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Abstract

The limited fossil fuel resources and the environmental concerns associated with burning
those fossil fuels lie behind the increasing interest in hydrogen as a clean and sustainable
alternative to fossil fuels, and in fuel cells as a clean converter of hydrogen into elec-
trical energy especially in the transportation sector. Fuel cell hybrid vehicles (FCHVs)
are characterized by the use of a fuel cell system (FCS) as the main power source and
a battery, a supercapacitor or both as an energy storage system (ESS). Hybridizing the
FCS with an ESS signi�cantly improves the hydrogen economy, helps downsize the FCS,
and resolves the issues related the long start-up time and slow dynamics of the FCS.
The existence of multiple power sources in the powertrain gives rise to two important
questions: How to coordinate the power contribution of the sources (i.e., power manage-
ment strategy (PMS)), and how to size these sources in order to exploit the advantages
of hybridization.

The goal of this thesis is to develop a comprehensive framework for the optimization of
PMS and size of FCHV powertrains. Depending on the type of ESS, three topologies
are considered: fuel cell/ battery, fuel cell/ supercapacitor, and fuel cell/ battery/ super-
capacitor. The PMS optimization is investigated on two levels; i.e., the vehicle level by
simulation and the developed optimization algorithms are then validated on a small-scale
test bench.

When the driving cycle is known a priori, the o�-line optimal PMS that globally minimizes
the hydrogen consumption is calculated by two algorithms, namely, Dynamic Program-
ming (DP) and Pontryagin's Minimum Principle (PMP), and the two algorithms are
compared. It has been found that PMP can be a superior approach for o�-line opti-
mization since it requires negligible computation resources without sacri�cing the global
optimality. The o�-line optimal strategy is not real-time capable; hence, real-time strate-
gies are designed and optimized while using the o�-line optimal PMS as a benchmark.
Special emphasize is put on the inclusion of multiple driving cycles, of di�erent nature,
in the optimization of the real-time PMS to increase its robustness.

The sizing of the power sources of fuel cell/ battery and fuel cell/ supercapacitor hybrids
considers hydrogen consumption and powertrain cost as two objectives and takes into
account the drivability constraints such as top speed, gradeablity and acceleration time.
The interesting designs (i.e., FCS size and ESS size), which represent the most e�cient
trade-o� between the objectives, are then extracted and analyzed. The e�ect of battery
aging on the optimal powertrain size is investigated by an Ampere-hour throughput
model. It has been found that the battery aging leads to less e�cient powertrain designs
and the supercapacitor can become a more e�cient option in comparison to batteries of
poor lifetime.
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Zusammenfassung

Die begrenzten fossilen Ressourcen und die Umweltsorgen, die mit der Verbrennung die-
ser fossilen Brennsto�e verbunden sind, stecken hinter dem steigenden Interesse am Was-
sersto� als sauberer und nachhaltiger Alternative, und an Brennsto�zellen als saube-
ren Wandlern des Wassersto�s in elektrische Energie, vor allem im Verkehrssektor. Ein
Brennsto�zellen-Hybridfahrzeug (FCHV) verwendet ein Brennsto�zellensystem (FCS) als
eine Hauptenergiequelle und eine Batterie, einen Superkondensator oder beide als Ener-
giespeichersystem (ESS). Hybridisierung des FCS mit einem ESS verringert erheblich den
Wassersto�verbrauch, hilft das FCS zu verkleinern, und behebt das Problem der langen
Anlaufzeit und der langsamen Dynamik des FCS. Die Existenz von mehreren Stromquel-
len im Antriebsstrang wirft zwei wichtige Fragen auf: Wie ist die Leistungsanforderung des
Fahrzeugs zwischen den Quellen zu verteilen (d.h. Power-Management-Strategie (PMS))
und wie sind diese Quellen zu dimensionieren, um die Hybridisierung auszunutzen.

Das Ziel dieser Arbeit ist es, einen umfassenden Rahmen für die Optimierung der PMS
und Dimensionierung der Brennsto�zellen-basierten hybriden Antriebsstränge zu entwi-
ckeln. Abhängig von der Art des ESS werden drei Topologien berücksichtigt: Brenn-
sto�zelle/ Batterie, Brennsto�zelle/ Superkondensator und Brennsto�zelle/ Batterie/
Superkondensator. Die PMS-Optimierung wird auf zwei Ebenen untersucht, und zwar
die Fahrzeugebene durch Simulation und die Prüfstandsebene, worauf die entwickelten
Optimierungsalgorithmen experimentell validiert werden.

Wenn der Lastzyklus im Voraus bekannt ist, kann die o�ine optimale PMS, die den
Wassersto�verbrauch global minimiert, berechnet werden. Dazu werden die zwei Algo-
rithmen, Dynamische Programmierung (DP) und Pontryagins Minimumprinzip (PMP),
verglichen. Es wurde herausgefunden, dass das PMP ein überlegener Ansatz für die o�ine-
Optimierung sein kann, da es viel weniger Rechenressourcen braucht, ohne die globale
Optimalität zu opfern. Die o�ine optimale Strategie ist nicht echtzeitfähig, und deshalb
werden Echtzeit-Strategien entworfen und optimiert, indem die o�ine optimale PMS als
Maÿstab verwendet wird. Beim Designen der echtzeitfähigen Strategien werden mehrere
Fahrzyklen unterschiedlicher Natur beachtet, um die Robustheit der Strategien zu erhö-
hen.

Die Dimensionierung der Stromquellen der Brennsto�zelle/ Batterie und Brennsto�zel-
le/ Superkondensator Hybriden betrachtet den Wassersto�verbrauch und die Kosten des
Antriebsstrangs als zwei Ziele. Es wird dabei die Fahrbarkeit, d.h. Höchstgeschwindig-
keit, Steigfähigkeit und Beschleunigungszeit, berücksichtigt. Die interessanten Kon�gu-
rationen (FCS-Gröÿe und ESS-Gröÿe), die den e�zientesten Kompromiss zwischen den
Zielen darstellen, werden dann herausgefunden und analysiert. Die Wirkung der Bat-
teriealterung auf die optimale Antriebsstrang-Gröÿe wird durch ein Ampere-Stunden-
Durchsatzmodell untersucht. Es wurde herausgefunden, dass die Batterie-Alterung we-
niger e�ziente Antriebsstrang-Kon�gurationen ergibt, und dass der Superkondensator
eine e�zientere Alternative zur Batterie sein kann, wenn er mit Batterien von schlechter
Lebensdauer verglichen wird.
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Chapter 1

Introduction

1.1 Why Hybrid Vehicles?

Vehicles powered by conventional internal combustion engines (ICEs) have been in ex-
istence for over a century. The demand for vehicles for personal transportation has
increased dramatically in the past decade1 [1] and it will continue to increase bolstered
by the increase of world population and the fast economic growth of the large emerging
markets, such as China and India. This trend has contributed to the signi�cant increase
in oil consumption since the transportation sector accounts for the major oil consumption
as illustrated in Figure 1.1(a). In addition to oil dependency, there are environmental
concerns (i.e., pollution, global warming . . . ) associated with the increasing use of pas-
senger vehicles. As illustrated in Figure 1.1(b), transportation sector accounted for about
a third of the total carbon dioxide emissions worldwide in 2010.

To face the above two serious issues, government agencies and organizations have devel-
oped more stringent standards for the fuel consumption and emissions. For example, the
European Union has set a CO2 average emissions target for new passenger cars of 130
g/km by 2015 and 95 g/km by 2021 [2], corresponding to a decrease of 11% and 35%,
respectively, in comparison to 2009 emissions level of 145.7 g/km [3].

Electric vehicles (EVs) powered by batteries were one of the solutions proposed to tackle
the energy crisis and global warming. However, the high initial cost, short driving range,
and long charging time are major obstacles facing the wide market penetration of EVs.

Commercially introduced in the late 90s, the hybrid electric vehicles (HEVs) were devel-
oped to overcome the disadvantages of both ICE vehicles and EVs. The HEV uses an
ICE and an energy storage system (ESS), mainly battery, as an energy bu�er to power
the vehicle. The addition of battery helps reduce the fuel consumption and emissions by:

� Downsizing the engine and still ful�lling the maximum power requirements of the
vehicle;

1According to [1], 41.2 and 67.5 million passenger cars were produced in 2000 and 2014, respectively.
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Figure 1.1: (a) Petroleum consumption and (b) carbon dioxide emissions by sector in 2010. Data from
[4].

� Recovering some energy during deceleration instead of dissipating it in friction
braking;

� Optimizing the energy distribution between the ICE and the battery;

� Eliminating engine idling by turning o� the engine when no power is required (i.e.,
stop/start system).

As shown in Figure 1.2, four possible power paths can exist between the ICE, the energy
bu�er and the load (i.e., vehicle wheels). The power path (1) is from the ICE to the load,
the path (2) is from the ICE to the energy bu�er, the path (3) is from the energy bu�er
to the load, and the path (4) is from the load to the energy bu�er (i.e., regenerative
braking). Depending on the actual power �ow in the powertrain, seven distinctive modes
of operation can be recognized:

� The ICE drives the load alone (power �ows in path (1));

� The ICE charges the energy bu�er (power �ows in path (2));

� The ICE and the energy bu�er drive the load together (power �ows in paths (1)
and (3));

� The ICE drives the load and charges the energy bu�er (power �ows in paths (1)
and (2));

� The energy bu�er drives the load alone (power �ows in path (3));

� The load charges the battery by regenerative braking (power �ows in path (4));

� Both the load (by regenerative braking) and the ICE charge the energy bu�er (power
�ows in paths (2) and (4)).
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Figure 1.2: Possible power �ow directions in hybrid powertrains.

According to the battery size, HEVs can be classi�ed into mild, micro and full hybrids.
The main characteristics of these three types are listed in Table 1.1. In micro hybrids,
the battery is small and its main function is to start/stop the ICE to avoid idling; hence,
the fuel saving is limited to few percent in city driving where there are frequent starts and
stops. The battery size and power are larger in mild hybrids and it can assist the ICE in
driving the vehicle giving rise to higher fuel saving up to about 20% in city driving. The
battery size is further increased in full hybrids, so that the pure electric driving becomes
possible and the fuel saving becomes more signi�cant. Between full hybrids and EVs,
there is also plug-in hybrids that feature larger batteries than full hybrids so that the
battery drives the vehicle alone for an extended time (in the charge depleting mode), and
the battery can be charged from the grid like those of EVs.

Table 1.1: Selected characteristics of HEV categories: mild, micro and full hybrids. Data from various
sources [5, 6, 7] and net.

Micro hybrid Mild hybrid Full hybrid

Functionality

Stop/start X X X

Regenerative braking X X X

Engine assist X X

Pure electric driving X

Speci�cations

Battery voltage 12-48 V 48-150 V 200-650 V

Battery power <10 kW 10-20 kW >20 kW

Max. fuel saving <10% 10-20% >20%

Example vehicles BMW 1 and 3 series;

Ford Focus and Transit;

Mercedes-Benz A-class

Honda Civic and Insight

Hybrid; Mercedes-Benz

S400 BlueHybrid

Toyota Prius Hybrid;

Ford Fusion Hybrid;

Kia Optima Hybrid
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1.2 Fuel Cell Hybrid Vehicles

Fuel cell hybrid vehicles (FCHVs) are hybrid vehicles that use fuel cells instead of ICE.
Fuel cells are electrochemical energy converters that convert the chemical energy of hy-
drogen into electricity while producing water as a by-product; hence, they do not produce
pollutants (i.e., zero emission). Additionally, fuel cells exhibit higher e�ciency than ICE
since they do not involve thermal energy as an intermediate step in the electrochemical
energy conversion; hence, unlike ICE, fuel cells are not limited by Carnot e�ciency. There
are many types of fuel cells [8]; among them the so-called polymer electrolyte membrane
fuel cells (PEMFCs) are most suited for automotive applications for their high speci�c
power and power density and their relatively fast start-up time since they operate at
relatively low temperature (around 80 °C).

Nearly all automakers have produced concept fuel cell-based vehicles. They are, as exam-
ples, Mercedes-Benz F-Cell B-class by Daimler, Audi A7 h-tron quattro by Audi, Honda
FCV Concept by Honda, Toyota FCV by Toyota, VW Golf SportWagen Hymotion by
Volkswagen, Hyundai ix35 FCEV by Hyundai.

Even though fuel cell vehicles have not yet entered the large commercialization phase, they
have a great potential to be the �nal step in the transition of the transportation sector
to the environmentally friendly vehicles [9]. However, coming to this stage requires the
fuel cell technology to overcome many technical challenges, such as reducing the system
cost2, improving the durability3 and reducing the system weight and volume4, in addition
to the challenges associated with hydrogen production, delivery and storage [10].

In addition to the aforementioned advantages of hybridization, the ESS in FCHVs helps
smooth the fuel cells power demand prolonging its lifetime. High load dynamics is con-
sidered as the main aging accelerator of PEMFCs [11]. Fast load changing leads to many
degradation e�ects like �ooding of the porous media of the electrodes, dehydration of the
membrane, and the loss in the catalyst layer due to gas starvation [12].

A PEMFC consists of a membrane sandwiched between two porous electrodes as depicted
in Figure 1.3. The membrane has a special property that allows positive ions (protons)
to pass through while blocking electrons. Hydrogen gas passes over one electrode (the
anode), and with the help of a catalyst, splits into electrons and protons. The protons
�ow to the other electrode (the cathode) through the electrolyte while the electrons �ow
through an external circuit, thus creating electricity. The protons and electrons combine
with oxygen �ow through the cathode and produce water. The voltage produced from
one cell is between 0 to 1 volt depending on the fuel cell operating conditions and the
load size. To get higher voltages, multiple cells are connected in series to form a fuel cell
stack.

2The US Department of Energy (DOE) reported a cost for automotive fuel cell systems of US$49/kW
in 2011 and set a target of US$30/kW for 2020. The cost �gures are projected to high-volume production
of 500000 units per year [10].

3According to [10], the 2011 status for fuel cell system durability was 2500 hours over automotive
driving cycle, and the target is to reach 5000 hours by 2020 to be comparable with the current automotive
engines. The durability refers here to the time by which the system voltage degrades by 10%.

4According to [10], the 2011 status for automotive fuel cell systems is 400 W/kg for the speci�c power
and 400 W/L for the power density, whereas the 2020 targets are 650 W/kg and 850 W/L, respectively.
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Figure 1.3: PEM fuel cell operating principle.

In order to generate power, the fuel cell stack needs to be integrated with other com-
ponents to form a fuel cell system (FCS). In addition to the stack, the FCS includes
typically three main subsystems: air supply subsystem, water management subsystem
and thermal management subsystem. The hydrogen is typically stored in pressurized
tanks; otherwise, if alternative hydrogen-rich fuels, such as natural gas or methanol, are
used, then a reformer is needed to convert the fuel into hydrogen before feeding it into
the fuel cell stack. The air supply subsystem, basically a compressor, sucks air from the
ambient and feeds it with a controlled �ow rate into the cathode compartment of the
stack. The water management subsystem humidi�es the air entering the stack by means
of a humidi�er. Water management is crucial for proper operation of the system; i.e.,
su�cient humidi�cation is required to keep the water content in the membrane high for
high conductivity, but too high humidity may cause �ooding and blocking of the porous
media in the electrodes. The thermal management subsystem has the role of maintaining
the stack temperature in the proper range by removing excessive heat generated by the
electrochemical reaction. This task is typically performed by means of de-ionized water
circulating in channels through the stack.

1.3 Energy Storage Systems

Most of HEVs and FCHVs produced by automakers use a battery as an ESS to assist
the main power source in ful�lling the power demand. Lithium-ion (Li-ion) and Nickel
Metal Hydride (NiMH) are the dominant battery technologies. Li-ion batteries excel
NiMH batteries in terms of speci�c power and speci�c energy as shown in Figure 1.4 and,
additionally, in terms of e�ciency. However, Li-ion batteries are still more expensive due
to the relatively lower production volume, so that increasing the production volume is
expected to make Li-ion batteries more economical in the future [13].

A Li-ion cell is composed of two electrodes (anode and cathode) and an electrolyte that
allows Li ions to move through between the electrodes. Whereas graphite is the domi-
nant anode material for Li-ion batteries, there are many possible cathode materials such
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Figure 1.4: Comparison between di�erent battery systems in terms of speci�c power and speci�c energy
[13].

as Lithium Cobalt Oxide LiCoO2 (LCO), Lithium Manganese Oxide LiMn2O4 (LMO),
Lithium Nickel Manganese Cobalt Oxide LiNiMnCoO2 (NMC), Lithium Nickel Cobalt
Aluminum Oxide LiNiCoAlO2 (NCA) and Lithium Iron Phosphate LiFePO4 (LFP). Hi-
tachi and Samsung SDI (with their NMC batteries), Johnson Controls (with its NCA
batteries), and A123 System (with its LFP batteries) are among the top batteries sup-
pliers for HEVs.

The reactions occurring at the electrodes of a Li-ion cell are given below for graphite
(C6) anode and LCO cathode, as an example. Both electrodes allow Li ions to move
in (i.e., intercalation process) and out (i.e., deintercalaction process) of their interiors.
During discharge, Li positive ions move from the anode leaving behind electrons that
�ow through an external circuit (i.e., load). Li ions �ow through the ionic-conductive
electrolyte and enter the cathode material. The reverse occurs when charging the cell.

Anode: LiC6 ←→ Li+ + e− + C6

Cathode: Li+ + e− + CoO2 ←→ LiCoO2

As stated earlier, batteries of HEVs are intended to assist the main power source in
meeting the power demand especially during strong acceleration phases. In contrast to
EVs, where the battery needs to be of su�ciently large energy in order to achieve the
design driving range, the battery power capability is the main interest for HEV, not its
energy. Being subject to high power pulses, another important aspect for HEV battery
comes into play, which is its lifetime. The battery lifetime depends on the operating
conditions (i.e., charge-discharge rate, depth-of-discharge and temperature [14, 15]) with
few thousand cycles as a typical order of magnitude. These issues have lead to the fact
that the HEV battery is usually oversized in terms of energy in order to ful�ll the power
and lifetime requirements.

In comparison to batteries, supercapacitors have a much higher speci�c power (up to 10
kW/kg) as shown in Figure 1.4, however, with signi�cantly lower speci�c energy (few
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Wh/kg) in comparison to 1-2 kW/kg and 50-100 Wh/kg, respectively, for the currently
used HEV battery cells [16]. Additionally, supercapacitors have a higher e�ciency and a
much longer cycle life in the order of 1 million cycles. These characteristics make super-
capacitors attractive as a candidate ESS in HEVs. The low energy density and the high
cost of supercapacitors are the challenges to be overcome in future for a wider acceptance
in HEV applications. Honda FCX [17] is an example of a FCHV using supercapacitors
as an ESS. Maxwell Technologies and Nesscap are examples of the leading manufacturers
of supercapacitors for automotive applications.

The operating principle of a supercapacitor (or ultracapacitor or also electric double-
layer capacitor (EDLC)5) is depicted in Figure 1.5. A supercapacitor cell consists of two
electrodes (typically of high surface-area activated carbon) ionically connected by an elec-
trolyte composed of positive and negative ions solvated in a solvent such as water. When
a voltage is applied to the cell, a double-layer is generated at each electrode-electrolyte
interface, where one layer is in the electrode surface and the other layer is formed by the
solvated electrolyte ions of the opposite polarity. The two layers are separated by the sol-
vent molecules adsorbed to the electrode surface. Due to the large electrode surface area
and the extremely thin double-layer distance, large capacitance (thousands of Farads per
cell) can be obtained, enabling supercapacitors to store thousands of times more energy
density than conventional electrolytic capacitors.

Figure 1.5: Construction of a typical supercapacitor.

1.4 Literature Review

The existence of multiple power sources in HEVs requires a power management strategy
(PMS) that coordinates the power �ow from the power sources. The PMS takes as
inputs the driver request and system status (like speed and charge level of the energy
bu�er) and, based on that, distributes the request among the power sources. Since the
market introduction of HEVs, there has been an extensive research on the PMS design

5EDLC is actually the most common type of supercapacitors. There are other types like pseudoca-
pacitors and hybrid capacitors.
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and optimization. The objective of any PMS design has been typically to exploit the
advantages of hybridization by minimizing the fuel consumption and emissions (in case
of ICE-based HEVs). Most literature has dealt with PMS design for conventional HEVs;
however, the design and optimization approaches can be mostly adapted to FCHVs.
Reviews of PMSs can be found in review articles such as [18, 19, 20, 21]. The proposed
PMS design approaches in literature can be classi�ed into three main categories: global
optimization, real-time optimization, and rule-based strategies.

Global optimization techniques are the ones that seek the globally optimal PMS for a
given cost function (e.g., fuel consumption) and a given load pro�le (i.e., driving cycle).
To achieve the global optimal solution, these techniques require the whole driving cycle
to be known; hence, the resulting optimal strategy is called o�-line optimal. Dynamic
Programming (DP) is a numerical optimization technique that makes use of the Bellman's
Principle of optimality [22]. It is still the most common o�-line optimization algorithm for
HEVs [23, 24], for it guarantees the global optimum without any assumptions regarding
the convexity or linearity of the system models. Pontryagin's Minimum Principle (PMP),
based on the optimal control theory [25], has been applied to the power management
optimization of HEVs [26, 27]. In comparison to DP, PMP gives only the necessary
conditions that must be satis�ed by the global optimum and not the su�cient conditions
and, therefore, the PMP solution may be a local optimum. However, if the solution of
PMP is unique, then it must be a global optimum. Convex optimization has been recently
applied to HEVs optimization [28, 29]. It prerequires that the system can be described by
a set of convex models and the accuracy of the optimal solution (in comparison to DP)
depends on the accuracy of the approximations done to relax the non-convex behavior
of the system, if any. In the same spirit, linear optimization (or linear programming)
was used in [30] after approximating the cost functions and system model by linear
relationships; here also the global optimality of the resulting strategy depends of the
accuracy of the approximations.

The drawback of the o�-line optimal PMS is that it is highly dependent on the driving
cycle and, therefore, the optimal strategy over one driving cycle may result in a poor
performance over other ones in real-time. Nevertheless, the o�-line optimum has three
main advantages: (1) it provides a benchmark for the real-time capable strategies, where
the objective of any strategy designs is to be as close as possible to the o�-line optimum.
(2) The o�-line optimum can give insight into the optimal system behavior, helping design
and tune the real-time PMS. (3) It provides a tool for a fair and objective comparison
between di�erent powertrain topologies and powertrain sizes.

Stochastic dynamic programming (SDP) [31, 32] has been proposed to alleviate the cy-
cle sensitivity of the deterministic DP. SDP considers a family of representative driving
cycles, characterized by a sequence of speed and power demand, and a stochastic model
(Markov chain model) of the speed and demand is generated. The SDP is then formu-
lated as an in�nite-horizon optimization problem, which results in a real-time capable
PMS represented by time-invariant look-up tables. For a combination of system states
(here power demand, vehicle speed and ESS charge level), the resulting control would
be optimal in the statistical sense; in other terms, it is optimal for the most likely load
sequence.

Real-time optimization modi�es the global optimization problem into a sequence of
instantaneous optimization problems at each time instance of the driving cycle. The
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real-time optimization uses present system status and may use past information or even
future information extracted from a navigation system. A very well-known example is the
Equivalent Consumption Minimization Strategy (EMCS). EMCS was �rst proposed in
[33] and further developed in [34, 35, 36]. It was shown in [37] that ECMS can be regarded
as a real-time realization of PMP, so that EMCS and PMP are currently considered
equivalent. Strategies based on model predictive control have been also devised [38, 39].

Rule-based strategies do not use optimization, rather a prede�ned set of rules, either
deterministic [40, 41] or fuzzy [42, 43, 44], that distributes the demand among the power
sources based on the present system status. The rules are derived heuristically from
expert knowledge and may require signi�cant tuning and testing e�ort. Such strategies
require minimal requirements in terms of computation resources (i.e., time and memory);
however, they do not o�er any proof of optimality. The performance of the rule-based
strategies can be improved by tuning their parameters to mimic the performance of
the o�-line optimal PMS [23]; alternatively, the parameters are optimized by means of
evolutionary optimization algorithms, such as DIRECT (DIviding RECTangle) algorithm
[45], genetic algorithm (GA) [46] or particle swarm optimization (PSO) [47].

All the aforementioned papers deal with one ESS system, mainly battery; neverthe-
less, the PMS design and optimization can be quite a complex task. Using two ESS
systems (i.e., battery and supercapacitor) implicates an additional degree-of-freedom,
further complicating the PMS design. As examples of literature dealing with fuel cell/
battery/ supercapacitor hybrid vehicular systems, DP [48] and convex optimization [29]
have been used to get the o�-line optimal PMS. Many real-time PMSs have been devised,
they are, as examples, proportional-integral control [49, 50], fuzzy logic control [51, 52],
deterministic rule-based control [53], and model predictive control [54].

The design of a HEV is a multi-level problem that includes the control design (i.e., PMS)
and the plant design (e.g., size of the multiple power sources). For one power source, this
source is sized according to the maximum required power by the vehicle to meet certain
requirements such as acceleration time. With two or more sources, the sizing problem
becomes less trivial. The main complexity comes from the fact that the two design levels
(control and plant) are actually coupled. For example, the battery size can a�ect the
PMS performance, and the PMS design may a�ect the optimal battery size for a given
cost function. A comprehensive overview of coordination methods between plant design
and control design can be found in [55].

The simplest plant design approach is to use a �xed PMS that is evaluated for each plant
design, and look for the design that minimizes certain objective function(s) (e.g., fuel
consumption, cost or both). The PMS typically takes the form of deterministic rules that
stay the same during plant optimization; hence, the coupling between plant design and
control design is neglected. The plant optimization algorithm can be a simple exhaus-
tive search (all design candidates are evaluated and compared) [56] or an evolutionary
optimization algorithm [57, 58, 59].

Considering the coupling between the plant design and control design have been ap-
proached by two coordination schemes: simultaneous and nested. In the simultaneous
scheme, the plant parameters and control parameters are optimized simultaneously within
one optimization loop. Convex optimization has been used to globally optimize the con-
trol and plant size simultaneously [28, 29]. Another possibility is to use evolutionary
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optimization algorithms [45, 60], where the control parameters and plant parameters
represent the optimization variables.

The nested coordination scheme uses two loops: an outer loop for the plant design and an
inner loop for the controller design, so that the PMS is redesigned for each plant design
evaluation. For the outer loop, exhaustive search has been used with DP [61], SDP [62]
and PMP [63] for control optimization in the inner loop. An evolutionary algorithm was
used in [64] in the outer loop together with DP as control algorithm.

1.5 Scienti�c Contribution

In the framework of this project, a number of scienti�c contributions to the literature
were published. These are listed below. The publications i, iii and iv are peer-reviewed
journal articles, whereas ii is a book chapter. In i, an experimental fuel cell/battery
hybrid system is investigated in terms of the o�-line optimal PMS and the optimization
of the real-time PMS. A new formulation of the optimization problem for the real-time
strategy is proposed taking into account multiple driving cycles in an attempt to improve
the real-time PMS robustness. Additionally, two real-time PMS designs, i.e., PMP-based
PI controller and Fuzzy controller, are compared. Publication ii reports an experimental
study on the e�ect of the real-time PMS parameters on the performance of the hybrid
system in terms of hydrogen consumption, battery charge sustenance and fuel cell system
power dynamics. Publications iii (simulation) and iv (experiment) deal with the power
management optimization of a triple hybrid system fuel cell/battery/supercapacitor for
transit bus applications. In iii, a comparison between DP and PMP as two o�-line opti-
mization techniques is conducted, and a systematic approach, based on multi-objective
optimization, is introduced for the optimization of the real-time strategy. In iv, an ex-
perimental study is conducted to validate the optimization techniques used in iii, and to
compare a new real-time strategy with conventional strategies of literature.

i. Odeim, Farouk; Roes, Jürgen; Wülbeck, Lars; and Heinzel, Angelika. �Power
management optimization of fuel cell/battery hybrid vehicles with experimental
validation.� Journal of Power Sources 252 (2014): 333-343.

ii. Odeim, Farouk; Roes, Jürgen; Wülbeck, Lars; and Heinzel, Angelika. �An exper-
imental study on the power management optimization of fuel cell/battery hybrid
drivetrains,� in Energy Science and Technology Vol. 10: Fuel cells and Batteries.
Studium Press LLC, 2015.

iii. Odeim, Farouk; Roes, Jürgen; Heinzel, Angelika. �Power management optimiza-
tion of a fuel cell/battery/supercapacitor hybrid system for transit bus applica-
tions.� IEEE Transactions on Vehicular Technology 65 (2016): 5783-5788.

iv. Odeim, Farouk; Roes, Jürgen; Heinzel, Angelika. �Power Management Opti-
mization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System.�
Energies 8, no. 7 (2015): 6302-6327.

The contributions of the thesis, including the aforementioned published papers, are sum-
marized below.
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� DP and PMP, as two o�-line optimization techniques are compared for the three fuel
cell-based hybrid powertrain topologies fuel cell/battery, fuel cell/supercapacitor
and fuel cell/battery/supercapacitor. A special emphasize is given to the incorpo-
ration of the ESS charge constraints into PMP formulation, which is still considered
an open issue in literature, particularly for a hybrid ESS composed of battery and
supercapacitor.

� A new formulation is proposed for the optimization of the real-time strategy over
multiple driving cycles at once, taking into account hydrogen consumption and
charge sustenance in a framework of multi-objective optimization.

� An analytical study is conducted on the e�ect of battery e�ciency on FCS optimal
power dynamics.

� A new formulation is proposed for the real-time PMS optimization for fuel cell/
battery/ supercapacitor hybrids, taking into account hydrogen consumption, bat-
tery power and vehicle acceleration performance in a framework of multi-objective
optimization.

� A new real-time strategy structure is proposed for the fuel cell/ battery/ superca-
pacitor hybrid and compared with similar strategies in literature.

� Several methods are discussed to incorporate the limitation of FCS dynamics in the
o�-line optimization.

� The sizing of the power sources is studied for fuel cell/battery and fuel cell/ super-
capacitor hybrids, taking into account hydrogen consumption, cost, and drivability
constraints (i.e., top speed, gradeability and acceleration time). The e�ect of bat-
tery aging on the sizing optimization is discussed.

� The proposed strategies and optimization methods are experimentally validated on
a small-scale test bench.

1.6 Thesis Structure

The thesis deals with the power management optimization, both o�-line and real-time
strategies, and the sizing of fuel cell-based vehicles. The study on PMS design and
optimization is carried out on two levels: the vehicle level and the test-bench level for
validation. For fuel cell/battery and fuel cell/supercapacitor powertrains, a mid-size
passenger vehicle is considered as an application, whereas a transit bus is considered for
the fuel cell/battery/supercapacitor powertrain. The structure of the thesis is as follows.

Chapter 2 deals with fuel cell/battery vehicles in terms of PMS optimization and sizing.
Firstly, the vehicle model is introduced. Then, the two o�-line optimization techniques,
i.e., DP and PMP, are comprehensively compared, and the o�-line optimal strategy is
analyzed. The sizing of the two power sources, i.e., FCS and battery, is then investigated.
The optimization of the real-time strategy is subsequently presented. The chapter ends
with an experimental validation.
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Chapter 3 repeats the methods of the previous chapter, however, for a fuel cell/ superca-
pacitor powertrain. In the experimental study, incorporating of FCS dynamics limitation
in the o�-line optimization is addressed. In the end, alternative topologies are experi-
mentally evaluated.

Chapter 4 deals with a fuel cell/battery/supercapacitor hybrid system for transit bus
applications in terms of PMS design and optimization. The experimental study validates
the proposed real-time strategy and its optimization and illustrates its advantages.

Chapter 5 summarizes the conclusions and �ndings of the study, and makes recommen-
dations for future work.

Appendix A presents the bases and the theoretical background of the used o�-line opti-
mization techniques: Dynamic Programming and Pontryagin's Minimum Principle. Ap-
pendix B provides an introduction to the multi-objective optimization using a genetic
algorithm, which is used extensively throughout the thesis. Appendix C introduces the
Hardware-in-the-Loop test bench used for validation.



Chapter 2

Fuel Cell/Battery Hybrid

In this chapter, a fuel cell/battery hybrid powertrain for a mid-size passenger vehicle is
investigated in terms of power management optimization and sizing. Section 2.1 intro-
duces the model of the vehicle that enables the calculation of the power demand of the
hybrid power source for standard driving cycles. In Section 2.2, two o�-line optimization
techniques, namely, Dynamic Programming (DP) and Pontryagin's Minimum Principle
(PMP), are applied and compared in terms of the global optimality and in terms of the
required computation resources. Further analysis of the o�-line optimal strategy is con-
ducted in Section 2.3. The sizing of power sources (i.e., fuel cells and battery) is addressed
in Section 2.4, taking into account hydrogen consumption and cost. The design and opti-
mization of a real-time capable power management strategy is introduced in Section 2.5.
Experimental results obtained from a test bench are presented in Section 2.6.

2.1 Vehicle Model

The causality and main building blocks of the vehicle model are shown in Figure 2.1.
The modeling approach used here is a combination of forward and backward calculations
similar to the one used in ADVISOR [40]. The backward calculations, as the name
suggests, starts by a required given speed pro�le, moves backward from the wheels to the
DC bus and the various power sources. However, if the required power at the DC bus
cannot be met by the power sources and/or the electric motor, the forward calculation
path calculates the achievable speed. For most standard driving cycles and with a good
power management strategy, the required power at the DC bus can be always ful�lled, so
that the achievable speed matches exactly the required one. In some cases, however, those
two speeds may di�er, for examples, during harsh accelerations, and when the energy
storage system is empty and the prime mover is unable to meet the power demand alone.
The same models are used in the two calculation paths, however, with the inputs/outputs
exchanged.

Following the backward calculation path, the model of vehicle dynamics accounts for the
di�erent forces acting on the vehicle mechanical curb for a give speed pro�le. The wheels
model translates the net force and the required vehicle speed into required torque and

13
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Figure 2.1: Causality and building blocks of the forward-backward vehicle model. x denotes the system
states and s denotes a power source. Up to three power sources can exist in the powertrain.

required rotational speed at the wheels. With the help of the transmission line model, the
required torque and rotational speed at the motor output is then obtained. The motor
model calculates the required electric power at the DC bus, which is then distributed by
the PMS among the power sources, while considering the system states (e.g., charge state
of the energy storage system and vehicle speed).

The traction force, Ft, required at the wheels for a given speed is the sum of four forces
[65]: the acceleration force, Facc, the force required to overcome the aerodynamic drag,
Fa, the force required to overcome the rolling friction with the road surface, Fr, and
the gravity force, Fg, acting on the vehicle when driving on non-horizontal roads (up or
downhill); i.e.,

Ft = Facc + Fa + Fr + Fg,

Facc =

(
m+

Θw

r2

)
dv

dt
,

Fa =
1

2
ρCdAfv

2, (2.1)

Fr = mgCr cos (θ) ,

Fg = mg sin (θ) ,

where θ is the road angle that is set to zero for the evaluation driving cycles, and the
other parameters are given in Table 2.1.

Given the traction force, the required torque at the wheels, Tw, and the wheels rotational
speed, ωw, are then obtained as follows:

Tw = rFt,

ωw = v/r. (2.2)

The transmission line is modeled by its e�ciency, ηtrans, and gear ratio (reduction and
di�erential), G. The required torque, Tm, and rotational speed, ωm, of the motor are
then given by:

Tm =

{
Tw

Gηtrans
, Tw ≥ 0,

Twηtrans

G
, Tw < 0,

ωm = Gωw, (2.3)

where the positive torque corresponds to motoring phase and the negative torque corre-
sponds to the regenerative braking phase. The motor and its inverter are modeled by
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Table 2.1: Vehicle model parameters.

Parameter Value

Vehicle

Mass, m (kg) 1500
Drag coe�cient, Cd 0.3
Frontal area, Af (m

2) 2.2
Auxiliary power, Paux (W) 500

Wheels
Inertia, Θw(kg.m

2) 3.3
Radius, r (m) 0.31
Friction coe�cient, Cr 0.009

Transmission
E�ciency, ηtrans 0.95
Gear ratio, G 7.30

Motor

Max. torque (N·m) 271
Max. speed (rpm) 10000
Max. mechanical power (kW) 75
E�ciency, ηm Figure 2.2

Constants
Gravity constant, g (m/s2) 9.81
Air density, ρ (kg/m3) 1.2

their combined e�ciency, ηm, with which the required electric power of the motor, Pm,
can be calculated as:

Pm =

{
Tmωm

ηm
, Tm ≥ 0,

ηmTmωm, Tm < 0.
(2.4)

The total electric power at the DC bus, Pdem, is the sum of the motor power, Pm, and
power required by the vehicle auxiliaries (e.g. air conditioning, power steering . . . etc),
Paux; i.e.,

Pdem = Pm + Paux. (2.5)

This resulting power demand is distributed by the PMS among the di�erent power
sources.

Table 2.1 lists the vehicle parameters used in the simulation. The parameters are typical
for a mid-size sedan. The induction motor MC-AC75 from ADVISOR database [40] is
used. Its e�ciency as a function of torque and rotational speed is shown in Figure 2.2.
The gear ratio of 7.30 is selected in order for the maximum motor speed of 10000 rpm to
correspond to 160 km/h top vehicle speed.

Standard driving cycles are commonly used to test the fuel economy and emissions (for
ICE-based powertrains) of the vehicle. Four cycles, for passenger vehicles, are used here.
Their speed pro�les are shown in Figure 2.3 and their main characteristics are listed in
Table 2.2.

New European Driving Cycle (NEDC) is the standard evaluation cycle in the European
Union for passenger vehicles. It consists of four repetitions of the urban cycle ECE-
15 (each lasts for 195 s) appended by the extra-urban cycle EUDC lasting for 400 s,
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Figure 2.2: E�ciency map for MC-AC75 as a function of torque and rotational speed.
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Table 2.2: Selected characteristics of the evaluation driving cycles.

Characteristics Unit NEDC UDDS HWFET J. 10-15

Distance km 10.93 11.99 16.51 4.16

Duration s 1180 1369 765 660

Speed (average/maximum) km/h 33.32/120.00 31.51/91.25 77.58/ 96.40 22.68/ 69.97

Acceleration (average/maximum) m/s2 0.54/ 1.06 0.50/ 1.48 0.19/ 1.43 0.57/ 0.79

Deceleration (average/maximum) m/s2 -0.79/ -1.39 -0.58/ -1.48 -0.22 / -1.48 -0.65/ -0.83

Idle time s 280 241 4 207

Stops - 12 14 0 6

making in total a duration of 1180 s for the complete cycle. Urban Dynamometer Driving
Schedule (UDDS) and Highway Fuel Economy Test (HWFET) are the standard test
cycles in the United States. UDDS represents city driving, whereas HWFET simulates
highway driving. Japanese 10-15 Mode (J. 10-15) has been the o�cial test cycle in
Japan. It consists of 3 repetitions of the so-called 10-mode segment followed by one
15-mode segment. This cycle has been recently replaced by the newer JC08 cycle.

As a result of the vehicle model, the required electric power at the DC bus for any driving
cycle can be calculated, as shown in Figure 2.4 for NEDC. In the ideal case, where no
aerodynamic drag, no rolling friction, no losses in the motor and transmission line and
no auxiliary power, the total energy at the DC bus sums up to zero for a driving cycle
that starts at standstill and ends up at standstill. This is because any energy spent
to accelerate the vehicle would be compensated by the same energy recovered by the
regenerative braking during deceleration. Due to the losses, the net energy is, however,
positive, and this net energy should be supplied by the power sources. Figure 2.5 shows
the contribution of di�erent energy losses mechanisms in the vehicle over NEDC. At the
end of NEDC, about 1.3 kWh is lost; about two thirds of which are needed to overcome
the aerodynamic drag and friction, whereas about a quarter is lost in the motor and
transmission. The rest is consumed by vehicle auxiliaries.

A schematic of the fuel cell/battery vehicle is shown in Figure 2.6. The battery is directly
connected to the DC bus, whereas the FCS is coupled to the bus via a unidirectional
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Figure 2.4: Power demand of NEDC as calculated by the vehicle model.
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Figure 2.6: Schematic of fuel cell/battery hybrid powertrain.

DC/DC converter that enables the control of the FCS output power. The DC bus feeds
the induction electric motor through an inverter. The motor shaft is coupled to the
wheels through a single-speed transmission line that includes the reduction gearbox and
the di�erential.

The FCS has a maximum power rating of 50 kW and it is modeled by its e�ciency shown
in Figure 2.7. The e�ciency data, taken from [66], respects the DOE targets of a peak
e�ciency of 60% at 25% of the peak FCS power and 50% e�ciency at full load, which
are already achieved by the current automotive FCSs [67].
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Figure 2.7: E�ciency of the fuel cell system.
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The system e�ciency is the ratio of system power, Pfc, to the hydrogen power, Ph, where
Ph is the product of hydrogen mass �ow rate, ṁh, and the hydrogen lower heating value,
LHV (=120 kJ/g). The system has a peak e�ciency of 60% at 25% of its power rating,
and the e�ciency decreases rapidly at lower power due to the idling power requirements
of the system auxiliary components. The e�ciency is also lower for high power levels
due to the ohmic losses of the stack and the power loss by the auxiliaries, mainly, the
air compressor which accounts for the major power loss. The FCS DC/DC converter is
modeled by a constant e�ciency of 95%. The start/stop operation of the FCS is not
considered throughout the thesis. This means that when the FCS is delivering a zero
power, the FCS auxiliaries stay in operation and the idle hydrogen consumption exists.

The building block of the battery bank is VL6P cell from Saft/Johnson Controls, which
is used in hybrid vehicles of Mercedes-Benz [13]. Table 2.3 lists the main speci�cations
of the battery cell. The battery is modeled by the internal-resistance model [68] whose
equivalent circuit is shown in Figure 2.8(a), where OCV is the open circuit voltage of the
battery, Vb, and R is its internal resistance, Rb. Two values of Rb are usually distinguished:
one when charging the battery, Rb,chg, and the other when discharging it, Rb,dis. All the
model parameters vary with the state-of-charge (SOC) as shown in Figure 2.8(b), where
the data has been estimated from 10-second pulse power data in [13], as recommended
in [69] for the determination of battery internal resistance. Sixty cells are connected in
series to form the battery bank, so that the total energy content is 1.5 kWh and a no-load
DC bus voltage of 220 V is obtained at 60% SOC.

Table 2.3: Selected characteristics of VL6P battery cell. Data from [13].

Characteristic Value

Rated capacity 6.8 Ah
Mass 0.34 kg
Total energy 25 Wh
Current limits 250 A (discharge), 200 A (charge)
Voltage limits 2.5 � 4.1 V

2.2 O�-Line Optimization

As the name suggests, the o�-line optimization aims at �nding the optimal power sharing
strategy between the two power sources over a known driving cycle, which achieves the
minimum hydrogen consumption. The power demand Pdem should be ful�lled by the two
power sources; i.e.,

Pdem = Pfcdc + Pb, (2.6)

wherePfcdc is the output power of the FCS DC/DC converter (Pfc is the FCS power), and
Pb is the battery power. The objective of the optimization is to minimize the total hy-
drogen consumption over a given driving cycle, so the objective function to be minimized
can be expressed as follows:

J =

tfˆ

0

ṁh (Pfcdc (t)) dt, (2.7)
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Figure 2.8: Internal-resistance battery model. (a) Model equivalent circuit; (b) Battery cell model
parameters versus SOC.

where ṁh is the hydrogen consumption rate and tf is the duration of driving cycle. The
battery state-of-charge evolves with time as follows:

SOC(t) =
Q(t)

Qb

= SOC(0)− 1

Qb

tˆ

0

Ib(τ)dτ, (2.8)

where Q(t) is the remaining charge, Qb is the battery charge capacity and Ib is the battery
current, which is considered positive for discharging and negative for charging. From the
internal resistance model, the SOC dynamics as a function of battery power is given by1:

d SOC(t)

dt
=
−Ib(t)
Qb

=


−1

2Rb,disQb

(
Vb −

√
V 2
b − 4Rb,disPb(t)

)
, Pb(t) ≥ 0,

−1
2Rb,chgQb

(
Vb −

√
V 2
b − 4Rb,chgPb(t)

)
, Pb(t) < 0.

(2.9)

The optimization problem is constrained by the power capabilities of the FCS and the
battery. For example, the FCS power cannot be negative and it is limited to the FCS
power rating, and the charging and discharging power of the battery are limited. Thus,

Pfcdc,min ≤ Pfcdc ≤ Pfcdc,max,

Pb,min ≤ Pb ≤ Pb,max. (2.10)

In addition to the power constraints, there are constraints on the battery SOC. First, the
SOC is governed by the dynamic equation (2.9). Second, the SOC is not allowed to span

1Equation (2.9) can be derived as follows. Let Vb be the battery OCV, Rb its internal resistance,
Pb its power and Ib its current, then we have: Pb = Ib(Vb − RbIb). After rearrangement we get:
RbI

2
b − VbIb + Pb = 0. This is a second-order equation with Ib as unknown; it has the solution: Ib =(

Vb −
√
V 2
b − 4RbPb

)
/2Rb.
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the whole physical range of [0, 100] %, rather it is limited to a narrow range of 45% and
75%, so that the usable SOC range is 30% of the installed one. Those limits are imposed
in order to prolong the battery lifetime. Additionally, the initial and �nal SOC over the
driving cycle should be prede�ned. For HEVs, the charge-sustaining performance, where
the initial and �nal states are identical, is used to evaluate the hydrogen consumption
over the driving cycle.

A summary of the optimization problem objectives and constraints is given in Table 2.4.
For a compact formulation of the problem, x is used to denote the battery SOC as a state
of the system, and u is used to denote Pfcdc as a control variable (Pb can then be readily
calculated by the power balance). The admissible control space U(t, x) represents the
values that the control variable u can take at time t and state x; it is a function of power
demand (and hence time) and battery SOC since the battery power limits depend on its
SOC. The function f represents the equation (2.9). The dependency of f on the state
comes from the fact that the battery model parameters are all functions of SOC. The
constraints also include the de�nition of the initial state x0and the �nal state xf .

Table 2.4: Summary of the optimization problem objectives and constraints.

Objective: min
u

´ tf
0
ṁh (u (t)) dt.

Constraints: u(t) ∈ U(t, x),

ẋ(t) = f(x(t), u(t), t),

xmin ≤ x(t) ≤ xmax,

x(0) = x0,

x(tf ) = xf .

Dynamic Programming (DP) and Pontryagin's Minimum Principle (PMP) provide two
tools to obtain the optimal power share over a given driving cycle. The two algorithms
will be presented here.

2.2.1 Dynamic Programming (DP)

DP algorithm uses Bellmann's principle of optimality to e�ciently solve the optimization
problem (see Section A.1 for further information). The algorithm starts by discretizing the
time span of the driving cycle into K+1 points with a sample time Ts. Two-dimensional
state space is established, where one dimension corresponds to time and the second
dimension corresponds to state (withM+1 levels and a state resolution of ∆x), as shown
in Figure 2.9.

At each time point k and each state grid point xm, the cost-to-go function Jk(x
m) is

evaluated in a recursive manner moving backward in time as follows:

Jk(x
m, uk) = ṁh(uk)Ts + J∗k (xm + Tsf(xm, uk, k)) ,

k = 0, 1, . . . , K; m = 0, 1, . . . , M. (2.11)
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Figure 2.9: Working principle of Dynamic Programming.

The cost-to-go value associated to each control decision uk is the sum of the cost of this
decision (the hydrogen consumption over one sample time) and the optimal cost-to-go
at time k + 1 at the state reached by taking this control decision. By evaluating all the
possible control decisions (with a resolution ∆u), the minimum cost-to-go, J∗k (xm), is
obtained. As the name suggests, J∗k (xm) represents the minimum hydrogen consumption
that can be achieved starting from the state xm at time point k and ending at the �nal
state xf at the �nal time point K. The term (xm + Tsf(xm, uk, k)) represents the state
achieved at time k + 1 starting from state xm at time k and taking the control decision
uk. It is possible that this achieved state does not belong to the state grid, whereas the
optimal cost-to-go is available only at the state grid points. In this case, the optimal
cost-to-go is calculated by linear interpolation between the nearest state grid points.

The �nal cost-to-go value, J∗K , is set to zero for xf and a large value otherwise in order
to consider only the solutions that lead to xf ; i.e.,

J∗K(xm) =

{
0, xm = xf ,

∞, xm 6= xf .
(2.12)

The result of the minimization is an optimal state-feedback control law that relates each
state and each time point with the corresponding optimal control u∗ that minimizes the
cost-to-go; i.e.,

u∗k(x
m) = arg min

uk∈U(k,m)
Jk(x

m, uk). (2.13)

The optimal control map is then used to calculate the optimal DP solution moving forward
in time starting from the prede�ned initial state. If necessary, the optimal control at states
that do not belong to the state grid is evaluated also by linear interpolation.

In summary, DP follows, �rst, a backward calculation path, starting from the �nal time
point. At each time point and each state point, all the possible control actions need to be
evaluated in order to calculate the optimal cost-to-go function and the optimal control.
Having calculated all the optimal control actions at all the points of the time-state space,
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the forward calculation path starts with the given initial state to calculate the optimal
control trajectory and the optimal state trajectory. This gives an impression on how
extensive and time-consuming the calculations are.

DP guarantees the global optimum for an in�nitely dense state gird and an in�nitely �ne
control. The deviation from global optimum increases with decreasing the resolution in
state grid and control. The e�ect of resolution on the solution optimality arises from
the following factors. First, �nite number of possible control actions is evaluated to
calculate the cost-to-go function, and the optimal control is chosen among the tested
actions. Second, as stated earlier, when evaluating the cost-to-go at time point k, linear
interpolation between the optimal cost-to-go values at the next time point is required.
Any non-linearity in the optimal cost-to-go at k+1 will cause an error in the evaluation of
cost-to-go and therefore the resulting optimal control. Third, in the forward calculation
of the optimal policy, also linear interpolation between the optimal actions at the state
grid is used. Also here, the non-linearity in the optimal control will cause an error.

2.2.2 Pontryagin's Minimum Principle (PMP)

In contrast to DP, which can be regarded as a numerical algorithm, the PMP makes
use of the calculus of variations to establish the necessary conditions of optimality (see
Section A.2 for further information). It uses the concept of system Hamiltonian de�ned
as follows:

H (x(t), u(t), λ(t), t) = ṁh (u(t))− λ(t)f (x(t), u(t), t) , (2.14)

where the �rst term of the Hamiltonian is the instantaneous cost (i.e., hydrogen consump-
tion rate) and the second term is the function f de�ned in equation (2.9)(i.e., dynamics
of the state). The coe�cient λ is the Lagrange multiplier, which is conventionally called
co-state in the framework of PMP. In textbooks, a plus sign is used between the two
terms; here a minus sign is used in order to get a positive co-state as will be seen.

The Minimum Principle states that the optimal control satis�es the following three nec-
essary conditions:

ẋ∗(t) = −∂H
∂λ

(x∗(t), u∗(t), λ∗(t), t) = f(x∗(t), u∗(t), t), (2.15)

λ̇∗(t) =
∂H

∂x
(x∗(t), u∗(t), λ∗(t), t) , (2.16)

H (x∗(t), u∗(t), λ∗(t), t) ≤ H (x∗(t), u(t), λ∗(t), t) . (2.17)

The �rst necessary condition is nothing else than the system dynamics. The second
condition determines the evolution of the optimal co-state with time. The third condition
states that optimal control minimizes the Hamiltonian. Substituting the Hamiltonian of
equation (2.14) into equation (2.16), we get:

λ̇∗(t) =
∂ṁh

∂x
(u∗(t))− λ∗(t)∂f

∂x
(x∗(t), u∗(t), λ∗(t), t) ,

= −λ∗(t)∂f
∂x

(x∗(t), u∗(t), λ∗(t), t) , (2.18)
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since the hydrogen consumption rate is not an explicit function of the state.

Since we have two dynamic equations to be solved, one for the state (i.e., equation (2.15))
and one for the co-state (i.e., equation (2.18)), the initial values of the state and co-state
need to be given for the equations to be solved. The initial state is given by the statement
of the problem as a constraint; however, the initial co-state is not given and need to be
determined. By examining the formula of the Hamiltonian, the co-state plays a role of
a weighting factor of the variations of the SOC (see Section 2.3.4 for more details). For
high co-state values, the charging of the battery is favored and the �nal state-of-charge
is higher than the initial one. For low values, the discharge is favored. Therefore, the
optimal initial co-state depends on the constraint imposed on the �nal state-of-charge.
So, to �nd the initial co-state an iterative procedure over the entire driving cycle is
required. At the end of each iteration, the obtained �nal state is compared with the
desired one, and the iterations stop once the �nal state constraint is satis�ed. The fact
that the �nal state increases with the initial co-state value, makes the search easy and
within few iterations, the optimal value can be identi�ed with a very good accuracy. A
binary search algorithm is used to �nd the optimal initial co-state.

The numerical implementation of PMP proceeds as follows:

(1) Sampling the driving cycle with a sample time Ts (of 1 s). The samples are indexed
by k = 0 . . . K;

(2) De�ne a �rst guess of the initial co-state λ∗(0);

(3) For each power demand sample, Pdem(k), the permissible control range is scanned
and the corresponding Hamiltonian is evaluated with the aid of λ∗(k). The control
value that minimizes the Hamiltonian, u∗(k), is applied;

(4) The state at the next sample time is calculated as follows:

x∗(k + 1) = x∗(k) + Tsf(x∗(k), u∗(k), k);

(5) The co-state at the next sample time is calculated according to the forward Euler's
integration method:

λ∗(k + 1) = λ∗(k)− λ∗(k)Ts
∂f

∂x
(x∗(k), u∗(k), k);

(6) At the end of the driving cycle, x∗(K) is compared to xf . If |x(K)− xf | ≤ δx ,
then the solution is obtained. Otherwise, the algorithm is repeated with another
guess of the initial co-state. δx is the tolerance on the deviation of the �nal state
from the target one.

2.2.2.1 SOC Bounds Constraints

DP takes into account both control and state constraint, whereas PMP does not include,
as stated, the state boundary constraint. There are several approaches used in literature
to incorporate the state constraints into the formulation of PMP. Most approaches require
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de�ning a new state and another co-state, which complicates the problem formulation,
where the additional co-state requires careful tuning by trial and error [37], and such
approaches may end up at many solutions that need to be compared in order to �nd the
optimum [70].

If it is known that the optimal state trajectory hits the limits at known contact times,
then the problem becomes straightforward. For example, let us assume that it is somehow
known that the optimal state trajectory hits the upper state limit, xmax, at time tc, whereas
it lies within the limits otherwise. Then the problem can be divided into two problems:
over the time span [0, tc] the unconstrained problem is solved for an initial state of x0
and a �nal state of xmax. Over the time span [tc, tf ] the unconstrained problem is solved
for an initial state of xmax and a �nal state of xf . The optimal solution of the complete
problem results then from merging the two sub-solutions at the time tc. So, solving the
constrained problem can be reduced to solving a set of unconstrained problems once the
contact times with the state limits are known a priori. However, the question that is still
to be answered is how to determine those contact times, if any.

Dealing with the SOC boundary constraints uses a heuristic algorithm proposed in [26,
71], and validated by the author in [72]. The algorithm determines the contact times,
where the optimal solution hits the limits, recursively. The algorithm proceeds as follows:

(1) Solve the unconstrained optimization problem over the entire driving cycle, and if
the constraints are violated;

(2) Find the time instance t1 where the state boundary is exceeded the most; i.e.,

t1 = arg max
t∈[t0,tf ]

(xmin − x(t), x(t)− xmax) ;

(3) Split the time horizon into two parts [0, t1] and [t1, tf ]. Calculate the unconstrained
optimal solution at both parts, however, with di�erent start and end state con-
straints as follows:

� In case the upper limit is exceeded, xmax is used as an end state of the part
[0, t1] and as a start state of the part [t1, tf ].

� In case the lower limit is exceeded, xmin is used as an end state of the part
[0, t1] and as a start state of the part [t1, tf ];

(4) If the unconstrained solution over any of the parts violates the limits, the subdivision
of the time horizon is done within that part and the last two steps are repeated for
that part;

(5) The algorithm stops when the solutions over all the state sub-trajectories satisfy
the constraints. The optimal sub-trajectories are then joined together to form the
complete solution.

As an example, Figure 2.10 illustrates the algorithm used to obtain the constrained PMP
solution over UDDS with an initial state of 0.6 and a target �nal state of 0.6. Here the
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lower SOC limit is taken 0.5 instead of 0.45, in order to make the di�erence between
the constrained and the unconstrained solutions clearer. The PMP is applied �rst to the
total driving cycles without constraints. The unconstrained solution exceeds the lower
SOC limit at most at time step tc=283 s. So, the optimization problem is solved twice;
once over the time span [0,283] s with an initial state of 0.6 and a target �nal state of
0.5, and once over the time span [283,1369] s with an initial state of 0.5 and a target �nal
state of 0.6. The solutions of the two sub-problems respect the constraints and, therefore,
no further division is required. The resulting two sub-solutions are joined at the time
instance tc to form the complete solution of the constrained problem.

Figure 2.10 reveals an interesting behavior of the co-state, where it exhibits a discontinuity
at the contact times. As discussed earlier, the co-state controls the di�erence between
the �nal and initial states. Over the time span [0, tc], the unconstrained solution starts
at 0.6 and ends up at 0.44, whereas the constrained solution ends up at 0.5, so the
co-state of the constrained solutions is higher than that of the unconstrained solution.
Over the time span [tc, tf ], both solutions end up at the same state of 0.6; however,
the constrained solution starts at higher initial state and, therefore, the co-state of the
constrained problem is lower than that of the unconstrained problem. This explains the
step-down exhibited by the co-state at the contact time. Using the same reasoning, it can
be expected that when the upper SOC limit is hit, a step-up is exhibited by the co-state
at the contact time.
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Figure 2.10: Steps to obtain the constrained PMP solution over UDDS.
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2.2.3 Comparison Between DP and PMP

Both algorithms, DP and PMP, are compared in this section. For DP, a state resolution
of 0.001 and a control resolution of 100 W are used. For PMP, a control resolution
of 100 W is also used when scanning the admissible control actions while minimizing
the Hamiltonian. A di�erence in the �nal SOC of 0.0001 is tolerated for PMP. Both
algorithms are �rst compared in terms of achieved hydrogen consumption and resulting
state trajectory. In [25], it is shown that there exists a relation between DP and PMP
for an optimal solution, where the optimal co-state of PMP equals the partial derivative
of the optimal cost-to-go function; i.e.,

λ∗(k) =
∂J∗k
∂x

(x∗(k)). (2.19)

This relation provides additional method to compare the two algorithms, where the op-
timal co-state trajectories calculated by the two algorithms can be also compared. For
DP, the derivative of the optimal cost-to-go is approximated by the di�erence between
state grid points in the vicinity of the optimal state at each time point.

Figure 2.11 shows a comparison between DP and PMP over NEDC for two di�erent
target �nal SOC: 0.6 and 0.55. The state trajectories of the two algorithms are almost
identical. The same applies for the optimal co-state trajectories. The co-state of DP
calculated from equation (2.19) is relatively dispersed at the end of driving cycle; this is
attributed to truncation errors and the �nite resolution used. For a �nal SOC of 0.6, the
optimal state trajectory hits the upper SOC limit and, therefore, the co-state makes a
step-up at the contact times (at time instances 802 and 807 s). For a �nal SOC of 0.55,
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both upper and lower SOC limits are hit, and the co-state makes a step-down when the
lower limit is hit.

Table 2.5 compares DP and PMP in terms of the achieved hydrogen consumption over
the evaluation driving cycles. The �gures of the two algorithms are practically identical.

Table 2.5: Comparison between DP and PMP in terms of hydrogen consumption.

Driving cycle DP (g) PMP (g)

NEDC 88.636 88.633
UDDS 94.542 94.540
HWFET 107.731 107.731
J. 10-15 38.507 38.507

For a complete comparison between DP and PMP, other important metrics need to be
considered. The comparison is summarized in Table 2.6, where DP is used as a reference
(denoted as �). Here are the details of the comparison.

� In terms of computation time and memory requirements, PMP requires negligible
resources in comparison to DP. The exact time reduction depends on many factors
like the state resolution and the code optimization. In our case, DP takes 66 s,
whereas PMP takes 1.1 s over NEDC2. For a DP resolution of 0.01, the solution
is obtained in 6.8 s, however, the hydrogen consumption becomes 89.347 g (0.8%
increase). In terms of memory requirements, for DP, a map of KÖ(M+1) elements
of the optimal control polices resulted from equation (2.13) are kept in memory
for post processing (i.e., calculation of the optimal state trajectory starting from
k=0), whereas only the initial optimal co-state is required for PMP post processing.
For modern computers the memory requirement is not any more an issue. DP
takes an acceptable time for a single energy storage (and hence one state and one
control variable). The computation time and memory increase exponentially with
the number of states and control variables. This phenomenon is usually referred to
in literature as the �curse of dimensionality�.

� State constraints simplify and reduce the computation time of DP since the cost-to-
go function is required to be evaluated only on the allowed state range. In contrast,
those constraints require additional non-trivial manipulations in PMP.

� PMP gives only the necessary conditions for optimality and not the su�cient con-
ditions and, therefore, the PMP solution could be a local optimum. In contrast,
the DP solution is guaranteed to be a global optimum for given state and control
resolutions. The global optimality of PMP for hybrid vehicles was investigated by
Kim et al. [73]. The PMP global optimality has been illustrated here by comparing
the PMP solution with the DP solution.

� PMP solution has an interesting characteristic that makes it extendable to real-
time. Ignoring the SOC limits, the optimal strategy over a driving cycle is reduced
to one single number; that is, the initial co-state. In comparison, the calculation of

2Computer speci�cations: Intel(R) Core(TM) i5, 2.60 GHz CPU, 4.00 GB RAM.
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the DP optimal strategy requires having the optimal control actions at all nodes of
the state grid and all time points until the end of driving cycle. So, what is required
for PMP at each sample time is a proper value of the co-state, then the minimization
of the Hamiltonian can result in the corresponding control action. This feature of
PMP will be used in the design of the real-time strategy in Section 2.5.

Table 2.6: Comparison between DP and PMP.

Metric DP PMP

Computation resources � +
SOC limitations � -
Global optimality � �

Real-time variant � +

2.3 Discussions

2.3.1 Constant Co-state

The dynamics of the optimal co-state is governed by equation (2.18). If the function f is
independent of the state (i.e., the battery model parameters are constant independent of
SOC), then the optimal co-state becomes constant. For HEVs in general, the battery is
operated in a narrow SOC range, where the open circuit voltage and internal resistance
do not vary signi�cantly. As a result, it can be anticipated that a constant co-state can be
a good approximation of the optimal co-state trajectory. For constant co-state, the same
PMP algorithm is used as before but the step where the co-state is updated is skipped,
and the initial guess of co-state is used over the entire driving cycle or part of it if the
optimal trajectory hits the limits.

Figure 2.12 shows the optimal state and co-state trajectories for both variable and con-
stant co-state over NEDC. In both cases, the co-state is discontinuous when the state
trajectory hits the limit. A small di�erence in the state trajectory is observed. However,
since the objective function is to minimize the hydrogen consumption in both cases, the
best way to quantify the di�erence is to calculate the di�erence in hydrogen consump-
tion. The constant co-state results in a very good approximation of the optimal hydrogen
consumption with an error below 0.02% for all driving cycles. The constant co-state will
be employed as an optimum in many places of the thesis.

2.3.2 Advantage of Hybridization

One of the main advantages of hybridization is the reduction of hydrogen consumption.
The o�-line optimal strategy provides the best hydrogen consumption and, therefore, it
can be used to assess the potential hydrogen saving when moving from non-hybrid to
hybrid powertrains. The potential hydrogen saving comes from two factors:
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Figure 2.12: Comparison between variable co-state and constant co-state in terms of state and co-state
trajectories over NEDC.

(1) Optimization of the operating points of the FCS and battery;

(2) Adding the possibility of regenerative braking, which is not possible for FCS as the
only power source.

Figure 2.13 shows the hydrogen consumption of three scenarios: only FCS, hybrid with-
out regenerative braking and hybrid with regenerative braking, and the percentage of
hydrogen saving referenced to the non-hybrid. Here the vehicle parameters and power
sources ratings are kept unchanged. The hydrogen saving of the second scenario in com-
parison to the �rst one is a result of optimizing the operating points of the FCS and
battery (factor (1) above). The hydrogen saving of the third scenario in comparison to
�rst one results from the two factors above. As it is clear, the major improvement of
hydrogen consumption results from the regenerative braking. The hydrogen saving varies
between driving cycles; it is highest for city cycles (like UDDS) where the amount of
regenerative braking is highest, and it is lowest for highway cycles (like HWFET) which
exhibit fewer braking phases.

In addition to hydrogen saving, the hybridization has other two advantages. First, with-
out the battery, the FCS should be rated to provide the maximum driving power, whereas
in the hybrid system, the FCS is sized to provide the cruising power demand and, there-
fore, the FCS can be downsized. Second, the dynamics of the FCS in the hybrid system
is far much smoother, where the high dynamics is assigned to the battery, which results
in an extension of the FCS lifetime.
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Figure 2.13: E�ect of hybridization and regenerative braking on hydrogen consumption.

2.3.3 Optimization Window

The o�-line optimization techniques can be used to �nd out, not only the best strategy,
but also the worst strategy that achieves the maximum hydrogen consumption. The
di�erence between the two strategies de�nes the limits of any other strategy, so that any
strategy cannot be better than the best and cannot be worse than the worst. The worst
strategy is calculated here with DP.

Figure 2.14(a) shows the best and worst hydrogen consumption over NEDC for variable
�nal SOC between 0.55 and 0.65. The optimization window is quite large so that the
worst consumption is about 55% higher than the best. It is interesting to note that the
worst strategy is far much worse than the non-hybrid option (only FCS is used and no
contribution from the battery). This can be interpreted as follows: adding the battery as
an additional degree-of-freedom has the potential to signi�cantly improve the hydrogen
consumption; however, this degree-of-freedom can increase the consumption if it is used
unwisely.

Figure 2.14(b and c) show the statistical distribution of FCS power for the best and worst
strategies over NEDC for a �nal SOC of 0.6. The best strategy chooses favorable operating
points of the FCS and battery in terms of e�ciency, where the round-trip e�ciency3 of the
battery is 93.6%. The worst strategy maximizes the hydrogen consumption by minimizing
the amount of regenerative braking and by choosing the less favorable operating points,
i.e., very low or very high power for FCS and the battery round-trip e�ciency is 86.9%.

3The round-trip e�ciency is de�ned as the ratio of the discharged energy to the charging energy over
the driving cycle.
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2.3.4 Comments on the Co-state

From equation (2.14), the Hamiltonian is composed of two terms: the instantaneous
hydrogen consumption rate and f representing the instantaneous state change rate, as
follows:

H = ṁh + λ(−f) : f = ẋ .

When minimizing the Hamiltonian to calculate the optimal control action, the co-state
can be regarded as a weighting factor, which makes a compromise between the instanta-
neous hydrogen consumption and the instantaneous decrease in state.

This idea is illustrated graphically in Figure 2.15, which shows the ingredients of the
Hamiltonian as a function of battery power for a power demand of 20 kW and a battery
SOC of 0.6, for three di�erent values of the co-state. With increasing the co-state, the
term (−λf ) rotates counterclockwise, and so does the Hamiltonian, making the optimal
battery power (that minimizes the Hamiltonian) smaller. As example, increasing the
co-state from 70.7 to 91.4 to 105.4 g decreases the optimal battery power between 10
kW (i.e., FCS and battery equally share the power demand) to 0 kW (FCS provides the
demand alone) to -10 kW (FCS provides the demand and charges the battery). As a
result, if over an extended time (e.g., driving cycle) a higher co-state is used, then the
battery power will be always smaller and, therefore, the battery will exhibit less discharge
(more charge) and the reached SOC will be higher. In contrast, if a smaller co-state is
used over an extended time, the �nal SOC will be lower. In conclusion, the co-state
controls the �nal SOC.

Actually, the variation of optimal co-state over a driving cycle is quite small if the SOC
bounds constraints are ignored. Therefore, the initial co-state determines the �nal SOC.
This is illustrated in Figure 2.16(a) for ECE-15 driving cycle. Three optimal state trajec-
tories are depicted in Figure 2.16(b), with three initial co-state values of 45.0, 51.2 and



2.3 Discussions 33

0

0.2

0.4

0.6

0.8

ṁ
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57.1 g that lead to �nal SOC values of 0.55, 0.6 and 0.65, respectively. The �nal SOC
becomes more sensitive to the initial co-state with increasing the duration of the driving
cycle. For example, for 4 repetitions of ECE-15, the initial co-state varies between 49.7,
51.2 and 52.7 g for �nal SOC of 0.55, 0.60 and 0.65, respectively.

2.3.5 E�ect of Battery E�ciency on FCS Optimal Dynamics

In this section, it will be shown that the dynamics of the optimal FCS power depends
on the e�ciency of the battery, so that decreasing the battery e�ciency increases the
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optimal FCS dynamics. Before proceeding with the analysis, It is necessary �rst to show
that the hydrogen consumption rate is a strictly convex function of Pfcdc.

Neglecting the hydrogen losses due to purging and leakage, the hydrogen mass consump-
tion rate ṁh is related to stack current Ist by:

ṁh =
NstMH2

2F
Ist,

where Nst is the number of cells in the stack, MH2 is the molar mass of hydrogen, and F
is the Faraday constant. Considering the fact that the stack current is the stack power,
Pst, divided by the stack voltage, Vst, and that Pst is the sum of FCS net power Pfc and
the power consumed by the system auxiliaries, Paux, and, moreover, Pfc is the sum of
Pfcdc and the losses in the DC/DC converter, Pdc,loss, then the hydrogen mass �ow rate
can be expressed as follows:

ṁh =
NstMH2

2FVst
(Pfcdc + Pdc,loss + Paux) .

This relation shows that if Vst, Pdc,loss and Paux are all constants, then ṁh increases
linearly with Pfcdc. However, as it is known from experiment, Vst decreases with increasing
FCS power according to the stack polarization curve and, additionally, Pdc,loss and Paux
increase with Pfcdc. These e�ects add a convexity to the relation, making ṁh a strictly
convex function of Pfcdc.

Assuming the battery as an ideal voltage source with constant open circuit voltage and
zero internal resistance, the Hamiltonian at a certain power demand and certain time
instance is then given by:

H (Pfcdc, λ) = ṁh (Pfcdc) + λ
Pb
QbVb

= ṁh (Pfcdc) +
λ

QbVb
(Pdem − Pfcdc) .

Since the Hamiltonian is independent of the battery SOC, the optimal co-state, λ∗, is
constant over time. At the optimal Pfcdc and optimal λ, the Hamiltonian reaches its
minimum. Ignoring the power constraints, then:

∂H

∂Pfcdc

(
P ∗fcdc, λ

∗) =
dṁh

dPfcdc

(
P ∗fcdc

)
− λ∗

QbVb
= 0,

⇒ dṁh

dPfcdc

(
P ∗fcdc

)
=

λ∗

QbVb
.

Since ṁh is a strictly convex function of Pfcdc, then the above equation has a single
solution for a given λ∗. Since λ∗ is constant, P ∗fcdc is constant independent of the power
demand. Since the battery is lossless and the �nal SOC of the battery is the same as the
initial one, then P ∗fcdc is nothing else than the average power demand, Pdem,av. The last
formula gives also an analytical expression for the optimal co-state for a charge sustaining
performance:

λ∗ = QbVb
dṁh

dPfcdc
(Pdem,av) .

It should be noted that the last analysis holds also when the battery voltage varies with
its SOC. This means that the optimal Pfcdc is constant also with a variable open circuit
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voltage (however, with a zero internal resistance). The proof of the last case becomes
simpler if the state-of-energy, rather than the state-of-charge, is used as a system state.
Then QbVb is replaced by Eb (the battery energy capacity).

The conclusion of the aforementioned analysis is that the optimal Pfcdc is constant for
a lossless battery. Actually, this conclusion can be reached without using the optimal
control theory, rather using only the characteristic that ṁh is a convex function of Pfcdc.
Let {Pfcdc(k)} be a sequence of controls with an average of Pfcdc,av. Since the battery is
lossless, then using a constant control of Pfcdc,av leads to the same �nal SOC as {Pfcdc(k)}.
The hydrogen consumption of the sequence {Pfcdc(k)} is given by:

J1 =
K∑
k=1

Tsṁh (Pfcdc(k)) ,

whereas using a constant control of Pfcdc,av leads to hydrogen consumption of:

J2 = KTsṁh (Pfcdc,av) .

As it is known from the de�nition of the strictly convex function:

ṁh (Pfcdc,av) <
1

K

K∑
k=1

ṁh (Pfcdc(k)) ,

⇒ J2 < J1.

This means that setting a constant control action results in the minimum hydrogen
consumption. The cost increase (i.e., J1 in comparison to J2) increases with increasing
the curvature of ṁh.

As a result, the dynamics of the optimal FCS power comes actually from the ine�ciency of
the battery. Figure 2.17(a and b) shows the optimal power distribution between the FCS
and the battery over ECE-15 driving cycle for variable battery internal resistance between
0 and 4 times Rbase, where Rbase is the actual resistance of the used battery. For a zero
resistance, the FCS power is constant equals to the demand average, whereas the battery
takes the whole demand dynamics. With increasing battery resistance, the dynamics
of FCS power increases. This can be explained if we look at the battery e�ciency of
Figure 2.17(c). With increasing battery resistance, the FCS takes more dynamics in
order to decrease the losses in the battery by decreasing the battery power.

2.4 Sizing

In this section the e�ect of FCS and battery sizes on the vehicle performance will be
discussed. The performance parameters considered are the drivability (i.e., top speed,
gradeability and acceleration time), the hydrogen consumption and the hybrid power
source cost. The parameters of the vehicle used so far will be used as reference and called
�base plant design�.

The method used for sizing the power sources is illustrated in Figure 2.18. Both hydrogen
consumption and plant cost are evaluated for variable FCS size and battery size. The
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Figure 2.18: Procedure for sizing the hybrid power source of fuel cell/battery vehicle.
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designs that represent the most e�cient trade-o� between the consumption and cost, i.e.,
the Pareto front, are then identi�ed. By weighting the relative importance of consumption
and cost, the decision maker chooses then one design among the Pareto front ones.

The variables of the sizing problem are the size of FCS and the battery capacity. The
mass and cost of the power sources are given in Table 2.7. The size of FCS is de�ned by
its power rating. The FCS mass is assumed to scale linearly with its power rating, and
the same normalized e�ciency shown in Figure 2.7 is used.

Table 2.7: Mass and cost scaling factors for the FCS and battery.

Mass Cost

FCS 2.5 kg/kW4 40 ¿/kW5

Battery 13.6 kg/kWh 800 ¿/kWh6

The battery size is varied by varying its capacity, whereas the number of cells is kept
constant as it is determined by the DC bus voltage requirement. The battery mass
is scaled linearly with its capacity with a scaling factor of 13.6 kg/kWh. This factor
corresponds to the base plant design where the battery has an energy capacity of 1.5
kWh and weighs 20.4 kg (=0.34 kg/cell ×60 cells). With changing battery capacity, its
internal resistance and maximum current also change as follows:

Rb = Rbase
b

Qbase
b

Qb

,

Ib,max = Ibaseb,max

Qb

Qbase
b

,

where the battery resistance, Rb, (both charge and discharge resistances) scales linearly
with the inverse of capacity. The battery maximum current, Ib,max, (both charge and
discharge currents) scales linearly with the capacity. The superscript �base� refers to the
base plant design.

In the sizing process, the FCS power rating is varied between 0 and 100 kW, and the
battery capacity is varied between 0 and 20 Ah (corresponding to 0�4.4 kWh). The
hydrogen consumption is evaluated using PMP. For that purpose, the FCS power rating
range is divided into 21 values with a step of 5 kW. Likewise, the battery capacity range
is divided into 21 values with a step of 1 Ah. PMP is then applied to calculate the best
consumption for each pair of FCS power rating and battery capacity.

2.4.1 Drivability Constraints

The drivability is considered as a constraint of the sizing problem. Taking into account
that the cost plays a major role for the majority of customers, very high top speed may

4This is the 2011 status of fuel cell vehicular systems according to [10].
5According to [74], the cost status for fuel cell vehicular systems is US$49 and US$47, for 2011 and

2012 respectively, per kW of net power based on projection to high volume manufacturing of 500000
units/year.

6Determined by a comprehensive consideration of [29, 56].
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not be of interest for customers as long as it is acceptable, since speed limitations exist in
most countries. This also applies to acceleration time, where very short times may also
not be of interest as long as the vehicle accelerates in an acceptable time. This does not
apply, for example, for sport vehicles, where the top speed and acceleration time are the
major interest of the customers, whereas the cost plays a minor role.

Top speed represents the maximum speed that can be sustained on a horizontal road.
The power sources are sized so that they achieve a minimum top speed of 140 km/h. The
power required to sustain a speci�c speed over an extended time should be met by the
FCS alone since the battery is used as an energy bu�er and, therefore, it cannot deliver
power for a long time. Therefore, the FCS power rating is the major determinant of the
top speed, whereas the role of battery size comes solely from its e�ect on battery mass
and hence on vehicle mass.

Gradeability corresponds to the maximum speed that can be sustained on a slope. The
power sources are sized so that they achieve at least a maximum speed of 90 km/h on
6.5% grade with a payload of 300 kg. Like the top speed, the gradeability is mainly
determined by the FCS power rating.

Figure 2.19 shows the maximum speed the can be sustained on a horizontal road and on
a grade of 6.5% with payload as a function of FCS power rating. The maximum speed is
limited to 160 km/h by the motor. The curves are shown as areas, where the base line of
each area represents a 20 Ah battery and the top line represents the case of no battery (0
Ah). With increasing battery size, the vehicle mass increases and, therefore, bigger FCS
is required to sustain a certain maximum speed. The e�ect of mass is more important
for a grade of 6.5% than for a grade of 0%, since for the former case the mass-dependent
gravity force attributes signi�cantly to the traction force.

Acceleration time represents the minimum time required to accelerate the vehicle from
standstill to 100 km/h. An upper limit of 12 s is used as a constraint for the power
sources size. Figure 2.20 shows the speed pro�le and motor power demand during a
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Figure 2.20: Speed pro�le and motor demand during the maximum acceleration 0�100 km/h.

strong acceleration 0�100 km/h, which is achieved by the base plant design within 10.6 s.
for relatively small power sources, the demand may not be possible to meet, which leads
to prolonging the acceleration time. For the evaluation of acceleration time a sample time
of 0.1 s is used (in comparison to 1 s for driving cycles) in order to improve the accuracy.
During acceleration, the FCS delivers the load alone when it is possible; otherwise, when
the demand exceeds the FCS capability, the battery delivers the rest demand as long as
it is able to do that according to its power capability and available energy. The battery
is assumed at 60% SOC at the beginning of acceleration.

The constraints used for the drivability are closely related to the commonly used PNGV
(Partnership for a New Generation of Vehicles) requirements of hybrid vehicles, which
set a minimum top speed of 85 mph (= 136.8 km/h), a minimum top speed of 55 mph
(= 88.5 km/h) at 6.5% grade, and 12 s as a higher limit of the minimum acceleration
time from standstill to 60 mph (= 96.5 km/h) [75].

Figure 2.21 shows the lines that represent the minimum sizes that achieve each constraint,
so that to the left of each line, the corresponding constraint is not satis�ed, and to the
right of each line, the corresponding constraint is satis�ed. The area to the left of all
lines represents the insu�cient sizes that violate at least one of the constraints. The top
speed is a weaker constraint than the gradeability, so that the solutions that satisfy the
gradeability constraint necessarily satisfy the top speed constraint.

2.4.2 Results and Discussion

Figure 2.22(a) shows the results of hydrogen consumption over NEDC, where the hydro-
gen consumption is displayed as isolines with labels indicating the hydrogen consumption
in gram. The dark gray represents the impossible sizing, where the speed pro�le of the
driving cycle cannot be followed completely, whereas the light gray highlights the region
of insu�cient sizing, where the drivability constraints are violated. Figure 2.22(b) shows
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the e�ect of FCS power rating on hydrogen consumption for a battery capacity of 6.8
Ah, and Figure 2.22(c) shows the e�ect of battery capacity on consumption for an FCS
power rating of 50 kW. The same analysis is depicted in Figure 2.23 for HWFET. The
results over the two driving cycles can be summarized in the following observations:

� The e�ect of the battery capacity increase on hydrogen consumption is signi�cant
at low capacities (<5 Ah), whereas it is marginal at high capacities. At low ca-
pacities, increasing the capacity increases the amount of regenerative braking which
accounts for the main hydrogen saving. At high capacities, two contradicting e�ects
are taking place, so that increasing the capacity decreases the battery internal re-
sistance (leading to lower losses in the battery and, therefore, lower consumption),
however, increases the battery mass and hence the vehicle mass leading to higher
consumption. The latter e�ect is quite small since the battery mass is already small
(i.e., for 0 Ah and 20 Ah, the battery mass is 0 and 60 kg, respectively). For a
moderate FCS power rating around 50 kW, the acceleration constraint has an ad-
vantageous side-e�ect of setting a minimum battery capacity leading to relatively
low consumption.

� The e�ect of FCS power rating on hydrogen consumption comes from two main
factors. First, increasing the FCS power rating increases the vehicle mass (by 250 kg
for FCS power rating between 0 and 100 kW). Second, varying the FCS power rating
shifts the FCS power that accepts the peak FCS e�ciency. The minimum hydrogen
consumption is achieved when the FCS power rating is about four times the average
demand, since then the average demand coincides with the peak e�ciency. The
minimum consumption over NEDC is obtained for an FCS power rating of 15 kW,
where the average demand is 4.0 kW. The minimum consumption over HWFET is
obtained for an FCS power rating of 35 kW, where the average demand is 9.3 kW.

Each pair of FCS power rating and battery capacity represents a possible plant de-
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Figure 2.22: Hydrogen consumption versus FCS power rating and battery capacity over NEDC. (a)
Consumption isolines in gram; (b) Consumption versus FCS power rating for battery capacity of 6.8 Ah;
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sign, with a corresponding performance in terms of cost and hydrogen consumption.
Figure 2.24 shows, for example, the performance of all possible designs (termed �un-
constrained�) in the cost-hydrogen consumption plane. The solutions that respect the
drivability constraints represent a subset (termed �constrained�) of the possible solutions.
Considering the hydrogen consumption and the cost as two objective functions to be
minimized, the designer would be interested only in the designs that achieve the best
trade-o� between the two objectives. The best trade-o� is called Pareto front, which is a
collection of the non-dominated solutions. In order to test a solution whether it belongs
to the Pareto front (i.e., whether it is a Pareto solution), the solution is compared with
all the other solutions. If the solution is not dominated by any other solution, then it
belongs to Pareto front. So, for each driving cycle, two Pareto fronts are obtained: a
global unconstrained one and a constrained one as shown in Figure 2.24. Any non-Pareto
solution corresponds to an ine�cient design that unnecessarily increases the cost and/or
hydrogen consumption.
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Figure 2.24: Extraction of Pareto fronts for HWFET.

Figure 2.25 shows the Pareto solutions in the decision space (FCS power rating and bat-
tery capacity) for the two driving cycles. In other terms, Figure 2.25 shows the most
e�cient designs in terms of cost and hydrogen consumption with and without drivability
constraints. For the two driving cycles, there is no intersection between the unconstrained
and constrained Pareto solutions. This is attributed to the fact that the minimum hy-
drogen consumption is obtained for designs outside the constrained region.

All the solutions of Pareto front are mathematically equally optimal. Choosing one
solution rather than the others requires weighing the relative importance of the two
objective functions: cost and hydrogen consumption. For each Pareto solution x of the
decision space, the weight wi for the i-th objective function can be calculated as follows
[76]:

wi =
(fmax
i − fi(x)) /

(
fmax
i − fmin

i

)∑2

m=1 (fmax
m − fm(x)) / (fmax

m − fmin
m )

, (2.20)

where fmax
i and fmin

i are the maximum and minimum values, respectively, of the i-th
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Figure 2.25: The speci�cations that achieve the best trade-o� between cost and hydrogen consumption.
(a) NEDC; (b) HWFET.

objective function as obtained from the Pareto front. In our case, two weights w1 (cor-
responding to hydrogen consumption) and w2 (corresponding to cost) are assigned to
each Pareto solution. The weight represents the relative distance of the solution from the
maximum (worst) value of each objective function, so that the weight wi has a maximum
value for the best solution in terms of the i-th objective. The denominator of equa-
tion (2.20) makes the weight vector (w1, w2) sum up to 1 for each solution. For example,
for w1=1 (w2=0), the solution that achieves the minimum hydrogen consumption is cho-
sen, whereas for w1=0 (w2=1) the solution that achieves the minimum cost is selected.
For w1 and w2 between 0 and 1, a compromise between the two objectives is achieved.

Here three solutions {(w1, w2) = (1, 0), (0.5, 0.5), (0, 1)} are reported in Table 2.8 and
Table 2.9 for NEDC and HWFET, respectively, for the unconstrained and constrained
cases. The results are graphically illustrated in Figure 2.26, where the values of cost
and consumption are given as a percentage of the maximum for each Pareto front. As
expected, for the same weight, both hydrogen consumption and cost are higher in the con-
strained case. For NEDC and unconstrained case, prioritizing the hydrogen consumption
(w1=1,w2=0) can save up to 9.3% hydrogen (in comparison to w1=0,w2=1), whereas pri-
oritizing the cost (w1=0,w2=1) can save up to 65% cost (in comparison to w1=1,w2=0).
For equal weights given to the two objectives, the last savings �gures become 6.8% for
hydrogen and 51% for the cost. For the constrained case, the potential hydrogen saving
is smaller of 3.1% and the potential cost saving is 46%. The same trend is observed for
HWFET, where for the unconstrained case, the potential hydrogen saving is 15.7% and
the potential cost saving is 67%, whereas for the constrained case, the potential hydrogen
saving is 0.5% and the potential cost saving is 30%.

As a summary of sizing process, the following points can be stated:

� The optimal powertrain size depends on the driving cycle (as illustrated for NEDC
and HWFET). So, there is no reference optimal size that is optimal for all systems
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Table 2.8: Numerical sizing results over NEDC.

Unconstrained Constrained

(w1,w2) (1,0) (0.5,0.5) (0,1) (1,0) (0.5,0.5) (0,1)

Hydrogen consumption (g) 70.3 72.2 77.5 87.0 87.8 89.8

Cost (BC) 3776 1835 1329 5353 3588 2882

FCS power rating (kW) 15 15 20 50 50 50

Qb (Ah) (energy (kWh)) 18 (3.97) 7 (1.54) 3 (0.66) 19 (4.19) 9 (1.99) 5 (1.10)

Table 2.9: Numerical sizing results over HWFET.

Unconstrained Constrained

(w1,w2) (1,0) (0.5,0.5) (0,1) (1,0) (0.5,0.5) (0,1)

Hydrogen consumption (g) 106.1 109.8 125.8 107.5 107.7 108.1

Cost (BC) 3341 1529 1106 4118 4118 2882

FCS power rating (kW) 35 25 10 50 50 50

Qb (Ah) (energy (kWh)) 11 (2.43) 3 (0.66) 4 (0.88) 12 (2.65) 7 (1.54) 5 (1.10)
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Figure 2.26: Selected solutions of the following Pareto fronts: (a) NEDC unconstrained; (b) NEDC
constrained; (c) HWFET unconstrained; (d) HWFET constrained.
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in all conditions. This issue mainly a�ects the hydrogen consumption where the
minimum consumption is achieved when the average demand coincides with the
peak FCS e�ciency.

� Considering the hydrogen consumption as the only objective function to be mini-
mized may lead to signi�cantly costly powertrain, so the cost needs to be considered
as an objective as well. A reasonable compromise can then be obtained that reduces
the cost drastically with only a marginal increase in hydrogen consumption.

� The drivability performance (i.e., mainly gradeability and acceleration time) con-
straints the sizing process. Without such constraints, the optimal powertrain size
may be unreasonably small.

� Direct comparison between all the possible powertrain sizes when several objective
functions are considered would be a tedious task. The best option is to choose
�rst the sizes that represent the most e�cient trade-o� between the objectives (i.e.,
Pareto front). The resulting re�ned possible sizes can then be used by the decision
maker, who chooses among them based on prede�ned design preferences (i.e., how
much weight is given to each objective).

� Among the designs that respect the drivability constraints, the minimum cost is
achieved at the minimum FCS size of 50 kW, and the corresponding minimum
battery capacity of 5 Ah. For this design, the FCS accounts for about 70% of the
total cost (i.e., 2000 BC out of 2882 BC). This explains why it is non-economical to
choose a larger FCS system (with smaller battery) because the reduction in battery
size cannot compensate the increase in FCS size. If the FCS cost were signi�cantly
lower or the battery cost were signi�cantly higher, the minimum cost would favor
larger FCS and smaller battery.

� The hydrogen consumption and cost have been evaluated only at designs grid with
a resolution of 5 kW for FCS power rating and 1 Ah for battery capacity. Slightly
more e�cient Pareto fronts can be obtained with �ner grid or, alternatively, by
using an evolutionary multi-objective optimization.

� Without hybridization, satisfying the acceleration time constraint requires a min-
imum FCS of 85 kW, which achieves a hydrogen consumption of 134.16 g and
129.81g over NEDC and HWFET, respectively. Therefore, the base hybrid vehicle
saves 34% and 17% hydrogen in comparison to the only-FCS topology. These im-
provements are higher than those reported in Figure 2.13, which did not consider
the downsizing of FCS due to hybridization.

� The following simple sizing procedure results in a good performance. The FCS
power rating is chosen as a minimum that satis�es the top speed and gradeability
constraints (i.e., 50 kW), and then the problem turns into a one-dimensional sizing,
where the battery capacity is chosen as a compromise between acceleration, hydro-
gen consumption and cost, as shown in Figure 2.27. The range of 5�10 Ah is the
most interesting range since it achieves most of the hydrogen saving potential and
the minimum acceleration time.
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Figure 2.27: Battery sizing for an FCS of 50 kW. (a) Hydrogen consumption referenced to maximum;
(b) Cost referenced to maximum; (c) Acceleration time 0�100 km/h.

2.4.3 Battery Longevity-Conscious Sizing

The aforementioned sizing procedure assumes that the battery will remain functioning
for the entire vehicle lifetime using the optimal PMS (optimal in terms of hydrogen
consumption). The battery service life depends on the operating conditions; therefore,
an important question should be addressed: what if the battery reaches its end-of-life
(EOL) before the vehicle required lifetime. There are basically two approaches to address
this question [29, 77]:

� In the �rst approach, the same PMS (that minimizes the hydrogen consumption)
is used and the battery is replaced once it reaches its EOL. This way, the cost of
battery replacements needs to be considered in the cost of powertrain, whereas the
hydrogen consumption evaluation stays intact. The PMS used in this approach will
be denoted BLNCS (Battery Longevity-Nonconscious Strategy).

� The second approach is to modify the PMS so that the battery can last for the
planned vehicle lifetime. In this case, the cost evaluation remains as before, whereas
additional hydrogen needs to be consumed to relieve some stress from the battery if
needed. The PMS used in this approach will be denoted BLCS (Battery Longevity-
Conscious Strategy).

Investigating the e�ect of battery lifetime on the hydrogen consumption requires a quan-
titative model for battery aging.

There are two methods to quantitatively characterize the battery aging: the cycle num-
ber and the Ah-throughput (or equivalently energy-throughput). The cycle counting is
suitable for lab conditions where the cycles are well de�ned and can be repeatedly applied
to the battery; however, it cannot be used in traction applications where every charge
or discharge event is di�erent [78, 79]. Therefore, the Ah-throughput is used to express
the battery aging. Over a given driving cycle of duration tf and for charge sustaining
performance (initial SOC and �nal SOC are the same), the Ah-throughput is de�ned as:

Ahdc =
1

2

ˆ tf

0

|Ib(t)| dt. (2.21)
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The factor 1/2 is used so that the Ah-throughput considers only the discharged charge.

The total Ah-throughput, Ah tot , that the battery can provide over its lifetime is given
by:

Ah tot = 0.9NQb, (2.22)

where Qb is the initial capacity that is the same as the rated capacity of a fresh battery;
N is the cycle life of the battery measured at rated conditions for 100% DoD (depth-
of-discharge). The battery EOL is reached when the capacity fades to 80% of its initial
one. Assuming a linear capacity fade pro�le, the average battery capacity over its cycle
lifetime is then 0.9Qb; so the factor 0.9 appears in equation (2.22).

In the simplest battery aging model, which is used here, dividing Ah tot by Ahdc gives
the total number of driving cycles that can be driven before the battery EOL. More
sophisticated models take into account other stress factors such as the charge-discharge
rate, DoD and temperature while counting the Ah-throughput [78, 79, 80].

The vehicle lifetime ttot is taken as 5000 hours, which is the DOE target for fuel cell
vehicular systems [10]. This corresponds to about 167000 km total driving distance over
NEDC. In order for the battery to survive the vehicle lifetime, the Ahdc must be smaller
than Ah target given by:

Ah target =
tf
ttot

Ah tot . (2.23)

If the Ahdc achieved by the PMS is lower than the target, then the battery can survive
the vehicle lifetime. Otherwise, the battery needs to be replaced in the �rst approach
�oor(Ahdc/ Ah target) times, or the PMS needs to be modi�ed (in the second approach)
so that Ahdc is reduced to Ah target , which explains the use of the subscript �target.�

Reducing the Ahdc in BLCS, when necessary, can be attained by augmenting the hydrogen
consumption by a penalty function of the battery current as follows:

J =

ˆ tf

0

{ṁh(t) + α |Ib(t)|} dt. (2.24)

The penalty factor α has the unit of g/(A.s) and it determines the weight given to the Ahdc

in minimizing J . Increasing α, causes the Ahdc to decrease and hydrogen consumption to
increase, and vice versa. For zero α, the conventional PMS optimization problem, which
considers only hydrogen consumption, is obtained. For in�nite α, the battery current
would be always zero resulting in the pure fuel cell drive. By tuning α, the Ahdc can be
reduced to Ah target .

Two factors would play a role in �nding the right value of α; these are the battery capacity
and battery cycle life. From equations (2.22) and (2.23), with increasing Qb and/or N ,
the Ah target increases; hence, lower value of α is required which results in less sacri�ce in
hydrogen consumption (i.e., smaller increase in hydrogen consumption in comparison to
the conventional optimization problem).

Figure 2.28 illustrates the e�ect of battery cycle life on the Pareto front for drivability-
constrained sizing. From now on, only the plant designs that satisfy the drivability
constraints are considered. The term �ideal� is used to refer to the practically ageless
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Figure 2.28: E�ect of battery cycle life on the Pareto front between cost and hydrogen consumption
with BLCS over NEDC.

battery where the battery has a very long cycle life so that its lifetime does not a�ect the
sizing process. For variable battery cycle life, the Pareto front is achieved always for an
FCS size of 50 kW (the same as the ideal case), so that the variation in plant cost in the
Pareto front comes from the variation in battery capacity. As shown in Figure 2.28, the
amount of hydrogen, which needs to be compromised for extending the battery service life
to match the vehicle lifetime, increases with decreasing battery capacity and decreasing
battery cycle life.

Figure 2.29 shows the current of a 5-Ah battery (1.1 kWh) for the ideal case and for a
cycle life of 2000 cycles with BLCS. The ideal battery achieves an Ahdc of 2.9 Ah. This
value needs to be reduced to an Ah target of 0.6 Ah for N=2000 in order for the battery
to survive the vehicle life. The result is a signi�cant reduction in battery contribution
increasing the hydrogen consumption by about 14% (i.e., from 89.2 g to 102.2 g).

In order to compare the two PMS design approaches, BLCS and BLNCS, it is more
convenient to use a single objective function to minimize rather than two by converting
the hydrogen consumption into cost and adding it to the powertrain cost. The cycle-
normalized cost is used here de�ned as:

Cycle − normalize cost = (plant cost)× tf
ttot

+

(hydrogen consumption)× (hydrogen cost). (2.25)

Figure 2.30 compares the two approaches to consider the battery lifetime in terms of the
NEDC-normalized cost for two hydrogen cost scenarios, 10 BC/kg and 5 BC/kg7. For the

7In [81], a stochastic analysis is performed to determine the hydrogen cost in the early market in-
troduction of fuel cell vehicles to make them competitive with the conventional ICE-based ones. It was
concluded that the hydrogen would cost about US$4-12 per kilogram, with US$7 as the most likely case.
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Figure 2.29: Battery current for an ideal battery and a battery with a cycle life of 2000 cycles for a
capacity of 5 Ah with BLCS over NEDC.

two approaches decreasing the battery cycle life leads to an increase in NEDC-normalized
cost. This cost increase for BLNCS comes from either using small batteries requiring more
often replacement or oversizing the battery requiring less often replacement, which one
is more economical. Whereas, this cost increase for BLCS comes from either using small
batteries requiring more hydrogen consumption or oversizing the battery requiring less
hydrogen consumption, which one is more economical. It is clear that the BLCS option is
far much economical in compensating short battery lifetimes. The BLNCS option results
in a cost increase of 21% and 36% (for hydrogen cost of 10 and 5 BC/kg, respectively) for
N=2000 in comparison to the ideal battery, whereas the corresponding increase for BLCS
is about 10%. In other terms, for batteries with short lifetime, it is more economical to
have a PMS that uses the battery less aggressively than a PMS that exhausts the battery
so that it needs to be replaced or extensively oversized.

Table 2.10 gives the numerical details of the sizing optimization for the BLCS option. For
a hydrogen cost of 10 BC/kg, the contribution of hydrogen cost to the NEDC-normalized
cost is signi�cant, so that the optimization tends to choose larger battery for shorter
battery cycle life in order not to increase hydrogen consumption too much. In comparison,
for a hydrogen cost of 5 BC/kg, the optimization chooses the smallest possible battery,
because the contribution of hydrogen consumption is smaller and decreasing the hydrogen
consumption by choosing larger battery cannot simply compensate the increase in plant
cost.

Table 2.10: Sizing optimization results over NEDC.

Battery

cycle life

(cycles)

10 BC/kg hydrogen 5 BC/kg hydrogen

FCS

(kW)

Battery

(kWh)

NEDC-normalized cost

in BC(hydrogen, plant)

FCS

(kW)

Battery

(kWh)

NEDC-normalized cost

in BC(hydrogen, plant)

2000 50 2.43 1.200(0.941,0.258) 50 1.10 0.700(0.511,0.189)

3000 50 1.76 1.154(0.930,0.224) 50 1.10 0.683(0.494,0.189)

4000 50 1.54 1.131(0.919,0.212) 50 1.10 0.665(0.476,0.189)

6000 50 1.32 1.104(0.903,0.201) 50 1.10 0.647(0.458,0.189)

ideal 50 1.10 1.087(0.898,0.189) 50 1.10 0.638(0.449,0.189)
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2.5 Real-Time Strategy

The o�-line optimal strategy is highly sensitive to the driving cycle, so that the opti-
mal strategy over one driving cycle may result in a poor performance over other cycles.
Figure 2.31 illustrates this idea. The �gure shows two SOC trajectories of the UDDS.
The �rst trajectory results from the application of the constant co-state optimized over
HWFET for a charge sustaining performance. The application of HWFET optimum leads
over UDDS to a �nal SOC of 0.75 (i.e., the upper SOC limit). The second trajectory
represents the strategy optimized over UDDS itself, with the same �nal SOC of 0.75.
First, the two SOC trajectories are completely di�erent. Second, the HWFET optimum
when applied to UDDS results in a hydrogen consumption of 121.4 g corresponding to
17% more hydrogen than the UDDS optimum of 103.4 g. In conclusion, the optimal
strategy over one driving cycle may behave very poorly over other driving cycles.

The last example illustrates the fact that the o�-line optimal strategy, represented by the
optimal co-state in PMP, is very sensitive to driving cycle. Therefore, if PMP is to be
used in real-time, the co-state needs to be updated in real-time.

The real-time controller used here is given by:

λ(t) = λ0 +Kp (xref − x(t)) +Ki

ˆ t

0

(xref − x(τ)) dτ, (2.26)

where the co-state is adapted through a proportional-integral (PI) controller of the battery
SOC, with λ0 is the initial co-state, Kp is the proportional gain and Ki is the integral
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Figure 2.31: Illustration of the high sensitivity of the o�-line optimal strategy to the driving cycle.

gain. It controls the battery SOC around a constant reference, xref , of 0.6 and outputs
the co-state which is then used in real-time when minimizing the Hamiltonian de�ned in
equation (2.14). The advantages of this controller have been experimentally evaluated
by the author in [72].

The structure of the real-time PMS is depicted in Figure 2.32. The PMS accepts the
power demand and the current SOC as inputs and outputs the power contribution of
FCS and battery. In comparison to the o�-line optimal PMS, the real-time PMS uses
only the current state to decide the current co-state and, therefore, the current control
action that minimizes the Hamiltonian.

Figure 2.32: Schematic of the real-time power management strategy.

In order to optimize the controller parameters, λ0, Kp andKi, the optimization objectives
have to be �rst established. The objectives of optimization are:

� Hydrogen consumption as close as possible to the o�-line optimum;

� The co-state adaptation needs to be su�ciently fast (i.e., SOC control su�ciently
strong). Very weak SOC control may lead to the situation encountered in Fig-
ure 2.31, where the SOC reaches its upper limit and remains there (i.e., no regen-
erative braking more possible) or reaches its lower limit and remains there (i.e., no
further assistance from the battery is possible);

� The resulting strategy needs to be robust and performs well over various driving
cycles of di�erent nature (urban and highway cycles).
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Two performance indices of the real-time controller are de�ned: J1 evaluates the perfor-
mance in terms of hydrogen consumption and J2 evaluates the performance in terms of
charge sustenance. The two performance indices are de�ned as follows:

J1 =
1

Ndc

∑
i

HCi −HCi
opt

HCi
opt

× 100 (%),

J2 = max
i

∣∣xif − xf,ref ∣∣ . (2.27)

Each set of controller parameters leads for a driving cycle i to a speci�c �nal SOC of xif and
a speci�c hydrogen consumption of HCi. HCi

opt represents the o�-line optimal hydrogen

consumption which depends on xif . So, the ratio
(
HCi −HCi

opt

)
/HCi

opt represents the
percentage deviation from the o�-line optimal hydrogen consumption. The deviations
of all driving cycles are averaged to form J1, where Ndc is the number of driving cycles
engaged in the optimization. J2 represents the maximum deviation from the charge
sustenance.

Optimizing the real-time controller over many driving cycles at once enriches the training
set of the controller and, therefore, improves its robustness when applied to real-world
applications. Considering the percentage deviation of real-time hydrogen consumption
from the o�-line optimum as an objective to minimize, rather than the absolute hydrogen
consumption itself, enables grouping many driving cycles in the optimization. The abso-
lute consumption may vary signi�cantly between driving cycles depending on its duration
and nature. Therefore, if considering the absolute consumption, the optimization will be
biased toward the driving cycles with higher consumption and other low consumption
cycles will be of minor importance. The deviation from the charge sustenance, J2 , is
used here as an index of the controller strength.

Minimizing the two objectives leads to a multi-objective optimization problem (see Ap-
pendix B) with the controller parameters as the optimization variables. The ranges of
the optimization variables were as follows: λ0 is limited between 0 and 100, Kp between 0
and 1000, and Ki between 0 and 1. The real-time strategy is optimized over three driving
cycles NEDC, UDDS and HWFET (i.e., Ndc =3) and its robustness is evaluated over J.
10-15.

The resulting Pareto front is shown in Figure 2.33; it represents the most e�cient trade-
o� between the two objective functions. Each Pareto solution corresponds to a set of
strategy parameters. Figure 2.34 and Table 2.11 illustrate the performance of three
Pareto solutions with three values of J2 of 0.001 (almost perfect charge sustenance),
0.05 and 0.1. With increasing J2, the SOC control gets weaker and the SOC becomes
freer to move around the reference resulting in closer hydrogen consumption to the o�-
line optimum. The driving cycle J. 10-15 was not included in the optimization of the
real-time PMS; however, the performance of the real-time strategy over it in terms of
SOC sustenance and hydrogen consumption resembles that of the cycles engaged in the
optimization which indicates the robustness of the controller.

All the Pareto solutions are mathematically equally optimal. Choosing one of them
as a design of the real-time PMS requires weighing the relative importance of the two
objective functions. It can be argued that the strength of SOC control is favorable as long
as it does not a�ect the hydrogen consumption so much. For example, for J2 of 0.05 in
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Table 2.11: Performance of the real-time strategy in terms of �nal SOC and hydrogen consumption
(referenced to o�-line optimum) for three Pareto solutions.

Driving cycle
J2 =0.001, J1=2.8% J2 =0.05, J1=1.6% J2 =0.1, J1=1.1%

Final SOC Consumption (%) Final SOC Consumption (%) Final SOC Consumption (%)

NEDC 0.599 5.2 0.596 3.2 0.601 2.0
UDDS 0.601 2.1 0.649 1.1 0.699 0.9
HWFET 0.599 1.1 0.597 0.6 0.604 0.4
J. 10-15 0.591 1.4 0.631 0.6 0.674 0.5

comparison to perfect charge sustenance, the hydrogen consumption can be decreased by
2% over NEDC and about 1% over the other driving cycles. However, increasing J2 to 0.1
signi�cantly weakens the SOC control with a marginal gain in hydrogen consumption. So,
J2 of 0.05 may be considered as a good compromise between the two objective functions.

2.6 Experimental Study

In this section, the power management optimization of an experimental fuel cell/battery
hybrid system is carried out. The o�-line optimal strategy is obtained using PMP. As
described in Section 2.5, the real-time strategy is optimized over NEDC, UDDS and
HWFET and its robustness is additionally evaluated over J. 10-15.

The layout and speci�cations of the test bench are given in Appendix C. The test bench
is supposed to simulate the vehicle on a small scale. The hybrid power source of the
vehicle has a maximum fuel cell power of 50 kW and a 1.5 kWh battery. The net power
of the test bench FCS is limited to 700 W. The ratio of vehicle FCS power to the test
bench FCS power of 70 (≈ 50 kW/0.7 kW) is used as a scaling factor between the vehicle
and test bench, so that the vehicle power demand calculated by the vehicle model in
Section 2.1 is divided by this scaling factor when it is applied to the test bench.

Using the same scaling factor to downscale the vehicle battery size, the battery of the
test bench should have an energy of 21 Wh (=1500 Wh/70). Assuming a 37 V nominal
battery voltage in the test bench, a 0.6 Ah battery capacity is required in the test bench.
Actually, the battery used has a capacity of 30 Ah, which is quite large in comparison
to the required capacity. So, only 0.6 Ah from the entire capacity is considered around
60% SOC, and the reported experimental SOC corresponds to the required capacity, not
to the actual one.

The multi-objective optimization was conducted withλ0, Kp and Ki as optimization vari-
ables, and J1 and J2 de�ned in equation (2.27) as the objectives to be minimized. The
ranges of the optimization variables were as follows: λ0 is limited between 1 and 2, Kp

between 0 and 10, Ki between 0 and 0.01. The solution that achieves the minimum J2
(i.e., of about 0.002 which is practically a charge sustaining performance) is considered,
since it corresponded to J1 of only 0.75%. The corresponding optimal parameters are:
λ0=1.23, Kp=2.10 and Ki=0.
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The experimental evaluation of the real-time strategy is shown in Figures 2.35 and 2.36
for NEDC and J. 10-15, respectively. NEDC is included in the strategy optimization,
whereas J. 10-15 is not so that it is used to test the robustness of the strategy over other
driving cycles not included in its optimization. The battery contributes strongly to the
demand during acceleration and regenerative braking phases, whereas the FCS delivers
the cruising demand. The experiment reproduces the simulation results very well as
illustrated by comparing the simulation and experiment in terms of state trajectories.

The battery used in this study is of high e�ciency due to the oversized capacity, so that
it is practically lossless. Consulting Section 2.3.5, for a lossless battery the optimal FCS
power that minimizes the Hamiltonian is independent of the power demand, and it is
solely dependent on the co-state. Therefore, the variation of the FCS power in Figures
2.35 and 2.36 is actually a result of the co-state variation.
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Figure 2.35: Experimental evaluation of the real-time power management strategy over NEDC.
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Figure 2.36: Experimental evaluation of the real-time power management strategy over J. 10-15.

Figure 2.37 shows the current and voltage waveforms of the FCS and battery over NEDC.
Due to the high e�ciency of the battery used, its voltage does not change signi�cantly.

Figure 2.38 compares the o�-line optimum and the real-time PMS in terms of hydrogen
consumption. The o�-line optimal hydrogen consumption is measured for di�erent �nal
SOC by applying the corresponding o�-line optimal co-state trajectories. Three runs of
the experiment are conducted for the real-time strategy, the average consumption is then
considered. As expected from simulation and optimization, the hydrogen consumption of
the real-time strategy is barely distinguishable from that of the o�-line optimum.

The advantage of hybridization with respect to hydrogen consumption was evaluated by
measuring the hydrogen consumption when only the FCS is used to drive the load and the
battery is disconnected. The measured consumptions over the evaluation driving cycles
are listed in the second column of Table 2.12, whereas the consumption of the optimized
real-time strategy is listed in the third column. The �gures of hydrogen saving are closely
correlated with those given in Figure 2.13.
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Figure 2.37: Current and voltage measurements over NEDC.
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Table 2.12: Experimental comparison between only fuel cell drive and hybrid drive in terms of hydrogen
consumption.

Driving cycle Only FCS (g) Hybrid (g) Improvement (%)

NEDC 2.31 1.91 17
UDDS 2.61 2.01 23
HWFET 2.43 2.15 11
J. 10-15 1.04 0.84 19
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2.7 Conclusions

In this chapter, fuel cell/battery hybrid systems for passenger vehicles were investigated
in terms of PMS design and optimization, and in terms of powertrain sizing.

The PMS optimization was �rst performed assuming a complete knowledge of the driv-
ing cycle, resulting in an o�-line optimal strategy that globally minimizes the hydrogen
consumption. DP and PMP have been compared as two possible o�-line optimization
techniques. The comparison revealed that both algorithms achieve the global optimal
PMS, whereas PMP has the advantage of negligible required computation resources (i.e.,
time and memory).

A real-time capable PMS was designed and optimized while using the o�-line optimal
PMS as a benchmark. The optimization of the real-time PMS was formulated as multi-
objective optimization problem, taking into account hydrogen consumption and charge
sustenance as two optimization objectives. Special emphasize is put on the inclusion of
multiple driving cycles, of di�erent nature, in the optimization to increase the robustness
of the strategy.

The sizing of the power sources, i.e., FCS and battery, took into account hydrogen con-
sumption and plant cost as two objectives. The sizing process was approached by two
nested loops. The outer loop represents an exhaustive search algorithm that iterates over
all the possible designs (FCS size and battery size), and for each design the objective
functions are evaluated within the inner loop that represents the optimization of the
PMS by PMP. The most e�cient designs (i.e., Pareto front), which represent the most
e�cient trade-o� between the objectives, were then extracted and analyzed.

The e�ect of battery lifetime on the sizing process was investigated by using an Ampere-
hour throughput model to quantify the battery aging. To include the e�ect of battery
lifetime in the sizing process, two approaches were compared: the �rst approach (BLNCS)
assumes an optimal PMS (in terms of hydrogen consumption) and assumes that the
battery is replaced once it reaches its EOL. The second approach (BLCS) modi�es the
PMS so that the battery can last for the entire planned vehicle lifetime. It was found that
the second approach is far more economical especially for batteries with short lifetime.

The o�-line and real-time PMS optimization techniques were validated on a small-scale
experimental fuel cell/battery hybrid system. The experimental measurements replicated
the simulation results very well, thanks to the good models of the test bench components.
The optimized real-time PMS was found to have a hydrogen consumption indistinguish-
able from the o�-line optimum.



Chapter 3

Fuel Cell/Supercapacitor Hybrid

In this chapter, a fuel cell/supercapacitor vehicular hybrid system is investigated in terms
of power management optimization and sizing. The vehicle model introduced in Sec-
tion 2.1 is adopted in Section 3.1 for the calculation of the power demand of the hybrid
power source for standard driving cycles. In Section 3.2, the two o�-line optimization
techniques, Dynamic Programming (DP) ans Pontryagin's Minimum Principle (PMP),
are applied and compared. The sizing of power sources (i.e., fuel cells and supercapac-
itor) is addressed in Section 3.3, taking into account hydrogen consumption and plant
cost. The design and optimization of a real-time capable power management strategy
is introduced in Section 3.4. Experimental results obtained from a small test bench are
presented in Section 3.5. The experimental study discusses, in addition to power manage-
ment strategy design and optimization, other issues like the e�ect of FCS power dynamics
limitation on hydrogen consumption, and the inclusion of such limitation in the o�-line
optimization techniques. Moreover, experimental results of an alternative power sources
topology (direct coupling of FCS and supercapacitor without converters) are presented.

3.1 Vehicle Model

The topology of the fuel cell/supercapacitor vehicle is depicted in Figure 3.1. The FCS is
coupled to the DC bus via a unidirectional DC/DC converter, whereas the supercapacitor
is interfaced with the DC bus by a bidirectional converter. One converter is used to
regulate the DC bus voltage, whereas the second one is used to control the power sharing
between the two power sources. The parameters of the vehicle model are the same as
those used for the fuel cell/battery vehicle listed in Table 2.1.

The power demand, Pdem, is the sum of the supercapacitor DC/DC converter power,
Pscdc, and the power of FCS DC/DC converter, Pfcdc; i.e.,

Pdem = Pfcdc + Pscdc. (3.1)

The FCS is modeled by its e�ciency shown in Figure 2.7. Its converter is modeled by its
constant e�ciency of 95%. A 50 kW FCS is assumed in this study.

59
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Figure 3.1: Schematic of fuel cell/supercapacitor hybrid powertrain.

Figure 3.2: Equivalent circuit of the supercapacitor model.

The supercapacitor is modeled by the internal-resistance model of Figure 3.2. This model
is the same as that used for the battery in Figure 2.8(a), however, with a capacitor
instead of a voltage source because the open circuit voltage of the supercapacitor changes
linearly with its SOC. The supercapacitor converter is modeled by its constant e�ciency
of 95%. The building block of the supercapacitor bank is a Boostcap BCAP3000P270
from Maxwell Technologies, which is characterized by a capacitance of 3000 F, a rated
voltage of 2.7 V and an internal resistance of 0.29 mΩ [81].

The supercapacitor open circuit voltage, Vsc, varies linearly with its SOC; i.e.,

SOC =
Vsc

Vsc,max

, (3.2)

whereVsc,max is the maximum open circuit voltage, which equals the rated voltage. To be
consistent with the literature, the supercapacitor state-of-energy (SOE), rather than its
SOC, is used as the state of the system (i.e., x=SOE), which is calculated according to
equation (3.3) and its dynamics is governed by equation (3.4):

xsc(t) =
E(t)

Esc
=

(
Vsc(t)

Vsc,max

)2

,

= xsc(0)− 1

Esc

ˆ t

0

Isc(τ)Vsc(τ)dτ, (3.3)

ẋsc(t) =
−IscVsc
Esc

=
−Vsc

2RscEsc

(
Vsc −

√
V 2

sc − 4RscPsc(t)

)
, (3.4)

where E(t) is the remaining energy content, Esc is the energy capacity, Isc is the super-
capacitor current, Rsc is its internal resistance and Psc is its power.
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The supercapacitor SOE is constrained between 25% and 95% at any time. The lower
SOE limit corresponds to half of the maximum voltage, and the upper SOE limit is set
below 1 as a safety margin. The SOE constraints restrict the usable energy to 70% of its
maximum energy capacity.

110 cells are assumed to form the supercapacitor bank. This choice is based on observa-
tions of typical supercapacitor design in literature, where the number of cells is typically
chosen so that the average voltage matches the DC bus voltage [51, 82]. The DC bus
voltage is chosen as 220 V, the same used for the fuel cell/battery vehicle. For 110 cells,
the supercapacitor voltage varies between about 150 V and 290 V, with 220 V as an
average value. The total energy of the supercapacitor bank is about 330 Wh, whereas its
usable energy is about 230 Wh.

3.2 O�-Line Optimization

For �nding the o�-line optimal PMS, the two algorithms, DP (see Section 2.2.1) and
PMP (see Section 2.2.2) have been applied. A supercapacitor initial and �nal SOE of 0.8
is assumed for the o�-line optimization. The supercapacitor current is limited to ±300
A.

The resulting state trajectories are shown in Figure 3.3 over NEDC. The two algorithms
achieve almost identical state trajectories, with the same hydrogen consumption of 91.97
g. It is interesting to notice that this consumption is higher than the consumption
of FCS/battery hybrid (88.63 g from Table 2.5), even though the supercapacitor at-
tains higher e�ciency than the battery (round-trip e�ciency of the battery was 93.6%,
whereas it is 98.8% for supercapacitor). This is attributed to, �rst, the losses of the
supercapacitor DC/DC converter (with 100% e�ciency of supercapacitor converter, the
consumption is 89.38 g) and, second, the state constraints are active more often in the
case of supercapacitor due to its lower energy content.

3.3 Sizing

In this section the e�ect of FCS and supercapacitor sizes on the vehicle performance
will be discussed. The sizing procedure used here is the same used to size the fuel
cell/battery hybrid vehicle in Section 2.4. For an objective comparison between battery
and supercapacitor, the supercapacitor converter e�ciency is set here to 100% and its
mass is set to zero, so that the ideal scenario is considered.

The variables of the sizing problem are the size of FCS and the size of supercapacitor
bank. The size of FCS is de�ned by its power rating. The supercapacitor size is varied by
varying the number of cells connected in series. The mass and cost scaling factors of the
power sources are given in Table 3.1. The cost of supercapacitor cell of 30 ¿ is calculated
assuming a cost of 0.01 ¿ per Farad of capacitance [29].
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Figure 3.3: Comparison between DP and PMP in terms of state and co-state trajectories over NEDC.

Table 3.1: Mass and cost scaling factors for the FCS and supercapacitor.

Mass Cost

FCS 2.5 kg/kW 40 BC/kW
Supercapacitor 0.51 kg/cell 30 BC/cell

In the sizing process, the FCS power rating is varied between 0 and 100 kW, and the
number of supercapacitor cells is varied between 0 and 300 cells. The hydrogen consump-
tion is evaluated using PMP. For that purpose, the FCS power rating range is divided
into 21 values with a step of 5 kW, and the number of supercapacitor cells is divided into
31 values with a step of 10 cells. PMP is then applied to calculate the best consumption
for each pair of FCS size and supercapacitor size.

Figure 3.4 depicts the hydrogen consumption over NEDC and HWFET, where the con-
sumption is displayed as isolines with labels indicating the hydrogen consumption in
gram. The dark gray represents the impossible sizing, where the speed pro�le of the
driving cycle cannot be followed completely, whereas the light gray highlights the region
of insu�cient sizing, where the drivability constraints are violated.

As done in Section 2.4, the Pareto front that represents the best trade-o� between hy-
drogen consumption and cost has been extracted. By using the weighting procedure of
equation (2.20), three solutions have been picked up from the Pareto front. The weight
vector (w1,w2) of (1,0) prioritizes only the hydrogen consumption, and the weight vector
of (0,1) prioritizes only the plant cost, whereas a vector of (0.5,0.5) equally favors the cost
and consumption. The corresponding solutions are reported in Table 3.2 and Table 3.3
for NEDC and HWFET, respectively.
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Figure 3.4: Hydrogen consumption (in gram) versus FCS power rating and number of supercapacitor
cells. (a) NEDC; (b) HWFET.

Table 3.2: Numerical sizing results over NEDC.

Unconstrained Constrained

(w1,w2) (1,0) (0.5,0.5) (0,1) (1,0) (0.5,0.5) (0,1)

Hydrogen consumption (g) 73.7 79.9 107.6 89.4 91.3 98.3

Cost (BC) 5700 2500 1800 7400 4400 3400

FCS power rating (kW) 15 25 45 50 50 55

No. Cells (energy (Wh)) 170 (516) 50 (152) 0 (0) 180 (547) 80 (243) 40 (122)

Table 3.3: Numerical sizing results over HWFET.

Unconstrained Constrained

(w1,w2) (1,0) (0.5,0.5) (0,1) (1,0) (0.5,0.5) (0,1)

Hydrogen consumption (g) 106.0 108.5 118.5 107.4 108.0 109.7

Cost (BC) 4100 2100 1400 4700 3500 3400

FCS power rating (kW) 15 25 45 50 50 55

No. Cells (energy (Wh)) 90 (273) 30 (91) 0 (0) 90 (273) 50 (152) 40 (122)

As a summary of sizing process, the following points can be stated as a comparison
between battery and supercapacitor as an ESS:

� The required supercapacitor energy for the minimum hydrogen consumption is far
much less than that for the battery. This is mainly attributed to the signi�cantly
lower supercapacitor speci�c energy. E.g., one kWh ESS energy requires a 13.6 kg
battery whereas it requires a 168 kg supercapacitor;

� The battery is oversized in terms of energy in order to ful�ll the power require-
ments, so that the size of the battery is determined by its power. In contrast,
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the supercapacitor is sized by its energy. For example, for an FCS of 50 kW, the
minimum battery size (satisfying the acceleration constraint) was about 1 kWh in
order to have a power of 29 kW at 60% SOC. In comparison, the minimum super-
capacitor energy required to ful�ll the same constraint is only 140 Wh achieving a
power of 33 kW at 80% SOE. Smaller battery is not enough because of low power,
whereas smaller supercapacitor is not enough because of the low energy so that the
supercapacitor gets fully depleted before �nishing the acceleration phase;

� Comparing the optimal powertrain size between battery and supercapacitor, the
battery leads to more hydrogen-e�cient and cost-e�cient powertrain. This trend
would only intensify if we consider the additional cost and mass of the supercapac-
itor converter, which has not been considered in this study. This may explain the
fact that the vast majority of full hybrid vehicles currently use batteries as an ESS.
This trend may change in future with increasing the energy density and decreasing
the cost of supercapacitors.

Figure 3.5 compares the Pareto fronts of the battery for variable cycle life with that of the
supercapacitor. For an ideal battery, the fuel cell/battery powertrain is more economical.
The supercapacitor can become a favorable option compared to a battery with poor
lifetime of 2000 cycles or less. The same conclusion is obtained by comparing the NEDC-
normalized costs listed in Table 3.4 with Table 2.10. As said before, the supercapacitor
requires increasing its energy density and reducing its cost to be competitive with the
battery.
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Figure 3.5: Comparison between supercapacitor and battery of variable cycle life in terms of Pareto
front over NEDC.

In this study, the cold start-up time and cold start-up energy of FCS has not been
considered. According to [10], the 2017 target for cold start-up time of FCS is 30 s.
Vehicle operation during this phase (in addition to the possibility of using the ESS in
heating up the FCS) may require signi�cant energy from the ESS depending on the driving
cycle. This issue would also favor battery over supercapacitor especially in FCHVs.
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Table 3.4: Sizing optimization results over NEDC.

Hydrogen price
(BC/kg)

FCS (kW) Supercapacitor
(Wh)

NEDC-normalized cost in
BC (hydrogen, plant)

10 50 152 1.166 (0.936, 0.229)
5 50 152 0.698(0.468, 0.229)

3.4 Real-Time Strategy

The real-time controller used here is given by:

λ(t) = λ0 +Kp (xref − x(t)) +Ki

ˆ t

0

(xref − x(τ)) dτ. (3.5)

It has a proportional-integral (PI) form where λ0 is the initial co-state, Kp is the pro-
portional gain and Ki is the integral gain. The same controller scheme was used in
Section 2.5 for the fuel cell/battery hybrid. However, the reference state is made variable
for the supercapacitor as given by:

xref (t) = xf,ref −Kref (v(t)/vmax)
2 . (3.6)

The reference state is proportional to the vehicle speed, v(t), squared, with xf,ref is
the reference state for zero speed and it is also the target �nal SOE, Kref is a tuning
parameter and vmax is the speed scaling factor which can be chosen as the vehicle top
speed. Figure 3.6 depicts the structure of the real-time strategy, where the reference state
variation with vehicle speed is represented by the block named Fcn. Using a variable
reference state for the supercapacitor has been proposed in literature as a method to
optimally exploit the already small ESS energy content [83]. It is based on the idea that
increasing the vehicle speed (and, thus, its kinetic energy) increases the expected amount
of recoverable braking energy in the future.

The real-time strategy used for the battery as an ESS in Section 2.5 had three tuning
parameters, whereas the strategy used for the supercapacitor possess four parameters
to be tuned by optimization, i.e., λ0, Kp, Ki and Kref . The parameters can be also
optimized using the same formulation used for the battery as will be done in the next
section.

Figure 3.6: Schematic of the real-time power management strategy.
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3.5 Experimental Study

In this section, the power management optimization of an experimental fuel cell/ super-
capacitor hybrid system is carried out. The o�-line optimal strategy is obtained using
PMP, and the real-time strategy is optimized over UDDS (as a representative of city driv-
ing) and HWFET (as a representative of highway driving). The topology of Figure 3.1,
with DC/DC converters in front of FCS and supercapacitor, is the main concern in this
experimental study; an alternative topology is experimentally elaborated in Section 3.5.3.

The layout and speci�cations of the test bench are given in Appendix C. The vehicle power
demand calculated by the vehicle model in Section 3.1 is divided by a scaling factor of 30
when it is applied to the test bench. The test bench supercapacitor is operated around
60% SOE.

The losses of the supercapacitor DC/DC converter lead to high optimal dynamics of the
FCS power. The limitation of FCS power dynamics in the o�-line optimization and real-
time strategy has not been yet discussed because the ESS high e�ciency encountered so
far lead to relatively slow FCS dynamics (see Section 2.3.5). In addition to the typical
optimization constraints (i.e., power and state constraints), the limitation of the Pfcdc
change rate is accounted for here as a hard constraint; i.e.,

|∆Pfcdc/Ts| ≤ Ṗfcdc, (3.7)

where ∆Pfcdc is the change of Pfcdc between two successive time points, Ts is the sample

time (of 1 s) and Ṗfcdc is the value of rate limiter with W/s as a unit.

The constraint (3.7) is included in the formulation of PMP simply by limiting the range
of control actions that is scanned when minimizing the Hamiltonian. This means that
the dimensionality of the problem is kept unchanged; i.e., the supercapacitor SOE is
the only state of the system. The global optimality of this approach will be discussed in
Section 3.5.1. Other alternative methods to account for FCS dynamics in the optimization
are discussed in Section 3.5.2.

The e�ect of FCS load dynamics on the hydrogen consumption is illustrated in Fig-

ure 3.7(a). The data points are recorded by varying Ṗfcdc in the constraint (3.7) between
10 and 700 W/s, where 700 W/s represents the unconstrained case. For each value,
the actual max (|∆Pfcdc/Ts|) and the relative increase in hydrogen consumption in com-
parison to the unconstrained case are obtained. There is a clear trade-o� between the
FCS dynamics and the hydrogen consumption, so that, for example, reducing the FCS
dynamics from 450 W/s to 10 W/s is accompanied by an increase of 6% in hydrogen

consumption over UDDS. This trade-o� is attributed to the fact that reducing Ṗfcdc nar-
rows the admissible control window, over which the Hamiltonian is minimized, resulting

in a less favorable value. In our case, the Ṗfcdc of 10 W/s is considered from now on
to put emphasis on the FCS life time which is strongly a�ected by its load dynamics.
Figure 3.7(b) compares the optimal FCS converter power contribution over UDDS for
the unconstrained case (corresponding to max (|∆Pfcdc/Ts|)=450 W/s) and for the con-
strained case (corresponding to max (|∆Pfcdc/Ts|)=10 W/s).
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Figure 3.7: E�ect of the allowed FCS dynamics on the o�-line optimal strategy. (a) E�ect on hydrogen
consumption over UDDS and HWFET; (b) E�ect on fuel cell power over UDDS.

The real-time PMS depicted in Figure 3.6 is adopted here with a reference state xf,ref
of 0.6 and vmax of 100 km/h. The strategy parameters, λ0, Kp, Ki and Kref , are to be
chosen by optimization. The ranges of the optimization variables are as follows: λ0 is
limited between 3 and 5, Kp between 0 and 100, Ki between 0 and 0.01 and Kref between
0 and 0.3.

The resulting Pareto front is shown in Figure 3.8. To verify the optimality of the Pareto
solutions, random sets of the PMS parameters are tested and the results are shown in
Figure 3.8, as well. The performance of the random parameter sets in terms of J1 indicates
that the search space is only about 4% wide, which is the di�erence between the best
and the worst J1. This small optimization window is a result of the strong constraints on
the FCS dynamics. For example, relaxing the allowed dynamics to 100 W/s would result
in an optimization window of about 12%. The Pareto front indicates a small trade-o�
between the two objectives. The parameters that lead to the perfect charge sustenance
(J2=0) is considered so that the evaluation of the hydrogen consumption requires only one
experimental run. This choice corresponds to the parameters: λ0=3.50, Kp=36.95, Ki

=0.0075 and Kref=0.088. The performance of the PMS with the optimized parameters
is subsequently experimentally evaluated.

Figures 3.9 and 3.10 show the experimental evaluation of the real-time strategy over
UDDS and HWFET, respectively. The supercapacitor delivers the high dynamics of the
load, whereas the FCS contribution is quite smooth with a maximum change rate of
10 W/s. The experiment reproduces the simulation results very well as illustrated by
comparing the simulation and experiment in terms of state trajectories.

As said before, the use of two DC/DC converters, a unidirectional for the FCS and a
bidirectional for the supercapacitor, achieves two goals: �rst, the control of bus voltage
and, second, the active control of the sharing between the two power sources. As shown
in Figure 3.11, the bus voltage is kept controlled around 37 V, even though the FCS and
supercapacitor terminal voltages change with power (and state in case of supercapacitor).
Keeping the bus voltage constant is advantageous in the electric vehicles in order to get
the full power capability from the traction motor.
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Figure 3.9: Experimental evaluation of the real-time power management strategy over UDDS.
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Figure 3.10: Experimental evaluation of the real-time power management strategy over HWFET.

Figure 3.12 illustrates a comparison between the o�-line optimum and real-time PMS in
terms of hydrogen consumption. The hydrogen consumption is shown versus the di�er-
ence between the �nal SOE and the initial SOE. The o�-line optimum is experimentally
evaluated over each driving cycle by applying several optimal co-state trajectories. The
charge sustaining o�-line optimal hydrogen consumption can then be obtained by linear
regression of the measurements. As expected from the design, the hydrogen consumption
of the real-time PMS is within 1% of the o�-line optimum.

3.5.1 Dynamic Programming

The correct formulation of the optimization problem when the FCS power dynamics
is limited requires the de�nition of Pfcdc as a state of the system (in addition to the
supercapacitor SOE), and its change between successive time points as the control variable
of the system. The new state is governed in this case by the discrete dynamic equation:

Pfcdc(k + 1) = Pfcdc(k) + u(k). (3.8)
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Figure 3.11: Current and voltage measurements over HWFET.
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Figure 3.12: Experimental evaluation of the o�-line optimal and real-time PMS in terms of hydrogen
consumption as a function of the di�erence (�nal SOE � initial SOE). (a) UDDS; (b) HWFET.

The control variable, u, in this case is the change of the new state between successive time

points. Therefore, it is limited between −ṖfcdcTs and +ṖfcdcTs according to constraint
(3.7) if the optimal Pfcdc trajectory does not hit the lower and upper power limits of the
FCS (i.e., 0≤ Pfcdc(k)≤700 W).

DP is applied to the constrained system with SOE and Pfcdc as two states and u as a
control variable. SOE is discretized with a resolution of 0.001 and Pfcdc with a resolution
of 10 W. The control action is discretized with a resolution of 1 W. A comparison between
DP and PMP in terms of SOE trajectories over UDDS is depicted in Figure 3.13, for the



3.5 Experimental Study 71

unconstrained and the constrained cases. As it is clear, for the unconstrained case, the
two solutions are identical, whereas they di�er for the constrained case. In terms of
hydrogen consumption, DP and PMP consumption is identical for the unconstrained
case, whereas, for the constrained case, DP consumes 1.7% and 0.7% less hydrogen than
PMP over UDDS and HWFET, respectively.

The co-state associated with the new state, Pfcdc, is calculated from the derivative of the
DP optimal cost-to-go function with respect to Pfcdc at each time point for the constrained
case, and it is shown in Figure 3.14 over UDDS. The previous PMP formulation uses
actually a suboptimal trajectory of the new co-state (i.e., a constant of zero), which
resulted in the sub-optimality of PMP solution. The following question then arises: is it
possible to account for Pfcdc as a state in the PMP? Theoretically this is possible, and
the Minimum Principle states that the new co-state ends up at zero at the �nal time,
since the corresponding state, Pfcdc, is free at the �nal time [25]. However, this has been
proven di�cult to tackle since the new co-state is of very low magnitude and any small
error in its integration would result in a drift from the terminal boundary condition of
zero, making the algorithm extremely di�cult to converge.

3.5.2 Fuel Cell Dynamics Limitation Through Penalty Function

In the previous sections, the limitation of FCS dynamics has been achieved by a hard con-
straint on the power change rate. Another method to achieve that is to augment the cost
function of the optimization problem (which has been so far the hydrogen consumption)
by a penalty function that penalizes the change rate. For a proper formulation of such
penalty function, the objective of the limitation needs �rst to be explicitly de�ned. Here
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Figure 3.13: Comparison between DP and PMP state trajectories over UDDS. (a) Unconstrained FCS
dynamics; (b) Constrained FCS dynamics.
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Figure 3.14: The optimal trajectory of the co-state associated with Pfcdc as calculated by DP for
constrained FCS power dynamics over UDDS.

the objective is set to minimize the average power change rate over the driving cycle, so
the two objectives are given by:

J1 =

K−1∑
k=0

Tsṁh (Pfcdc(k)) ,

J2 =
1

K

K−1∑
k=0

|∆Pfcdc(k)|
Ts

, (3.9)

where J1 is the hydrogen consumption and J2 is the average change rate.

In order for the problem to be solvable using the o�-line optimization algorithms, the two
objectives need to be combined in one single objective, so that the total objective to be
minimized can be formulated as follows:

min

K−1∑
k=0

{
Tsṁh (Pfcdc(k)) + α

(
|∆Pfcdc(k)|

Ts

)}
, (3.10)

where the coe�cient α is introduced as a weighting factor. For di�erent values of the
coe�cient α, di�erent compromises between the two objectives J1 and J2 can be reached.

So far, we have illustrated two methods to limit the FCS dynamics: hard constraint and
linear penalty function. The linear penalty function has been chosen because it matches
the objective function J2. Quadratic penalty function may also be used [84], where the
combined objective function to be minimized is then given by:

min

K−1∑
k=0

{
Tsṁh (Pfcdc(k)) + α

(
|∆Pfcdc(k)|

Ts

)2
}
. (3.11)

Figure 3.15 compares the three approaches to limit the FCS dynamics in terms of the
obtained Pareto front with DP. As expected the linear penalty function achieves the
best Pareto front. As said, this result is obtained because the linear penalty matches the
objective J2. The hard constraint gives the worst compromise between the two objectives.
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This illustrates the idea that the method used to limit the FCS dynamics has an in�u-
ence on the results. Choosing one method rather than the other requires a well de�ned
objective that we want to minimize, and then the best way is to use a penalty function
that matches this objective. The objective of limiting the FCS dynamics is to prolong
its lifetime. Then, an explicit formula that relates the operating conditions to the FCS
aging is required, which can then be embedded in the optimization problem as a penalty
function.
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Figure 3.15: Comparison between three methods to limit the FCS dynamics. (a) UDDS; (b) HWFET.

3.5.3 Alternative Topology of Fuel Cell / Supercapacitor Hybrid

So far we have considered the fuel cell/supercapacitor topology shown in Figure 3.1, where
two DC/DC converters are used; unidirectional one for the FCS and a bidirectional one
for the supercapacitor. One converter is used to regulate the DC bus voltage, whereas
the other is responsible for the realization of power distribution between the two power
sources.

It is also possible to use the topology shown in Figure 3.16(a), where the FCS and
supercapacitor are both connected directly to the bus without converters. This topology
is used in Honda FCX fuel cell vehicle [17]. In this case, the bus voltage is determined
by the supercapacitor, and the FCS power is determined by the bus voltage and the FCS
characteristic polarization curve.

The operating principle of this topology is illustrated in Figure 3.16(b) which shows
the FCS voltage as a function of its current (or power). The bus voltage is mainly
determined by the supercapacitor SOC, whereas the supercapacitor power has a smaller
e�ect due to its low internal resistance. For a bus voltage V1, for example, according
to the FCS characteristics, the FCS delivers the power P1. For a lower supercapacitor
SOC, corresponding to a voltage V2, the contribution of the FCS increases. So, the
system is self regulating, where the contribution of the FCS increases with decreasing
supercapacitor charge level.
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Figure 3.16: Direct coupling between fuel cell system and supercapacitor. (a) Topology schematic; (b)
Operating principle for two bus voltage levels.

Figures 3.17 and 3.18 show the experimental evaluation over UDDS and HWFET, re-
spectively. The results correspond to the charge sustaining performance where the initial
and �nal supercapacitor voltage is the same. The FCS power follows the bus voltage,
so that decreasing the bus voltage increases the FCS power as expected from the FCS
polarization curve.

Having no converters makes the topology attractive since it saves the losses caused by
the converters. Over UDDS, the hydrogen consumption was 3.00 g corresponding to a
decrease of about 41% in comparison to the real-time strategy with converters. Like-
wise, for HWFET, the hydrogen consumption was 4.14 g corresponding to about 25% in
comparison to the real-time strategy with converters. This signi�cant hydrogen saving is
not typical, because the e�ciency of the converters in the test bench is relatively low in
comparison to the typical e�ciencies for the converters used in vehicles. However, this
topology has three drawbacks:

� The bus voltage becomes variable, which determinately a�ects the high power ca-
pability of the traction motor;

� The ability to actively control the system is removed;

� This topology imposes limitations on the design voltages of the FCS and superca-
pacitor. The converters provide isolation between the power source and the DC
bus so that the power source voltage may be higher or lower than the bus voltage.
Therefore, with converters, the design voltages of the power sources can be chosen
more freely.

3.6 Conclusions

In this chapter, fuel cell/supercapacitor hybrid systems for passenger vehicles were inves-
tigated in terms of PMS design and optimization, and in terms of powertrain sizing.
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Figure 3.17: Experimental evaluation of the DC/DC converters-free fuel cell/supercapacitor topology
over UDDS.
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Figure 3.18: Experimental evaluation of the DC/DC converters-free fuel cell/supercapacitor topology
over HWFET.
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The same methodologies used for fuel cell/battery hybrid systems in Chapter 2 were used
also here. DP and PMP were compared as two possible o�-line optimization techniques,
and it was found that both algorithms are identical in terms of the global optimality of
the o�-line PMS. A real-time capable PMS was designed and optimized while using the
o�-line optimal PMS as a benchmark.

The sizing of the power sources, i.e., FCS and supercapacitor, took into account hydrogen
consumption and plant cost as two objectives. In comparison to batteries as an ESS, the
supercapacitors resulted in less economical powertrain designs. Supercapacitors can be a
more economical option only in comparison to batteries with short cycle life.

The o�-line and real-time PMS optimization techniques were validated on a small-scale
experimental fuel cell/supercapacitor hybrid system. The experimental measurements
replicated the simulation results very well, thanks to the good models of the test bench
components. The e�ect of FCS dynamics limitation on hydrogen consumption was inves-
tigated using a hard constraint on the FCS power change rate. Other methods, based on
penalty functions, were additionally investigated to limit the FCS dynamics. The exper-
imental evaluation inspected alternative passive self-regulating fuel cell/supercapacitor
topologies without DC/DC converters.



Chapter 4

Fuel Cell/Battery/Supercapacitor
Hybrid

In this chapter, a fuel cell/battery/supercapacitor vehicular hybrid system is investigated
in terms of power management optimization. The same vehicle modeling approach used
in Section 2.1 is adopted in Section 4.1, however, with a transit bus as an application.
In Section 4.2, the two o�-line optimization techniques, DP and PMP, are applied and
compared in terms of the global optimality. The design and optimization of a real-time
capable power management strategy is introduced in Section 4.3. Experimental results
obtained from the test bench are presented in Section 4.4. This chapter is based on the
two author's publications [85, 86].

4.1 Vehicle Model

A schematic of the fuel cell/battery/supercapacitor vehicle is shown in Figure 4.1. The
battery is directly connected to the DC bus, whereas the FCS is coupled to the bus via
a unidirectional DC/DC converter that enables the control of the FCS output power. A
bidirectional DC/DC converter in front of the supercapacitor provides isolation between
the supercapacitor and the battery that operates at di�erent voltage level and enables the
control of the supercapacitor power. Its bidirectional operation enables discharging and
charging of the supercapacitor. The DC bus feeds the induction electric motor through
an inverter. The motor shaft is coupled to the wheels through a single-speed transmission
line that includes the reduction gearbox and di�erential.

The topology shown in Figure 4.1 is the typical one used for transit buses in literature
[29, 51], due to its advantages over other possible alternative topologies. In this topology,
the DC bus voltage is the same as the battery voltage, so that no direct bus voltage
regulation exists. A bidirectional DC/DC converter can be placed between the battery
and the DC bus enabling the DC bus voltage regulation, which is bene�cial in order to
get the full power capability of the traction motors all the time; however, this comes at
the expense of additional hydrogen consumption due to the power losses in the converter.
Moreover, in comparison to fuel cell/battery hybrid systems, the supercapacitor helps

77
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Figure 4.1: Schematic of fuel cell/battery/supercapacitor hybrid powertrain.

reduce the power burden on the battery by supplying most of the transient power demands
and, therefore, the battery voltage does not change signi�cantly. Another alternative
topology is to place the bidirectional converter in front of the battery, rather than the
supercapacitor. In this case, the bus voltage is determined by the supercapacitor, which
exhibits strong voltage variations due to its low energy content (in comparison to the
battery) and the high sensitivity of supercapacitor voltage to its charge level.

The parameters of the vehicle model are given in Table 4.1. The Citaro FuelCell Hybrid
transit bus from Mercedes Benz [87] is used as a reference for the vehicle parameters.
The vehicle is driven by two motors mounted on the rear axle. The same e�ciency map
of Figure 2.2 is used for each motor after scaling the speed and torque. In the braking
phases, a maximum of 60% of the braking torque is assumed available for recuperation,
whereas the rest is lost in the mechanical brakes.

Table 4.1: Transit bus model parameters.

Parameter Value

Vehicle

Mass, m (kg) 15000
Drag coe�cient, Cd 0.79
Frontal area, Af (m

2) 7.86
Auxiliary power, Paux (kW) 10

Wheels
Inertia, Θw(kg.m

2) 20.5
Radius, r (m) 0.48
Friction coe�cient, Cr 0.009

Transmission
E�ciency, ηtrans 0.95
Gear ratio, G 22.63

Motor

Number 2
Max. torque (N·m) 465
Max. speed (rpm) 11000
Max. mechanical power (kW) 120
E�ciency, ηm Figure 2.2;

speed scale (1.1), torque scale (1.72)

Constants
Gravity constant, g (m/s2) 9.81
Air density, ρ (kg/m3) 1.2
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As a result of the vehicle model, the power demand, Pdem, required at the DC bus is
calculated as the sum of the traction motors power and the power required by the vehicle
accessories. This total power should be met by the three power sources; i.e.,

Pdem = Pfcdc + Pb + Pscdc, (4.1)

where Pfcdc is the output power of the FCS DC/DC converter (Pfc is the FCS output
power), Pb is the battery power, and Pscdc is the output power of the supercapacitor
DC/DC converter (Psc is the supercapacitor power). Two transit bus driving cycles are
used for the evaluation: Manhattan driving cycle and NurembergR36 driving cycle. Their
speed pro�les are shown in Figure 4.2.
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Figure 4.2: Evaluation driving cycles. (a) Manhattan; (b) NurembergR36.

The FCS has a maximum power rating of 120 kW and it is modeled by its e�ciency
shown in Figure 2.7. The FCS DC/DC converter is modeled by a constant e�ciency of
95%.

The battery is modeled by its open circuit voltage, Vb, and its internal resistance, Rb.
The battery state-of-charge (SOC) is used as the �rst state of the system (i.e., xb=SOC),
which is governed by the dynamic equation:

ẋ(t) =
−Ib(t)
Qb

=
−1

2RbQb

(
Vb −

√
V 2
b − 4RbPb(t)

)
,

= fb (xb(t), Pb(t)) . (4.2)

The function fb is generally a function of SOC since the two parameters, Vb and Rb,
depend on SOC; however, as will be seen later, the optimal SOC trajectory spans a
narrow SOC window and, therefore, the two parameters are assumed constant. This
assumption is particularly valid for Li-Iron Phosphate (LIP) battery cell, where the open
circuit voltage stays almost constant at 3.3 V over a wide SOC operation range. The
20 Ah LIP prismatic cell AMP20 from A123 Systems is considered as the building block
of the battery bank. The cell open circuit voltage and the cell internal resistance have
been estimated from the product datasheet [88] to be 3.3 V and 2 mΩ , respectively. Two
hundred cells are connected in series, with which a nominal DC bus voltage of about 650
V is obtained.
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The supercapacitor state-of-energy (SOE) is used as the second state of the system (i.e.,
xsc=SOE), which is governed by the dynamic equation:

ẋsc(t) =
−IscVsc
Esc

=
−Vsc

2RscEsc

(
Vsc −

√
V 2

sc − 4RscPsc(t)

)
,

= fsc (xsc(t), Psc(t)) . (4.3)

The building block of the supercapacitor bank is the Boostcap BCAP3000P270 from
Maxwell Technologies, which is characterized by a capacitance of 3000 F, a rated voltage
of 2.7 V, and an internal resistance of 0.29 mΩ [81]. The supercapacitor bank is formed by
320 cells connected in series. The DC/DC converter e�ciency, ηscdc, is assumed constant
of 95%.

4.2 O�-Line Optimization

The o�-line optimal power management strategy (PMS) refers to the strategy that glob-
ally minimizes the hydrogen consumption over a speci�c driving cycle between given
initial and �nal system states. The objective function to be minimized is then given by:

J =

tfˆ

0

ṁh (Pfcdc (t)) dt. (4.4)

The optimization problem is constrained by the power limits of the three power sources
as expressed in (4.5). The FCS power is limited by its power rating. The battery power
is limited by the cell allowed terminal voltage and the constraints on the DC bus voltage.
The minimum/maximum cell terminal voltage is 1.65 V/3.8 V and the DC bus voltage is
limited to 400-800 V (corresponding to 2-4 V per cell), meaning the cell terminal voltage
is limited to 2-3.8 V, which corresponds to about 260 kW maximum discharging power
and about 190 kW maximum charging power. The supercapacitor power is limited by
the monitoring electronics and the DC/DC converter; in the optimization, the limits of
±300 kW are used for Pscdc. In addition to the state dynamic equations (4.2) and (4.3)
, the system states are constrained within a certain window. xb is limited between 0.45
and 0.75. xsc is allowed to be between 0.25 and 0.95 at any time. The initial system
states, xb,0 and xsc,0, and the �nal states, xb,f and xsc,f , should be prede�ned. For the
evaluation, the initial and �nal battery state is set to 0.6, whereas the initial and �nal
supercapacitor state is set to 0.8.

Pfcdc,min ≤ Pfcdc ≤ Pfcdc,max,

Pscdc,min ≤ Pscdc ≤ Pscdc,max,

Pb,min ≤ Pb ≤ Pb,max, (4.5)

xb,min ≤ xb ≤ xb,max, xsc,min ≤ xsc ≤ xsc,max,

xb(0) = xb,0, xsc(0) = xsc,0,

xb(tf ) = xb,f , xsc(tf ) = xsc,f .
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In the subsequent sections, two algorithms are used to solve the o�-line optimization
problem: DP and PMP. Sections 2.2.1 and 2.2.2 give the formulation of DP and PMP,
respectively, for a single-state single-control system, where the battery SOC was the
only state and the FCS power was the only control variable. In comparison, for the
triple hybrid system, fuel cell/battery/supercapacitor, we have two states and two control
variables. Therefore, it is worth restating the algorithms formulation. To simplify the
formulation of the subsequent equations, the column vectors x = [xb, xsc]

T, f = [fb, fsc]
T,

and u = [Pb, Psc]
T will be used, where the superscript T stands for transpose.

4.2.1 Dynamic Programming (DP)

The algorithm starts by discretizing the time span of the driving cycle into K+1 points
with a sample time Ts. Two-dimensional state grid is established at each time point,
where one dimension corresponds to xb (with M+1 levels and a state resolution of ∆xb)
and the second dimension corresponds to xsc (with N+1 levels and a state resolution
of ∆xsc). Likewise, two-dimensional control space with the resolutions ∆Pb and ∆Psc
is used. Then, the optimal cost-to-go function is evaluated at each time point k and
each state-space point in a recursive manner starting from the �nal sample time K as
expressed by:

J∗k (xm,n) = min
u∈U(k)

{
ṁh(u, k)Ts + J∗k+1 (xm,n + Tsf(xm,u))

}
,

k = 0, 1, . . . , K; m = 0, 1, . . . , M ; n = 0, 1, . . . , N. (4.6)

The subscript k refers to the time point and the superscripts (m,n) refer to a state
point on a state grid. J∗k (xm,n) represents the minimum hydrogen consumption that can
be achieved starting from the state xm,n at time point k and ending at the �nal state
xf = [xb,f , xsc,f ]

T at the �nal time point K. The �nal cost-to-go value, J∗K , is set to zero
for xf and a large value otherwise in order to consider only the solutions that lead to xf .
The result of the minimization is an optimal state-feedback control law that relates each
state point and each time point with the corresponding optimal control that minimizes
the cost-to-go. The optimal control map is then used to calculate the optimal DP solution
moving forward in time starting from the prede�ned initial states. For the implementation
of DP, the following settings are used: ∆xb=∆xsc=0.001 and ∆Pb=∆Psc=1 kW.

4.2.2 Pontryagin's Minimum Principle (PMP)

The PMP uses the concept of the system Hamiltonian de�ned as follows:

H(x,u,λ, k) = ṁh(u, k)− λTf(x,u), (4.7)

where λ = [λb, λsc]
T , and λb and λsc are the co-states (i.e., Lagrange multipliers) as-

sociated with xb and xsc, respectively. The Minimum Principle states that the optimal
control variable minimizes the Hamiltonian, that is:

H(x∗,u∗,λ∗, k) ≤ H(x∗,u,λ∗, k). (4.8)
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According to the Minimum Principle, the optimum co-states are governed by:

λ̇
∗

=
∂H

∂x
(x∗,u∗,λ∗, k),

= −
[
λ∗b
∂fb
∂xb

(
x

∗

b , P
∗

b

)
, λ∗sc

∂fsc
∂xsc

(
x

∗

sc, P
∗

sc

)]T
. (4.9)

The function fb in equation (4.2) is, in general, a function of xb, since Vb and Rb vary with
xb; however, as stated earlier, these two parameters are assumed constant and, therefore,
fb becomes independent of xb. As a result, according to equation (4.9), the optimal co-
state, λ∗b , is constant. This does not apply to λ∗sc, since Vsc, and hence fsc, depends on
xsc.

In summary, PMP requires the evaluation of the Hamiltonian at each time point to
calculate the optimal control actions. This requires the optimal co-states to be known at
each time. equation (4.9) de�nes the evolution of the optimal co-states with time. It can
be integrated forward starting from an initial value λ0. As it is known from the single-
state case, the co-states are determined by the prede�ned �nal states, xf . So, in order
to calculate the optimal initial co-states that lead to xf , an iterative procedure over the
entire driving cycle is required. At iteration i, where λi0 is used, the di�erence between
the obtained �nal states and the required ones is evaluated and the initial co-states at
iteration i+1 are calculated by Newton's method expressed in equation (4.10) with the
help of the Jacobian matrix at iteration i, =i. The iterations stop once the required �nal
states are obtained (within a resolution of 0.001 for both states).

λi+1
0 = λi0 +

[
=i
]−1 (

xf − xif (tf )
)
, where =i =

∂x(tf )

∂λ0

∣∣∣∣
λi
0

. (4.10)

Using equation (4.10), the two initial co-states, λb(0) and λsc(0), are tuned simultaneously
for the �nal states xb(tf ) and xsc(tf ) to match their preset values, xb,f and xsc,f . If the
resulting states trajectories respect the states bounds constraints, the problem is solved.
Otherwise, an algorithm is needed to account for those constraints. The algorithm of
Section 2.2.2.1 works for one state; an extension is proposed here to account for two
states where the bounds constraints of supercapacitor SOE can get active. The case
where the battery SOC bounds constraints are also active is not encountered and hence
not considered. The algorithm for the two-state system is outlined below:

1. Solve the unconstrained problem to get the initial co-states λb(0) and λsc(0) with
the help of equation (4.10). As a result, we get a solution for the unconstrained
problem that leads to the target �nal states. If the resulting states trajectories
already respect their bounds, the problem is done; otherwise continue to the next
step;

2. With the help of λb(0) resulting from the step (1), the algorithm of Section 2.2.2.1
is applied to recursively �nd out the contact times of xsc with the bounds, so that
the resulting xsc trajectory respects the constraints;

3. It is possible that, due to the activation of xsc constraints in step (2), xb(tf ) does
not coincide with the target value, xb,f , rather a deviation of ∆ = xb(tf )�xb,f arises,
where ∆ is larger than the resolution of 0.001. In this case, the algorithm is repeated
from step (1) with a new target �nal xb of xb,f�∆ instead of xb,f .
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Figures 4.3 and 4.4 depict a comparison between PMP and DP in terms of the resulting
states and co-states trajectories over Manhattan and NurembergR36, respectively. Over
Manhattan, PMP achieves a hydrogen economy of 11.853 kg/100 km in comparison to
11.855 kg/100 km for DP. Over NurembergR36, hydrogen consumptions of 10.077 kg/100
km and 10.079 kg/100 km are obtained with PMP and DP, respectively. Therefore, both
algorithms achieve almost the same hydrogen consumption with a di�erence below 0.02%.
Those tiny discrepancies between the two algorithms in terms of hydrogen economy and
states trajectories are attributed to the truncation errors and the �nite resolution used
in each one of them, and the their results can be practically considered identical.

In terms of computation time and memory requirements, PMP requires negligible re-
sources in comparison to DP. The exact time reduction depends on many factors like
the state resolution and the code optimization. In our case, the PMP solution could be
obtained within few minutes whereas the DP required hours. In terms of memory re-
quirements, for DP, a map of K×(N+1)×(M+1) elements of the optimal control polices
resulted from equation (4.6) are kept in memory for post processing (i.e., calculation of
the optimal states trajectories starting from k=0). DP takes an acceptable time for a
single energy storage (and hence one state and one control variable). The computation
time and memory requirements increase exponentially with the number of states and
control variables. This phenomenon is usually referred to in literature as the �curse of
dimensionality�.

Figure 4.5 shows the o�-line optimal power distribution over Manhattan between battery
and supercapacitor. The high optimal battery contribution seems at �rst counterintuitive
if we consider the fact that the supercapacitor has a higher e�ciency than the battery
as expressed by its lower internal resistance. This is attributed to the ine�ciency of the
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Figure 4.3: O�-line optimal states and co-states trajectories over Manhattan driving cycle.
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supercapacitor DC/DC converter that overshadows the high supercapacitor e�ciency.
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Figure 4.5: O�-line optimal power distribution between battery and supercapacitor over Manhattan
driving cycle.

Table 4.2 compares three ESS scenarios: battery only; battery and supercapacitor with
ηscdc=95% (i.e., base con�guration); battery and supercapacitor with ηscdc=100%. The
comparison includes the average battery loading (de�ned as the average absolute battery
power), the hydrogen consumption (with the base con�guration used as a reference of 0%),
the round-trip e�ciency (de�ned as the ratio of the discharged energy to the charging
energy), and the average thermal power produced by the battery internal resistance, the
supercapacitor internal resistance and the supercapacitor DC/DC converter. The results
correspond to the o�-line optimal PMS over Manhattan. Adding the supercapacitor to
the battery improves the hydrogen consumption and reduces the battery loading and
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Table 4.2: E�ect of the ESS type and the supercapacitor DC/DC converter e�ciency on the o�-line
optimal power management strategy over Manhattan driving cycle. BA=Battery; SC=Supercapacitor;
DC=DC/DC converter.

ESS
ηscdc

(%)

Av. BA

power (kW)

Hydrogen

consumption

Round-trip e�ciency (%) Av. thermal power (W)

BA SC SC+DC BA SC BA+SC

BA - 24.0 +2.2% 90.3 - - 1220 0 1220

BA+SC 95 16.7 0% 94.9 98.3 88.7 434 81 515

BA+SC 100 4.4 -3.1% 96.8 98.3 98.3 71 200 271

its thermal power. Increasing ηscdc from 95% to 100% results in a dramatic reduction
in battery loading and in the thermal power produced by the complete ESS. As stated
before, the optimal distribution of power between the battery and the supercapacitor
depends very much on ηscdc since the supercapacitor DC/DC converter is the main cause
of losses when charging or discharging the supercapacitor.

The o�-line optimization techniques cannot be used directly in real-time because they
assume a complete knowledge of the driving cycle. Additionally, the o�-line optimal
solution takes only the hydrogen consumption into account without considering other
important factors such as the battery power burden (and hence its lifetime). The battery
in the o�-line optimal strategy is unnecessarily overloaded, so that the advantage of
using the supercapacitor is not fully exploited. This issue is dealt with when designing
and optimizing the real-time PMS in the next section. However, the o�-line optimal
solution provides a benchmark that can be used when evaluating the real-time strategy.
Additionally, the o�-line optimum may provide some hints that can be useful for the
design of the real-time strategy. For example, as can be seen from Figure 4.5, the battery
power and the supercapacitor power have always the same sign, meaning that there
is no charge exchange between them. This behavior is understandable considering the
fact that any such charge exchange would be accompanied by losses in the battery, the
supercapacitor, and its DC/DC converter. The real-time PMS will make use of this idea
in the next section.

4.3 Real-Time Strategy

As illustrated in Figure 4.6(a), the fuel cell/battery/supercapacitor hybrid is a multiple-
input-multiple-output system (MIMO), with Pfcdc, Pb and Pscdc as inputs (i.e., manipu-
lated variables), and xb and xsc as outputs (i.e., controlled variables). The PMS takes
as inputs the system states together with the vehicle speed and power demand, and dis-
tributes the demand among the power sources. The detailed structure of the proposed
PMS is depicted in Figure 4.6(b). The PMS is based on two decoupled control loops: one
for xb with Pfcdc as the corresponding manipulated variable, and the other loop controls
xsc with Pb as manipulated variable. Pscdc is readily determined by the power balance.

The FCS power is determined by a proportional-integral controller (PI) of the battery
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Figure 4.6: Schematic of the real-time power management strategy. (a) Position of the strategy as a
controller of the system; (b) Detailed structure of the strategy.

state xb around a constant reference, xb,ref , of 0.6; thus,

ufc(t) = Kp,b (xb,ref − xb(t)) +Ki,b

ˆ t

0

(xb,ref − xb(τ)) dτ. (4.11)

The integral part of the controller guarantees a zero steady state error of the battery
SOC. The controller output, ufc, is limited by the FCS power rating, and its changing
rate is limited to ±1 kW/s before using it as a reference for the FCS converter. Having
calculated the FCS power, the power required by the battery/supercapacitor hybrid ESS,
Pess, is determined as the di�erence Pdem − Pfcdc.

The distribution of Pess among the battery and the supercapacitor is determined by a
proportional controller of xsc around a variable reference xsc,ref . The controller output,
ub is given by:

ub(t) = Kp,sc (xsc,ref (t)− xsc(t)) , (4.12)

and the speed-dependent reference is given by:

xsc,ref (t) = xmax
sc,ref −Kref,sc (v(t)/vmax)

2 , (4.13)

where xsc,ref varies linearly with the vehicle speed squared, xmax
sc,ref is the maximum ref-

erence corresponding to zero speed, vmax is the vehicle maximum speed of 80 km/h, and
Kref,sc is the proportional factor. Equation (4.13) is represented in Figure 4.6(b) by the
block named Fcn1. ub represents the ratio of Pb to Pess; or in other terms, the battery
contribution in ful�lling Pess. It is, therefore, bound within the range [-1, 1]. The battery
power, Pb, is then calculated as:

Pb(t) =


+ub(t)Pess(t), ub(t) > 0 &Pess(t) > 0,

−ub(t)Pess(t), ub(t) < 0 &Pess(t) < 0,

0, Otherwise,

(4.14)

which is represented in Figure 4.6(b) by the block named Fcn2. If ub is positive (i.e., xsc
is below the reference and the supercapacitor needs to be charged), the battery assists
the supercapacitor in meeting the demand Pess if it is positive; otherwise, the battery
contribution is set to zero if Pess is negative to allow charging the supercapacitor with
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the maximum rate. On the other hand, if ub is negative (i.e., xsc is above the reference
and the supercapacitor needs to be discharged), the battery assists the supercapacitor in
meeting the demand Pess if it is negative; otherwise, the battery contribution is set to
zero if Pess is positive to allow discharging the supercapacitor with the maximum rate.

It should be noted that this formulation of the real-time PMS does not allow a charge
exchange between the battery and the supercapacitor. According to equation (4.14) and
to the saturation of ub, Pb lies always between 0 and Pess, and Pscdc is the di�erence
Pess − Pb. Therefore, Pb and Pscdc have always the same sign. This feature of the real-
time PMS distinguishes it from other strategies proposed in literature [49, 50], which are
also based on PI controllers, however, with a charge exchange allowed between the battery
and the supercapacitor. The advantages of this PMS formulations will be experimentally
evaluated in Section 4.4.

The design of the PMS is reduced to the selection of controllers parameters, Kp,b, Ki,b,
Kp,sc, Kref,sc and x

max
sc,ref . The selection criteria are as follows: 1) The hydrogen consump-

tion is minimized and, 2) the supercapacitor is responsible for most of the transient power
so that the battery contribution is minimized.

For each driving cycle i, the �rst design index, J i1, is the percentage deviation of the
hydrogen consumption,HCi, from the o�-line optimum,HCi

opt, whereas the second index,
J i2, is the average absolute battery power. Thus,

J i1 =
HC

i −HC i

opt

HC
i

opt

× 100 (%),

J i2 =
1

tif

ˆ tif

0

∣∣P i
b (t)
∣∣ dt. (4.15)

When the strategy is optimized over one driving cycle, the performance indices of equa-
tion (4.15) are the objectives to be minimized. Optimizing the strategy over several
driving cycles is performed by averaging the performance indices of all driving cycles;
i.e.,

J1 =
1

Ndc

Ndc∑
i=1

J i1,

J2 =
1

Ndc

Ndc∑
i=1

J i2, (4.16)

where Ndc is the number of driving cycles considered in the optimization. The resulting
average indices, J1 and J2, constitute the objectives to be minimized. The same concept
was used in Section 2.5 to account for several driving cycles in the optimization. Averaging
the objective functions means that the same weight is given to all driving cycles in the
optimization. For evaluation, the two driving cycles, Manhattan and NurembergR36, are
here considered (i.e., Ndc = 2); however, the formulation can be used to account for any
number of driving cycles.

Minimizing the two objectives leads to a multi-objective optimization problem with the
controllers parameters as the optimization variables. The problem is solved by the multi-
objective genetic algorithm explained in Appendix B.
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It should be noted that evaluating the objective functions requires the system states at
the beginning of the driving cycle to be the same as the states at the end of the driving
cycle (i.e., charge sustaining performance). For a set of optimization variables to be tested
by the optimization algorithm, the strategies are simulated over the driving cycle starting
from initial states of 0.6 for the battery and 0.8 for the supercapacitor. If the �nal states
are di�erent from the initial states, the initial states are varied and the simulation is
repeated until the charge sustenance is achieved, where the objective functions are then
calculated. For most cases, the charge sustenance is obtained in the second simulation
run if it is initiated by the �nal states of the �rst run.

The resulting Pareto front is shown in Figure 4.7. To verify the optimality of the Pareto
solutions, random sets of the PMS parameters are tested and the results are shown in
Figure 4.7, as well. The results indicate that there is a trade-o� between the two objective
functions. This trade-o� is attributed to the fact that increasing the contribution of the
battery decreases the contribution of the supercapacitor and, therefore, reduces the losses
in the supercapacitor DC/DC converter.
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Figure 4.7: Optimization results of the real-time power management strategy.

All the solutions of the Pareto front are mathematically equally optimal. The choice
among them requires weighing the relative importance of J1 and J2, and whether a
certain battery contribution (i.e., J2) is enough to assist the supercapacitor. To test the
su�ciency of the battery contribution, the Pareto solutions are tested on the maximum
acceleration performance between 0 and 60 km/h, which is achieved in about 11 s as
shown in Figure 4.8. A speed over 60 km/h is rarely encountered in transit buses. The
minimum J2 that leads to xsc >0.25 at the end of the acceleration phase is considered.
Lower J2 leads to an early depletion of the supercapacitor, so that the battery needs to
deliver the whole ESS demand alone. As a result of this selection procedure, the Pareto
solution that achieves J2=2.5 kW is chosen, corresponding to J1 of 4.0%.

Figure 4.8 shows the evaluation of the resulting PMS over the acceleration phase. At the
end of the acceleration phase, the supercapacitor is almost depleted with a �nal state of
0.26 (remember that the minimum xsc is 0.25). This means that J2 of 2.5 kW is just
su�cient to assist the supercapacitor even during harsh condition. J2 may be increased
if smaller supercapacitor is used.



4.4 Experimental Study 89

Figure 4.8: Evaluation of the real-time power management strategy over an acceleration 0-60 km/h.

Figures 4.9 and 4.10 show the evaluation of the PMS over Manhattan and NurembergR36.
Here the battery controls the supercapacitor state around its variable reference, which is
achieved by only small battery power in contrast to the aggressive conditions of Figure 4.8.

The increase of 4.0% (3.2% for Manhattan and 4.8% for NurembergR36) in hydrogen con-
sumption of the real-time PMS in comparison to the o�-line optimum is mainly attributed
to the dramatic reduction in the power burden on the battery. For the o�-line optimum,
J2=17.7 kW (16.7 kW for Manhattan and 18.7 kW for NurembergR36), whereas it is only
2.5 kW (1.8 kW for Manhattan and 3.2 kW for NurembergR36) for the real-time PMS,
meaning a reduction of 85% in battery loading. As discussed at the end of Section 4.2,
the o�-line battery loading is very sensitive to the e�ciency of supercapacitor DC/DC
converter. The optimization problem was repeated with ηscdc=100%, and it was found
that for J2=2.5 kW of the real-time PMS, the real-time PMS achieves J1=1.5%, since
the o�-line optimal battery loading is already small in this case.

4.4 Experimental Study

In this section, the optimization of the real-time PMS of an experimental fuel cell/ bat-
tery/ supercapacitor hybrid system is carried out following the methods developed in
Section 4.3. The strategy of Figure 4.6 is adopted in the test bench, and its main advan-
tageous features are illustrated by comparison with a conventional strategy. Manhattan
driving cycle is used here for evaluation.

The layout and speci�cations of the test bench are given in Appendix C. The test bench is
supposed to simulate the vehicle on a small scale. The hybrid power source of the vehicle
has a maximum fuel cell power of 120 kW as given in Section 4.1. The net power of the
test bench FCS is limited to 700 W. The ratio of test bench FCS power to the vehicle
FCS power of 0.006 (≈ 0.7 kW/120 kW) is used as a scaling factor between the vehicle
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Figure 4.9: Evaluation results of the real-time power management strategy over Manhattan driving
cycle.
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and the test bench, so that the vehicle power demand calculated by the vehicle model in
Section 4.1 is multiplied by this scaling factor when it is applied to the test bench.

Using the same scaling factor to downscale the vehicle supercapacitor size of 0.97 kWh,
the required test bench supercapacitor energy is then 5.8 Wh (=0.006 Ö 0.97 kWh).
In comparison, the test bench supercapacitor used has an energy content of 54 Wh.
Therefore, the test bench supercapacitor is actually oversized by a factor of about 10.
As shown in Section 4.3, the size of the supercapacitor plays a crucial role in the design
of the real-time strategy. Therefore, in order to mimic the conditions in the actual
vehicle, only part of the available supercapacitor energy at the test bench is used. The
nominal supercapacitor SOE will be 0.6, and the lower SOE limit is 0.53. A reduction of
supercapacitor SOE of 0.07 in the test bench would correspond to a reduction of 0.7 in
the vehicle representing a depletion of the vehicle supercapacitor.

Two strategies shown in Figure 4.11 are introduced and compared. The �rst strategy
S1 shown in Figure 4.11(a) is used as a benchmark to illustrate the advantages of the
second strategy S2 shown in Figure 4.11(b). Both strategies use the battery to regulate
the supercapacitor state through a proportional controller (P), whereas the FCS is used
to regulate the battery state with the help of a proportional-integral controller (PI).

Figure 4.11: Schematic of the two power management strategies. (a) S1; (b) S2. The inputs represented
by dotted arrows and the outputs by dash-dot arrows.

For S1, a PI controller is used to control the battery state around the constant reference
xb,ref of 0.6; thus,

ufc(t) = Kp,b (xb,ref − xb(t)) +Ki,b

ˆ t

0

(xb,ref − xb(τ)) dτ. (4.17)
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The output of the controller, ufc, is then fed into a saturation block that limits the control
variable between 0 and 700 W. The rate limiter limits the ramp rate of the control variable
to ±10 W/s. The output of the rate limiter is used as a reference power for the FCS
DC/DC converter.

The proportional controller, shown below, controls the supercapacitor state around a
constant reference xsc,ref of 0.6, where the battery power Pb equals the output of the
controller, ub, given by:

ub(t) = Kp,sc (xsc,ref − xsc(t)) . (4.18)

Then the di�erence Pdem−Pfcdc−Pb constitutes the reference power for the supercapacitor
DC/DC converter.

The control loop of xb in S2 is the same as S1, whereas the control loop of xsc is di�er-
ent. The strategy S2 is the same used in Section 4.3; however, the maximum reference
supercapacitor state xmax

sc,ref is made here constant of 0.6.

As discussed in Section 4.3, the charge exchange between the battery and supercapacitor
is not possible in S2, whereas such exchange is possible in S1, for example, if xsc < xsc,ref
(i.e., Pb>0) and Pdem − Pfcdc<0.

In summary, S2 has three main features that distinguish it from S1. First, in S2, the
supercapacitor reference state is made variable with the speed, whereas this reference is
constant in S1. Second, the charge exchange between the battery and supercapacitor
is excluded in S2, whereas such exchange is possible in S1. Third, Pb in S2 takes into
account, in addition to the di�erence xsc,ref − xsc, Pess (and hence Pdem), whereas in S1,
Pb considers only the di�erence xsc,ref − xsc.

The design of the power management strategy is reduced to the selection of controllers
parameters, Kp,sc, Kp,b and Ki,b for S1, and Kp,sc, Kp,b and Ki,b in addition to Kref,sc for
S2. The selection criteria are as follows: 1) The hydrogen consumption is minimized, and
2) the supercapacitor is responsible for most of the transient power so that the battery
contribution is minimized.

The �rst design objective function, J1, is the total hydrogen consumption over the driving
cycle, whereas the second objective, J2, is the average absolute power of the battery; thus,

J1 =

ˆ tf

0

ṁh (Pfcdc(t)) dt,

J2 =
1

tf

ˆ tf

0

|Pb(t)| dt. (4.19)

The resulting Pareto fronts of the two strategies, S1 and S2, are shown in Figure 4.12(a).
S2 achieves lower hydrogen consumption than S1 at the same battery contribution. This
is a direct result of the fact that there is no charge exchange between the battery and
the supercapacitor for S2, whereas such exchange exists for S1. Such charge exchange
is accompanied by losses in the battery, the supercapacitor and mainly in the superca-
pacitor DC/DC converter. This becomes clearer if the average absolute supercapacitor
contribution, J3, de�ned as:

J3 =
1

tf

ˆ tf

0

|Pscdc(t)| dt,
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Figure 4.12: Optimization results of the power management strategies over Manhattan driving cycle.
(a) Pareto front of J1 and J2; (b) J3 versus J2 for the Pareto solutions.

is considered. The relation between J3 and J2 for the two strategies is depicted in Fig-
ure 4.12(b) for the Pareto solutions of Figure 4.12(a). J3 decreases linearly with J2 for S2,
whereas the relation is more complex for S1. In summary, for the same J2, in comparison
to S1, S2 achieves a smaller J3, and this reduction in J3 causes less energy loss in the
supercapacitor DC/DC converter resulting in overall lower hydrogen consumption. The
di�erence between the two strategies is smaller at smaller battery contribution, since at
such low battery contribution, the charge exchange between the battery and the super-
capacitor in S1 is also smaller. The di�erence between the two strategies increases with
decreasing the e�ciency of the supercapacitor DC/DC converter.

All the solutions of the Pareto front are mathematically equally optimal. The choice
among them requires weighing the relative importance of J1 and J2, and testing whether
a certain battery contribution (i.e., J2) is enough to assist the supercapacitor. Here
we put a major importance on J2, so that advantage of using the supercapacitor is
fully exploited. Hence, the Pareto solution that achieves the minimum enough battery
contribution is considered. To test the su�ciency of a certain J2, the Pareto solutions are
evaluated on a strong acceleration 0-60 km/h shown in Figure 4.8. The Pareto solutions
are tested in the direction of increasing J2, and the minimum that achieves a �nal xsc
larger than 0.53 (starting from 0.6) is considered where 0.53 is considered as the lower
limit for xsc.

The above selection procedure is illustrated in Figure 4.13, which shows the evaluation
of strategy S1 over the acceleration phase for three Pareto solutions (corresponding to
J2=20, 71 and 120 W). For J2 of 20 W, the battery contribution is very small at the
initial stages of the acceleration, whereas the supercapacitor is strongly loaded, so that
the supercapacitor SOE reaches its lower limit of 0.53 before completing the acceleration.
After about 8 seconds of acceleration, the battery needs to deliver the required power
alone. If the battery is not capable of providing the required power, the acceleration time
is prolonged. Therefore, a J2 of 20 W is considered �insu�cient.� On the contrary, for J2
of 120 W, the battery contribution is relatively high from the beginning of acceleration,
so that the supercapacitor is less loaded and its �nal SOE is 0.55. This case is denoted
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Figure 4.13: Evaluation of three Pareto solutions with three values of J2 for the strategy S1. (a)
Supercapacitor SOE; (b) Supercapacitor power; (c) Battery power.

in Figure 4.13 as �oversu�cient.� The value J2 of 71 W represents the border between
the last cases, where the supercapacitor survives the acceleration phase and ends up at
its minimum SOE at the end of acceleration. This case is denoted in Figure 4.13 as
�just su�cient,� and it is considered as a design point for the strategy S1. In conclu-
sion, the value of J2 plays a role of a tuning parameter for the strategy, which can be
tailored according to the design preferences and system speci�cations. For example, a
small supercapacitor requires higher J2 (i.e., higher battery contribution), whereas large
supercapacitor requires less battery contribution.

As a result of the aforementioned parameters selection procedure, it has been found that
the minimum J2 required is 71 W for S1 and only 7 W for S2. This means that S2
achieves the same performance during the strong acceleration while having 90% lower
battery loading during the normal driving cycles. The two strategies with the chosen
parameters are subsequently experimentally evaluated.

Figure 4.14 shows the experimental evaluation of the strategies over the acceleration
phase. The supercapacitor ends up at a �nal state of 0.53, which is the value used
to select the strategies parameters. The total energy supplied by the battery during
the acceleration is the same in both strategies (about 15 Wh). However, The battery
power increases faster in S2 at the initial stages of the acceleration (e.g., at time 4 s, the
battery power is 220 W for S2 and 130 W for S1), because the battery power in S2 is
also dependent on the power demand, not only the current supercapacitor state. The
demand increases fast at the beginning of acceleration, and so does the battery power
in S2. In contrast, the battery power in S1 depends solely on the supercapacitor state
and, therefore, it increases relatively slowly at the beginning. Since the consumed battery
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Figure 4.14: Experimental power distribution and states trajectories during the acceleration phase
with S1 (left) and S2 (right).

energy is the same in both strategies, the maximum required battery power is smaller
for S2 in comparison to S1 (e.g., 915 W for S1 and 743 W for S2 at the end of the
acceleration).

In order to experimentally validate the objective functions, J1 and J2, the two strategies
S1 and S2 are evaluated over Manhattan driving cycle as shown in Figures 4.15 and 4.16,
respectively, for a charge sustaining performance. The test bench replicates the simulation
results very well as illustrated in the comparison between simulation and experiment in
terms of states trajectories. The second observation is that S2 requires negligible battery
contribution in comparison to S1. Table 4.3 quantitatively compares the simulation and
experiment in terms of the performance metrics J1 and J2.

As a result of the experimental evaluation, S2 excels S1 since it achieves a dramatic
reduction of the battery loading (about 90% lower in comparison to S1) during normal
driving cycles while performing equally well in terms of supercapacitor assistance during
strong acceleration phases and in terms of hydrogen consumption (only about 1% higher
than S1).

Table 4.3: Comparison between simulation and experiment in terms of the performance indices J1 and
J2. sim.=simulation, exp.=experiment.

Strategy
J2(W) J1(g)

(sim. / exp.) (sim. / exp.)

S1 71 / 73 4.36 / 4.42
S2 7 / 8 4.41 / 4.45
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Figure 4.15: Experimental evaluation of the power management strategy S1 over Manhattan driving
cycle.

The detailed analysis of the power �ow in the triple hybrid system considered is quite
complex, where every power source exchanges power with the other two sources and with
the load. However, the main characteristics of the system behavior can be analyzed
by grouping two sources and/or considering two sources at a time. Considering the
battery/supercapacitor as a hybrid energy storage system, ESS, with a power Pess =
Pdem − Pfcdc, three main modes of operation can be recognized over Manhattan driving
cycle for both strategies:

� Pdem>0 and Pfcdc< Pdem (Pess >0): both FCS and ESS provide the demand.

� Pdem>0 and Pfcdc> Pdem (Pess <0): FCS provides the whole demand and charges
the ESS.

� Pdem<0 (i.e., regenerative braking) (Pess <0): both FCS and load charge the ESS.

The power Pess represents the net power of the hybrid ESS; therefore, the power ex-
changed between the battery and the supercapacitor does not appear in Pess. Having
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Figure 4.16: Experimental evaluation of the power management strategy S2 over Manhattan driving
cycle.

such power exchange means that one of the two ESS components charges the other. Ob-
taining information about this power exchange requires looking at the power pro�le of
one ESS component, battery or supercapacitor. The battery power Pb can be divided into
two terms: one term represents the contribution of battery to Pess and the other term
represents the battery power fed to the supercapacitor. If the second term is positive,
the battery is charging the supercapacitor; otherwise, the supercapacitor is charging the
battery. Figure 4.17 illustrates the analysis of battery power over the time 400�600 s
of Manhattan driving cycle for the two strategies. The �gure shows the total battery
power and its part directed to the supercapacitor. The di�erence between the two curves
represents the battery contribution to Pess. For S1, a signi�cant part of the battery con-
tribution is due to the power exchange with the supercapacitor, and the power exchange
happens in the two directions; i.e., the battery can charge the supercapacitor and the
supercapacitor can charge the battery. As stated earlier, S2 is designed so that the power
exchange within the hybrid ESS is prevented, which is illustrated in Figure 4.17(b). There
are some traces of power exchange (less than 5 W) in Figure 4.17(b) due to measure-
ment errors. In summary, for S2, the battery never charges the supercapacitor and the
supercapacitor never charges the battery.
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Figure 4.17: Experimental battery power and its part exchanged with the supercapacitor. (a) S1; (b)
S2.

4.5 Conclusions

This chapter was intended to form a comprehensive framework for the optimization of
the power management strategy of fuel cell/battery/supercapacitor hybrid systems for
transit bus applications. DP and PMP were used and their results were compared. The
algorithm used for a single ESS to account for state boundary constraints in PMP was
extended to account for the case of hybrid ESS, composed of battery and supercapacitor.

Apart from not being real-time capable, the o�-line optimum takes only the hydrogen
consumption into account, which resulted in unacceptable performance in terms of bat-
tery power loading. This issue was taken into account in the design and optimization
of the real-time PMS, which was optimized by a genetic algorithm and Pareto front
analysis while considering hydrogen consumption, battery power and vehicle acceleration
performance. The resulted real-time PMS consumed few percent more hydrogen than the
o�-line optimum (depending on the supercapacitor DC/DC converter e�ciency), however,
with a dramatic improvement in the system durability.

The real-time PMS optimization was repeated for a small-scale experimental fuel cell/
battery/ supercapacitor hybrid system. The experimental measurements replicated the
simulation results very well, thanks to the good models of the test bench components. By
comparing the proposed real-time PMS with comparable strategies in literature, two main
advantageous features of the PMS were identi�ed. First, the charge exchange between the
battery and the supercapacitor should be avoided and, second, the battery power should
take the power demand into account in addition to the supercapacitor state. These
two features resulted in excellent performance in terms of battery loading, hydrogen
consumption and acceleration.



Chapter 5

Summary and Perspectives

This thesis was intended to provide a comprehensive framework for the optimization of
fuel cell-based hybrid vehicles for di�erent ESS options, namely, battery, supercapacitor
or battery/supercapacitor. The optimization of the PMS was investigated for the three
topologies, and the optimization of the powertrain size was investigated for a single ESS,
battery or supercapacitor.

PMS design and optimization

For a fuel cell/battery hybrid system, the PMS optimization was �rst performed assuming
a complete knowledge of the driving cycle, resulting in an o�-line optimal strategy that
globally minimizes the hydrogen consumption. DP and PMP were compared as two
possible o�-line optimization techniques. Special consideration was given to the inclusion
of battery SOC boundary constraints in the formulation of PMP. The o�-line optimal
strategy is not real-time capable; hence, real-time capable strategies were designed and
optimized while using the o�-line optimal PMS as a benchmark. The optimization of
the real-time PMS was formulated as multi-objective optimization problem, solved by a
multi-objective genetic algorithm, taking into account hydrogen consumption and charge
sustenance as two optimization objectives. Special emphasize is put on the inclusion of
multiple driving cycles, of di�erent nature, in the optimization to increase the strategy
robustness. The o�-line and real-time PMS optimization was validated on a small-scale
experimental fuel cell/battery hybrid system.

Fuel cell/supercapacitor hybrid powertrains were also investigated in terms of PMS design
and optimization using the same methods used for fuel cell/battery hybrids. The opti-
mization methods were validated on a small-scale experimental fuel cell/supercapacitor
hybrid system. For the experimental system, several methods were discussed to include
the FCS power gradient limitation in the o�-line PMS optimization, and the e�ect of
such limitation on hydrogen consumption was analyzed.

The most complex hybrid system fuel cell/battery/supercapacitor was also investigated
in terms of PMS optimization, where DP and PMP were �rst applied and compared. The
algorithm used for a single ESS to account for state boundary constraints in PMP was
extended to account for this special case where two ESSs exist. Apart from not being real-
time capable, the o�-line optimum takes only the hydrogen consumption into account,
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which resulted in unacceptable performance in terms of battery power loading. A real-
time strategy was proposed and optimized taking into account hydrogen consumption,
battery power and vehicle acceleration performance in a framework of multi-objective
optimization. The proposed real-time PMS and its optimization were validated on a
small-scale experimental fuel cell/battery/supercapacitor hybrid system.

As a result of PMS design and optimization techniques explored, the following conclusions
can be drawn:

� The comparison between PMP and DP reveals that both algorithms achieve the
global optimal PMS, whereas PMP has the advantage of negligible required com-
putation resources (i.e., time and memory);

� In terms of programming e�ort, DP is simpler and more straightforward than PMP.
PMP requires non-trivial manipulations to deal with constraints such as the battery
SOC boundary constraints. This issue is further intensi�ed for hybrid ESS com-
posed of battery and supercapacitor. Additionally, PMP may encounter a di�culty
in convergence when the FCS power gradient is constrained;

� Even though both algorithms, DP and PMP, require the whole driving cycle to be
known a priori, making them not real-time capable, a real-time capable strategy
can be easily deduced from PMP with proper adaptation of the co-state;

� The real-time PMS can be optimized simultaneously over many driving cycles in-
creasing its robustness;

� The o�-line optimization that takes only hydrogen consumption as an objective to
minimize does not always result in an acceptable performance. For example, mini-
mizing the hydrogen consumption may result in high FCS dynamics and, therefore,
FCS dynamics should be considered in the optimization problem. Another exam-
ple is the fuel cell/battery/supercapacitor hybrid, where the o�-line optimization
resulted in high battery power, not fully exploiting the advantage of using the su-
percapacitor besides the battery.

As for the PMS design and optimization, future research topics may address the following
issues:

� Most recent o�-line optimization algorithms, such as convex optimization, can be
included in the list of possible o�-line optimization algorithms. Recent literature
on convex optimization shows promising results. However, this approach requires
approximations of the FCS model and ESS model. It would be interesting to assess
the e�ect of such approximations on the global optimality of the o�-line PMS;

� In this study, the minimum number of system states is considered, namely, the ESS
charge level and the FCS power if its gradient is constrained. More states can be
added such as the temperature of battery and FCS. The temperature may have a
signi�cant e�ect on the battery resistance, and the FCS temperature may have an
e�ect on its e�ciency. This would require a thermal model of the FCS and battery;
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� The inclusion of FCS lifetime and battery lifetime in the PMS optimization was
brie�y addressed; where the limitation of FCS power gradient was discussed, and the
battery aging was quanti�ed by an Ampere-hour throughput model. The inclusion
of more sophisticated FCS aging model and battery aging model is of interest.

� The new technology of eco-driving systems has emerged over the last few years,
and is currently a hot research topic with its signi�cant potential to improve the
vehicle fuel economy. The target of these systems is to adopt an energy-aware driv-
ing style, either by giving advices to the driver or even by directly controlling the
vehicle. Eco-driving systems can make use of the navigation system and the vehicle
communication to its surrounding; i.e., Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, in order to calculate the most e�cient speed
trajectory. The adoption of optimization-based eco-driving systems in hybrid vehi-
cles would be the most challenging in comparison to conventional vehicles or electric
vehicles due the increased dimension of the optimization problem, where the speed
trajectory and the power management should be optimized in a reasonable time.

Powertrain sizing

The sizing of the power sources of fuel cell/battery and fuel cell/supercapacitor hybrids
took into account hydrogen consumption and cost as two objectives. The sizing process
was approached by two nested loops. The outer loop iterates over all the possible designs
(FCS size and ESS size), and for each design the objective functions are evaluated within
the inner loop that represents the optimization of the PMS by PMP. The interesting
designs (i.e., Pareto front), which represent the most e�cient trade-o� between the ob-
jectives, were then extracted. The e�ect of battery lifetime on the sizing process was
investigated by using an Ampere-hour throughput model to quantify the battery aging.

The main conclusions of the sizing process are:

� The cost of the powertrain needs to be considered as an objective besides hydrogen
consumption; otherwise, the optimization may result in a too costly powertrain. A
good compromise can be found that signi�cantly reduces the cost with a marginal
e�ect on the hydrogen consumption;

� Considering only the Pareto front, representing the best trade-o� between cost and
hydrogen consumption, simpli�es the task of decision-making in choosing the right
powertrain size;

� Considering the battery aging leads to less e�cient powertrain designs. In com-
parison to battery replacement, it is more economical to sacri�ce some hydrogen
consumption in order to reduce the stress on the battery so that it survives the
vehicle lifetime;

� The supercapacitor as an ESS is less economical than the battery. It can be more
economical in comparison to batteries with short cycle life.

As for the optimization of powertrain size, future research topics may address the following
issues:
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� A simple Ah-throughout model is used here to express the battery aging, where
the Ah-throughput is considered as the only stress factor. It would be interesting
to use more sophisticated models that consider other stress factors such as the
temperature, depth-of-discharge and discharge-charge rate;

� In this study, the aging of fuel cell systems is not included. It is of interest to study
the e�ect of FCS aging, besides the battery aging, on the optimal powertrain size;

� In this study, the sizing process possesses two dimensions: the FCS size and the
ESS size. More dimensions can be considered such as the size of the traction motor
and the gear ratio of the transmission line. For 2-D sizing, an exhaustive search
for the most e�cient powertrain size can be the best option. However, increasing
the problem dimensions would exponentially increase the number of powertrain de-
signs to be evaluated, making the evolutionary algorithms a more time-wise feasible
option;

� In this study, the powertrain sizing was addressed for a single ESS, either battery
or supercapacitor. The next step is to investigate the sizing of the triple hybrid
system fuel cell/battery/supercapacitor;

� In this study, �xed costs for the FCS, the Li-ion battery, the supercapacitor and
hydrogen are considered. These technologies, for vehicular applications, are rela-
tively new and produced in relatively small quantities; therefore, the characteristics
of these technologies and their costs may change signi�cantly in the near future. It
would be of interest to investigate the in�uence of di�erent future scenarios on the
powertrain sizing.



Appendix A

Bases of the O�-line Optimization
Techniques

In this appendix the basic principles and derivation of the o�-line optimization techniques,
Dynamic Programming (Section A.1) and Pontryagin's Minimum Principle (Section A.2),
are given. The discussion here is based on the textbooks [25, 89].

A.1 Dynamic Programming (DP)

The dynamic programming algorithm is based on the Bellman's Principle of Optimality,
which says:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the �rst decision.

The proof of this principle is illustrated in Figure A.1(a). Suppose that a�b�c�e is the
optimal state trajectory between an initial state a and a �nal state e. Then the minimum
cost to move from a to e is:

J
∗

ae = Jab + Jbc + Jce.

ASSERTION: if a-b-c-e is the optimal trajectory between a and e, then b�c�e is the
optimal trajectory between b and e.

Proof: This can be proven by contradiction. Suppose that b�d�e is the optimal path
between b and e. This would imply that the cost of the path b�d�e is smaller than the
cost of the path b�c�e; i.e.,

Jbd + Jde < Jbc + Jce,

⇒ Jab + Jbd + Jde < Jab + Jbc + Jce = J
∗

ae,
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Figure A.1: Principle of the Dynamic Programming algorithm. (a) Illustration of the principle of
optimality; (b) Application of the principle of optimality to �nd the optimal trajectory for a multi-stage
process.

which violates the condition that a�b�c�e is the optimal trajectory. Thus, the assertion
is proven.

Application: Let us have the multistage optimization problem illustrated in Figure A.1(b).
The task is to �nd the optimal path from a to d. Assume as well that the problem has
been partly solved and the optimal segments b�d and c�a have been calculated with the
corresponding minimum costs J

∗

bd and J
∗
ca, respectively. The remaining task is to decide

which decision to make at the initial stage, a�b or a�c, in order to get the optimal path
between a and d. The principle of optimality implies that if a�b is the initial segment of
the optimal path from a to d, then the optimal segment b�d is the terminal segment of
this optimal path. Likewise, if a�c is the initial segment of the optimal path from a to
d, then the optimal segment c-d is the terminal segment of this optimal path. Therefore,
in order to evaluate the two possible initial decisions, we need to compare the two costs:

Jabd = Jab + J
∗

bd,

Jacd = Jac + J
∗

cd.

The minimum cost determines the optimal decision at the initial stage. In other words,
there may be other suboptimal segments from b to d and from c to d. The principle
of optimality states that only the optimal segments and their optimal costs need to be
known in order to �nd the optimal decision at stage a. To �nd the optimal decision at
each stage, what we need to know, is only the optimal cost at the subsequent stages and
the cost to move to those subsequent stages.

A.2 Pontryagin's Minimum Principle (PMP)

PMP uses the calculus of variations to determine the necessary optimality conditions of
a dynamic system. Let the system be de�ned by the dynamic equation:

ẋ = f(x, u, t),

and the task is to �nd the optimal control u
∗
(t) that minimizes the cost function:

J =

ˆ tf

0

L(x, u, t)dt,
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between 0 and tf . There are many formulations of PMP depending on the boundary
conditions of the optimization problem. Here only the relevant case is discussed where
the initial state, x(0), the terminal state, x(tf ), and the terminal time, tf , are all �xed.
For simplicity, as well, a single state is assumed.

According to the Lagrange multiplier method, considering the system constraint is done
by introducing the Lagrange multiplier, λ, to form the augmented cost function1

Ja =

ˆ tf

0

[L(x, u, t)− λ (f(x, u, t)− ẋ)] dt.

The Hamiltonian is de�ned as:

H(x, u, λ, t) = L(x, u, t)− λf(x, u, t).

So, in terms of the Hamiltonian, the augmented cost function is then given by:

Ja =

ˆ tf

0

[H(x, u, λ, t) + λẋ] dt.

To determine the variation of Ja, δJa, the variations δx, δu, δλ and δẋ are introduced.
Thus, the cost variation is given by:

δJa =

ˆ tf

0

[
∂H

∂x
δx+

∂H

∂u
δu+

∂H

∂λ
δλ+ ẋδλ+ λδẋ

]
dt.

The variation δẋ can be removed by using the integration by parts and taking into account
that the initial and terminal states are �xed, we can write:

ˆ tf

0

λδẋdt = [λ(tf )δx(tf )− λ(0)δx(0)]−
ˆ tf

0

λ̇δxdt

= −
ˆ tf

0

λ̇δxdt.

As a result, by grouping the coe�cients of each variation term, the variation of the
augmented cost becomes:

δJa =

ˆ tf

0

[(
∂H

∂x
− λ̇
)
δx+

∂H

∂u
δu+

(
∂H

∂λ
+ ẋ

)
δλ

]
dt.

By de�nition, this cost variation must be positive at the optimal control trajectory, u
∗
,

for any combination of the independent variations δx, δu and δλ around the optimal
trajectories. In other words, the cost function accepts its minimum at the optimum and,
therefore, any variation around this optimum must be accompanied by an increase in the
cost. This implies that the coe�cients of each independent variation must vanish at the

1Formally the constraint of the initial state and that of the �nal state should be included in the
augmented cost function Ja with associated Lagrange multipliers. These additional terms are dropped
out here for the sake of simplicity.
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optimum. This gives the following three necessary conditions of optimality of the solution(
x

∗
, u

∗
, λ

∗)
:

ẋ
∗

= −∂H
∂λ

(
x

∗
, u

∗
, λ

∗
, t
)

= f
(
x

∗
, u

∗
, t
)
,

λ̇
∗

=
∂H

∂x

(
x

∗
, u

∗
, λ

∗
, t
)
,

∂H

∂u

(
x

∗
, u

∗
, λ

∗
, t
)

= 0.

The �rst necessary condition is nothing else than the system dynamics. The second
condition determines the optimal trajectory of the Lagrange multiplier, which is called co-
state in the frame of PMP. The third condition states that the optimal control minimizes
the Hamiltonian. If the control space is not constrained, then the derivative of the
Hamiltonian must vanish at the optimum. However, to account for the cases where the
optimal control may lie at the boundary of its constraints, where the derivative does not
need to vanish, the following general condition is used instated:

H
(
x

∗
, u

∗
, λ

∗
, t
)
≤ H

(
x

∗
, u, λ

∗
, t
)
, ∀u ∈ U(t),

where U(t) de�nes the admissible control space at time t.



Appendix B

Multi-objective Optimization Using
NSGA-II

In this appendix, the multi-objective optimization algorithm NSGA-II (Non-dominated
Sorting Genetic Algorithm) is explained. A genetic algorithm occupies a main part of
NSGA-II; therefore, it is discussed �rst in Section B.1. Then NSGA-II will be discussed
in Section B.2.

B.1 Genetic Algorithm

A genetic algorithm (GA) [90, 91, 92] is a method for solving optimization problems
based on a natural selection process that mimics the biological evolution. The algorithm
repeatedly modi�es a population of individual solutions. At each step, the genetic algo-
rithm randomly selects individuals from the current population and uses them as parents
to produce children for the next generation. Over successive generations, the popula-
tion "evolves" toward an optimal solution. The genetic algorithm can be used to solve
problems that are not well suited for standard gradient-based optimization algorithms,
including problems in which the objective function is discontinuous, nondi�erentiable or
highly nonlinear.

As an example of an optimization problem, the function f is de�ned as follows:

f(x1, x2) = (x1 − 1)
2

+ (x2 + 1)
2

, (B.1)

where f is a function of two variables, x1 and x2, and we want to minimize f and �nd
the optimal solution of variables (i.e., the values of x1 and x2 that minimize f). In this
example, the solution is trivial, which is x1=1, x2=-1 and the minimum f is zero.

The �tness function is the function that needs to be minimized. For standard optimiza-
tion algorithms, this is known as the objective function. For example, the function f is
a �tness function.

An individual is any point to which we can apply the �tness function. The value of
the �tness function for an individual is its score. For example, the vector (0,0) is an
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individual, whose score is f(0,0)=2. An individual is sometimes referred to as a genome
and the entries of an individual as genes.

A population is an array of individuals. The algorithm uses the population in each
iteration to produce the population of the next iteration, with the population in each
iteration called a generation.

Figure B.1 illustrates the main steps of the genetic algorithm. The algorithm works as
follows:

(1) The algorithm begins by creating a random initial population, which constitutes
the �rst generation;

(2) In the evaluation step, all the individuals in the current population are scored by
computing their �tness value;

(3) In the reproduction step, the algorithm generates the population of the next gen-
eration based on the scores of the individuals of the current population;

(4) The algorithm stops when one of the stopping conditions is met. The algorithm
may be terminated, for example, after a speci�c number of generations, after a
speci�c time or when the relative change in the �tness function is below a certain
threshold.

Figure B.1: Flowchart of genetic algorithm.

The reproduction step constitutes the core of the genetic algorithm, because it deter-
mines how the population evolves toward the optimal solution from one generation to
another. The algorithm selects, �rst, a group of individuals in the current population,
called parents, which contribute their genes to their children. The algorithm usually
selects individuals that have better �tness values as parents. Those parents are used to
create the children that make up the next generation. The genetic algorithm creates three
types of children for the next generation:
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� Elite children are the individuals in the current generation with the best �tness
values. These individuals automatically survive to the next generation.

� Crossover children are created by combining pairs of parents. Crossover enables
the algorithm to extract the best genes from di�erent individuals and recombine
them into potentially superior children.

� Mutation children are created by introducing random changes, or mutations, to a
single parent. Mutation adds to the diversity of a population and thereby increases
the likelihood that the algorithm will generate individuals with better �tness values.

The algorithm has many parameters that can be varied depending on the optimization
problem under study. Among others, the stopping conditions, the population size, the
elite count (the number of elite children) and the crossover fraction (the fraction of
children created by crossover) are examples of the algorithm parameters.

Figure B.2 shows the results of a GA run in Matlab, for the �tness function given in
equation (B.1). The �gure shows the best �tness value (i.e., minimum) at each generation
and the corresponding individual (i.e., x1 and x2). Here the default algorithm settings
are used. They are, population size: 20; algorithm terminated after 100 generations; elite
count: 2; crossover fraction: 0.8; parent selection: stochastic uniform; crossover function:
scattered. The individuals of the initial population are chosen here to be (10,-10). At
the end of the GA run, the obtained solution is (1.000,-0.998) corresponding to a �tness
value of 3.4Ö10-6. With increasing the number of generations, the GA solution becomes
closer to the optimum of (1,-1).
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Figure B.2: Example of a GA evolution toward the optimum from generation to generation.
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B.2 Multi-objective Optimization

In case of a single objective, one attempts to obtain the best solution, which is absolutely
superior to all other alternatives. In the case of multiple objectives, there does not
necessarily exist a solution that is best with respect to all objectives. A solution may
be best in one objective but worst in other objectives. Therefore, there usually exists a
set of solutions for the multi-objective case which cannot simply be compared with each
other. For such solutions, called nondominated solutions or Pareto optimal solutions, no
improvement in any objective function is possible without sacri�cing at least one of the
other objective functions.

The multi-objective optimization algorithms use the concept of domination, so that two
solutions are compared based on whether one dominates the other or not. A solution X1

is said to dominate the other solution X2, if both conditions are true [76]:

� The solution X1 is no worse than X2 in all the objectives;

� The solution X1 is strictly better than X2 in at least one objective.

If any of the above conditions is violated, the solution X1 does not dominate the solution
X2. The solution is called nondominated, and hence belongs to the optimal Pareto front,
if and only if there does not exist another solution that dominates it.

Figure B.3 illustrates the concept of domination. Here the minimization of the two
objectives f1 and f2 is considered. The feasible objective space, which represents all the
possible values of f1 and f2, and the optimal Pareto front are shown. The point p1 from
the Pareto front and three possible solutions, x1, x2 and x3 o� the Pareto front are chosen.
According to the two conditions above, we can say that x1 does not dominate p1 because
it is worse than p1 in the two objectives. x2 does not as well dominate p1, even though
x2 has a better f1, however, with a worse f2. The same applies to x3, which also does
not dominate p1. p1 belongs to the Pareto front because there is no other solution that
dominates it. x2 does not belong to the Pareto front because there are other solutions that
dominate x2 (for example p2 from the Pareto front). Likewise, x3 is not nondominated
because there is, for example, p3 that dominates it. The solutions p1, p2 and p3 from the
Pareto front do not dominate each other, and they are all nondominated. As shown in
the �gure, the Pareto front determines the optimal trade-o� between the two objectives.

In the case of a single objective, the genetic algorithm ranks the individuals based on their
corresponding �tness value. In comparison, for the multiple objectives, the individuals are
ranked according to their dominance relation, while taking the diversity of the solutions
into account. The most common algorithm for multi-objective optimization is NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [76], which is also used in Matlab [92]. A
schematic of the algorithm is shown in Figure B.4.
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Figure B.3: Example of a Pareto front for two-objective minimization problems.

Figure B.4: Schematic of NSGA-II algorithm. Redrawn from [76].

At generation i, the population Pi of size N is sorted into di�erent non-domination levels,
so that each solution attains a rank according to its non-domination level. The o�spring
population Qi of size N is generated from Pi using binary tournament selection (to select
parents of Qi) and genetic operators (crossover and mutation). The two populations
Pi and Qi are then combined to form Ri of size 2N. The binary tournament selection
operator selects a parent from two individuals based on their rank for a single objective
optimization. In case of multiple objectives, the crowding distance of the individual is
taken into account if the two individuals have the same rank (i.e., they belong to the
same front), so that the individual that has less density of individuals surrounding it gets
selected (i.e., wins the tournament). This way, the diversity of solutions is improved.
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The resulting population Ri undergoes a non-dominated sorting, where the solutions of
the best front F1 are �rst selected, then the second front F2 and so on. The population
Pi+1 at generation i+1 is then �lled gradually with the best fronts. In Figure B.4, for
example, the solutions of F1 are bypassed to Pi+1, then F2. The size of Pi+1 is also N, so
in this example, not all the solutions of F3 can be accommodated in Pi+1. In this case,
the solutions of F3 are sorted according to the crowding distance, then the solutions with
the best crowding distance (i.e., ensure more diversity) are bypassed to Pi+1. All the
other solutions (the rest of F3, which has worse crowding distance, and the other fronts
with the lowest rank) are deleted. The algorithm continues from generation to another
until the stopping criterion is ful�lled. In the optimal case, after su�cient generations,
Pi+1 will be �lled by only one front F1 (representing the Pareto-optimal front) so that all
the solutions of Pi+1 will have the same rank and the number of solutions in the resulting
front is N.

As an example of multi-objective optimization problem, let us consider the minimization
of the two objective functions, f1 and f2, give by:

f1(x) = (x− 1)
2

,

f2(x) = (x+ 1)
2

,

x ∈ [−2, 2],

where x is the single decision variable of the problem. In this simple example, the
objective space is a line as shown in Figure B.5. The analytical optimal Pareto front is
also shown together with the results of a multi-objective GA in Matlab. Here the default
algorithm settings are used. They are, population size: 20; algorithm terminated after
100 generations; elite count: 2; crossover fraction: 0.8; parent selection: tournament;
crossover function: intermediate.
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Appendix C

Test Bench

In this appendix the layout, speci�cations and control of the test bench used in the ex-
perimental validations are introduced. Section C.1 reports the layout and speci�cations.
Sections C.2, C.3 and C.4 present the models of FCS, battery and supercapacitor, re-
spectively. The control of the DC/DC converters is discussed in Section C.5. Section C.6
presents the developed graphical user interface that enables the user to control, run and
monitor the whole test bench in real time.

C.1 Speci�cations and Layout

The experimental test bench (Figure C.1) is composed of an FCS, a lithium-polymer
battery, a supercapacitor, a unidirectional DC/DC converter for the FCS, and a bidirec-
tional one for the supercapacitor. The two-quadrant load is composed of a source and
a sink. The sink draws power from the hybrid system simulating the traction phases of
the vehicle, whereas the source provides the system with power simulating the regener-
ative braking phases. Table C.1 lists the speci�cations of the test bench components.
The ratings of the DC/DC converter in Table C.1 correspond to the unidirectional FCS
converter. Four units of this converter are used for the supercapacitor.

The layout of the test bench is depicted in Figure C.2. The power part includes the power
sources and DC/DC converters, in addition to voltage and Hall-e�ect current sensors at
the output of each component. The digital part of the test bench is composed of a
target computer and a host computer. The target computer represents the real-time
control unit of the system. It takes the signals of the sensors as inputs, applies the power
management strategy and, then, generates the appropriate control signals as outputs. The
target computer is equipped with external high-resolution cards from Speedgoat (IO106
for the input and IO111 for the output). The host computer communicates with the
target computer via Ethernet. The target application is, �rst, built as a Simulink model
on the host computer and a compiled version (C code) of it is downloaded to the target
computer. The host computer accepts the measurement data from the target computer
while the test is running and after it is �nished. The target application (Figure C.3)
consists of the power management strategy in addition to two conditioning steps for the
inputs (i.e., sensors signals) and for the outputs (i.e., control signals).
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Figure C.1: Photograph of the Hardware-in-the-Loop test bench.

Table C.1: Speci�cations of the test bench.

Parameter Value

Fuel cell system
PEM stack 47 cells
Rated power 1.2 kW
Output voltage 22�43 V (26 V rated)

Battery
No. cells 10
Capacity 30 Ah
Rated voltage 37 V
Current (max./ min./ rated) (110/ -45/ 30) A

Supercapacitor
No. modules 3 (each with 6 cells)
Module capacitance 500 F
Rated voltage 48 V
Current (max./ min./ rated) (1900/ -1900/ 100) A

DC/DC converter
Input voltage 25�47 V (36 V rated)
Output voltage 25�50 V (50 V rated)
Maximum output current 25 A

Load
Sink ratings 80 V/ 200 A/ 2400 W
Source ratings 80 V/ 50 A/ 1500 W
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Figure C.2: Schematic of the test bench layout.

Figure C.3: Basic structure of the target application.

C.2 Fuel Cell System

A 1.2 kW, 26 V FCS from Ballard is used in the test bench. The FCS and its unidirectional
DC/DC converter are modeled by their steady state e�ciencies shown in Figure C.4(b),
which shows the overall e�ciency of the two components, as well. The overall e�ciency of
the FCS and its DC/DC converter is de�ned as the ratio of the converter output power,
Pfcdc, to the hydrogen power, where the hydrogen power is the product of hydrogen
mass �ow rate and hydrogen lower heating value, LHV (=120 kJ/g). The hydrogen �ow
rate is modeled by a second-order polynomial function of Pfcdc (Figure C.4(a)) �tted
to experimental data. A comparison between the measured overall e�ciency and the
model e�ciency is illustrated in Figure C.4(b). Due to aging, the FCS had lost its high
power capability and, therefore, Pfcdc was limited to 700 W. The voltage and power
characteristics of the FCS are shown in Figure C.5.
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Figure C.4: Modeling of the FCS and its DC/DC converter. (a) Hydrogen consumption rate; (b)
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Figure C.5: Voltage and power characteristics of the FCS.

C.3 Battery

A 30 Ah lithium-polymer battery from Hoppecke is used. It is composed of 10 cells
connected in series. The parameters of the internal-resistance model of the battery shown
in Figure C.6 were identi�ed by an HPPC test (Hybrid Pulse Power Characterization)
[69].
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Figure C.6: Parameters of the battery internal-resistance model as a function of SOC.

C.4 Supercapacitor

The supercapacitor bank is composed of three BMOD0500P016B02 6-cell modules from
Maxwell Technologies. Each module has a rated capacitance of 500 F, an internal re-
sistance of 2.1 mΩ and a rated voltage of 16 V [93]. These characteristics have been
experimentally veri�ed in Table C.2 using the pro�les given in the product datasheet.

Table C.2: Measurements of capacitance and internal resistance of the three modules constituting the
supercapacitor bank.

Capacitance (F) Resistance (mΩ)

Module 1 498 2.02
Module 2 499 2.06
Module 3 497 1.99

The bidirectional DC/DC converter of the supercapacitor is formed by four unidirectional
converters of the type given in Table C.1; two serve to discharge the supercapacitor and
the other two to charge it. Figure C.7 shows the relation between the power at the
supercapacitor side, Psc, and that at the electric bus side, Pscdc, for a voltage of 37 V
at both sides. The di�erence between them constitutes the power loss in the DC/DC
converters.

C.5 DC/DC Converters

The DC/DC converters are responsible for the realization of the power management
strategy. They are of buck-boost type, so that the output voltage can be smaller or
higher than the input voltage. They are equipped with two control inputs: one to set
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Figure C.7: Input-output power relation of the supercapacitor bidirectional DC/DC converter.

the reference output voltage, and one to limit the output current. The reference output
voltage can be varied between 25 and 50 V, and the output current can be limited to
any value between 0 and 25 A. Depending on the powertrain topology, the converters are
operated either in the voltage-controlled mode (i.e., output voltage is controlled) or in a
current-limited mode (output current is controlled).

For a fuel cell/battery topology shown in Figure 2.6, the converter in front of the FCS
controls the FCS contribution in meeting the demand at each time instance. The output
voltage is the DC bus voltage that is set by the battery, with about 37 V as a nominal
value. In order to set the FCS converter output power to Pfcdc, the bus voltage, Vbus,
is measured and the required output current, Ifcdc = Pfcdc/Vbus, is then calculated. The
reference voltage of the converter is set always to the maximum value of 50 V. Since the
actual output voltage is smaller than the reference, the converter operates in the current-
limited mode, so that the output current will be the maximum possible value permitted
by the current limitation. So, Ifcdc is implemented by the converter if Ifcdc is used as a
current limitation. The battery contribution is then determined by the power balance.

For a fuel cell/supercapacitor topology shown in Figure 3.1, the FCS converter is operated
in the voltage-controlled mode where 37 V is used as a reference voltage (which is also
the DC bus voltage) and the current limitation is set to its maximum value. On the
other hand, the supercapacitor converters are operated in the current-limited mode so
that the power contribution of the supercapacitor is controlled by the power management
strategy, and the FCS contribution is determined by the power balance.

For a fuel cell/battery/supercapacitor topology shown in Figure 4.1, both the FCS con-
verter and supercapacitor converter are operated in the current-limited mode so that
their power contributions are controlled by the power management strategy. The battery
contribution is then determined by the power balance.
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C.6 Graphical User Interface (GUI)

The host computer is equipped with a friendly GUI to help the user to control the test and
to process the measurement data. The GUI displays the measurements online (i.e., while
running the test) with a sample time of 100 ms. However, after �nishing the test, the
measured data are collected from the target machine with a sample time of 10 ms, which
is the sample time used in the target application. Figure C.8 shows, as example, the GUI
of the fuel cell/battery hybrid. Similar GUIs are used for the fuel cell/supercapacitor
and fuel cell/battery/supercapacitor topologies. The GUI is divided into the following
panels:

� Test Control: This panel serves to con�gure the test. This includes selecting driving
cycle (most standard driving cycles are preprogrammed), scaling and cropping of
the selected driving cycle, initializing the test (processing the chosen driving cycle
and then compiling and downloading the target application to the target machine),
starting and stopping the test (the test can be interrupted at any time; otherwise,
it stops after �nishing the test).

� Data control: At the end of the test the complete data collected by the target
machine can be transferred to the host machine to be processed and saved. The
loaded measurements can be �ltered by a median �lter to remove the noise.

� Driving Cycle: This panel shows the speed and power pro�le of the chosen driving
cycle. The vehicle model is used to calculate the vehicle power demand, which is
then, after scaling, used as a reference for the test bench load.

� Load: This panel shows the measured current, voltage and power of the load.

� Fuel Cell System: This panel shows the current, voltage and accumulated hydrogen
consumption of the fuel cell system. The last value of the accumulated hydrogen
consumption represents the fuel consumption over the driving cycle.

� Battery: This panel shows the battery current, voltage and SOC trajectory.

� System status: This panel shows online the direction of system currents, and hence
the system operation mode. Eight system operation modes can be distinguished as
shown in the following table.
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Figure C.8: Graphical user interface of the fuel cell/battery topology.
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