task for step 6.1 of the process uses the method transformIMToTM of the type
ImplementationLanguageDefinition to execute the model-to-model transformation. The
type TranslationModelToImplementationModelTask implements this step. Figure 9.23 gives
an overview of the messages during the execution of this task.

Step 6.1 works analogously to step 1.2 (Implementation Model to Translation
Model), but the translation is executed in the opposite direction. Listing 9.22 shows
an excerpt of the implementation language definition of the running example, that
triggers the translation from the implementation model to the translation model with the
HenshinTGGBasedLanguageDefinitionHelper. The helper executes a TGG transformation
from the translation model to the implementation model, and propagates updated paths
of implementation model elements in the ID registry. The results are wrapped in a
TransformationResult object, which comprises the implementation model and the updated
ID registry.
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1public class EjbWithStateMachineLanguage extends
JavaBasedImplementationLanguageDefinition {

2

3final URI henshinTGGFileURI = URI.createPlatformPluginURI(
4"/" + FrameworkUtil.getBundle(getClass ()).getSymbolicName () + "/AIL2IAL.henshin",

true);
5

6[...]
7

8@Override
9public TransformationResult transformTMToIM(List <EObject > ilRoots , IDRegistry

idRegistry) throws CodelingException {
10return new HenshinTGGBasedLanguageDefinitionHelper ().transformILToCM(this ,

henshinTGGFileURI , ilRoots , idRegistry , monitor);
11}
12

13[...]
14

15}

Listing 9.22: An excerpt of the implementation language definition type for the running
example, that triggers the translation from the translation model to the
implementation model with HenshinTGG
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Language RegistryTransformation
Manager

Language Plugins Language Base: Java Transformations

Implementation
Language
Definition

ImplementationModel
ToProgramCode

Task

EjbWithStateMachine
Language

JavaBasedImplementation
LanguageDefinition

ModelToJava
Transformation

Model Integration Concept

ModelIntegrationConcept
Transformation

1. transformIMToCode

2. createRoot
TransformationInstance

3. getCrossReferenceOrder

4. execute

5. doExecute

6. getTransformationResults

Figure 9.24: An overview of the messages between the different part of the Codeling implemen-
tation during step 6.2 and their order

Step 6.2 – Implementation Model to Program Code

In step 6.2 the changes in the implementation model are propagated to the code. The task
ImplementationModelToProgramCodeTask takes the prior ID registry from the result of step
1.1 (Program Code to Implementation Model), the ID registry and implementation model of
the result of step 6.1, and the selected projects in the IDE as input. It uses the method
transformIMToCode of the type ImplementationLanguageDefinition to execute the transfor-
mation (see Figure 9.24).
This method is implemented in the type JavaBasedImplementationLanguageDefinition. It

uses the framework for bidirectional Java-to-Model transformations in the Java Transformations
library, which has already been used in the steps 1.1 (Program Code to Implementation
Model) and 1.3 (Program Code to Translation Model). First, it requests a root transformation
instance from the implementation language definition (see Listing 9.13) and configures it with
the aforementioned ID registry instances, models, and projects. The root transformation
and all its children are executed using the type ModelToJavaTransformation, a subtype of
ModelIntegrationConceptTransformation from the Model Integration Concept library (see
Step 1.1 – Program Code to Implementation Model).
The Model-to-Java transformation is the opposite of the Java-to-Model transformation, in

step 1.1. It takes a list of project paths, a root transformation instance, and an ordering of
classes in the targeted language meta model to determine the order in which non-containment
references should be translated. During execution, first the program code is updated according
to the model, by executing the root transformation with the framework for bidirectional Java-
to-Model transformations. The framework uses the same transformation types that were used
in step 1.1, and executes them concurrently in Java’s ForkJoinPool. Figure 9.25 shows an
excerpt of the type hierarchy of these transformations in the context of the running example,
with a focus on the Model-to-Java direction. The types and the shown attributes and methods
will be described in the remainder of this section.
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AbstractModelCodeTransformation

canHandle(...)
compute()
createChildTransformationsToCode(...)
createCrossReferencesTransformations(...)
doCreateChildTransformationsToCode(...)
doCreateCrossReferencesTransformations(...)
createCodeFragments()
updateCodeFragments()
deleteCodeFragments()
resolveCodeElement()

ClassMechanismTransformation

eClass:EClass

AttributeMechanismTransformation

eAttribute:EAttribute

ReferenceMechanismTransformation

eReference:EReference

TypeAnnotationTransformation

createCodeFragments()
updateCodeFragments()
deleteCodeFragments()
getNewAnnotationName()
hasExpectedAnnotationType(...)

ComponentTransformation

doCreateChildTransformationsToCode(...)
doCreateCrossReferencesTransformations(...)
getNewAnnotationName()
hasExpectedAnnotation(...)

canHandle(...)canHandle(...)
doCreateChildTransformationsToCode(...)
doCreateCrossReferencesTransformations(...)

canHandle(...)

Figure 9.25: Excerpt of the type hierarchy of transformations in the bidirectional model-code
transformation framework, with attributes and methods for the steps 6.2 and 6.3
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The abstract root transformation type AbstractModelCodeTransformation implements the
process for each single transformation type. Listing 9.23 shows this implementation. Logging
and error handling has been removed in this listing for readability reasons.

1private void computeTransformationToCode () {
2if (! onlyCrossReferences) {
3if (modelElement == null) { // The model element has been deleted
4resolveCodeElement ();
5deleteCodeFragments ();
6} else if (priorModelElement == null) { // The model element is new
7createCodeFragments ();
8} else { // The model element might have changed
9resolveCodeElement ();
10updateCodeFragments ();
11}
12

13// Execute child transformations.
14// ReferenceMechanismTransformation already do this themselves , because they use
15// the results of the child transformations. Therefore we only execute
16// childTransformations that do not already exist.
17if (childTransformations == null || childTransformations.isEmpty ()) {
18childTransformations = createChildTransformationsToCode ();
19childTransformations.forEach(c -> c.setOnlyCrossReferences(onlyCrossReferences));
20invokeAll(childTransformations);
21}
22

23// Registers all class , reference , and attribute transformations for an Eclass.
24EClass eClass = modelElement == null ? priorModelElement.eClass () : modelElement.

eClass ();
25findTranslatedElements.addTransformation(eClass , this);
26} else {
27final List <AbstractModelCodeTransformation <?, ?>> crossReferenceTransformations =

createCrossReferencesTransformations ();
28crossReferenceTransformations.forEach(t -> t.setToCode ());
29invokeAll(crossReferenceTransformations);
30}
31}
32

33public JAVAELEMENTCLASS resolveCodeElement () throws CodelingException {
34if (priorIDRegistry != null && priorModelElement != null)
35codeElement = (JAVAELEMENTCLASS) priorIDRegistry.getCodeElementFromComponentModel(

priorModelElement);
36else
37codeElement = (JAVAELEMENTCLASS) idRegistry.getCodeElementFromComponentModel(

modelElement);
38return codeElement;
39}

Listing 9.23: Excerpt of the bidirectional Model-to-Java transformation for the Component class
in the meta model of the running example

During the first execution the flag onlyCrossReferences is false. First it is evaluated
whether the model element, that is subject to translation, has been deleted or created. If
none of that is true, it might be changed. The transformation instance can have a model
element, i.e. the element resulting from step 5, and a prior model element, i.e. the element
resulting from step 1.1. When the model element has been deleted, a transformation instance
exists without a model element, but with a prior model element. In that case the code element
is resolved from the prior ID registry, and the method deleteCodeFragments of the specific
transformation type is called. When the model element has been created, a transformation
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instance exists without a prior model element, but with a model element. In that case the
method createCodeFragments of the specific transformation is called. When both, a model
element and a prior model element exist, first the code element is resolved from the ID registry,
and the method updateCodeFragments of the specific transformation is called. After the
translation, the child transformation instances are requested from the specific transformation,
and added to the ForkJoinPool. Afterwards the transformation instance is registered in a
transformation registry, so that it can be found by other transformations. This is necessary
when the translation of a model element depends on the type of translation of another element,
and serves as an in-memory mapping between prior model elements, model elements, and code
elements during the transformation.
When all transformations for model objects, their attributes, and containment references are

executed, the ModelToJavaTransformation executes all transformations again, with the flag
onlyCrossReferences. During this translation, for all model objects, child translations for non-
containment references are requested and added to the ForkJoinPool. These transformations
are executed at last, so it is ensured that the target element of each reference has already been
created.
Listing 9.24 shows an excerpt of the ComponentTransformation of the running example,

which implements the methods necessary for the model-to-code transformation. The code-to-
model part of the type has already been shown in step 1.1 in Listing 9.14. It extends the
TypeAnnotationTransformation for the Component class in the example meta model. The
method doCreateChildTransformationsToCode add instances of child transformations to a
result list, for the attributes (none in the example) and containment references owned by the
Component class. The method doCreateCrossReferencesTransformations adds an instance
of the transformation for the non-containment reference called references.

1public class ComponentTransformation extends TypeAnnotationTransformation <Component > {
2

3@Override
4public void doCreateCrossReferencesTransformations(
5List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
6result.add(new ReferencesTransformation(this));
7}
8

9@Override
10protected void doCreateChildTransformationsToCode(
11List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
12result.add(new StatemachineTransformation(this));
13result.add(new OperationsTransformation(this));
14}
15

16@Override
17protected String getNewAnnotationName () {
18return "javax.ejb.Stateful";
19}
20

21[...]
22}

Listing 9.24: The implementation for propagating model changes to Java code in the type
AbstractModelCodeTransformation
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The method getNewAnnotationName configures the supertype
TypeAnnotationTransformation. Because the notation for the Component does not
exactly match the Type Annotation mechanism, another annotation name has to be stated
here. Listing 9.25 shows the excerpt of this abstract transformation type. In the method
createCodeFragments the transformation first ensures that a default package exists, in which
the resulting type declaration can be placed. When a package declaration exists, that
represents the model element’s parent (references it via a containment reference), this package
is chosen. It then collects all necessary information from the model element. It creates the
program code that represents the model element using the Type Annotation mechanism via an
Xtend template expression with the identifier content, and writes it to a Java file. In Xtend,
template expressions can be defined using three apostrophes as delimiters. Within these
template expressions, control flow commands and variables can be used between guillemets
(«expression») to build the desired string. In first declares the package for the type and
imports the annotation used in the notation. It then declares a type with the name attribute
value of the model element as type name. The annotation used by the Type Annotation
model notation is created using the method getNewAnnotationName. By default this is an
annotation with the name of the class, declared in a specific package. In the running example,
this method is overridden to use the annotation javax.ejb.Stateful, as required by the
targeted implementation language. The method updateCodeFragments compares two model
elements, one from before and one from after the model changes. It compares the model
elements and changes the code accordingly, using refactoring mechanisms where applicable.
In the given example, a renaming refactoring is executed on the Java type, which represents
the model element, when the name changed. When the code element has to be deleted, the
method deleteCodeFragments deletes the complete compilation unit. After the model
changes have been propagated to the program code, the ID registry is updated accordingly.
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1abstract class TypeAnnotationTransformation <ELEMENTECLASS extends EObject > extends
ClassMechanismTransformation <ELEMENTECLASS , IType > {

2

3override createCodeFragments () throws CodelingException {
4var IPackageFragment targetPackage = if (parentCodeElement !== null &&

parentCodeElement instanceof IType)
5(parentCodeElement as IType).packageFragment
6else
7createDefaultPackage ();
8

9val String name = modelElement.nameAttributeValue;
10val String typeName = name.toFirstUpper;
11val String annotationName = getNewAnnotationName ().substring(getNewAnnotationName ()

.lastIndexOf(".") + 1);
12val String annotationPackage = getNewAnnotationName ().substring(0,

getNewAnnotationName ().lastIndexOf("."));
13

14val String content = ’’’
15␣␣␣␣␣␣ package␣«targetPackage.elementName»;
16

17␣␣␣␣␣␣ import␣«annotationPackage».«annotationName»;
18

19␣␣␣␣␣␣@«annotationName»
20␣␣␣␣␣␣ public␣class␣«typeName»␣{} ’’’;
21val ICompilationUnit cu = targetPackage.createCompilationUnit(typeName + ".java",

content , true , null);
22codeElement = cu.getType(typeName);
23}
24

25override updateCodeFragments () throws CodelingException {
26// Update of name attribute
27val String oldName = priorModelElement.nameAttributeValue;
28val String newName = modelElement.nameAttributeValue;
29

30if (! newName.equals(oldName)) {
31ASTUtils.renameType(codeElement , newName); // Execute renaming refactoring
32codeElement = codeElement.getPackageFragment ().getCompilationUnit(newName + ".

java").getType(newName);
33}
34}
35

36override deleteCodeFragments () {
37codeElement.compilationUnit.delete(true , null);
38}
39

40protected def String getNewAnnotationName () {
41return ’’’org.codeling.lang.«getLanguageName».mm.«eClass.name.toFirstUpper»’’’;
42}
43

44[...]
45}

Listing 9.25: An excerpt of the abstract bidirectional Java-to-Model transformation for the
Type Annotation mechanism, implemented with the Xtend programming language
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Step 6.3 – Translation Model to Program Code

The task for step 6.3 of the process uses the method transformTMToCode of the type
ImplementationLanguageDefinition to propagate changes in the translation model to the
program code, when the information cannot be represented with the architecture implementa-
tion language. Figure 9.26 gives an overview of the messages during the execution of this task.
The IAL transformations in the framework for bidirectional Java-to-Model transformations is
used for these translations, analogously to step 1.3.

Language RegistryTransformation
Manager

Language Plugins Language Base: Java Transformations

Implementation
Language
Definition

TranslationModel
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Task

EjbWithStateMachine
Language

JavaBasedImplementation
LanguageDefinition

ModelToJava
Transformation
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4. execute

5. doExecute

6. getTransformationResults

Figure 9.26: An overview of the messages between the different part of the Codeling implemen-
tation during step 6.3 and their order

The type JavaBasedImplementationLanguageDefinition implements the method
transformTMToCode (see Listing 9.26). It takes the following input: the implementation
models of step 6.2 and step 1.1, the translation models of step 5 and step 3, the ID
registry of step 6.2, the id registry of step 1.3, and the list of projects as input. For each
entry in the ID registry the element of the original models, the changed models, and the
program code are mapped via the id registries. Then for each implementation model
element, IAL transformation instances are created, configured, and executed using the
ModelToJavaTransformation type as executor, following the same process as the translation
in step 6.2.
During this step, the IAL transformation types of step 1.3 are reused. They are declared in

the implementation language definition as described in step 1.3 (see Listing 9.18).

9.2.4 Further Use Cases

Section 9.2.3 described how an architecture specification model is extracted in Codeling, and
how changes in the model are propagated to the program code. Codeling can also serve in
other use cases.
During the life time of a long-living system, it often becomes necessary to migrate existing

software to a new architecture implementation language, e.g. because the platform for the
system is not maintained anymore. To support implementation migrations, Codeling
allows to choose an implementation language instead of a specification language as target
for a translation. In this case, the process is changed. Step 1.1 to 1.3 (Program Code
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1public abstract class JavaBasedImplementationLanguageDefinition extends
ImplementationLanguageDefinition {

2[...]
3

4@Override
5public void transformTMToCode(List <EObject > newIMRoots , List <EObject > oldIMRoots ,

List <EObject > newTMRoots ,
6List <EObject > oldTMRoots , IDRegistry idRegistry_newModel , IDRegistry

idRegistry_oldModel ,
7List <IJavaProject > projects) throws CodelingException {
8

9idRegistry.getRegistryEntries ().keySet ().stream ().forEach(id -> {
10final EObject imElement = idRegistry_newModel.resolveImplementationModelElement(

id, newIMRoots); [...]
11final List <? extends IALTransformation <?, ?>> ialTransformations =

createIALTransformationInstance(imElement); [...]
12

13final EObject foundationalIALElement = idRegistry_newModel.
resolveTranslationModelElement(id , newTMRoots);

14final EObject priorFoundationalIALElement = idRegistry_oldModel.
resolveTranslationModelElement(id , oldTMRoots);

15final IJavaElement codeElement = idRegistry_newModel.getCodeElement(id);
16

17if (ialTransformations != null) {
18ialTransformations.stream ().forEach(t -> {
19t.setIDRegistry(idRegistry_newModel);
20t.setPriorIDRegistry(idRegistry_oldModel);
21t.getIALHolder ().setFoundationalIALElement(foundationalIALElement);
22t.getIALHolder ().setPriorFoundationalIALElement(priorFoundationalIALElement

);
23t.getIALHolder ().setIALCodeElement(codeElement);
24t.getIALHolder ().setIALRoots(newTMRoots);
25StereotypeApplication modelElement = t.resolveTranslatedIALElement(

foundationalIALElement);
26StereotypeApplication priorModelElement = t.resolveTranslatedIALElement(

priorFoundationalIALElement);
27if (modelElement == null && priorModelElement == null)
28return; // No new , existing , or deleted element
29

30t.setModelElement(modelElement);
31t.setPriorModelElement(priorModelElement);
32

33final ModelToJavaTransformation executor = new ModelToJavaTransformation(
projects , (AbstractModelCodeTransformation <?, ?>) t, new LinkedList <>()
);

34executor.execute(monitor);
35});
36}
37});
38

39[...]
40}
41

42[...]
43}

Listing 9.26: An excerpt of the generic implementation for propagating changes from the
translation model to the program code
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to Translation Model via Implementation Model) are executed as shown above. In step 2
(Inter-Profile Transformations), the target language is not the specification language, but an
implementation language. As no specification language is involved, the steps 3 (Transformation
Model to Specification Model), 4 (Specification Model to Translation Model), and 5 (Inter-
Profile Transformations) are not executed. After the adapted step 2, a translation model exists,
that is prepared for the target implementation language. Then a new project is created in the
IDE, and a new ID registry is created, effectively abandoning all references to an implementation
model or program code. When the steps 6.1 to 6.3 (Translation Model to Program Code via
Implementation Model) are executed, new program code for the target implementation language
is created. In the current state of the implementation, the contents of the entry points—e.g.
method bodies—are not transferred to the new implementation. Only program code is created,
which is part of the extracted architecture model.
Codeling can be the basis for architecture compliance checking. Usually it is desired

to implement the architectural concepts, e.g. components, with the same programming style.
E.g. a component should always be implemented in the same way. Codeling can support such
a compliance checking. By design, Codeling requires program code to comply with specific
programming styles for expressing architectural concepts. When a component is implemented
in a way, that is not part of the defined translations, it will not be translated to the specification
model.
Imagine a development scenario where Codeling is automatically executed upon program code

committed to a source code management system by a development team. For each committed
version, an architecture specification model is created and visually displayed, so that the whole
development team can see the architecture as it is implemented. When a component is not
developed following the rules for creating components as specified by the transformations in
Codeling, the component will not exist in the resulting specification model. It will not be
announced and presented to the development team.
The use of Codeling in this example can also be beneficial for detecting unwanted connections

between components. Imagine a layered system, in which architectural constraints define that
operation calls are only allowed from components in upper layers to components in the same or
lower layer. When operation calls are implemented, that violate this rule, the violation can be
detected in the specification model. The integration of architectural constraints in the Context
of Codeling has been the subject to the master’s thesis of Enno Lohmann [Loh17].

9.2.5 Extensibility

Codeling is meant to be extended. Therefor it provides a defined architectural structure
(see Section 9.2.2) and extension points. Codeling provides an extension point for language
plugins. Language plugins implement transformations for an architecture implementation or
specification language in Codeling. They can use the language base libraries provided in this
context for making the development of transformations easier. They include abstractions for
executing Henshin or HenshinTGG transformations, and a framework for bidirectional model-
code transformations, that follow the Model Integration Concept. For adding new language
plugins to Codeling, Eclipse plugins must be included in an Eclipse instance, that specify an
extension of the Eclipse extension point org.codeling.languageRegistry. The extension
must declare a human readable name for the language, a symbolic name, a version, and a Java
type, that implements a language definition. The language will be registered at the language
registry.
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The current implementation of Codeling includes the framework for bidirectional model-
code transformations based on Java and Ecore. Codeling provides the Model Integration
Concept library with an abstract type ModelIntegrationConceptTransformation, that is
used by the Transformation Manager component to execute a model-to-code or code-to-model
transformation. The framework implements this abstract type. For extending Codeling with
further types of model-code transformations, further implementations of this abstract type
could be provided in an Eclipse plugin. Translation frameworks for architecture implementation
languages, which are not based on Java byte code, need to implement at least a compatible
type declaration, e.g. for executing native calls to operations in C++ or Python.
Analogously to the Model Integration Concept library, Codeling provides the Model Trans-

formation library with an abstract type ModelTransformation for executing model transforma-
tions. These transformations can be used for inter-profile transformations and for translations
between the IAL and architecture implementation or specification languages. In the current im-
plementation the Henshin and HenshinTGG libraries extend the type ModelTransformation.
Further extensions could be implemented to make use of other model transformation languages,
such as QVT [Obj08] or ATL [JABK08].
Finally, the user interface of Codeling is tightly coupled to the Eclipse platform, by adding

menu items to the package explorer view. The user interface triggers translation tasks, that
are provided by the Transformation Manager component. The tasks are independent from the
user interface, therefore other user interfaces can be implemented. New user interfaces should
also trigger the tasks. This could be used e.g. to extract an architecture specification model
automatically in the context of a continuous integration server [DMG07]. This would make the
resulting model available for continuous analysis and communication.

9.3 Code Generation Tool for Integration Mechanisms

Codeling provides libraries and components for defining and executing translations as defined
by the Explicitly Integrated Architecture approach. This includes the definition of bidirec-
tional model-code transformations using the corresponding framework, and meta model no-
tation libraries, that e.g. include the annotations used by the transformations. Developing
such transformations and meta model notation libraries can be cumbersome and error-prone.
The integration mechanisms can be used as templates for generating transformations for model
notations and program code libraries for meta model notations. Section 5.7 describes how lan-
guages can be integrated with the Model Integration Concept. With a mapping of meta model
elements to integration mechanisms, program code for three aspects of the Explicitly Integrated
Architecture approach can be generated. The code generation tool for integration mechanisms
is an Eclipse plugin, which supports this integration by an automated code generation based on
meta models and integration mechanisms as follows: (1) It is possible to automatically generate
program code structures for meta model notations (see Section 9.3.3). (2) For the design time
of architectures, transformations can be generated, that translate between a model view and a
code view of model elements (see Section 9.3.4). (3) For the run time of architectures, execu-
tion runtime stubs for integrated model elements can be generated (see Section 9.3.5). After
describing the code generation, we describe how to implement new integration mechanisms for
Codeling and the code generation tool (see Section 9.3.6), and how to integrate the generated
code with Codeling (see Section 9.3.7).
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Figure 9.27: User Interface of the Code Generator for Integration Mechanisms

9.3.1 Use Case – Generating Code for the Running Example

The following actions have to be taken to generate meta model notation libraries, transfor-
mations for the model notations, and corresponding execution runtime stubs for the running
example (see Section 9.1):

1. A meta model has to be created using Ecore. The meta model of the running example
is shown in Figure 9.2. The program code for programmatically managing models of this
meta model has to be created using the Ecore tools, as it is typically done for Ecore
models (see [SBPM09, Chapter 12])

2. A mapping of meta model elements to integration mechanisms has to be created. The
code generation tool provides means to create this mapping. Figure 9.27 shows an excerpt
of the running example’s mapping in the code generation tool.

3. The code for meta model elements (see Section 9.3.3), transformations (see Section 9.3.4),
and an execution runtime (see Section 9.3.5) has to be generated using the code generation
tool.

4. The execution runtime types need to be extended with the specific execution semantics.
Section 9.3.5 describes how the generated execution runtime is extended with execution
semantics for the state machine class in the running example.
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<<abstract>>
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createMetaModelLibrary(IPackageFragment,ENamedElement):void

createTransformation(IPackageFragment,ENamedElement):void

createRuntime(IPackageFragment,ENamedElement):void
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TypeAnnotationMechanism

MarkerInterfaceMechanism

... subclasses for other
integration mechanisms

Figure 9.28: UML class diagram of the generation part in the code generation tool prototype

9.3.2 User Interface and Design

In the code generation tool, a mapping of meta model elements to integration mechanisms can
be created, and the code generation can be triggered. Figure 9.27 shows the prototype’s user
interface. The left hand side shows the package of the Ecore meta model in Figure 9.2 as the
root of a tree. All classes are listed in the level below the root. Each class in the tree contains its
attributes, non-containment references, and containment references. For each class, attribute,
and reference, the right hand side shows the selected integration mechanisms out of a list of
integration mechanisms, that are applicable for the associated type of meta model element. A
list for a class contains all integration mechanisms for representing classes.
The code generation tool uses the mechanism type hierarchy, which has been shown for

Codeling in Figure 9.14. Figure 9.28 shows an excerpt of the type hierarchy, with a focus on
the use in the code generation tool. The abstract type Mechanism declares abstract methods
for the subtypes to implement. The actual code generation of each integration mechanism is
implemented in a subtype. In each subtype, the method getName returns the name of the
mechanism. The method createMetaModelLibrary creates the meta model notation program
code (see Section 9.3.3). The method createTransformation creates the code that realizes
the bidirectional transformation between the code and the model representation of the model
notations (see Section 9.3.4). The method createRuntime creates runtime stubs for the meta
model elements (see Section 9.3.5). The code generating methods take two parameters: The
parameter of the type IPackageFragment is a reference to a package into which the program
code will be generated. The parameter of the type ENamedElement is the meta model element
for which code is generated. The execution of these methods result in generated program code.

9.3.3 Meta Model Notations

Most integration mechanisms in this thesis declare meta model notations. The program code
structures within the meta model notations include interface and annotation declarations.
These declarations are reusable between the code representation of different model elements.
E.g. in the running example, multiple Java types represent components by reusing the same
annotation Stateful. The prototype tool generates these code structures for meta model
notations, so that they are available as maven3 project. The generated code can be used as a
Java library.
Listing 9.27 shows, as an example, the implementation of the method

createMetaModelLibrary for the Type Annotation mechanism. The code generation is
3Apache’s build automation framework for Java – https://maven.apache.org
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implemented with the Xtend programming language using Xtend’s template expressions. In
the listing, the method creates an annotation named after the meta model element. First
the annotation name is derived from the name of the translated class in the meta model.
Next, the content of the resulting program code file is generated. An annotation with the
given name is declared within the package given as parameter. The meta annotations
attached to the annotation declaration are signals for the Java compiler to make the declared
annotation available at runtime. At last a program code file is created via Eclipse’s JDT4 in
the workspace of the running Eclipse IDE.

1override createMetaModelLibrary(
2IPackageFragment packageFragment , ENamedElement element) {
3var String annotationName = element.name.toFirstUpper;
4

5val content = ’’’
6␣␣␣␣ package␣«packageFragment.FQN»;
7

8␣␣␣␣ @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
9␣␣␣␣ @java.lang.annotation.Target(java.lang.annotation.ElementType.TYPE)
10␣␣␣␣ public␣@interface␣«annotationName»␣{
11

12␣␣␣␣}’’’;
13

14return packageFragment.createCompilationUnit(
15’’’«annotationName».java ’’’, content , true , monitor).getType(annotationName);
16}

Listing 9.27: Generation of meta model notation code for the Type Annotation mechanism
using the Xtend programming language

9.3.4 Transformations

The code generation tool generates bidirectional model-code transformations. The gener-
ated transformations make use of a generic transformation framework for Java-based archi-
tecture implementation languages, that has been developed for Codeling (see step 1.1 in Sec-
tion 9.2.3). The framework includes an hierarchy of abstract transformation types. The type
AbstractModelCodeTransformation is the basis for all transformations. It includes fields for
model and code elements, provides abstract methods for creating, updating, and deleting code
elements based on model elements, and a method for creating model elements based on code.
It also provides the choice which of these methods are called during translation. Abstract
transformation types exist for classes, attributes, containment, and non-containment references
in a meta model.
The tool generates specific transformations for each pair of meta model element and associ-

ated integration mechanism. The generated transformations extend the abstract transforma-
tions of the corresponding integration mechanism. The specific transformations configure their
abstract supertype with their specific meta model element to be translated, and include code
for initializing child transformations. The children of class transformations are attribute and
reference transformations. Children of reference transformations are the class transformations
of their targets.

4Eclipse Java Development Toolkit – https://www.eclipse.org/jdt/
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Listing 9.28 shows an excerpt of the generated transformation for the state machine
class in the running example. The transformation Java type extends the abstract
transformation for the Type Annotation mechanism from Listing 9.15. The supertype
is configured with the StateMachine annotation as type parameter. This is the meta
model representation of the class StateMachine in the meta model, generated with the
same tool (see Section 9.3.3). In the methods doCreateChildTransformationsToCode
and doCreateChildTransformationsToModel, the child transformations are
created and configured for containment references and attributes. In the method
doCreateCrossReferencesTransformations, the child transformations for non-containment
references are created.

1public class StateMachineTransformation extends TypeAnnotationTransformation <
StateMachine > {

2public StateMachineTransformation(
3AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >

parentTransformation) {
4super(parentTransformation , ejbWithSMPackage.eINSTANCE.getStateMachine ());
5}
6

7@Override
8public void doCreateCrossReferencesTransformations(
9List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
10result.add(new InitialTransformation(this));
11}
12

13@Override
14protected void doCreateChildTransformationsToCode(
15List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
16result.add(new StatesTransformation(this));
17}
18

19@Override
20protected void doCreateChildTransformationsToModel(
21List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
22result.add(new StatesTransformation(this));
23}
24}

Listing 9.28: Excerpt of the generation of transformations for the Type Annotation mechanism

Listing 9.29 shows an excerpt of the code generator for specific transformations of the Type
Annotation mechanism. First, the necessary information is collected. Then the transformation
code is generated, and a Java program code file is created. The code generators share code for
constructing transformations for containment and non-containment references.

9.3.5 Execution Runtimes

The architectural elements described with the architecture implementation and specification
languages are development time representations of architectural concepts. All of these concepts
have run time representations. E.g. component types are instantiated at run time, meaning
that an instance exists, and its operation-based provisions can be invoked. A generic run time
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1override createTransformation(IPackageFragment packageFragment , ENamedElement element)
{

2val String typeName = element.name.toFirstUpper;
3val EClass eClass = element as EClass;
4val String eClassName = eClass.name;
5val String eClassInstantiation = getEClassInstantiation(eClass);
6

7val content = ’’’
8␣␣␣␣ package␣«packageFragment.FQN»;
9

10␣␣␣␣ //...␣imports
11

12␣␣␣␣ public␣class␣«typeName»Transformation␣extends␣TypeAnnotationTransformation <«
eClassName»>␣{

13

14␣␣␣␣␣␣ public␣«typeName»Transformation(AbstractModelCodeTransformation <?␣extends␣EObject
,␣?␣extends␣IJavaElement >␣parentTransformation)␣{

15␣␣␣␣␣␣␣␣ super(parentTransformation ,␣«eClassInstantiation»);
16␣␣␣␣␣␣}
17

18␣␣␣␣␣␣«createCrossReferencesTrasformations»
19␣␣␣␣␣␣«createChildTransformationsToCode»
20␣␣␣␣␣␣«createChildTransformationsToModel»
21␣␣␣␣}’’’;
22

23packageFragment.createCompilationUnit(’’’«typeName»Transformation.java ’’’, content ,
true , monitor);

24}

Listing 9.29: Excerpt of the generation of transformations for the Type Annotation mechanism
using the Xtend programming language

framework has been implemented as a prototype, for meta models that have notations based
on integration mechanisms.
Analogously to the transformations, generic execution runtimes for notations based on in-

tegration mechanisms have been implemented. These runtimes are based on Java’s reflection
mechanism to analyse the code, instantiate types, inject objects into fields, and invoke oper-
ations. Listing 9.30 shows an excerpt of the generic execution runtime for the Type Annota-
tion mechanism as an example. The runtime’s constructor takes the implementing type and
the annotation type as parameter. The method initialize first verifies that the type is actu-
ally an instance of the Type Annotation mechanism, before it instantiates the type and stores
the instance. The instance can be obtained by a getInstance operation of the supertype. A
registry named Runtimes stores a map of all objects to their runtimes.
The code generation tool can be used to generate runtimes for specific meta model elements,

based on the mapping from meta model elements to integration mechanisms. The generated
runtimes each extend one of these generic integration mechanism runtimes. Listing 9.31 shows
an excerpt of the code generation for runtimes of the Type Annotation mechanism. The method
createRuntime derives the type name of the runtime from the meta model element’s name.
Then it creates the content of the runtime type using a template expression. The generated
runtime extends the generic runtime for the Type Annotation mechanism. It has fields for its
attribute and reference runtimes, a constructor, and methods for initializing its containment
reference runtimes and its non-containment reference runtimes. At last a program code file is
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1public class TypeAnnotationRuntime <T> extends TypeMechanismRuntime {
2private final Class <T> implementingClass;
3private final Class <? extends Annotation > typeAnnotation;
4

5public TypeAnnotationRuntime(Class <T> implementingClass ,
6Class <? extends Annotation > typeAnnotation) { //... set fields }
7

8@Override
9public void initialize () throws IntegratedModelException {
10verifyTypeAnnotationMechanism ();
11

12try {
13instance = implementingClass.getConstructor(new Class [0]).newInstance(
14new Object [0]);
15Runtimes.getInstance ().put(instance , this);
16} catch (final Exception e) {
17throw new IntegratedModelException ([...] , e);
18}
19}
20

21private void verifyTypeAnnotationMechanism () throws IntegratedModelException {
22if (! implementingClass.isAnnotationPresent(typeAnnotation))
23throw new IntegratedModelException ([...]);
24}
25}

Listing 9.30: Excerpt of the generic Type Annotation runtime

created with the contents.
The actual execution semantics of the elements must be implemented within the generated

runtime types by extending them with corresponding operations. Listing 9.32 shows an excerpt
of generated runtime code for the class StateMachine in the running example, which extends the
Type Annotation runtime shown in Listing 9.30. The runtime code contains a constructor that
takes the state machine type reference as input—identified by the corresponding annotation.
It configures the generic runtime with that type and with the state machine annotation. The
state machine has no attribute beside its name attribute, so there is no attribute runtime to
be instantiated. In the method initializeContainments, the runtime for its containment
reference states is created and initialized. In the method initializeCrossReferences, the
runtime for its non-containment reference initial is created and initialized. These parts have
been generated by the prototype tool. The rest of the program code defines the execution
semantics, which have been manually added. After initializing the runtime for the reference
initial, the initial state runtime is stored as the runtime for the current state. The method
executeTransition takes a transition name as input. It first validates whether the desired
transition exists and is executable. Then it takes the runtime for the containment reference
transitions of the current state, a Containment Operation runtime. It invokes the containment
operation that represents the transition, and sets the current state the instance of the target
state.
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1override createRuntime(IPackageFragment packageFragment , ENamedElement element) {
2val String typeName = element.name.toFirstUpper;
3

4val content = ’’’
5␣␣␣␣ package␣«packageFragment.FQN»;
6

7␣␣␣␣ //...␣imports
8

9␣␣␣␣ public␣class␣«typeName»Runtime <T>␣extends␣TypeAnnotationRuntime <T>␣{
10

11␣␣␣␣␣␣«super.attributeRuntimeFields»
12␣␣␣␣␣␣«super.referenceRuntimeFields»
13

14␣␣␣␣␣␣ public␣«typeName»Runtime(Class <T>␣implementingClass)␣throws␣
IntegratedModelException␣{

15␣␣␣␣␣␣␣␣ super(implementingClass ,␣«typeName».class);
16␣␣␣␣␣␣}
17

18␣␣␣␣␣␣ @Override
19␣␣␣␣␣␣ public␣void␣initializeContainments ()␣throws␣IntegratedModelException␣{
20␣␣␣␣␣␣␣␣«super.attributeRuntimeInitialization»
21␣␣␣␣␣␣␣␣«super.containmentReferenceRuntimeInitialization»
22␣␣␣␣␣␣}
23

24␣␣␣␣␣␣ @Override
25␣␣␣␣␣␣ public␣void␣initializeCrossReferences ()␣throws␣IntegratedModelException␣{
26␣␣␣␣␣␣␣␣«super.crossReferenceRuntimeInitialization»
27␣␣␣␣␣␣}
28

29␣␣␣␣␣␣«super.getReferenceRuntimeFieldGetters»
30

31␣␣␣␣}’’’;
32

33packageFragment.createCompilationUnit(’’’«typeName»Runtime.java ’’’, content , true ,
monitor);

34}

Listing 9.31: Excerpt of the generation of runtime code for the Type Annotation mechanism
using the Xtend programming language
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1public class StateMachineRuntime <T> extends TypeAnnotationRuntime <T> {
2

3// Reference Runtimes
4InitialRuntime initialRuntime;
5StatesRuntime statesRuntime;
6//... getters for initialRuntime and statesRuntime
7

8public StateMachineRuntime(Class <T> implementingClass) throws
IntegratedModelException {

9super(implementingClass , StateMachine.class);
10}
11

12@Override
13public void initializeContainments () throws IntegratedModelException {
14// Reference Runtimes
15statesRuntime = new StatesRuntime(this);
16statesRuntime.initialize ();
17}
18

19@Override
20public void initializeCrossReferences () throws IntegratedModelException {
21// Reference Runtimes
22initialRuntime = new InitialRuntime(this);
23initialRuntime.initialize ();
24

25// Set current state (not generated)
26currentStateRuntime = (StateRuntime <?>) initialRuntime.getTargetRuntime(

initialRuntime.getTargets ()[0]);
27}
28

29// Execution semantics - not generated
30StateRuntime <?> currentStateRuntime;
31

32public StateRuntime <?> getCurrentStateRuntime () {
33return currentStateRuntime;
34}
35

36public void executeTransition(String transitionName) throws IntegratedModelException
{

37if (! isExecutable(transitionName))
38throw new IllegalStateException ([...]);
39TransitionRuntime transitionRuntime = currentStateRuntime.getTransitionRuntime ();
40transitionRuntime.invoke(transitionName);
41StateRuntime <?> targetStateRuntime = (StateRuntime <?>) transitionRuntime.

getTargetRuntime ().getTargetRuntime(transitionName)[0];
42currentStateRuntime = (State) targetStateRuntime.getInstance ();
43}
44

45public boolean isExecutable(String transitionName) throws IntegratedModelException {
46return getPossibleTransitions ().contains(transitionName);
47}
48

49public List <String > getPossibleTransitions () throws IntegratedModelException {
50TransitionRuntime transitionRuntime = currentStateRuntime.getTransitionRuntime ();
51List <Method > containmentOperations = transitionRuntime.getContainmentOperations ();
52return containmentOperations.stream ().map(Method :: getName).collect(Collectors.

toList ());
53}
54

55}

Listing 9.32: Excerpt of the runtime for a State Machine class
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The running example defines that the invocation of the component operation of the CashDesk
component triggers a transition in the state machine. Listing 9.33 shows how an EJB imple-
mentation of the CashDesk component makes use of the state machine’s execution runtime to
implement this behaviour. A complete implementation of runtimes for the running example
and their use can be found on the data medium attached to this thesis (see Appendix B).

1@Stateful
2public class CashDesk {
3final LinkedList <String > items = new LinkedList <>();
4StateMachineRuntime smr;
5

6@EJB
7BarcodeScanner barcodeScanner;
8

9@PostConstruct
10public void init() throws IntegratedModelException {
11smr = new StateMachineRuntime <>( CashDeskStateMachine.class);
12smr.initialize ();
13smr.initializeContainments ();
14smr.initializeCrossReferences ();
15cashDeskStateMachine = (CashDeskStateMachine) smr.getInstance ();
16}
17

18@Operations
19public void addItemToCart () throws IntegratedModelException {
20items.add(barcodeScanner.scanItem ());
21smr.executeTransition("scanCode");
22}
23

24@Operations
25public void checkout () throws IntegratedModelException {
26items.clear(); // Execute a real sale
27smr.executeTransition("finishSale");
28}
29}

Listing 9.33: CashDesk implementation that uses the State Machine runtime

9.3.6 Implementing new Integration Mechanisms

When new integration mechanisms are developed, the code generation tool can be extended
accordingly. The following process should be used to include new integration mechanisms
into the code generation tool: First, the mechanism should be defined. A mechanism must
include a unique name, a (possibly empty) meta model notation definition, and a model
notation definition. Second a generic transformation should be defined (see Section 9.3.4),
that can handle every instance of the mechanism. As the next step, a generic runtime should
be defined (see Section 9.3.5). Then a type must be implemented that extends the abstract type
Mechanism (see Section 9.2.3). The type must then implement three methods: The method
createMetaModelLibrary generates the code structures, that represent the meta model element
(see Section 9.3.3). The method createTransformation generates the code for the model-code
transformation. The generated code should extend the generic transformation defined earlier.
The method createRuntime generates the code for the specific runtime. The specific runtime
should extend the generic runtime defined earlier. At last the new subtype of Mechanism
must be included in the code generation tool, by adding it to the classpath and to the list of
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mechanisms in the user interface.

9.3.7 Integrating Generated Code from Integration Mechanisms with Codeling

Codeling can be used to execute the generated transformations of the code generation tool. For
transformations to be available within Codeling, the generated meta model library plugin (see
Section 9.3.3) and the generated transformation plugin (see Section 9.3.4) must be executed in
an Eclipse installation. The transformation plugin needs to specify an extension of the extension
point org.codeling.languageRegistry, which declares a language definition type. The code
generation tool generates such extensions and language definition types. To use these plugins
in Codeling, the resulting projects must be made available to a Codeling installation, e.g. by
exporting them as JAR files and placing them in the dropins folder of the Eclipse installation.
For a selection of integration mechanisms, code generators for meta model notations, transfor-

mations, and runtime stubs have been developed in the context of this thesis. These generators
and the code generation tool are available on the data medium attached to this thesis (see
Appendix B).

9.4 Strategy for Developing Transformations

The development of transformations for architecture implementation and specification lan-
guages is not an easy task, despite the support from Codeling and the code generation tool.
A major challenge is to relate the elements of an architecture implementation or specification
language to architectural concepts. This relationship is not always clear. Consider a program
that comprises multiple projects in the Eclipse IDE. Each of these projects contains multiple
program code structures that represent component types. What concept do the projects cor-
respond to? They could represent deployment fragments, because often programs are splitted
into different projects for defining deployment fragments. They could also represent composite
component types in a hierarchical component type structure, or namespaces. Even when the
same architecture language is used for multiple programs, such a relationship can differ between
the different programs, depending on the preferences of the model’s stakeholders. We propose
the following strategy for developing transformations between architecture implementation or
specification languages and the IAL.
Translations should be developed in a hierarchical manner (see Figure 9.29): for each ar-

chitecture implementation or specification language, a generic transformation should exist,
that can serve as basis for all other transformations. This generic transformation includes
mostly undisputed translations. In these transformations disputable translations are either not
implemented (e.g. a project in the IDE is not translated at all), or any default is used (e.g. a
project is translated into a deployment fragment in the IAL).
Based on the generic transformations, program-specific transformations can be derived

by tailoring, extension, and adaptation. In these translations, disputable relationships can be
developed as it is required in the specific program.
Some languages are used for describing software architectures differently in the context of

multiple groups. An example for such a broadly used language is the Unified Modeling Language
(UML) [Obj15]. The UML is very flexible to use, and therefore groups of language users have
developed certain habits for expressing designs and architectures using this language. Example
for such groups are developers within a specific application or technical domain, developers
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Generic Transformations

Group-Specific Transformations

Program-Specific Transformations

Level of Abstraction

Necessity to change for a specific program

Specific

Abstract

Figure 9.29: A hierarchical structure of transformation definition for architecture languages

within a specific industrial sector, or developers within specific groups of an organization. When
translations are developed and reused within such groups, group-specific translations can
be specified. Such translations contain more specific rules than generic transformations, but
are still subject to tailoring, extension, and adaptation for specific programs within the group.
All these transformations should be stored within a repository to enable reuse and adaptation.

9.5 Summary

This chapter described the implementation of the Explicitly Integrated Architecture Process,
and a code generation tool for generating meta model notation code structures, model notation
transformations, and runtime stubs for arbitrary meta models, following the Model Integration
Concept.
Codeling implements the process, triggers the transformations, and executes inter-profile

transformations. It also provides support for implementing transformations of the Model
Integration Concept or architecture model transformations via libraries. The tools therefore
provide a broad support for executing the Explicitly Integrated Architecture Process and for
developing translations for further languages.
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10 Evaluation

The objective of the evaluation is to find out whether the presented approach achieves the goal
and requirements stated in Section 1.6. It has to be shown, that the approach:

R1 bridges the gap between architecture specification languages and implementations thereof,

R2 takes the difference of architecture specification and implementation languages into account.

R3 provides a single source of information for architecture descriptions,

R4 creates bidirectional translations between the architecture specification and implementa-
tion,

R5 is be prepared for architecture specification and implementation language emergence and
evolution, and

This is achieved by evaluating whether the corresponding questions (see Section 1.6) can be
answered with yes. For showing that the approach meets the requirement R1, it has to be
implemented and applied to a case study that allows to integrate and execute non-architectural
code in architectural code elements. To show that the approach handles the differences between
architecture specification and implementation languages (R2), it has to be applied to a case
study with two languages that have mutually exclusive language features. For showing that
the approach meets the requirement R3, it can be shown in a case study that only the code
view is required to derive architecture specification views. The fulfillment of R4 can be shown
by arguing about the bidirectionality of the transformations. To show the applicability of the
approach with different languages, the approach must be applied to a second case study with
different languages. The handling of emergent and evolving architecture languages (R5) can be
shown by executing case studies with the same program as origin and different target languages.
First, the approach is applied to a total of four case studies. In the first case study (see

Section 10.1), the approach is applied to JACK 3, an e-assessment tool that is implemented
with the Java Enterprise Edition (JEE) 7. The case study translates a subset of EJB 3.2, CDI
1.2, and JSF 2.2 into a subset of the UML and back. It therefore bridges the gap between
architecture specification languages and implementations thereof (R1). The use case adds
time resource demand information to operations in the specification model. The architecture
implementation language cannot express this information. This case study shows that such
differences are taken into account by the approach (R2). The program code is the single,
original source of information for architecture information. The specification model is derived
from the program code (R3). In this case study bidirectional transformations are developed
(R4). Finally, the case study translates between the JEE and UML. Together with the other
case studies, this contributes to showing that the approach is prepared for language emergence
and evolution (R5).
In the second case study (see Section 10.2), it is applied to the Common Component Modeling

Example (CoCoME) [HKW+08]. In this case study, the architecture implementation is a self-
implemented Java-based architecture implementation language and is translated into a subset
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Section Case Study / Description Addressed Requirements
10.1 Case Study: JACK 3 R1, R2, R3, contributes to R4 and R5
10.2 Case Study: Common Component Modeling Example R1, R2, R3, contributes to R5
10.3 Case Study: Specification Language Migration R1, R2, R3, contributes to R5
10.4 Case Study: Implementation Language Migration R1, R2, R3, contributes to R5
10.5 The Bidirectionality of Transformations R4
10.6 Resource Demand -

Table 10.1: An overview of the evaluation activities and which requirements they address

of the PCM. As with JACK, this case study bridges the gap between architecture specification
languages and implementations thereof (R1). It also translates between languages with different
architectural aspects (R2). The program code is the single origin source of information (R3).
Together with the other case studies, this case study contributes to showing that the approach
is prepared for language emergence and evolution by translating between a different pair of
languages (R5).
The third case study (see Section 10.3) translates the CoCoME system into the UML as

another architecture specification language for showing the handling of specification language
evolution, i.e. the change of the specification language. The fourth case study (see Section 10.4)
translates the CoCoME system into JEE as another architecture implementation language, for
showing the handling of architecture implementation language evolution. Besides bridging the
gap (R1) and translating between languages with different architectural aspects (R2), the case
studies rely on the program code as single source of architectural information (R3). These case
studies also contribute to showing that the approach is prepared for language emergence and
evolution by translating between different pairs of languages (R5).
Section 10.5 argues about the bidirectionality of the transformations within the approach

(R4). Section 10.6 shows limitations of the prototype tool regarding resource demand. The
evaluation is discussed in Section 10.7. Table 10.1 gives an overview of the case study and
argumentation and which requirement they address.

10.1 Case Study: JACK 3

In the first case study, the development of the e-assessment tool JACK 3 is supported by gen-
erating an architectural view in the UML specification language. JACK 3 is the designated
successor of an e-assessment tool (JACK 2 [Str16]) developed at the working group "Specifi-
cation of Software Systems" (S3) of the institute paluno of the University of Duisburg-Essen,
Germany. Its predecessor is used in the teaching and assessment of various disciplines, includ-
ing programming, mathematics, and micro-economics. JACK 3 comprises two parts: a back
end written in Java using the Eclipse platform as architecture implementation language, and
a front end written in Java, based on the Java Enterprise Edition 7. The front end defines a
user interface, data definitions, and business logic for e-assessments. The following interactions
with the front end can be seen as major interactions: Teachers define courses in which students
can or must solve exercises. Teachers provide standard solutions and feedback for possible
errors. Students see their individually available courses. They create solutions for the exercises
within courses. The presentation of results depends on the execution mode. When JACK is in
the learning mode, the students can see feedback regarding their solution. In the assessment
mode the students do not get such feedback. Instead the teachers can see the feedback and a
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grading. The back end evaluates solutions against the defined standard solution using possibly
various checkers, e.g. in programming exercises the code can be checked statically, e.g. for the
existence or non-existence of specific structures; or dynamically, e.g. by executing the program
with some specific input and checking the results. For other types of exercises, other types of
checkers exist. The back end of JACK 2 is not changed during for development of JACK 3.
Therefore this case study focuses on the front end for supporting the development of JACK 3.
In the context of this case study, a subset of the Java Enterprise Edition is considered an

architecture implementation language. It is translated into a subset of the UML, containing a
composite structure diagram. Figure 10.1 shows the architecture, as it is extracted in this case
study. The resulting UML model is changed by adding, changing, and deleting elements. Then
the code is changed according to the changes in the UML model automatically by Codeling.

10.1.1 Java Enterprise Edition in JACK 3

Java Enterprise Edition (JEE) 7 [Ora13b] is an umbrella standard for various technologies (see
Section 2.3.5). This case study is focused on subsets of EJB 3.2, CDI 1.2, and JSF 2.2. The
JACK 3 front end consists of three projects within the eclipse IDE. The project jack3-core
contains data types and low level components for data handling. The project jack3-business
contains higher level components for more complex tasks triggered by users. The project jack3-
webclient contains view components for a web application.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.2 [EJB13] specifies the definition of business logic components
called Enterprise Beans. Enterprise Beans are business logic components. Their execution
runtime ("container") handle their life cycles and references between enterprise beans, including
transactions and concurrency during interactions with them (amongst other features). Two
types of enterprise beans exist: Message-Driven Beans and Session Beans. Message-driven
beans are event-based components. As they are not used in the JACK 3 front end at the
considered state of development, message-driven beans are out of the scope of the case study.
Session Beans are operation based components, which provide an operation-based interface
to their context, either explicitly as Java interfaces or implicitly all of their public operations.
Three types of Session Beans exist: Singleton Beans are instantiated once by the EJB container.
When an instance of a singleton bean is requested, each requester will get the same instance.
Stateful Beans are instantiated on a per-session basis. A requester can create a session within
the session bean container. During a session, each request by the session owner for a stateful
bean will return its session specific instance. They are usually used to store session-specific
data. Stateless Beans are business logic components that are not supposed to store any state
(although it is technically possible, e.g. to create caches). The container creates a set of
instances of stateless beans in a pool. The amount of existing instances of a stateless bean is
typically based on the frequency of requests. For each request another instance can be returned.
Technically, session beans are annotated Java types with attributes and interfaces. The

respective annotations can be found in the package javax.ejb. Listing 10.1 exemplarily shows
two session beans as they can found in the JACK 3 program code. The listing in this section
are shortened due to readability reasons. The type UserService is a stateless session bean, as
declared by its annotation. Its supertype AbstractServiceBean provides operations and fields
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Figure 10.1: The UML architecture of JACK 3 in an UML view, as it is extracted in the case
study. The diagram’s layout has been set manually.
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for a connection to databases and for logging. The UserService provides low level operations
for managing users in the database. As an example, the public method hasNoUser returns true
iff the database has no registered JACK users. The type FirstTimeSetup is a singleton session
bean, as declared by its annotation. The additional annotation @Startup declares that the
singleton instance is created by the container as soon as the bean is deployed. Else it would be
instantiated lazily on a first request to the bean. The FirstTimeSetup bean has a reference to
the UserService. The annotation EJB attached to the field userService orders the execution
container to inject an instance of the stateless bean UserService into an instance of the bean
FirstTimeSetup.

1@Stateless
2public class UserService extends AbstractServiceBean {
3public boolean hasNoUser () {
4return countUser () < 1;
5}
6

7public User createUser(String screenName , String password , String email , boolean
hasAdminRights ,

8boolean hasEditRights) {
9//... Creates a user
10}
11//... Further code for low level user management
12}
13

14@Singleton
15@Startup
16public class FirstTimeSetup extends AbstractServiceBean {
17@EJB
18private UserService userService;
19

20private void createTenantAdminUser () {
21if (userService.hasNoUser ()) {
22userService.createUser(TENANT_ADMIN_NAME , null , null , true , false);
23getLogger ().infof("Created␣Tenant␣Admin␣User␣\"%s\".",TENANT_ADMIN_NAME);
24}
25}
26//... Further code for the setup at startup
27}

Listing 10.1: Exemplary session beans from the JACK 3 program code

Additionally, EJB defines data types components called Entity Beans. Entity beans allow
for defining data types, which can be stored in relational databases using object-relational
mappers [Amb03, Chapter 14]. Each data type represents a table in a relational database.
Attributes are translated to database columns. References between entities are represented as
columns or join tables, depending on their cardinality. Listing 10.2 shows an exemplary entity
from the JACK 3 program code. The User is a data type as declared by the annotation Entity.
The optional annotation Table defines the table name in the database that will hold the data.
It declares a String attribute screenName (declared by the annotation Column), and a reference
to another entity bean ContentFolder (not shown), which represent folders for user generated
content, such as courses for teachers. The annotation OneToOne declares a reference of the said
cardinality.
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1@Entity
2@Table(name = "Usertable")
3public class User extends AbstractEntity implements Comparable <User > {
4@Column(nullable = false , unique = true)
5private String screenName;
6

7@OneToOne
8private ContentFolder personalFolder;
9//... Constructors , Getters , and Setters
10}

Listing 10.2: Exemplary EJB entity beans from the JACK 3 program code

Context and Dependency Injection

Context and Dependency Injection (CDI) 1.2 [JSR14] is a framework for specifying object life
cycles within different scopes. In the context of JACK 3, the functionality is used to define
business logic components called Beans. For a better differentiation between enterprise bean
of EJB and beans of CDI they are called CDI Beans in the context of this thesis. Analogously
to enterprise beans in EJB, CDI beans provide interfaces either explicitly as Java interfaces
or implicitly by their public operations. In contrast to EJB, CDI beans do not automatically
handle transactions or manage concurrent invocations of their instances. CDI beans have
different scopes. The scopes in CDI are request scoped, session scoped, application scoped, or
conversation scoped. Request scoped CDI beans are instantiated for each request. Session
scoped CDI beans live for the length of a session, analogously to stateful beans of EJB.
Application scoped CDI beans are instantiated exactly once during the application life cycle.
Conversation scoped beans can be instantiated for manually defined conversations within a
session or among multiple sessions.
CDI beans are implemented using annotated types with annotations from the package

javax.enterprise.context. Listing 10.3 exemplarily shows two CDI beans as they can found
in the JACK 3 program code. The type UserBusiness is a request scoped CDI bean, as de-
clared by its annotation. Its supertype AbstractBusiness provides operations and fields for
logging. The UserBusiness has a reference to the UserService shown in Listing 10.1 via a
field annotated with Inject. The annotation triggers the CDI container to inject a suitable
instance of the requested type. As CDI and EJB are highly integrated, the container will inject
an instance out of the pool of instances of the stateless bean. It is possible to reference an EJB
session bean from a CDI bean using the Inject or the EJB annotation. CDI beans can only be
referenced via the Inject annotation. The UserBusiness provides business level operations
for user management. As an example, the public method createUser creates a user using the
injected UserService, and adjacent structures. The type UserSession is a session scoped CDI
bean, as declared by its annotation. The additional annotation Named declares that instances
of this bean can also be retrieved using a name-based registry. The UserSession bean also has
a reference to the UserService shown in Listing 10.1. It provides operations for logging in and
out, and for getting information about the currently logged in user. For these requests, it uses
the UserService.

282



10.1 Case Study: JACK 3

1@RequestScoped
2public class UserBusiness extends AbstractBusiness {
3@Inject
4private UserService userService;
5

6public User createUser(String screenName , String password , String email , boolean
hasAdminRights , boolean hasEditRights) {

7User user = userService.createUser(screenName , password , email , hasAdminRights ,
hasEditRights);

8return createPersonalFolderIfRequired(user);
9}
10//... Further code for business operations regarding users
11}
12

13@SessionScoped
14@Named
15public class UserSession implements Serializable {
16@Inject
17private UserService userService;
18private User currentUser;
19

20public String login () { [...] }
21

22public String logout () { [...] }
23

24public User getCurrentUser () {
25return currentUser;
26}
27//... Further code for handling session data , getters and setters
28}

Listing 10.3: Exemplary CDI beans from the JACK 3 program code

JavaServer Faces

JavaServer Faces (JSF) 2.2 [Ora13a] specifies the definition of FacesBeans as view components
for web pages. In contrast to EJB and CDI, it is coupled with a web framework. Faces Beans
have different scopes. The scopes in JSF are request scoped, session scoped, application scoped,
and view scoped. Request scoped beans, session scoped beans and application scoped beans
work analogously to CDI beans of the corresponding scopes. View scoped beans are instantiated
for the interaction with one specific web page. I.e. when a web page is opened, a new instance
is created for the user. When from this web page a request is triggered to the same page,
e.g. by submitting a form or executing asynchronous requests within the web page, the same
instance will be used, as long as no other page is requested.
JSF beans are implemented by using annotations from the package javax.faces.view.

Listing 10.4 exemplarily shows a faces bean which can be found in the JACK 3 program code.
The abstract type AbstractView is an abstract class used as the basis for multiple faces beans.
It provides the operation getCurrentUser to get the user of the current session. It uses the
session scoped CDI bean UserSession in this operation, which is shown in Listing 10.3. The
type MyAccountView is a view scoped Faces Bean, as declared by its annotation, for a web page
that allows for viewing and changing user related data in JACK. It extends AbstractView and
uses its operation getCurrentUser to populate the view.
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1public class AbstractView {
2@Inject
3private UserSession userSession;
4

5public User getCurrentUser () {
6return userSession.getCurrentUser ();
7}
8//... Further supplemental code for faces beans
9}
10

11@ViewScoped
12@Named
13public class MyAccountView extends AbstractView implements Serializable {
14private String screenName;
15private String email;
16//... Further fields
17

18public void loadMyAccount (){
19screenName=getCurrentUser ().getScreenName ();
20email=getCurrentUser ().getEmail ();
21}
22//... Further code for populating the view
23}

Listing 10.4: Exemplary faces bean from the JACK 3 program code

10.1.2 Java Enterprise Edition Meta Model

The JEE 7 meta model for the case study is built based on the corresponding specifications.
Figure 10.2 shows the meta model described with Ecore. The root element is the Architecture,
which contains archives, namespaces, beans, and entities. An archive corresponds to a project
within the IDE. It references the entities and beans of the architecture. A namespace represents
a package in Java. Namespaces reference beans and entities. They are hierarchically structured.
Session bean, CDI beans, and Faces Beans have boolean attributes that denote their scopes.
Exactly one of these attributes must be true. All beans are named, may have operations, and
may reference each other. These common features are captured in the abstract class Bean.
Entities own entity attributes, which have a type and a cardinality. Entities may also reference
each other. Both beans and entities may have operations. These have operation parameters as
parameters or return types. Operation parameters also have a cardinality and a type. The type
may be either primitive, represented by the attribute primitiveType, or an entity, represented
by the reference entityType. At most one kind of type must be set. If no type is set of a return
type parameter, Void is assumed.

10.1.3 Unified Modeling Language in JACK 3

The Unified Modeling Language (UML) [Obj15] is a language for describing systems, especially
software systems and their context. A meta model for UML 2.5 has been developed in the
context of Eclipse’s Model Development Tools initiative1. During interviews with the JACK
3 development lead, the requirement arose to have an architectural view on JACK 3 in a

1Eclipse Model Development Tools – https://www.eclipse.org/modeling/mdt/?project=uml2

284

https://www.eclipse.org/modeling/mdt/?project=uml2


10.1 Case Study: JACK 3

Figure 10.2: The JEE 7 meta model of the JACK case study
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UML composite structure diagram, with the projects in the IDE as composite components,
which have the beans as child components. This view should produce a visual feedback on
how the components are spread throughout the projects, and how they are interconnected.
Therefore in the context of this case study, components, interfaces, operations, and component
interconnection are used to represent the JACK 3 architecture.

10.1.4 Model Integration Concept

In this case study the architecture implementation language’s meta model was derived from
a specification. The JEE specification defines program code structures for representing ar-
chitectural elements, for which notations (see Definition 33) had to be created. For some of
these notations, integration mechanisms could be used or adapted to the JEE specification.
Table 10.2 shows the mapping between meta model elements and integration mechanisms, or
a short description of the notation respectively. As an example, Listing 10.5 shows the im-
plementation of the translation between the program code and a CDI bean in the JEE meta
model. It extends the TypeAnnotationTransformation shown in Listing 9.15 and changes the
expected annotation to one of the CDI bean annotations from the specification. When new
model elements are to be created in the program code, a request scoped CDI bean will be cre-
ated. The constructor configures the abstract supertype with the model class, that is subject to
translation, and with the transformation of the owning reference, in this case a translation for
an Architecture element. The doCreate* operations create child transformations for attributes
and references of the bean. For the abstract class Bean in the meta model, a transformation
helper type BeanTransformation exists, that creates child transformations for the references
referenced and operations.
For the architecture, namespaces, entities, beans, and operations, integration mechanisms

can be used or adapted by changing the required annotations in annotation-based mechanisms.
It is not necessary to generate meta model notations as described in Section 9.3.3, because
corresponding annotations already exists in the JEE API [Ora13b].

10.1.5 Architecture Model Transformations

Architecture model transformations have been implemented in this case study between the JEE
meta model and the IAL, and between the IAL and the UML.

Java Enterprise Edition

A TGG was developed to translate between the JEE meta model and the Intermediate Archi-
tecture Description Language meta model (see Chapter 6). The complete TGG comprises 35
rules and can be found on the data medium associated with this thesis (see Appendix B).
The general scheme of the translation is shown here with a small example. Figure 10.3 shows

the TGG rule for translating between an architecture element of the JEE meta model and an
architecture element of the IAL with corresponding stereotypes. Figure 10.4 shows the TGG
rule for translating between a stateful EJB session bean element of the JEE meta model and
a component type with a provided interface and a component instance representative of the
IAL with corresponding stereotypes. A stateful EJB session bean is mapped to a component
type, that provides an interface. EJB allows beans to have an implicit interface. This is
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1package org.codeling.lang.jee7.transformation;
2// ... imports
3public class CDIBeanTransformation extends TypeAnnotationTransformation <CDIBean > {
4

5public CDIBeanTransformation(
6AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >

parentTransformation) {
7super(parentTransformation , JEE7Package.eINSTANCE.getCDIBean ());
8}
9

10@Override
11public void doCreateCrossReferencesTransformations(
12List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
13new BeanTransformation ().doCreateCrossReferencesTransformations(this , result);
14}
15

16@Override
17protected void doCreateChildTransformationsToCode(
18List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
19new BeanTransformation ().doCreateChildTransformationsToCode(this , result);
20

21// Child transformations for attributes
22result.add(new IsRequestScopedTransformation(this));
23result.add(new IsSessionScopedTransformation(this));
24result.add(new IsApplicationScopedTransformation(this));
25result.add(new IsConversationScopedTransformation(this));
26}
27

28@Override
29protected void doCreateChildTransformationsToModel(
30List <AbstractModelCodeTransformation <? extends EObject , ? extends IJavaElement >>

result) {
31new BeanTransformation ().doCreateChildTransformationsToCode(this , result);
32

33// Child transformations for attributes
34result.add(new IsRequestScopedTransformation(this));
35result.add(new IsSessionScopedTransformation(this));
36result.add(new IsApplicationScopedTransformation(this));
37result.add(new IsConversationScopedTransformation(this));
38}
39

40@Override
41public boolean hasExpectedAnnotation(IType type) {
42return ASTUtils.hasAnnotation(type , "javax.enterprise.context.RequestScoped",
43"javax.enterprise.context.SessionScoped", "javax.enterprise.context.

ApplicationScoped",
44"javax.enterprise.context.ConversationScoped");
45}
46

47@Override
48protected String getNewAnnotationName () {
49return "javax.enterprise.context.RequestScoped";
50}
51}

Listing 10.5: The implementation of the translation between the JEE program code and a CDI
bean in the JEE meta model
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Meta Model Element Integration Mechanism Notation Details
Architecture Ninja Singleton
→ all references Included in the owner’s mechanism
Archive Project in the IDE
→ beans Bean definitions within the Project
→ entities Entities definitions within the Project
Namespace Namespace Hierarchy
→ all references Included in the owner’s mechanism
CDIBean Type Annotation Annotations from the specification
→ all attributes Identified by the existence of the corresponding

annotations
SessionBean Type Annotation Annotations from the specification
→ all attributes Identified by the existence of the corresponding

annotations
FacesBean Type Annotation Annotations from the specification
→ all attributes Identified by the existence of the corresponding

annotations
Bean Not translated, because it is abstract
→ referenced Annotated Member Reference Annotations @EJB or @Inject
→ operations Containment Operation No annotation required on operation
Entity Annotated Member Reference Annotation @Entity
→ references Annotated Member Reference Annotations from the specification
→ operations Containment Operation No annotation required on operation
EntityAttribute A field with the annotation @Column
→ isMany true iff the field is an array or collection type
→ primitiveType The Java type of the field, if it is not of an entity

type
Operation Derived from the operation owners
→ parameters Each parameter of the operation
→ returnType The return type of the operation
OperationParameter Derived from the parameter owner
→ isMany true iff the field is an array or collection type
→ primitiveType The Java type of the parameter, if it is not of an

entity type
→ entityType The Java type of the parameter, if it is not of a

primitive type

Table 10.2: The mapping of meta model elements to notations in the JACK 3 case study

translated into a component type with a corresponding explicit interface element. Figure 10.5
shows the TGG rule for translating between a reference from an architecture to beans of the
JEE meta model and a reference from an architecture to the corresponding component type
with an associated provided interface and corresponding stereotypes in the IAL.
When translating architectures from the IAL to JEE, it is possible that the component types

in the IAL does not have all required stereotypes, that are shown on the right side of Figure 10.3.
In this case the rule would not be executed and no architecture would be translated. The
profile activation rules (see Section 7.2.4) are used automatically in the Explicitly Integrated
Architecture Process to ensure the existence of these stereotypes. For missing stereotypes
on component types, default translation rules have been added to the TGG, so that new
components can be added and translated into JEE compliant program code. Figure 10.6 shows
the this translation rule for component types. The upper half of this figure shows a negative
application condition, which declares that the given rule will only be executed when no part of
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Figure 10.3: The TGG rule for JEE architectures in the JACK 3 case study

Figure 10.4: The TGG rule for JEE stateful beans in the JACK 3 case study

Figure 10.5: The TGG rule for the reference from JEE architectures to beans in the JACK 3
case study
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Figure 10.6: The TGG default rule for component types in JEE in the JACK 3 case study

the NAC can be matched. The ComponentType element in Figure 10.6 has the number 0. This
number shows a mapping between this element and the ComponentType element in the NAC.

Unified Modeling Language

A TGG was developed to translate between the IAL (see Chapter 6) and the UML. The
complete TGG comprises nine rules and can be found on the data medium associated with this
thesis (see Appendix B).
The general scheme of the translation is shown here in a small example. Figure 10.7 shows

the TGG rule for translating between an architecture element of the IAL meta model and
a Model element of the UML. Figure 10.8 shows the TGG rule for translating between a
deployment fragment of the IAL meta model and a component in the UML. The translation
for subcomponents is shown in Figure 10.9.
The case study includes (a) the definition of a meta model of a subset of the JEE; (b)

notations for the JEE meta model in Java, that comply to the JEE API, partly based on
integration mechanisms; (c) architecture model transformations between the JEE meta model
and the IAL, and (d) architecture model transformations between the IAL and a subset of
the UML. In the case study, UML components, their interfaces, operations, and relations are
extracted from the program code. Figure 10.1 shows the architecture as it is extracted in the
case study. The operations are omitted for a better overview.
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Figure 10.7: The TGG rule for UML models in the JACK 3 case study

Figure 10.8: The TGG rule for UML deployments in the JACK 3 case study
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Figure 10.9: The TGG rule for components within deployment fragments in the JACK 3 case
study

UML distinguishes between the model data and diagrams presenting model data. Codeling
integrates model data with program code. It does not create UML diagrams with the corre-
sponding layout information. The model elements can be viewed with a UML editor based on
the Ecore UML meta model, such as Papyrus2. The important aspect to see in Figure 10.1 is
that a layered architecture [GHJV95] is implemented. No component accesses a component in a
layer above its own. However, many view components (in the upper layer) have a direct depen-
dency to the core. An interview with the development leader has shown that this circumstance
was known, and the diagram gave an overview, which component has to be revisited.

10.1.6 Model Changes

In the case study, four changes are made to the specification model. A new component type is
added, the name of a component type is changed, one component type is deleted, and a time
resource demand for an operation is added. First, a new component type AdministrationService
is added to the composite component jack3-core, that realizes an interface with the same name
as the component. On saving the changed model, Codeling translates this model change into
code changes, resulting in a new Java type within the project jack3-core as shown in Listing 10.6.
The new type is a request scoped CDI bean, following the translation for new components as
shown in Figure 10.6. The package that owns the type is new_architecture_elements, a
default package declared in the notations, because the architecture model did not associate any
specific namespace to the bean.
In a second change the component type MyAccountView is renamed to AccountDetailsView.

2Papyrus – https://eclipse.org/papyrus/
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1package new_architecture_elements;
2

3import javax.enterprise.context.RequestScoped;
4

5@RequestScoped
6public class AdministrationService {}

Listing 10.6: Newly created bean in the JACK 3 program code after changing the UML model

When the changes are propagated to the program code, this change results in a renaming refac-
toring on the Faces bean type MyAccountView. The refactoring is implemented in the method
updateCodeFragments of the type TypeAnnotationTransformation shown in Listing 9.25.
The third change is the deletion of the component type LoginView, its interface with the same

name, and the interface realization reference. When these changes are propagated to the code,
the corresponding type declaration is deleted. The deletion is implemented in the method
deleteCodeFragments of the type TypeAnnotationTransformation shown in Listing 9.25.
In this specific scenario, no other component references the LoginView component. When
a referenced component is deleted, the references to this component will also be deleted.
The fourth change is the addition of a time resource demand to the operation

getAllCoursesForUser of the component CourseService in the layer jack3-core. To express
the resource demand, in this case study a structured comment upon the operation with the
content Time Resource Demand: [50ms] is used. In a more sophisticated UML model,
a profile should be defined. When the change is propagated to the program code, a new
annotation is added to the operation, which states the time resource demand as a string
value. Listing 10.7 shows the annotation, which has been added to the operation.

1@Stateless
2public class CourseService extends AbstractServiceBean {
3

4[...]
5

6@TimeResourceDemand(duration="50ms")
7public List <Course > getAllCoursesForUser(User user) {
8[...]
9}
10}

Listing 10.7: The operation getAllCoursesForUser in JACK 3 extended with a resource
demand

The data medium attached to this thesis (see Section B) contains the artefacts of this case
study: The program code and model, including all intermediate models, each before and after
the model change, the architecture model transformations, and the transformation types for
the notations of the Model Integration Concept.

10.2 Case Study: Common Component Modeling Example
(CoCoME)

In the second case study, the program code of the Common Component Modeling Exam-
ple (CoCoME) [HKW+08] is translated into a subset of the Palladio Component Model
(PCM) [BKR09]. CoCoME has been developed as a benchmark for comparing software ar-
chitecture languages. The original CoCoME benchmark artefacts provide the context, the
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Figure 10.10: An overview of the CoCoME structure [HRR16]

requirements, the design, and the implementation of a system. The system drives the business
for an enterprise that runs multiple stores. Each store contains multiple cash desks in a cash
desk line [HKW+08]. It is implemented in plain Java without using a standardized architecture
implementation language. CoCoME has recently been revisited [HRR16] in the context of the
Priority Programme 1593 "Design For Future – Managed Software Evolution"3 by the German
Research Foundation (Deutsche Forschungsgemeinschaft (DFG)), where evolution scenarios for
the CoCoME system have been developed as a platform for collaborative research. These sce-
narios include a migration to a JEE implementation, and the addition of a pick up store. In
the context of this case study the original CoCoME implementation is used for evaluating the
use of the Explicitly Integrated Architecture Process for software that does not use standard-
ized frameworks, but create product-specific architectural abstractions. It is translated into an
architectural structure expressed with a subset of the PCM as a preparation for a performance
analysis.

10.2.1 The CoCoME System

Figure 10.10 gives an overview of the CoCoME system. CoCoME provides components that
build a cash desk, including bar code scanners, cash boxes, and printers, and a cash desk line
comprising multiple cash desks. A store has a cash desk line and a store server, which manages
the stock and the payment. Multiple stores are managed by an enterprise. The enterprise
server gives an overview about the sales and stock throughout the enterprise, provides metrics,
algorithms for finding out whether a store needs to be refilled with stock short hand by another
store nearby, and triggers for such a transport.
The original structural architecture of CoCoME is shown in Figure 10.11. The components

within the cash desk line communicate with each other using an event bus. The cash desk
line provides an outgoing connection via an operation-based banking interface for handling

3DFG Priority Programme 1593 – http://dfg-spp1593.de
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Figure 10.11: An overview of the CoCoME architecture in UML [HRR16]

payments. The inventory comprises the business logic for the reporting and controlling of
the servers, and consoles for users to interact with the reporting and control mechanisms.
The components within the application component execute the business logic using a data
base connection realized by the data components. The components within the inventory
communicate using operation-based interfaces. Between the cash desk line and the inventory,
both events and operations are used for communication.

10.2.2 CoCoME Meta Model

The CoCoME meta model for the case study has been built based on a manual program
code analysis. Figure 10.12 shows the meta model described with Ecore. The root element
is the Architecture, which contains components. In the CoCoME program code a component
is a (possibly empty) set of type, interface, and enumeration declarations within a namespace
in Java. Components may define, dispatch, or handle events, require or provide operation-
based interfaces, and may contain other components. Four types of components exist. Servers
are stateless components that define TransferObjects as datatypes. They are active, meaning
that they are executable using a main method in Java. Servers implement the business logic
of CoCoME. They provide functionality for other components to use. Consoles are active,
stateless components which provide UI elements to users. They use servers for executing their
functionality. Models are stateful components. They are used to implement the cash desk line

295



10 Evaluation

Figure 10.12: The AIL meta model of the CoCoME case study

and its subcomponents. Some model’s behaviour can be described with a state machine, that
comprises states and transitions from a set of possible states to a target state. Components,
the superclass of all component types in the meta model, are instantiable themselves, but do
not have an own functionality. They comprise child components, may delegate the provision
or requirement of interfaces, and may own events. The figure of the meta model does not
show the naming. The classes Component, Interface, Operation, Event, State, Transition, and
TransferObject have an attribute name of the type String.

10.2.3 Model Integration Concept

The program code of CoCoME is not based on a standardized architecture implementation
language. The component life-cycle and communication is implemented in plain Java. In
contrast to the JACK 3 case study (see Section 10.1), the program code structures, that define
architecture elements, such as components, cannot be derived from a specification. The program
code had to be analyzed, and suitable program code structures had to be identified for this
case study. Table 10.3 summarizes the identified structures.
Seven of 24 meta model elements (classes and references) could be translated by instantiating

an integration mechanisms, some with small changes from the original mechanisms. The code
generation tool (see Section 9.3) was used to generate the general structure for transforma-
tions. An empty mechanism Custom Translation has been used in the tool for creating empty
transformation types for the meta model elements that follow none of the declared mechanisms.
The tool generates a translation type for the meta model element (class, reference, containment
reference, or attribute) mapped to that empty mechanism. The generated translation types
provide a set of utility methods. For translations of references, they also ensure that target ob-
jects exist before references are translated. Using these structures, the effort for implementing
the translations was reduced to implementing the methods transformToModel and to declare
how the targets of model references are to be found within a code element. For notations
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Meta Model
Element

Notation Details

Architecture The architecture is a root model element without a representation in the code. It follows the Ninja
Singleton mechanism.

→ components The derivation of the notation from the Ninja Singleton mechanism includes the translation of the
containment reference components.

Event Events are type declarations with names that end with Event.
Interface A component interface is an interface within the package of a component, that is implemented by

the component’s main type. It follows the Static Interface mechanism, but uses no annotation.
→ operations An interface owns an operation when it declares a corresponding method. This follows the Con-

tainment Operation mechanism without annotations.
Operation The derivation of the notation for Interface.operations from the Containment Operation mechanism

includes the translation of the class components.
Component General components are represented by Java packages below the hierarchy

org.codeling.tradingsystem. Their code structure is close to the Namespace Hierarchy mecha-
nism, but also contains non-containment references to events and interfaces. Java packages only
represent components when they have child components. Otherwise utility packages would be
identified as components.

→ children The derivation of the notation from the Namespace Hierarchy mechanism includes the translation
of the containment reference children.

→ dispatches The dispatching of events is not handled consistently in the CoCoME program code. In some cases
helper methods are used for instantiating the event types and giving them to the event bus. In other
cases no helper methods are used. Experiments have shown that the instantiation of an event type
within a component’s main type suffices to identify an event dispatch. However this translation is
not bidirectional.

→ handles A component handles events when its package contains an interface called
IComponentNameEventConsumer, where ComponentName is the component’s name. This inter-
face declares one or more methods onEvent, that each take an event type as parameter. An
EventHandler type implements this interface and calls the appropriate methods in the component’s
main type when these events occur.

→ provides A component provides an interface by implementing it. This follows the Static Interface Imple-
mentation mechanism without an annotation.

→ requires The requirement of interfaces is not consistently implemented. Required interfaces are given to a
component via its constructor. Some interfaces are given as parameters. Other interfaces are type
attributes of a helper class for distributed communication given as parameters to the constructor.

TransferObject A transfer object is a type with a name ending on TO within a component’s package.
Server Server components are packages that own a type ending with Server. The package and all of its

types belong to the component.
→ transferOb-
jects

A server owns a transfer object when its package contains the corresponding type.

State The implementation of state declarations is not consistent in CoCoME. In the cash desk model
component, the states are enumeration items in an enumeration within an own compilation unit (a
.java file) in a component’s package. In other model components such enumerations are embedded
into the component’s main type. The program code has been adapted to follow the structure in
the cash desk model component.

Model Model components are packages that own a type ending with Model. The package and all of its
types belong to the component.

→ states With the program code adapted as described in the notation of states, a model component owns
all states declared in its state enumeration.

→ initialState The initial state is not implemented consistently in CoCoME. In general, the initial state is stored
on the initialization of the model component’s main type in a field named state. In the cash desk
component this field has a constant value that declares the initial state. In other cases the field
is written via the constructor or indirectly using methods with varying names or name structures.
The program code has been adapted to follow the structure in the cash desk model component.

Transition Transitions are not consistently implemented in CoCoME. A transition is identified by setting the
state field to another value. In the cash desk model component this change happens directly in the
business logic. In other state-based model components this is achieved using a setter method.

→ target A transition’s target is identified by the value that is set as described for transitions.
Console Console components are packages that own a type ending with Console. The package and all of its

types belong to the component.

Table 10.3: The mapping of meta model elements to notations in the CoCoME case study
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based on integration mechanisms, these mechanisms had to be tailored. E.g. the operations of
interfaces have no annotation, although the mechanism Containment Operation expects one.

Architecture Model Transformations for the CoCoME Meta Model

A TGG was developed to translate between the CoCoME meta model and the IAL. The
complete TGG comprises 17 rules and can be found on the data medium attached to this thesis
(see Appendix B). The general scheme of the translation follows the same patterns as those
in the JACK case study between JEE and the IAL (see Section 10.1). The transformations
between the CoCoME meta model and the IAL are not bidirectional. The case study implied
the translation to PCM for preparing a simulation. Therefore bidirectionality was not enforced,
although it is conceptually possible.

Architecture Model Transformations for the Palladio Component Model

A TGG was developed to translate between the IAL and a subset of the PCM. The complete
TGG comprises 36 rules and can be found on the data medium associated with this thesis (see
Appendix B). The general scheme of the translation follows the same patterns as those in the
JACK case study between the IAL and the UML (see Section 10.1).

10.2.4 Model Simulation

The resulting model contains a PCM repository and a PCM system definition. Figure 10.13
gives an overview of the resulting PCM repository. Events are not included in the translation
to PCM in this case study. For also translating events, it would be necessary to create more
TGG rules. Figure 10.14 shows the derived PCM system, which, as an assumption, instantiates
each topmost component exactly once.
For executing a simulation, the model needs to be extended with a resource environment

model that contains the definition of connected hardware nodes with resource definitions,
an assembly model, that assigns component instances to these hardware nodes, and a usage
scenario model that describes an example usage scenario and a load definition.
For a meaningful simulation, PCM requires abstract behaviour specifications (Service Effect

Specifications (SEFFs)) with resource demands. This information is not subject to the transla-
tion in the case study. In the case study, minimal SEFFs were created, that only include a start
and an end node. Therefore abstract behaviour has to be manually added for a simulation.

10.3 Case Study: Specification Language Migration

When an architecture specification language evolves, or a new architecture specification lan-
guage emerges, an existing software system can be migrated to another architecture specification
language using Codeling. I.e. different views can be generated of the same program code, in
different architecture specification languages. In the CoCoME case study above, a PCM spec-
ification was extracted. In this case study, a UML specification of the CoCoME system (see
Section 10.2.1) is extracted. This is a case of architecture specification language migration.
The step 1 (Program Code to Translation Model) of the Explicitly Integrated Architecture
Process in this case study is equal to the corresponding step in the CoCoME to PCM case
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Figure 10.13: PCM Repository diagram of the CoCoME system, as it is extracted in the case
study. The diagram’s layout has been set manually.
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Figure 10.14: PCM System diagram of the CoCoME system, as it is extracted in the case study.
The diagram’s layout has been set manually.

study in Section 10.2. Therefore the same meta model, notations, and architecture model
transformations between the architecture implementation language and the IAL are applied.
Translations between the IAL and UML already exist from the JACK case study (see Sec-

tion 10.1). These transformations are, however, project-specific in their handling of composite
components. Therefore a new, more general TGG was derived from the JACK case study to
translate between the IAL meta model and the UML. The TGG in this case study translate
the architecture, basic and composite components, provided and required interfaces, and their
operations. Events have not been translated in this case study. For also translating events, it
would be necessary to create more TGG rules. Figure 10.15 shows the result of the translation:
a composite structure diagram which shows the topmost components: TrivialBankServer, the
composite components cashdeskline and inventory, and their provided and required interfaces
and subcomponents. The arrows with the keyword use are Usage relations in UML. Codeling
only extracts the model information. The layout has been applied manually. The arrows with-
out a keyword are ComponentRealization relations in UML. The complete TGG comprises ten
rules. They can be found on the data medium associated with this thesis (see Appendix B).
This case study shows that the change of an architecture specification language is possible

with CoCoME, and how this can be achieved. For changing the targeted specification language
in comparison to the CoCoME case study in Section 10.2, the only changes necessary are new
translations between the IAL and the targeted specification language. These translations can
be reused for other projects.

10.4 Case Study: Implementation Language Migration

When an architecture implementation language evolves, or a new architecture implementation
language emerges, an existing software system can be migrated to another architecture imple-
mentation language using Codeling. In this case study, an IAL view upon the CoCoME system
(see Section 10.2.1) is extracted and an architecture implementation in JEE is generated. This
is a case of architecture implementation language migration.
In this case study, only the steps 1 (Program Code to Translation Model), 2 (Inter-Profile
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Figure 10.15: The CoCoME architecture in an UML composite structure diagram

Transformations), and 6 (Translation Model to Program Code) are executed. Step 1 of this
case study is equal to step 1 of the CoCoME case study in Section 10.2. In step 2 instead of
targeting the UML for translation, the architecture implementation language JEE is chosen.
JEE provides only a flat component hierarchy, while the CoCoME architecture implementation
language uses a scoped component hierarchy. Therefore other inter-profile transformations are
executed. Steps 3 to 5 are omitted in this case study, because no architecture specification
language is involved. In step 6 the same TGG is applied as in the JACK case study in
Section 10.1. This includes the same architecture implementation language meta model and
notations.
The translation results in a new project within the Eclipse IDE, with an architecture skeleton

of CoCoME in JEE 7. The project contains request scoped CDI beans for each component,
following the translation for new components as shown in Figure 10.6. The beans provide their
respective interfaces and implement the necessary operations. Required interfaces are imple-
mented via CDI’s annotation Inject. The operation bodies are empty, because the operation
content is not part of the translation between the architecture implementation languages and
the IAL. All types are located inside a package named new_architecture_elements. The
CoCoME meta model (see Section 10.2.2) does not consider namespaces. Therefore no names-
paces can be propagated to the IAL. Namespaces could be added by adding notations for the
respective IAL elements.
The parent-child relationship between components in the CoCoME architecture cannot be

implemented in JEE, because JEE uses flat component hierarchies. In step 6, therefore a new
notation has been added to the notations shown in Table 10.2, to integrate the parent-child
relationship between components. Listing 10.8 shows the implementation of the composite
component CashDeskModel. It implements all provided interfaces of its children, and delegates
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the calls to their respective implementations. All child components are referenced using the CDI
annotation Inject. The annotation Child has been defined in this case study to be the notation
for representing the parent-child relationship in JEE program code, following the Annotated
Member Reference mechanism. The original CoCoME implementation, the migrated CoCoME
implementation, and all required transformations can be found on the data medium associated
with this thesis (see Appendix B).

1package new_architecture_elements;
2

3import javax.enterprise.context.RequestScoped;
4

5@RequestScoped
6public class CashDeskModel implements CashBox , ExpressLight , BarcodeScanner , Printer ,

UserDisplay , CardReader {
7@Inject @Child CashBoxModel cashBoxModel;
8@Inject @Child ExpressLightModel expressLightModel;
9@Inject @Child BarcodeScannerModel barcodeScannerModel;
10@Inject @Child PrinterModel printerModel;
11@Inject @Child UserDisplayModel userDisplayModel;
12@Inject @Child CardReaderModel cardReaderModel;
13

14public void open(){ cashBoxModel.open(); };
15public void close(){ cashBoxModel.close (); };
16public boolean isOpen (){ return cashBoxModel.isOpen (); };
17[...]
18}

Listing 10.8: Excerpt of the CashDeskModel as request scoped CDI bean. The code has been
reformatted for readability reasons.

This case study shows that architecture implementation migration is possible with CoCoME.
The implementation migration does not transfer the contents of the entry points to the new
implementation. These contents need to be manually transferred, which decreases the use of
the tool in this migration scenario. For changing the implementation language, the respective
architecture model transformations and translations from the Model Integration Concept need
to exist or be created. For this case study the same translations are used as in the case studies
in Section 10.1 (the JEE translations) and Section 10.2 (the CoCoME translations).

10.5 The Bidirectionality of Transformations

The Explicitly Integrated Architecture Process requires the existence of transformations be-
tween program code, architecture implementation models, and architecture specification mod-
els within the Model Integration Concept and the architecture model transformations. These
transformations should be designed to be bidirectional. Bidirectional transformations will re-
liably recreate the source model when transforming from a source model to a target model
and back again. The implementation of these transformations for the Explicitly Integrated
Architecture Process are specific to architecture languages. When the transformations are
not designed bidirectionally, a roundtrip from the code to an architecture language and back
without changing the target model might result in semantically changed code.
To support the implementation of bidirectional transformations in both the Model Inte-

gration Concept and the architecture model transformations, the implemented tools provide
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libraries and frameworks. The implementation of the Model Integration Concept includes a
framework for bidirectional model-code transformations (see Section 9.3.4). The framework
includes transformation types that aggregate both directions within one Java type. This struc-
ture suggests the development of bidirectional transformations. Based upon that framework,
bidirectional generic transformations for notations are made available in a library. When these
transformations use predefined abstract transformations for integration mechanisms, they are
automatically implemented bidirectionally.
For the implementation of architecture model transformations, Java helper types exist to

execute transformations using HenshinTGG. While triple graph grammars are not necessarily
bidirectional, they are meaningful candidates for bidirectional model-to-model transformations.
The use of bidirectional transformations between the code and architecture specification models
is therefore not enforced but assumed and supported. Therefore the requirement R4 can be
seen as fulfilled. The transformations implemented throughout this thesis use these libraries
and framework for creating bidirectional transformations. Not every transformation has been
developed bidirectionally. The original code of CoCoME inconsistently realizes architectural
concepts. This makes bidirectional transformations hard to achieve, However, bidirectionality
is not necessary in the CoCoME-based case studies of this thesis.

10.6 Resource Demand

The execution of the case studies suggested that the transformations can require considerable
execution times. The translation from the code to a UML representation in the JACK case
study required about 350 seconds on a MacBook Pro, with a 2.9 GHz Intel Core i7 CPU
and 8 GB 1600MHz DDR3 memory. The backwards translation of the changed model to
changes in the code required about 380 seconds. The code-to-model translations did not
contain information about operation parameters, because the translation required multiple
hours when parameters were also translated. The CoCoME case studies required 170 seconds
for the translation to the PCM, and 140 seconds to the UML. The migration of CoCoME to
JEE required about 210 seconds on the same machine. The tool Codeling uses a series of
code-to-model, model-to-code, and model transformations, including triple graph grammars
(TGGs), to achieve its goals. TGGs can be performance intensive. Forward and backward
translation rules from TGGs have a polynomial space and time complexity O(m× nk), where
m is the number of rules, n is the size of the input graph, and k is the maximum number of
nodes in a rule [SK08]. Therefore it is expected, that an increasing model size implies a higher
resource demand.
A resource demand test was executed during the development of Codeling, to find the

limitations of the implementation. The questions to be answered by the resource demand
study are:

1. Which architecture model sizes can be handled with a reasonable time and memory de-
mand?

2. Which parts of the implementation require the most resources?

The following sections first describe the setup of the resource demand study in Section 10.6.1.
The results are shown and discussed in Section 10.6.2.
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Project Size 1 10 20 30 40 50 60 70 80 90
Number of Model Objects 13 112 222 332 442 552 662 772 882 992

Project Size 100 200 300 400 500
Number of Model Objects 1102 2202 3302 4402 5502

Table 10.4: The number of model object in dependency to the notated project size of the
architecture implementation in the resource demand study

10.6.1 Study Setup

The study is set up as follows: A simple architecture implementation has been prepared. The ar-
chitecture implementation is based on the EJB architecture implementation language, that has
also been used in the JACK case study (see Section 10.1). The program code of the implementa-
tion is shown in Listings 10.9 and 10.10. The architecture implementation comprises one project
with two beans in the same package. The stateless EJB Session Bean package1.Provider1
contains two empty operations operation1a and operation1b. The stateless EJB Session
Bean Requirer1 also contains two operations operation1a and operation1b. Additionally, it
contains a reference to the provider using the EJB annotation. This project contains 13 archi-
tecture elements in the architecture implementation language model: 1 Architecture, 1 Archive,
1 Namespace, 2 Session Beans, 4 Operations, and 4 Operation Parameters as return types.

1package package1;
2

3import javax.ejb.Stateless;
4

5@Stateless
6public class Provider1 {
7public void operation1a () {}
8public void operation1b () {}
9}

Listing 10.9: The Provider type in the
resource demand study

1package package1;
2

3import javax.ejb.EJB;
4import javax.ejb.Stateless;
5

6@Stateless
7public class Requirer1 {
8

9@EJB
10Provider1 provider;
11public void operation1a () {}
12public void operation1b () {}
13}

Listing 10.10: The Requirer type in the
resource demand study

To evaluate the memory and time demand for increasing input model sizes, increasingly
bigger projects were generated based on that basic project. THe basic project has 1 provider-
requirer pair, hence the project size is declared to be "1". The project size was increased
as follows: First the basic project is copied to a new directory with a name that includes the
targeted project size. Second, the project meta data was updated to reflect the new name. This
is required for the projects to be usable within the Eclipse IDE. Then the package package1 was
copied n times, where n is the targeted project size. The name of the newly created packages is
packagei with i = 1..n. The numbers in the name and file name of the Provider and Requirer
types were changed accordingly. Table 10.4 shows the number of architecture elements in the
input model for each generated project size. The project size n therefore means that the project
contains: 1 Architecture, 1 Archive, n Namespaces, 2n Session Beans, 4n Operations, and 4n
Operation Parameters as return types. The number of elements in a project of the size n is
11n+ 2.
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Independent variables in the study are the amount of elements in the architecture implemen-
tation. Dependent variables are the translation time and the memory demand in terms of the
Java heap size, that is used during the translation. Each project was translated with Codeling
from code via the JEE meta model (see Section 10.1.2) to a UML representation in an auto-
mated JUnit4 test case. The transformations of the JACK case study (see Section 10.1) were
used. Each project size was translated five times. The automated tests measured the execution
time, and stored the result and intermediate models. A test run included the automated exe-
cution of five translations in a sequence of Each test run was executed manually, and profiled
with JProfiler5. JProfiler was configured to only collect a minimal data set (including the CPU
load and heap size), resulting in a small footprint during the measurement. Before each mea-
surement, a warm-up phase was executed, in which the basic project was translated once. This
ensures that all meta models and translation rules are loaded before the measurement. After
the measurement, the heap size histogram was exported as CVS file. The histogram relates the
used heap size to the uptime of the Java process under test. For finding the maximum heap
size of the translation in the histogram, the automated tests also stored the uptime of the Java
process at the start of the translation, and the uptime at the end of the translation. Therefore
the size of the used heap can be ignored for the parts of the test case, when no translation was
executed.
The computer used for the measurements was a MacBook Pro, with a 2.9 GHz Intel Core

i7 CPU and 8 GB 1600MHz DDR3 memory. For ensuring that the Java runtime has enough
heap available, the following arguments were provided to the Java Virtual Machine: -Xmx4g
-Xms4g. The virtual machine thus always had 4 GB of memory available for the heap.

10.6.2 Test Results and Discussion

The results of the measurements are aggregated in the Figures 10.16 for the duration of
the translation, and 10.17 for the maximum heap size during the translation. Both show
boxplot [HDFt17] diagrams, that group the results by the project size on the x-axis. For each
value in the x-axis, the box extends from the lower to the upper quartile. The line within a
box shows the median value. The vertical lines, that extend the boxes (the whiskers) show the
extension of the lower and the upper quartile. Outliers are shown as circles below or above the
whiskers. The single data points of all measurement runs can be found on the data medium
attached to this thesis (see Appendix B). The x-axis of these diagrams is non-linear.
The resource demand study has shown that memory demand is in general not a problem

in Codeling. Even though the Java Virtual Machine had 4 GB of memory available for the
heap, the memory usage did not increase significantly between the increasing project sizes. The
translation used a maximum of 2 GB of memory. For this project size the time required for
the translation is more critical than the memory demand. During each single test run, the
heap required for the translation increased slowly, suggesting that a memory leak might exist.
In translations with greater input size, the memory demand in some test runs was decreased.
The test runs with the project size 400 and 500 had a lower median memory demand, than the
test run with the size 300, while also having a wider spread. We believe that during some of

4JUnit – A framework for automated tests in Java – http://junit.org
5JProfiler – A profiling tool for Java programs – https://www.ej-technologies.com/products/jprofiler/
overview.html
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Figure 10.16: Boxplot diagram of the time required for the translation (with non-linear x-axis)

the long running test runs the garbage collection of the Java virtual machine cleaned the heap.
It has to be stated that the memory footprint includes the complete Eclipse platform, that is
used to execute the translations.
The bottleneck of the implementation is the time resource demand of the TGGs. With an

increasing model size, the time required for executing the TGGs increased exponentially (as
expected). Figure 10.18 shows the CPU load during the translation of a project with the size
300. The figure highlights the steps of the Explicitly Integrated Architecture Process in the
time line. The CPU load shows that the most time is spent in the TGG transformations, and
that these transformations create a load of about 25% on the CPU. The computer used for the
case study has 4 CPU cores. It can be assumed that these transformations are executed in a
single thread.
The questions, on which the resource demand test is based, can be answered as follows:

1. Which architecture model sizes can be handled with a reasonable time and memory de-
mand?

The memory demand of the implementation is considered to be not critical. The interpre-
tation of the term "reasonable time" depends on the use case. For a daily use within an
IDE by developers or architects, a translation time of some seconds, up to a small number
of minutes can be acceptable, when the translation does not block other activities in the
IDE. On the given computer, which can be seen as a typical development computer at the
time of writing, the translation of an architecture implementation with 90 architecture
elements took on average about 34 seconds. This can be considered to be within the
desired range in this use case.

When the implementation is used for documentation purposes, communication, or (pos-
sibly automated) analysis on a dedicated server, higher time resource demands may be
acceptable. On the given computer, the translation of an architecture implementation
with up to 200 elements took on average about 4,6 minutes. This can be considered to
be within the a reasonable range in this use case.
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Figure 10.17: Boxplot diagram of the maximum heap required for the translation (with non-
linear x-axis)

2. Which parts of the implementation require the most resources?

The performance monitoring shows that the main time of the translations is spent within
the TGG transformations. TGGs were chosen for Architecture Model Transformations
in the Explicitly Integrated Architecture Approach, because they make it easy to create
bidirectional transformations. The approach is not limited to TGGs, but can e.g. also use
(non-TGG) graph transformation tools. Therefore it might be reasonable to compare the
performance of the used HenshinTGG implementation with other TGG implementations,
or to use another concept for bidirectional model transformations.

Independently from the implementation, TGGs have polynomial complexity with the size
of the input graph as base and the maximum number of nodes in a rule as exponent. The
input models in a Codeling translation are usually not easily changeable in a given project. We
therefore encourage users that implement TGG rules for Codeling, to focus on developing rules
with as few nodes as possible. All artefacts of the resource demand study—the basic project,
the automated tests used for execution (which also generate the bigger projects as test input),
all intermediate and result models, and all monitoring data sets, can be found on the data
medium attached to this thesis (see Appendix B).

10.7 Discussion

The goal of the evaluation is to show whether the objective stated in Section 1.6 has been
achieved. This is achieved by answering the corresponding questions.

R1 Bridge the gap between software architecture specification languages and implementations
thereof.

For evaluating whether R1 is met, the following questions have to be answered:

Q1.1 Does a semantic equivalence relation exist for explicit commonalities?
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Explicit commonalities has been described in Section 1.4 to be first class elements in both
the specification and the implementation. The Explicitly Integrated Architecture approach
supports the definition of equivalence relations for explicit commonalities with these means.
The existence of semantic equivalence relations for explicit commonalities can be argued in

the context of specific language integrations of the Explicitly Integrated Architecture approach.
Explicit commonalities have been translated in each case study. An example of such a trans-
lation is the translation of session beans into UML components in the JACK case study (see
Section 10.1). Both are considered declarations of component types in the context of this case
study. An equivalence relation has been created by implementing transformation in the sense
of the Model Integration Concept and architecture model transformations towards the IAL, as
well as architecture model transformations between the IAL and the UML.

Q1.2 Does a semantic equivalence relation exist for specifications that are translated into com-
posed implementation structures?

These commonalities between architecture implementation and specification languages have
been described in Section 1.4 first class elements in a specification, that can be mapped to
composed structures in the architecture implementation, which are considered equivalent. The
Explicitly Integrated Architecture approach supports the definition of equivalence relations for
the said commonalities.
Analogously to Q1.1, the existence of semantic equivalence can be argued in the context

of specific language integrations of the Explicitly Integrated Architecture approach. Such
commonalities have been translated in each case study. An example of such a translation
is the translation of (childless) components in the CoCoME case study (see Section 10.2) into
a basic component of the PCM. Both are considered declarations of component types in the
context of this case study, but the implementation of such a component in CoCoME is a
complex of composed program code elements. An equivalence relation has been defined using
transformation in the sense of the Model Integration Concept. The resulting model element is
translated to the PCM via the IAL using architecture model transformations.
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R2 Take the differences of architectural specification and implementation languages into ac-
count.

Q2.1 Do program code representations exist for specification details, that had no representation
in the implementation before?

Program code representations exist for specification details, that have no representation in
implementation languages. In the Explicitly Integrated Architecture approach, translations
between the IAL and the program code are explicitly considered.
In the JACK case study the UML has been used to annotate operations of interfaces with a

time resource demand. The JEE meta model does not provide means to notate this quality at-
tribute. The time resource demand represents a specification detail, that cannot be represented
in the implementation language. The approach supports to execute bidirectional model-code
transformations between the translation model and the program code. Such a translation was
developed, based on an integration mechanism shown in Chapter 5, to create the mapping
between the architecture specification model and the code. This translates a specification
detail—the specified time resource demand—into a program code representation.

Q2.2 Are implementation details, that have no representation in the specification, preserved
during changes in the specification?

Implementation details, that have no equivalent element or structure in the specification,
are preserved during changes. The Explicitly Integrated Architecture approach handles such
implementation details via the entry points in model notations (see Section 5.5). Entry points
are places in the bidirectional model-code mappings, that can be enriched with arbitrary
program code. Examples are method bodies in which a detailed behaviour can be implemented,
or type declarations that can include arbitrary member attributes and operations.
In the JACK case study the component MyAccount is renamed in the UML diagram to

AccountDetailsView. The change is propagated to the code, where it results in a renaming
refactoring upon the type declaration that represents the UML component with an EJB session
bean. The code in the type’s body— which is part of the entry point— remains unchanged.
The detailed implementation in the entry point survived the change operation within the
specification. Therefor it is considered to be integrated with the specification.

R3 Provide a single source of information for architecture descriptions.

For evaluating whether R3 is met, the following question has to be answered:

Q3.1 Does a single source contain all implemented and specified architecture information?

The program code suffices as single source of information for architectural aspects. In the case
studies, all desired architecture specification elements could be extracted from the program
code. The Explicitly Integrated Architecture approach can be used to integrate architecture
information that can be represented with languages that comply to the definitions of languages
stated Chapter 5. The IAL is designed as an extensible language, so that arbitrary architectural
concepts can be integrated, as long as they are expressible with the definition of languages and
profiles (see Chapter 6).

R4 Create bidirectional translations between the architecture specification and the implementa-
tion.
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Q4.1 Can specification views be derived from program code?

In the case studies JACK, CoCoME, and specification migration (see Section 10.3), specification
views have been derived from the program code.

Q4.2 Are changes in the derived specification views propagated to the program code?

Changes in the derived specification view can be propagated to the program code. This
bidirectionality is not enforced by the approach, but the use of TGGs and the implemented
framework for transformations in the context of the Model Integration Concept support the
bidirectionality. Bidirectionality has to be implemented in the specific language integrations. In
the JACK case study, elements were added, changed, and removed the specification view. The
program code is automatically changed by Codeling to reflect the changes in the specification.
Section 10.5 discusses the implementation of bidirectionality in the approach.

R5 Prepare for architecture specification and implementation language emergence and evolu-
tion.

Q5.1 Can multiple architecture implementation and specification languages be used with the
approach?

Multiple architecture implementation and specification languages can be used with the ap-
proach. In the different case studies, translations between multiple languages have been exe-
cuted. The JACK case study translates between a subset of the Java Enterprise Edition and ar-
chitectural concepts in the UML. The CoCoME case study translates between a project-specific
architecture implementation language and the Palladio Component Model. The specification
migration case study translates between CoCoME’s architecture implementation language and
the UML. Another modelling style was used in the UML in this case study, to better reflect
the necessity of the specific project. In the implementation migration case study, the CoCoME
implementation was translated into a the JEE architecture implementation language.
For adding further languages, the IAL is designed as intermediate language. For adding

further languages, a meta model has to be created, and bidirectional architecture model
transformations between the new language and the IAL have to be developed. For new
architecture implementation languages, new bidirectional model-code transformations of the
Model Integration Concept are necessary. Codeling supports the definition of these translations
with libraries and a code generation tool. The IAL has been designed to be extensible with
profiles, so that new architectural concepts can also be integrated into the translation.

Q5.2 Are languages weakly coupled with other languages in the approach?

Translations for languages, that are translated with the approach presented in this thesis, are
weakly coupled via the IAL. The IAL serves as intermediate language, so that bidirectional
transformations only have to be developed between the new language and the IAL. The
translations developed for the case studies serve as demonstrators for this aspect.
As described above, all questions for evaluating whether the requirements have been met can

be answered with yes. For some requirements, constraints have to be discussed: The evaluation
shows that it is possible to bridge the gap between architecture specification languages and
implementations thereof (R1), by applying it to a set of case studies, which translate explicit
commonalities.
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The approach creates a single source of information for architecture descriptions (R3). In the
case studies this becomes visible, because the original information is in the program code, and
the model information is derived from the code. In the second case study, information has to be
added manually to the PCM for executing a simulation. This architecture information might
also be integrated with code if desirable, by exploiting the integration mechanisms described
in Section 5.6. Therefor notations have to be created for integrating IAL information with the
code. Codeling is prepared for such operations, as it has been shown in the running example in
Section 9.1 and Section 9.2.1, where component hierarchy information has been integrated with
EJB code, although hierarchies are not part of that architecture implementation language.
The bidirectionality of translations (R4) depend on the implementation of the transforma-

tions. As argued in Section 10.5, bidirectionality is not enforced, but supported and encouraged
by the approach. It has to be implemented in the specific language integrations. It has been
shown in the case studies, that architecture specifications can be derived from the program
code. The JACK case study specifically shows that changes in the specification can be prop-
agated back to the program code. The case studies use subsets of the JEE, UML, and PCM,
as well as a project-specific architecture implementation languages for translation. The UML
and the JEE are complex languages, with great degrees of freedom how to use and combine
their elements. In UML, even the semantics are in large parts subject to agreement within
a team. In the case studies, specific subsets of these languages are used with a specific style
of modelling. When not just subsets of the languages should be translated, but the complete
languages, it can be expected, that bidirectionality is harder to achieve.
The approach has been evaluated in four case studies based on two different systems, one real

world system in development, and the codebase of an academic case study, to show that the
approach is prepared for multiple architecture specification and implementation languages. The
handling of architecture specification and implementation language evolution and emergence
(R5) is shown in two case studies in the sections 10.3 and 10.4. The translations of the language
are loosely coupled via an extensible intermediate language.
At last, the approach should take the difference of architecture specification and implemen-

tation languages into account (R2). This has been shown by executing the approach upon
languages that model different aspects. Specification details without a representation in the
program code could be integrated with the program code using the notations of the Model
Integration Concept. The integration of implementation details with the specification has been
shown with the JACK case study, where implementation details have not been lost during
change operations.
The translation between the IAL and the UML in the first case study has shown that a

generic transformation between the two languages has little value, but a project or at least
domain-specific translation should be strived for. In the JACK case study, a project-specific
translation was created to respect the wishes of the project team. The developed translations
are a tailored set of translations of the third case study, which decreases the complexity
of developing the translation. In the case study for architecture implementation language
migration (see Section 10.4), a more generic translation has been developed for JEE. It seems
to be promising to develop domain-specific architecture model translations, e.g. for business
information systems in JEE, and adapt these blueprints to the project specific needs.
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The evaluation has shown that the objective stated in Section 1.6 is achieved by the presented
approach. In practice, four types of activities are enabled in this thesis:

Bottom-Up Extraction An architecture specification can be extracted from program code, as
shown in the case studies in the sections 10.1, 10.2, and 10.3.

Top-Down Integration An architecture specification—or changes in an extracted
specification—can be integrated with the underlying program code. The program code
can be empty, so that a completely new implementation is created. The changing of an
extracted specification has been shown in the JACK case study in Section 10.1.

Specification Migration When an architecture specification language evolves, or a new archi-
tecture specification language emerges, it might be desirable to use the new architecture
specification language with an existing software system. This specification language mi-
gration process has been shown in the CoCoME to UML case study in Section 10.3.

Implementation Migration When an architecture implementation language evolves, or a new
architecture implementation language emerges, it might be desirable to migrate an ex-
isting software system to the new architecture implementation language. This has been
shown in the CoCoME to JEE case study in Section 10.4.
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11 Conclusion

This chapter summarizes the contribution of this thesis in Section 11.1 and discusses the
assumptions and limitations of the presented approach and its implementation in Section 11.2.
Future work is discussed in Section 11.3.

11.1 Contributions

The essence of the challenge underlying this thesis is that software architecture information
is spread across the implementation and adjacent model specifications, partly redundant, and
without defined mapping between the implementation and the specification. This redundancy
and lack of well-defined mapping is seen as a gap between the software architecture implemen-
tation and specification in this thesis. The objective of this thesis is stated in Section 1.6 as
follows:

The development of concepts for bridging the gap
between software architecture specification and implementation

This thesis presents the following contributions for achieving this objective.

11.1.1 Model Integration Concept

This thesis presents the Model Integration Concept for integrating model information with
program code. It defines meta model notations as formal mappings between meta model
elements and program code structures, and model notations between model elements and
program code structures. A set of integration mechanisms are described and discussed as
templates for notations.
A tool has been implemented to generate program code based on the integration mechanisms.

Based on a relation between meta model elements and integration mechanisms, it generates
program code for meta model notations, transformations between model elements and program
code structures, and runtime stubs. Program code for meta model notations is linked by
program code for model notations to define that the code structures represent model elements.
This generated code is reusable and can be made available in libraries. Transformation types are
Java types of the transformation framework for the Model Integration Concept. The framework
organizes the concurrent execution of transformations for the Model Integration Concept. The
transformation types imperatively describe the translation between models and code structures.
Runtime stubs for model notations can be used to create and manage runtime instances of
models that have been expressed as program code structures. The model’s runtime semantics
can be implemented in these stubs.
The Model Integration Concept is the main driver to create a single source of architecture

descriptions (requirement R3), and to create bidirectional translations between architecture
specification and architecture implementation languages (R4).
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11.1.2 Intermediate Architecture Description Language

The Intermediate Architecture Description Language (IAL) defined in this thesis is a language
for a translation model between architecture implementation languages and architecture speci-
fication languages. It has a small kernel, which is extended by optional, and in parts mutually
exclusive profiles. These profiles describe modelling aspects of architectures such as different
kinds of component hierarchies, communication, or quality aspects. The language is designed to
be extensible with further profiles, to express further aspects of software architecture modelling.
This thesis provides translations between mutually exclusive profiles, which allows to translate
translation models into multiple architecture implementation or specification languages, even
if they use mutually exclusive kinds of architectural descriptions. No information is lost during
such a translation.

11.1.3 Explicitly Integrated Architecture Process

The Explicitly Integrated Architecture Process describes an approach for creating a view upon
program code, that is expressed with an architecture specification language. Changes in this
view are be propagated to the code. The specification models can be derived from the program
code, which renders the program code the leading source of information for the architecture.
The process makes use of the Model Integration Concept to extract architecture model

information from the program code, and translates the findings into an architecture specification
language via a translation model. Changes in the specification model are propagated via the
translation model to the program code, which is changed accordingly.
The process uses the IAL as language for the translation model. As no information is lost

during the translation between mutually exclusive profiles, the process can e.g. translate hierar-
chical component architectures into flat architectures without loosing the hierarchy information.
The hierarchy still exists when model changes are propagated to the program code. Using the
IAL and the Model Integration Concept, the Explicitly Integrated Architecture Process bridges
the gap between architecture specification and implementation languages (R1). The IAL is able
to express even mutually exclusive architecture information. The process can therefore take
the differences of architectural specification and implementation languages into account (R2).
It also enables the process to translate an implementation into different specification or imple-
mentation languages via its extensible set of profiles (R5).
A tool Codeling was implemented to execute the process. Codeling includes a framework

for executing transformations of the Model Integration Concept and for adding architecture
model transformations for architecture implementation and specification languages. In the
evaluation, the process has been executed for two existing programs. One case study describes
the translation of a real world program (JACK 3) that complies with the Java Enterprise
Edition to UML composite structure diagrams. In the case study a new component is added
to the program, which is then reflected in the program code. In the second case study, the
original CoCoME implementation, a Java program following a project-specific architecture
implementation style, is translated into a PCM model, which allows for executing performance
simulations. In the third case study, an architecture specification language migration was
executed, by translating the same CoCoME program code to UML as another specification
language. The fourth case study shows an architecture implementation language migration,
where the CoCoME program code is migrated to the JEE.
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11.1.4 Bridging the Gap between Software Architecture Specifications and
Implementations

Section 1.5 stated, which aspects of the software engineering process can benefit from a solution
to the stated problem. Correspondingly, this thesis supports the software engineering process
as follows:

The consistency of the architecture implementation and specification are improved:
Codeling uses program code as single underlying model for architecture information.
The consistency between the architecture implementation and specification are created
by the construction and execution of architecture model transformations as well-defined,
complete mappings. There is no need for consistency checks between the representations.

Consistency can not only be broken between multiple views, but also within a single view.
The program code as single underlying model in this approach is a complex view. The
Model Integration Concept supports the consistency of architecture information within
the program code in two ways: first, the programming language’s abstract syntax is used
in combination with the validation features of compilers, and formally defined notations
to enforce and support the consistency of dependencies between different artefacts. E.g.
when the Model Integration Concept defines that a model object is represented as a type
declaration, and its reference is represented with a member of that type, it ensures, that
the ownership is unambiguously defined. Second, the proximity of information is used
to support consistency, e.g. when performance annotations are attached to operations,
it suggests to revisit the performance declaration, when the operation’s content changes.
Codeling therefore enforces and supports the consistency of architecture views by using
the approach of a single underlying model.

Architecture implementations and specifications survive language evolution: When
architecture implementation or specification languages evolve, or new languages emerge,
a migration might become necessary. Codeling supports the migration between
architecture languages with well-defined mappings between the implemented or
specified architecture and the IAL in terms of model transformations. New or evolved
languages can be included in the Explicitly Integrated Architecture Process by defining
translations between the corresponding language and the IAL. When necessary, new
IAL profiles can be created. Therefore Codeling makes the handling of architecture
meta model evolution easier with a structured process.

The understandability of the architecture is increased: In Codeling the program code is the
single underlying model. Every other architecture view is derived from the program code.
Therefore the program code is the only original source of architecture information. Trans-
lations into specification language are formally defined and can be executed for creating
abstract architectural views upon the system. Codeling increases the understandability
by reducing the number of views to be identified, found, and understood.
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Four activities are possible using the approach presented in this thesis.

Bottom-Up Extraction Architecture specifications can be extracted from program code, de-
spite the differences between architecture specification and architecture implementation
languages.

Top-Down Integration Architecture specifications—or changes in an extracted specification—
can be integrated with the underlying program code, also despite the differences between
architecture specification and architecture implementation languages.

Specification Migration When an architecture specification language evolves, or a new archi-
tecture specification language emerges, the specification language used to represent the
program can be changed.

Implementation Migration When an architecture implementation language evolves, or a new
architecture implementation language emerges, the architecturally modelled aspects of
the program can be migrated to the new architecture implementation language.

This thesis’ objective—to create a concept for bridging the gap between architecture imple-
mentation and architecture specification languages—is considered to be achieved due to the
successful evaluation of the approach.

11.2 Assumptions and Limitations

The following assumptions and limitations apply to the approach and its implementation.

Component-based Development

The programs developed, evolved, or maintained with this approach are assumed to be devel-
oped based on interconnected components. The Intermediate Architecture Description Lan-
guage’s kernel expects the definition of component types, which provide and require interfaces.
Therefore the least common denominator of architectural information must describe these arte-
facts.
The approach does not require the involved languages to model components explicitly. It

suffices when abstractions of the architecture implementation or specification language are
mappable to components and interfaces. E.g. languages based on service-oriented architecture
descriptions can be used when the services are mapped to components providing and optionally
requiring interfaces.
It is also possible to not translate a complete architecture. For example the profile for state-

machine-based component types can be extracted separately, to analyse and change the state
machines in tools that only handle state machines, not architectures. Due to the properties of
the IAL translation model, the information about the ownership of the state machine can be
preserved.

Implementation with One Language

The Explicitly Integrated Architecture Process and its implementation assume that an underly-
ing program’s architecture is implemented using a single architecture implementation language.
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In large programs this is often not true. In the current implementation of the tool, the imple-
mentation language for the complete architecture is declared by the user.
When multiple implementation languages are used, it must be necessary to distinguish

between the architecture languages used in the program. Therefore unambiguous program
code structures should be used to identify the language in use, e.g. based on IDE projects,
subdirectories, or component type implementations. The mapping between program code and
the IAL must then include translations for all of these languages. The user should have an
interface to decide, which implementation language is to be used for each element in the
translation. The approach could suggest a language, based on the code (when model views
are created from the code) or based on the model element’s context (when a changed model
view is translated into code). In the end, the user must decide which language to use. This
is necessary to change the implementation language of an existing element or to decide which
implementation language should be used for new elements.

Definition of Programming Languages

The definition of programming languages is one of the foundations of the Model Integration
Concept. It is inspired by current object-oriented programming languages, specifically Java.
The integration mechanisms and notations used in this thesis make heavy use of annotations
and interfaces in the definition of programming languages. Therefore the existing mechanisms
cannot be mapped to languages which do not support these elements.
For such programming languages to be used with the approach, it is possible to adapt the

definition of programming languages. New integration mechanisms and notations can be defined
based a new definition of programming languages, without further implications upon the general
approach.

Definition of Modelling Languages

The definition of modelling languages is based on a subset of Ecore. The definition implies
a meta modelled modelling language. Therefore, the presented approach is not applicable for
modelling languages, that are not based on meta models, but e.g. on ontologies, without
creating a meta model first. In the case studies, that were executed during this thesis,
meta models of the architecture implementation languages had to be created beforehand. In
the JACK case study (see Section 10.1) the meta model was created based on the textual
specification [Ora13b]. In the CoCoME case study (see Section 10.2) the meta model was
created based on a manual program code analysis.

Four Case Studies

The evaluation has shown that the objective has been achieved, by executing four case studies.
The JACK case study (see Section 10.1) is based on a real life program in development –
independently from this thesis’ author – at our academic working group. The CoCoME case
studies are based on a common benchmark software for software architecture research. Both
programs are from the domain of information systems, which implies that their architectures
in general follow similar quality goals, and therefore differ from each other less than the
architectures of programs of two different domains.
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The approach should be evaluated with further real life programs of further domains, for get-
ting more detailed insights regarding the applicability and the necessity to adapt the approach
to industry needs.

Contents of Entry Points in the Implementation Migration

During the implementation migration scenario presented in the case study in Section 10.4,
the contents within the entry points of model notations have not been transferred to the new
implementation. Conceptually this content can be transferred by creating a mapping between
the entry points of the architecture implementation languages. Technically, the tool Codeling
should be extended to exploit such an explicit mapping, or to transfer entry point contents
where possible. The mapping might not always be possible. E.g. when an architectural object
is represented with a type declaration in the source language, and with an interface declaration
in the target language, no feasible target exists to transfer member attributes or references to.

Performance Evaluation

The performance evaluation has been executed with one model, which has been extrapolated
to simulate bigger models. The measured performance is therefore only valid for the given
model with its specific characteristics. Such characteristics include the proportion between the
number of objects and the number of references between objects, and the proportion between
the fan-in and the fan-out of objects.
For gaining a deeper insight into the performance characteristics of the prototype imple-

mentation, the performance should be evaluated with further models, that have with different
characteristics.

Project-Specific Translations

It is desirable to have generic transformations for specific architecture implementation and
specification languages. The architecture model translations for architecture implementation
languages developed during the case studies are generic in large parts. Some parts, e.g. the
component hierarchy expressed in IDE projects in the JACK case study (see Section 10.1) are
project-specific, due to the project-specific needs in that case study.
In general it seems to be feasible to maintain a generic translation for a generic language

specification – for both implementation and specification languages – and adapt the transfor-
mation to project-specific needs. The case studies indicate that the more generic a language
can be used, the more difficult it is to create generic translations. As the UML is flexible to use,
hardly any generic transformations could be defined, but most of the translations are project-
specific. This imposes the question, whether project-specific transformations must be part of
the architectural description, and should therefore also be subject to the Explicitly Integrated
Architecture Process. However, this does not seem feasible.

11.3 Future Work

Besides the resolution of the limitations as described above, the following describes possible
future work based on the results of this thesis.
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Examination of Validity Constraints when Interweaving Integration Mechanisms

Notations for representing model elements can be interwoven, when one program code element
is part of multiple model notations. In the running example in Section 5.6.1, the state machine
and the component type are both mapped to the Type Annotation mechanism. This allows
for marking one single type at the same time a component type and its state machine, as it
is done in the running example for the component type CashDesk. This has implications on
the model notation. E.g. no references must exist, that target objects with equal names in
the classes ComponentType and StateMachine, that are both translated using the Annotated
Member Reference mechanism. In that case two member attributes would be created with the
same name, which is not valid according to Constraint 10. When notations are interwoven,
complex validity constraints arise. These constraints should be examined, for avoiding such
conflicts during the application of the approach.

Integration of Further Architecture Languages

This thesis describes the approach for working with integrated architecture specifications, and
evaluates the general approach with four case studies, which implies the development of trans-
formations for multiple architecture implementation languages and architecture specification
languages. The integration of further languages would enhance the utility of the implementa-
tion.
Therefor transformations for broadly used languages should be created based on their speci-

fications. These transformations can serve as a basis for possibly project-specific derivations.

Integration of Patterns and Styles

Prescriptive architecture models often define constraints for the architecture. Some of these
constraints are in the form of patterns and styles, that are used to build the architecture. Such
patterns and styles imply certain behavioural and structural constraints upon the architecture.
E.g. in a layered architecture [BMR+96], each component must belong to a layer, and the
communication paths between the layers are constrained.
Patterns can be described as roles in architectures, as done e.g. in the work of Durdik [Dur16,

Section 4.2.3.2]. In Durdik’s thesis, component and connector roles can be assigned to compo-
nent types and connectors in the architecture. With this basis, analyzers can validate, whether
the patterns and styles are not violated. When the translation and analysis is executed within
an IDE, it is also possible to inform developers about such violation during the program code
development.

Consideration of Imperative Behaviour

In the current state of the approach and the corresponding tool, behaviour implementations
within operation bodies are not considered during translations. The Model Integration Concept
does not provide any abstract syntax elements for statements and expressions, and in the
IAL neither the kernel, nor any existing profile contains elements for representing this kind
of behaviour. For including behaviour implementations within operation bodies, the Model
Integration Concept needs to be extended with corresponding elements and their relations.
During the architecture model translations, the implemented behaviour could be translated
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11 Conclusion

into a generic behaviour language representation and back. Such a language profile must be
created for the IAL in that case.
From a practical point of view, the translation into a generic behaviour language seems to

be not feasible. Instead, the implemented behaviour—including related member attributes and
references—could be stored as text. The behaviour can then be analyzed, e.g. regarding its side
effects on security relevant data, using language specific analysis tools; or directly translated
into specification languages such as the abstract behaviour specifications SEFFs from the PCM.
This approach would also increase the benefit of implementation language migrations, when the
architecture implementation language is based on the same programming language, because the
implemented behaviour could be transferred to the migrated architecture implementation. This
would certainly not result in a reasonable functionality in most cases, because a relationship
between the architecture implementation language and the implemented behaviour usually
exists. It would, however, be a better starting point for migrating the behaviour, than the
current state, where no behaviour implementation is transferred.

Software Engineering Process Integration

The implementation of Codeling allows for extracting a specification model on demand within
the IDE. The extraction of model specifications could also be executed automatically in a
continuous integration or continuous deployment process. This could make visualization and
automated analysis of models available in a broader context of the software engineering process.

Run Time Support

The approach currently handles design time models. The generation of execution runtime
stubs (see Section 9.3.5) is a basis for creating runtime fragments for model elements, which
are related to an integration mechanism. This does not imply the automated creation of run
time models.
The generated execution runtime stubs could be extended with functionality to maintain a

run time model of the architecture, where each object, attribute, and reference has a relation
to its type. The use of the implemented execution runtime fragments would then manage a run
time model, which can be the basis e.g. for automated monitoring and adaptation.

Extension to Further Domains

The case studies presented in this thesis are both from the information systems domain. The
architectures in this domain usually have specific common characteristics. This is a threat to the
generalisability of the approach. In other application domains not only other implementation
and specification languages are used. It is also expected to be necessary to declare further
profiles in the Intermediate Architecture Description Language, that handle the architectural
aspects modelled in these domains.

Further Realistic Case Studies

Of the four case studies presented in this thesis, the first (JACK 3, Section 10.1) has a real life
program as a subject, while the others use an artificial, but close to realistic system as a basis.
To raise the external validity, further case studies should be performed on real life programs.
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11.3 Future Work

Final Remarks

To conclude, this thesis bridges the gap between architecture implementation languages and
architecture specification languages by creating formalized mappings between code structures,
architecture implementation models, and architecture specification models. It builds upon
component-based software engineering, meta modelling, and model transformations. With the
presented approach, architectures can be extracted from the program code and represented
in specification languages for analysis, simulation, and for understanding and changing the
models on a high abstraction level. Changes can be automatically propagated to the program
code, even if the architecture implementation language cannot express one some of the modelled
aspects. The specification models are not necessary as separate artefacts anymore, which leaves
the program code as leading source of architecture information.
This thesis can be seen as a step closer to tightly integrated views of different types in soft-

ware engineering, where inconsistencies between elements are resolved automatically. It does
point to limitations, where such a tight integration is not feasible, such as information origi-
nating from the run time of the software, but also shows the possibilities to integrate views,
and that there is still room for a deeper integration. It is a vision of mine, that tightly inte-
grated views, spanning from the expression of ideas to executed behaviour of specific structural
instances, can be managed and related without unhelpful redundancy. When software systems
can be designed, by using models of just the right abstraction, it will not be necessary to
invent workarounds in programming languages for implementing such abstractions. Just as
real life objects are often represented in object-oriented programming languages in professional
software engineering today, I would like to see that the abstract structural, behavioural, and
quality aspects of software can be developed in feasible languages, without the need to create
additional abstractions for these aspects in today’s programming languages. Current program-
ming languages should be used for what they are good at: describing detailed, algorithmic
behaviour. We can then focus on using appropriate languages for the more abstract aspects.
This thesis contributes to this vision: We create consistent views upon architectural elements
and their program code representations, with entry points for detailed design in program code.
We can now develop architectural aspects with architecture languages and detailed design in
programming languages.
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B Data Medium Content

This thesis is accompanied with a data medium, which contains the artefacts developed in its
context.

Dissertation This document as PDF document is contained in the main folder.

Program Code of the Developed Tools The program code of Codeling (see Section 9.2) is
in the folder sources/codeling. At the time of publishing this thesis, it is also available
online under https://s3gitlab.paluno.uni-due.de/ADVERT/codeling.

The program code of the code generation tool (see Section 9.3) is in the folder
sources/codeGenerator. At the time of publishing this thesis, it is also available online
under https://s3gitlab.paluno.uni-due.de/ADVERT/CodelingLanguageIntegrator.

Program Code, Transformations, and Models of the Running Example for Codeling The
transformations, meta model libraries, execution runtime, the original program code,
and the changed program code of the running example for Codeling in Section 9.2.1 are
in the folder sources/codeling/Language Integration/examples/running-example.
The extracted specification model, a changed specification model, and all intermediate
models can be found in the folder evaluation/running-example.

Program Code of the Case Study Subjects The program code of JACK 3—in the state
used in the case study in Section 10.1—is in the folder evaluation/case-studies/jack3.
At the time of publishing this thesis, this program code is not publicly available online.

The program code of CoCoME, as it is used in the case study in Section 10.2, is
in the folder evaluation/case-studies/cocome. The code has been adapted as de-
scribed in Section 10.2. At the time of publishing this thesis, the original program
code is available online under https://github.com/cocome-community-case-study/
cocome-plain-java. The adapted program code is online under https://s3gitlab.
paluno.uni-due.de/ADVERT/case-study_cocome-plain-java. The resulting program
code of the implementation migration case study (see Section 10.4) can be found in the
folder evaluation/cocome-in-jee.

Executables of the Developed Tools An Eclipse installation (for MacOS) and workspace for
executing the case studies in Codeling and for executing the code generation tool on the
running example are in the folder executable.

The workspace references the program code of the case study subjects for reevaluat-
ing the case studies. To do so, start the Eclipse installation using the workspace. The
case studies can be run automatically, by executing the corresponding JUnit run con-
figurations in Eclipse. They can also be run manually, by starting a client Eclipse
with the run configuration Codeling in Eclipse. In the client Eclipse you can select
the corresponding projects of the case studies (for JACK 3 the project jack3-core,
jack3-business, and jack3-webclient, for CoCoME the project cocome-impl), and
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B Data Medium Content

open the context menu with a right click on the selection. Then use the menu item
Start Explicitly Integrated Architecture Process to trigger a UI for selecting the
corresponding languages for translation. The translation is started when the languages
are chosen. When the translation is finished, the resulting model can be found in the file
architecture-carrying-code-temp/specification-model.xmi within the workspace.
When the model is changed as described in the case studies, and the changes are saved
within Eclipse, Codeling automatically starts the translation towards the code.

For executing the code generation tool as described in the running
example in Section 9.1, start a client Eclipse and right click the file
ejb-with-state-machine/metamodel/ejb-with-state-machine.ecore.
In the context menu select Generate Explicitly Integrated
Architecture Code, load the integration mechanism mapping from the file
ejb-with-state-machine.example/model/Mechanisms-Mapping.xml and click
Start to generate the initial meta model notations, transformations, and runtime
stubs. Please note that not all mechanisms have been implemented. Therefore
not every mechanism can be translated. The generated program code with all
necessary changes is already available in the top most ("host") Eclipse in the projects
ejb-with-state-machine.ial.mm (the program code for meta model notations),
ejb-with-state-machine.transformation (the transformations of the Model
Integration Concept), and ejb-with-state-machine.runtime (the execution runtime
stubs, extended with executional semantics).

The project ejb-with-state-machine.example uses the execution runtime in the Java
type org.codeling.example.ejbsm.CashDesk (see Section 9.3.5). For executing the pre-
pared execution runtime for EJBs with State Machines of the implementation’s run-
ning example (see Section 9.1), execute the run configuration EJB with State Machine
Example in the host Eclipse.

For executing the prepared model-code transformations, start a client Eclipse with
the run configuration Codeling. Within this client Eclipse right click the project
ejb-with-state-machine.example and use the context menu Start Explicitly
Integrated Architecture Process. The resulting model can be found in the file
architecture-carrying-code-temp/specification-model.xmi within the workspace.
When the model is changed and the changes are saved within Eclipse, Codeling
automatically starts the translation towards the code.

The translations for the JACK 3 case study (see Section 10.1) can be found in the following
files in the client Eclipse:

• The meta model for JEE of the JACK 3 case study is in the file
org.codeling.lang.jee.metamodel/metamodel/jee7.ecore. To see
a graphical representation of the meta model, double click on the file
org.codeling.lang.jee.metamodel/metamodel/representations.aird, expand
the tree completely and double click the tree element main.

• The translations of the Model Integration Concept can be found in
org.codeling.lang.jee.transformation/src/main/java.

• The TGG rules between the architecture implementation language and
the Intermediate Architecture Description Language can be found in
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org.codeling.lang.jee.transformation/src/main/resources/AIL2IAL.henshin.
To see the TGG, open the file with the TGG-Editor.

• The TGG rules between the Intermediate Architecture
Description Language and the UML can be found in
org.codeling.lang.jee.transformation/src/main/resources/AIL2IAL.henshin.
To see the TGG, open the file with the TGG-Editor.

The translations for the CoCoME case studies (see Sections 10.2, 10.3, and 10.4) can be
found in the following files in the client Eclipse:

• The meta model for CoCoME is in the file
org.codeling.lang.cocome.metamodel/metamodel/cocome.ecore. To
see a graphical representation of the meta model, double click on the file
org.codeling.lang.cocome.metamodel/metamodel/representations.aird,
expand the tree completely and double click the tree element main.

• The translations of the Model Integration Concept can be found in
org.codeling.lang.jee.transformation/src/main/java.

• The TGG rules between the architecture implementation language and
the Intermediate Architecture Description Language can be found in
the project org.codeling.lang.cocome.transformation in the file
/src/main/resources/AIL2IAL.henshin. To see the TGG, open the file with the
TGG-Editor.

• The TGG rules between the Intermediate Architecture
Description Language and the PCM can be found in
org.codeling.lang.pcm/src/main/resources/PCM2IAL.henshin. To see the
TGG, open the file with the TGG-Editor.

Program Code of the Resource Demand Test Project and Test Results The
program code of test project used in Section 10.6 can be found in the folder
sources/codeling/Examples/Resource_Demand/resource-demand-project_2.
The data collected during the tests, all generated models, and the scripts for data
aggregation and visualization can be found in the folder evaluation/resource-demand.

343





C Intermediate Language Profile Examples

C.1 Kernel

Figure C.1 shows an example model of the IAL kernel. Example 9 gives the formal definition
of this model.
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Figure C.1: Example model of the IAL meta model

Example 9: Example model of the IAL kernel

The exemplary modelMExample
Kernel , that instantiates the IAL kernel meta model, is formalized

as follows. Figure C.1 accompanies the definition as an overview.

LMeta = MKernel
Meta

O := {oArchitecture, oIWebshop, oIShoppingCart, oShoppingCart, oWebshop, oClient,

oShoppingCart
ComponentInstance, o

Webshop
ComponentInstance, o

Client
ComponentInstance,

oShoppingCart
Provision , oWebshop

Provision, o
Webshop
Requirement, o

Client
Requirement,

oShoppingCart
ProvisionInstance, o

Webshop
ProvisionInstanceo

Webshop
RequirementInstance, o

Client
RequirementInstance}
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The elements are named as follows:

name(oIWebshop) = IWebshop, name(oIShoppingCart) = IShoppingCart,
name(oWebshop) = Webshop, name(oClient) = Client,
name(oShoppingCart) = ShoppingCart

The following values and targets are assigned to attributes and references:

oArchitecture.interfaces
references−−−−−−−→ IShoppingCart,

oArchitecture.interfaces
references−−−−−−−→ IWebshop,

oArchitecture.componentTypes references−−−−−−−→ ShoppingCart,

oArchitecture.componentTypes references−−−−−−−→ Webshop,

oArchitecture.componentTypes references−−−−−−−→ Client,

oArchitecture.componentInstances references−−−−−−−→ oShoppingCart
ComponentInstance,

oArchitecture.componentInstances references−−−−−−−→ ComponentInstanceWebshop,

oArchitecture.componentInstances references−−−−−−−→ oClient
ComponentInstance,

oWebshop
ComponentInstance.type

references−−−−−−−→ Webshop,

oClient
ComponentInstance.type

references−−−−−−−→ Client,

oShoppingCart
ComponentInstance.type

references−−−−−−−→ ShoppingCart,

ShoppingCart.providedInterfaces references−−−−−−−→ oShoppingCart
Provision ,

Webshop.providedInterfaces references−−−−−−−→ oWebshop
Provision,

Webshop.requiredInterfaces references−−−−−−−→ oWebshop
Requirement,

Client.requiredInterfaces references−−−−−−−→ oClient
Requirement,

oShoppingCart
Provision .interface references−−−−−−−→ IShoppingCart,

oWebshop
Provision.interface

references−−−−−−−→ IWebshop,

oWebshop
Requirement.interface

references−−−−−−−→ IShoppingCart,

oClient
Requirement.interface

references−−−−−−−→ IWebshop,

oShoppingCart
ComponentInstance.provisions

references−−−−−−−→ oShoppingCart
ProvisionInstance,

oWebshop
ComponentInstance.provisions

references−−−−−−−→ oWebshop
ProvisionInstance,

oWebshop
ComponentInstance.requirements references−−−−−−−→ oWebshop

RequirementInstance,

oClient
ComponentInstance.requirements references−−−−−−−→ oClient

RequirementInstance,
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C.1 Kernel

oShoppingCart
ProvisionInstance.provision

references−−−−−−−→ oShoppingCart
Provision ,

oWebshop
ProvisionInstance.provision

references−−−−−−−→ oWebshop
Provision,

oWebshop
RequirementInstance.requirement references−−−−−−−→ oWebshop

Requirement,

oClient
RequirementInstance.requirement references−−−−−−−→ oClient

Requirement
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C.2 Operation Interfaces

Figure C.2 shows an example model of the profile Operation Interfaces. Example 10 gives the
formal definition of this model.
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Figure C.2: Example application of the profile Operation Interfaces

Example 10: Example application of the profile Operation Interfaces

The exemplary profile application MExample
OperationInterfaces, that instantiates the profile Op-

eration Interfaces, is formalized as follows. Figure C.2 accompanies the definition as an
overview.

P = POperationInterfaces

R = {MExample
Kernel }

O := {ogetNumberOfProducts, ocategory}

The elements are named as follows:

name(ogetNumberOfProducts) = getNumberOfProducts,
name(ocategory) = category

The stereotypes are applied as follows:

OperationInterface appliedTo−−−−−−→ IWebshop
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The following values and targets are assigned to attributes and references:

getNumberOfProducts.returnType hasV alue−−−−−−→ int,

category.type hasV alue−−−−−−→ java.lang.String,

getNumberOfProducts.parameters references−−−−−−−→ category,

IWebshop.operations references−−−−−−−→ getNumberOfProducts
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C.3 Event Interfaces

Figure C.3 shows an example model of the profile Event Interfaces. Example 11 gives the formal
definition of this model.
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Figure C.3: Example application of the profile Event Interfaces

Example 11: Example application of the profile Event Interfaces

The exemplary profile application MExample
EventInterfaces, that instantiates the profile Event

Interfaces, is formalized as follows. Figure C.3 accompanies the definition as an overview.

P = PEventInterfaces

R = {MExample
Kernel }

O := {ocheckout, ocustomerId}

The elements are named as follows:

name(ocheckout) = checkout, name(ocustomerId) = customerId

The stereotypes are applied as follows:

EventInterface appliedTo−−−−−−→ IWebshop
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The following values and targets are assigned to attributes and references:

checkout.parameters references−−−−−−−→ customerId,

IWebshop.events references−−−−−−−→ checkout
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C.4 Shared Interface Hierarchy

Figure C.4 shows an example model of the profile Shared Interface Hierarchy. Example 12 gives
the formal definition of this model.
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Figure C.4: Example application of the profile Shared Interface Hierarchy

Example 12: Example application of the profile Shared Interface Hierarchy

The exemplary profile application MExample
SharedInterfaceHierarchy, that instantiates the profile

Shared Interface Hierarchy, is formalized as follows. Figure C.4 accompanies the definition
as an overview.

P = PSharedInterfaceHierarchy

R = {MExample
Kernel }

The stereotypes are applied as follows:

SharedInterfacesArchitecture appliedTo−−−−−−→ oArchitecture
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C.5 Scoped Interface Hierarchy

Figure C.5 shows an example model of the profile Scoped Interface Hierarchy. Example 13 gives
the formal definition of this model.
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Figure C.5: Example application of the profile Scoped Interface Hierarchy

Example 13: Example application of the profile Scoped Interface Hierarchy

The exemplary profile application MExample
ScopedInterfaceHierarchy, that instantiates the profile

Scoped Interface Hierarchy, is formalized as follows. Figure C.5 accompanies the definition
as an overview.

P = PScopedInterfaceHierarchy

R = {MExample
Kernel }

The stereotypes are applied as follows:

ScopedInterfacesArchitecture appliedTo−−−−−−→ oArchitecture,

ScopedInterfacesComponentType appliedTo−−−−−−→ Webshop,

ScopedInterfacesComponentType appliedTo−−−−−−→ Client,

ScopedInterfacesComponentType appliedTo−−−−−−→ ShoppingCart

The following values and targets are assigned to attributes and references:

oArchitecture.systemInterfaces references−−−−−−−→ IWebshop,

Webshop.childInterfaces references−−−−−−−→ IShoppingCart
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C.6 Flat Component Hierarchy

Figure C.6 shows an example model of the profile Flat Component Hierarchy. Example 14 gives
the formal definition of this model.
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Figure C.6: Example application of the profile Flat Component Hierarchy

Example 14: Example application of the profile Flat Component Hierarchy

The exemplary profile applicationMExample
F latComponentHierarchy, that instantiates the profile Flat

Component Hierarchy, is formalized as follows. Figure C.6 accompanies the definition as
an overview.

P = PFlatComponentHierarchy

R = {MExample
Kernel }

The stereotypes are applied as follows:

HierarchicalArchitectureFlat appliedTo−−−−−−→ oArchitecture
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C.7 Scoped Component Hierarchy

Figure C.7 shows an example model of the profile Scoped Component Hierarchy. Example 15
gives the formal definition of this model.
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Figure C.7: Example application of the profile Scoped Component Hierarchy

Example 15: Example application of the profile Scoped Component Hierarchy

The exemplary profile application MExample
ScopedComponentHierarchy, that instantiates the profile

Scoped Component Hierarchy, is formalized as follows. Figure C.7 accompanies the defini-
tion as an overview.

P = PScopedComponentHierarchy

R = {MExample
Kernel }

The stereotypes are applied as follows:

HierarchicalArchitectureScoped appliedTo−−−−−−→ oArchitecture,

HierarchicalComponentTypeScoped appliedTo−−−−−−→ Webshop,

HierarchicalComponentTypeScoped appliedTo−−−−−−→ Client,

HierarchicalComponentTypeScoped appliedTo−−−−−−→ ShoppingCart

The following values and targets are assigned to attributes and references:

oArchitecture.systemTypes references−−−−−−−→ Webshop,

oArchitecture.systemTypes references−−−−−−−→ Client,

oArchitecture.systemInstances references−−−−−−−→ oWebshop
ComponentInstance,

oArchitecture.systemInstances references−−−−−−−→ oClient
ComponentInstance,
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Webshop.childInstances references−−−−−−−→ oShoppingCart
ComponentInstance,

Webshop.childTypes references−−−−−−−→ ShoppingCart
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C.8 Shared Context Component Hierarchy

Figure C.8 shows an example model of the profile Shared Context Component Hierarchy.
Example 16 gives the formal definition of this model.
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Figure C.8: Example application of the profile Shared Context Component Hierarchy

Example 16: Example application of the profile Shared Context Component
Hierarchy

The exemplary profile application MExample
SharedContextComponentHierarchy, that instantiates the

profile Shared Context Component Hierarchy, is formalized as follows. Figure C.8 accom-
panies the definition as an overview.

P = PSharedContextComponentHierarchy

R = {MExample
Kernel }

The stereotypes are applied as follows:

HierarchicalArchitectureSharedContext appliedTo−−−−−−→ oArchitecture,

HierarchicalComponentTypeSharedContext appliedTo−−−−−−→ Webshop,

HierarchicalComponentTypeSharedContext appliedTo−−−−−−→ Client,

HierarchicalComponentTypeSharedContext appliedTo−−−−−−→ ShoppingCart

The following values and targets are assigned to attributes and references:

oArchitecture.systemInstances references−−−−−−−→ oWebshop
ComponentInstance,

oArchitecture.systemInstances references−−−−−−−→ oClient
ComponentInstance,

Webshop.childInstances references−−−−−−−→ OShoppingCart
ComponentInstance
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C.8.1 Dependency: Example model of the IAL Kernel

Figure C.9 shows an example model that uses the IAL Kernel. Example 17 gives the formal
definition of this model.
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Figure C.9: Example model which instantiates the IAL Kernel

Example 17: Example dependency model of the IAL Kernel

The exemplary modelMDependency−ComponentHierarchyShared
Kernel , that instantiates the IAL Ker-

nel, is formalized as follows. Figure C.9 accompanies the definition as an overview.

LMeta = MKernel
Meta

O := {oArchitecture,

oIWebshop,

oIShoppingCart,

oWebshop,

oRequirement,

oProvision,

oClient,

oRequirement,

oShoppingCart,

oProvision,

oComponentInstance,
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C.8 Shared Context Component Hierarchy

oRequirementInstance,

oProvisionInstance,

oComponentInstance,

oRequirementInstance,

oComponentInstance,

oProvisionInstance}

The elements are named as follows:

name(oIWebshop) = IWebshop,
name(oIShoppingCart) = IShoppingCart,
name(oWebshop) = Webshop,
name(oClient) = Client,
name(oShoppingCart) = ShoppingCart

The following values and targets are assigned to attributes and references:

Architecture.interfaces references−−−−−−−→ IWebshop,

Architecture.interfaces references−−−−−−−→ IShoppingCart,

Requirement.interface references−−−−−−−→ IShoppingCart,

Webshop.requiredInterfaces references−−−−−−−→ Requirement,

Provision.interface references−−−−−−−→ IWebshop,

Webshop.providedInterfaces references−−−−−−−→ Provision,

Architecture.componentTypes references−−−−−−−→ Webshop,

Requirement.interface references−−−−−−−→ IWebshop,

Client.requiredInterfaces references−−−−−−−→ Requirement,

Architecture.componentTypes references−−−−−−−→ Client,

Provision.interface references−−−−−−−→ IShoppingCart,

ShoppingCart.providedInterfaces references−−−−−−−→ Provision,

Architecture.componentTypes references−−−−−−−→ ShoppingCart,

RequirementInstance.requirement references−−−−−−−→ Requirement,

ComponentInstance.requirements references−−−−−−−→ RequirementInstance,

ProvisionInstance.provision references−−−−−−−→ Provision,

ComponentInstance.provisions references−−−−−−−→ ProvisionInstance,
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ComponentInstance.type references−−−−−−−→ Webshop,

Architecture.componentInstances references−−−−−−−→ ComponentInstance,

RequirementInstance.requirement references−−−−−−−→ Requirement,

ComponentInstance.requirements references−−−−−−−→ RequirementInstance,

ComponentInstance.type references−−−−−−−→ Client,

Architecture.componentInstances references−−−−−−−→ ComponentInstance,

ProvisionInstance.provision references−−−−−−−→ Provision,

ComponentInstance.provisions references−−−−−−−→ ProvisionInstance,

ComponentInstance.type references−−−−−−−→ ShoppingCart,

Architecture.componentInstances references−−−−−−−→ ComponentInstance
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C.9 Fixed Component Instantiation

Figure C.10 shows an example model of the profile Fixed Component Instantiation. Example 18
gives the formal definition of this model.
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Figure C.10: Example application of the profile Fixed Component Instantiation

Example 18: Example application of the profile Fixed Component Instantiation

The exemplary profile applicationMExample
F ixedComponentInstantiation, that instantiates the profile

Fixed Component Instantiation, is formalized as follows. Figure C.10 accompanies the
definition as an overview.

P = PFixedComponentInstantiation

R = {MExample
Kernel }

The stereotypes are applied as follows:

ComponentInstancesFixedType appliedTo−−−−−−→ Client

The following values and targets are assigned to attributes and references:

Client.instances references−−−−−−−→ oClient
ComponentInstance
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C.10 Per Session Component Instantiation

Figure C.11 shows an example model of the profile Per Session Component Instantiation.
Example 19 gives the formal definition of this model.
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Figure C.11: Example application of the profile Per Session Component Instantiation

Example 19: Example application of the profile Per Session Component In-
stantiation

The exemplary profile application MExample
PerSessionComponentInstantiation, that instantiates the

profile Per Session Component Instantiation, is formalized as follows. Figure C.11 accom-
panies the definition as an overview.

P = PPerSessionComponentInstantiation

R = {MExample
Kernel }

The stereotypes are applied as follows:

ComponentInstancePerSessionType appliedTo−−−−−−→ ShoppingCart

The following values and targets are assigned to attributes and references:

ShoppingCart.instances references−−−−−−−→ oShoppingCart
ComponentInstance

362



C.11 Pooled Component Instantiation

C.11 Pooled Component Instantiation

Figure C.12 shows an example model of the profile Pooled Component Instantiation. Example 20
gives the formal definition of this model.
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Figure C.12: Example application of the profile Pooled Component Instantiation

Example 20: Example application of the profile Pooled Component Instantia-
tion

The exemplary profile applicationMExample
PooledComponentInstantiation, that instantiates the profile

Pooled Component Instantiation, is formalized as follows. Figure C.12 accompanies the
definition as an overview.

P = PPooledComponentInstantiation

R = {MExample
Kernel }

O := {oPoolingStrategy}

The elements are named as follows:

name(oPoolingStrategy) = PoolingStrategy

The stereotypes are applied as follows:

ComponentInstancePooledType appliedTo−−−−−−→ Webshop
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The following values and targets are assigned to attributes and references:

Webshop.minimumInstances hasV alue−−−−−−→ 1,

Webshop.maximumInstances hasV alue−−−−−−→ 10,

Webshop.representative references−−−−−−−→ oWebshop
ComponentInstance,

Webshop.strategy references−−−−−−−→ PoolingStrategy
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C.12 Stateful Components

Figure C.13 shows an example model of the profile Stateful Components. Example 21 gives the
formal definition of this model.

��������������

���������������������

����������������������

���������

Figure C.13: Example application of the profile Stateful Components

Example 21: Example application of the profile Stateful Components

The exemplary profile application MExample
StatefulComponents, that instantiates the profile State-

ful Components, is formalized as follows. Figure C.13 accompanies the definition as an
overview.

P = PStatefulComponents

R = {MExample
Kernel }

The stereotypes are applied as follows:

StatefulComponentType appliedTo−−−−−−→ ShoppingCart
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C.13 Stateless Components

Figure C.14 shows an example model of the profile Stateless Components. Example 22 gives
the formal definition of this model.
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Figure C.14: Example application of the profile Stateless Components

Example 22: Example application of the profile Stateless Components

The exemplary profile application MExample
StatelessComponents, that instantiates the profile State-

less Components, is formalized as follows. Figure C.14 accompanies the definition as an
overview.

P = PStatelessComponents

R = {MExample
Kernel }

The stereotypes are applied as follows:

StatelessComponentType appliedTo−−−−−−→ Client
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C.14 State Machine

Figure C.15 shows an example model of the profile State Machine. Example 23 gives the formal
definition of this model.
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Figure C.15: Example application of the profile State Machine
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Example 23: Example application of the profile State Machine

The exemplary profile application MExample
StateMachine, that instantiates the profile State Ma-

chine, is formalized as follows. Figure C.15 accompanies the definition as an overview.

P = PNamespace

R = {MExample
Kernel }

O := {oCashDeskStateMachine, oReady, oWithinSale, oAwaitingPayment,

oWithinSale
addItem , oReady

addItem, opaymentReceived, ofinishSale,

oaddItem−WithinSale
Guard , oaddItem−Ready

Guard , opaymentReceived
Guard , ofinishSaleGuard }

The elements are named as follows:

name(oCashDeskStateMachine) = CashDeskStateMachine,
name(oReady) = Ready,
name(oWithinSale) = WithinSale,
name(oAwaitingPayment) = AwaitingPayment,

name(oWithinSale
addItem ) = addItem,

name(oReady
addItem) = addItem,

name(ofinishSale) = finishSale,
name(opaymentReceived) = paymentReceived

The stereotypes are applied as follows:

StateMachineBasedComponentType appliedTo−−−−−−→ Webshop

The following values and targets are assigned to attributes and references:

Webshop.stateMachine references−−−−−−−→ CashDeskStateMachine,

CashDeskStateMachine.states references−−−−−−−→ Ready,

CashDeskStateMachine.states references−−−−−−−→ WithinSale,

CashDeskStateMachine.states references−−−−−−−→ AwaitingPayment,

CashDeskStateMachine.initialState references−−−−−−−→ Ready,

Ready.transitions references−−−−−−−→ oReady
addItem,

WithinSale.transitions references−−−−−−−→ oWithinSale
addItem ,

WithinSale.transitions references−−−−−−−→ finishSale,
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AwaitingPayment.transitions references−−−−−−−→ paymentReceived,

oReady
addItem.targetState references−−−−−−−→ WithinSale,

oWithinSale
addItem .targetState references−−−−−−−→ WithinSale,

finishSale.targetState references−−−−−−−→ AwaitingPayment,

paymentReceived.targetState references−−−−−−−→ Ready,

oReady
addItem.guard references−−−−−−−→ oaddItem−Ready

Guard ,

oWithinSale
addItem .guardoaddItem−WithinSale

Guard ,

paymentReceived.guard references−−−−−−−→ opaymentReceived
Guard ,

finishSale.guard references−−−−−−−→ ofinishSaleGuard
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C.15 Connector

Figure C.16 shows an example model of the profile Connector. Example 24 gives the formal
definition of this model.
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Figure C.16: Example application of the profile Connector

Example 24: Example application of the profile Connector

The exemplary profile application MExample
Connector, that instantiates the profile Connector, is

formalized as follows. Figure C.16 accompanies the definition as an overview.

P = PConnector

R = {MExample
Kernel }

O := {oHTTP , oREST , o
HTTP
Connector, o

REST
Connector,

oHTTP
ConnectorInstance, o

REST
ConnectorInstance}

The elements are named as follows:

name(oHTTP ) = HTTP,
name(oREST ) = REST
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The stereotypes are applied as follows:

ArchitectureWithConnectors appliedTo−−−−−−→ oArchitecture

The following values and targets are assigned to attributes and references:

oArchitecture.connectorTypes
references−−−−−−−→ HTTP,

oArchitecture.connectorTypes
references−−−−−−−→ REST,

oHTTP
Connector.type

references−−−−−−−→ HTTP,

oREST
Connector.type

references−−−−−−−→ REST,

oArchitecture.connectors
references−−−−−−−→ oHTTP

Connector,

oArchitecture.connectors
references−−−−−−−→ oREST

Connector,

oHTTP
ConnectorInstance.type

references−−−−−−−→ oHTTP
Connector,

oREST
ConnectorInstance.type

references−−−−−−−→ oREST
Connector,

oArchitecture.connectorInstances
references−−−−−−−→ oHTTP

ConnectorInstance,

oArchitecture.connectorInstances
references−−−−−−−→ oREST

ConnectorInstance
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C.16 Operation Call Connector

Figure C.17 shows an example model of the profile Operation Call Connector. Example 25
gives the formal definition of this model.
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Figure C.17: Example application of the profile Operation Call Connector

Example 25: Example application of the profile Operation Call Connector

The exemplary profile application MExample
OperationCallConnector, that instantiates the profile Op-

eration Call Connector, is formalized as follows. Figure C.17 accompanies the definition
as an overview.

P = POperationCallConnector

R = {MExample
Connector,M

Example
Kernel }

The stereotypes are applied as follows:

OperationCallConnector appliedTo−−−−−−→ oREST
Connector,

OperationCallConnectorInstance appliedTo−−−−−−→ oREST
ConnectorInstance

The following values and targets are assigned to attributes and references:

oREST
Connector.requirement references−−−−−−−→ oClient

Requirement,
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oREST
Connector.provision

references−−−−−−−→ oWebshop
Provision,

oREST
ConnectorInstance.requirement references−−−−−−−→ oClient

RequirementInstance,

oREST
ConnectorInstance.provision

references−−−−−−−→ oWebshop
ProvisionInstance
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C.17 Event Dispatcher Connector

Figure C.18 shows an example model of the profile Event Dispatcher Connector. Example 26
gives the formal definition of this model.
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Figure C.18: Example application of the profile Event Dispatcher Connector

Example 26: Example application of the profile Event Dispatcher Connector

The exemplary profile application MExample
EventDispatcherConnector, that instantiates the profile

Event Dispatcher Connector, is formalized as follows. Figure C.18 accompanies the defini-
tion as an overview.

P = PEventDispatcherConnector

R = {MExample
Connector,M

Example
Kernel }

The stereotypes are applied as follows:

EventDispatcherConnector appliedTo−−−−−−→ oREST
Connector,

EventDispatcherConnectorInstance appliedTo−−−−−−→ oREST
ConnectorInstance

The following values and targets are assigned to attributes and references:

oREST
Connector.receiver

references−−−−−−−→ oWebshop
Provision,
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oREST
Connector.issuer

references−−−−−−−→ oClient
Requirement,

oREST
ConnectorInstance.receiver

references−−−−−−−→ oWebshop
ProvisionInstance,

oREST
ConnectorInstance.issuer

references−−−−−−−→ oClient
RequirementInstance
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C.18 Delegation Connector

Figure C.19 shows an example model of the profile Delegation Connector. Example 27 gives
the formal definition of this model.
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Figure C.19: Example application of the profile Delegation Connector

Example 27: Example application of the profile Delegation Connector

The exemplary profile application MExample
DelegationConnector, that instantiates the profile Dele-

gation Connector, is formalized as follows. Figure C.19 accompanies the definition as an
overview.

P = PDelegationConnector

R = {MExample
Connector,M

Example
Kernel }

The stereotypes are applied as follows:

ProvisionDelegationConnector appliedTo−−−−−−→ oHTTP
Connector,

ProvisionDelegationConnectorInstance appliedTo−−−−−−→ oHTTP
ConnectorInstance

The following values and targets are assigned to attributes and references:

oHTTP
Connector.outer

references−−−−−−−→ oWebshop
Provision,

oHTTP
Connector.inner

references−−−−−−−→ oShoppingCart
Provision ,
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oHTTP
ConnectorInstance.outer

references−−−−−−−→ oWebshop
ProvisionInstance,

oHTTP
ConnectorInstance.inner

references−−−−−−−→ oShoppingCart
ProvisionInstance
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C.19 Datatypes Common

Figure C.20 shows an example model of the profile Datatypes Common. Example 28 gives the
formal definition of this model.
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Figure C.20: Example application of the profile Datatypes Common
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Example 28: Example application of the profile Datatypes Common

The exemplary profile applicationMExample
DatatypesCommon, that instantiates the profile Datatypes

Common, is formalized as follows. Figure C.20 accompanies the definition as an overview.

P = PDatatypesCommon

R = {MExample
Kernel }

O := {oOffer, ocalculatePriceFor, oclient, oClient, oSubscription}

The elements are named as follows:

name(oOffer) = Offer,
name(ocalculatePriceFor) = calculatePriceFor,
name(oclient) = client,
name(oClient) = Client,
name(oSubscription) = Subscription

The stereotypes are applied as follows:

ArchitectureWithCommonDataTypes appliedTo−−−−−−→ oArchitecture

The following values and targets are assigned to attributes and references:

oArchitecture.dataTypes
references−−−−−−−→ Offer,

oArchitecture.dataTypes
references−−−−−−−→ Subscription,

oArchitecture.dataTypes
references−−−−−−−→ Client,

Subscription.superType references−−−−−−−→ Offer,

Offer.operations references−−−−−−−→ calculatePriceFor,

calculatePriceFor.returnType hasV alue−−−−−−→ int,

calculatePriceFor.parameters references−−−−−−−→ client,

client.applicationParameterType references−−−−−−−→ Client,
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C.20 Datatypes Operations

Figure C.21 shows an example model of the profile Datatypes Operations. Example 29 gives
the formal definition of this model.
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Figure C.21: Example application of the profile Datatypes Operations

Example 29: Example application of the profile Datatypes Operations

The exemplary profile application MExample
DatatypesOperations, that instantiates the profile

Datatypes Operations, is formalized as follows. Figure C.21 accompanies the definition as
an overview.

P = PDatatypesOperations

R = {MDependency−DatatypeOperations
InterfaceTypeOperations ,MExample

DatatypesCommon}

The stereotypes are applied as follows:

OperationWithDataType appliedTo−−−−−−→ getMostOrderedProduct

The following values and targets are assigned to attributes and references:

getMostOrderedProduct.returnType references−−−−−−−→ Offer

C.20.1 Dependency: Example profile application of the profile Operation
Interfaces

Figure C.22 shows an example model that uses the profile Interface Type Operations. Exam-
ple 30 gives the formal definition of this model.
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Figure C.22: Example profile application which instantiates the profile Operation Interfaces

Example 30: Example dependency profile application of the profile Operation
Interfaces

The exemplary profile application MDependency−DatatypeOperations
InterfaceTypeOperations , that instantiates the

profile Interface Type Operations, is formalized as follows. Figure C.22 accompanies the
definition as an overview.

P = POperationInterfaces

R = {MExample
Kernel }

O := {ogetMostOrderedProduct}

The elements are named as follows:

name(ogetMostOrderedProduct) = getMostOrderedProduct

The stereotypes are applied as follows:

OperationInterface appliedTo−−−−−−→ IWebshop

The following values and targets are assigned to attributes and references:

IWebshop.operations references−−−−−−−→ getMostOrderedProduct
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C.21 Datatypes Events

Figure C.23 shows an example model of the profile Datatypes Events. Example 31 gives the
formal definition of this model.
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Figure C.23: Example application of the profile Datatypes Events

Example 31: Example application of the profile Datatypes Events

The exemplary profile application MExample
DatatypesEvents, that instantiates the profile Datatypes

Events, is formalized as follows. Figure C.23 accompanies the definition as an overview.

P = PDatatypesEvents

R = {MDependency−DatatypeEvents
InterfaceTypeEvents ,MExample

DatatypesCommon}

The stereotypes are applied as follows:

EventParameterDataType appliedTo−−−−−−→ client

The following values and targets are assigned to attributes and references:

client.type references−−−−−−−→ Client

C.21.1 Dependency: Example profile application of the profile Event Interfaces

Figure C.24 shows an example model that uses the profile Interface Type Events. Example 32
gives the formal definition of this model.
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Figure C.24: Example profile application which instantiates the profile Event Interfaces

Example 32: Example dependency profile application of the profile Event
Interfaces

The exemplary profile application MDependency−DatatypeEvents
InterfaceTypeEvents , that instantiates the profile

Interface Type Events, is formalized as follows. Figure C.24 accompanies the definition as
an overview.

P = PEventInterfaces

R = {MExample
Kernel }

O := {ocheckout, oclient}

The elements are named as follows:

name(ocheckout) = checkout,
name(oclient) = client

The stereotypes are applied as follows:

EventInterface appliedTo−−−−−−→ IWebshop
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The following values and targets are assigned to attributes and references:

checkout.parameters references−−−−−−−→ client,

IWebshop.events references−−−−−−−→ checkout
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C.22 Deployment

Figure C.25 shows an example model of the profile Deployment. Example 33 gives the formal
definition of this model.

Example 33: Example application of the profile Deployment

The exemplary profile application MExample
Deployment, that instantiates the profile Deployment,

is formalized as follows. Figure C.25 accompanies the definition as an overview.

P = PDeployment

R = {MExample
Kernel }

O := {oWebshop
DeploymentFragment, o

Client
DeploymentFragment, o

ShoppingCart
DeploymentFragment,

oServer1ResourceContainer, o
Server2
ResourceContainer, o

Server3
ResourceContainer,

o1AllocationContext, o
2
AllocationContext, o

3
AllocationContext}

The elements are named as follows:

name(oWebshop) = Webshop,
name(oClient) = Client,
name(oShoppingCart) = ShoppingCart

The stereotypes are applied as follows:

ArchitectureWithDeploymentFragments appliedTo−−−−−−→ oArchitecture

The following values and targets are assigned to attributes and references:

oArchitecture.deploymentFragments references−−−−−−−→ oShoppingCart
DeploymentFragment,

oArchitecture.deploymentFragments references−−−−−−−→ oWebshop
DeploymentFragment,

oArchitecture.deploymentFragments references−−−−−−−→ oClient
DeploymentFragment,

oShoppingCart
DeploymentFragment.componentTypes references−−−−−−−→ ShoppingCart,

oWebshop
DeploymentFragment.componentTypes references−−−−−−−→ Webshop,

oClient
DeploymentFragment.componentTypes references−−−−−−−→ Client,

oArchitecture.resourceContainers
references−−−−−−−→ oServer1ResourceContainer,

oArchitecture.resourceContainers
references−−−−−−−→ oServer2ResourceContainer,

oArchitecture.resourceContainers
references−−−−−−−→ oServer3ResourceContainer,

oArchitecture.allocationContexts
references−−−−−−−→ o1AllocationContext,
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oArchitecture.allocationContexts
references−−−−−−−→ o2AllocationContext,

oArchitecture.allocationContexts
references−−−−−−−→ o3AllocationContext,

o1AllocationContext.resourceContainer
references−−−−−−−→ oServer1ResourceContainer,

o1AllocationContext.componentInstance references−−−−−−−→ oShoppingCart
ComponentInstance,

o2AllocationContext.resourceContainer
references−−−−−−−→ oServer2ResourceContainer,

o2AllocationContext.componentInstance references−−−−−−−→ oWebshop
ComponentInstance,

o3AllocationContext.resourceContainer
references−−−−−−−→ oServer3ResourceContainer,

o3AllocationContext.componentInstance references−−−−−−−→ oClient
ComponentInstance
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Figure C.25: Example application of the profile Deployment
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C.23 Namespace

Figure C.26 shows an example model of the profile Namespace. Example 34 gives the formal
definition of this model.
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Figure C.26: Example application of the profile Namespace

Example 34: Example application of the profile Namespace

The exemplary profile application MExample
Namespace, that instantiates the profile Namespace, is

formalized as follows. Figure C.26 accompanies the definition as an overview.

P = PNamespace

R = {MExample
Kernel }

O := {oorg, owebshop, oshoppingcart, oclient}

The elements are named as follows:

name(oorg) = org,
name(owebshop) = webshop,
name(oshoppingcart) = shoppingcart,
name(oclient) = client
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C.23 Namespace

The stereotypes are applied as follows:

ArchitectureWithNamespaces appliedTo−−−−−−→ oArchitecture

The following values and targets are assigned to attributes and references:

oArchitecture.rootNamespaces references−−−−−−−→ org,

org.children references−−−−−−−→ webshop,

webshop.interfaces references−−−−−−−→ IWebshop,

webshop.componentTypes references−−−−−−−→ Webshop,

webshop.children references−−−−−−−→ shoppingcart,

shoppingcart.interfaces references−−−−−−−→ IShoppingCart,

shoppingcart.componentTypes references−−−−−−−→ ShoppingCart,

webshop.children references−−−−−−−→ client,

client.componentTypes references−−−−−−−→ Client
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C Intermediate Language Profile Examples

C.24 Secure Information Flow

Figure C.27 shows an example model of the profile Secure Information Flow. Example 35 gives
the formal definition of this model.
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Figure C.27: Example application of the profile Secure Information Flow

Example 35: Example application of the profile Secure Information Flow

The exemplary profile application MExample
SecureInformationF low, that instantiates the profile

Secure Information Flow, is formalized as follows. Figure C.27 accompanies the definition
as an overview.

P = PSecureInformationF low

R = {MExample
Kernel }

O := {oSecurityLevelPoset, oLoggedIn, oAnonymous}

The elements are named as follows:

name(oLoggedIn) = LoggedIn,
name(oAnonymous) = Anonymous

The stereotypes are applied as follows:

DefSecurityLevels appliedTo−−−−−−→ Webshop,

SecurityLevel appliedTo−−−−−−→ IWebshop
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C.24 Secure Information Flow

The following values and targets are assigned to attributes and references:

oSecurityLevelPoset.upper
references−−−−−−−→ LoggedIn,

oSecurityLevelPoset.lower
references−−−−−−−→ Anonymous,

Webshop.posets references−−−−−−−→ SecurityLevelPoset,

Webshop.securityLevelEntities references−−−−−−−→ LoggedIn,

Webshop.securityLevelEntities references−−−−−−−→ Anonymous,

IWebshop.securityLevel references−−−−−−−→ LoggedIn
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C Intermediate Language Profile Examples

C.25 Time Resource Demand

Figure C.28 shows an example model of the profile Time Resource Demand. Example 36 gives
the formal definition of this model.
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Figure C.28: Example application of the profile Time Resource Demand

Example 36: Example application of the profile Time Resource Demand

The exemplary profile application MExample
T imeResourceDemand, that instantiates the profile Time

Resource Demand, is formalized as follows. Figure C.28 accompanies the definition as an
overview.

P = PT imeResourceDemand

R = {MExample
OperationInterfaces}

The stereotypes are applied as follows:

TimeResourceDemand appliedTo−−−−−−→ getNumberOfProducts

The following values and targets are assigned to attributes and references:

getNumberOfProducts.duration hasV alue−−−−−−→ 10ms
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