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Abstract 

Objectives 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) is characterised by strategic white matter (WM) hyperintensities on MRI.  

Pathological features include WM degeneration, arteriolosclerosis, lacunar infarcts and the 

deposition of granular osmiophilic material.  Based on the hypothesis that the gliovascular 

unit is compromised, we assessed the nature of astrocyte damage in the deep WM of 

CADASIL subjects. 

Methods 

We evaluated post-mortem brains from CADASIL, cerebral small vessel disease, similar age 

cognitively normal and older control subjects.  Standard immunohistochemical, 

immunofluorescent and unbiased stereological methods were used to evaluate the distribution 

of astrocytes, microvessels and autophagy markers in five different brain regions.  

Results 

Compared to the controls, the deep WM of CADASIL subjects overall showed increased 

numbers of glial fibrillary acidic protein (GFAP)-positive clasmatodendritic astrocytes 

(P=0.037) and a decrease in the percentage of normal appearing astrocytes (P=0.025).  In 

accord with confluent WM hyperintensities , the anterior temporal pole contained abundant 

clasmatodendritic astrocytes with displaced aquaporin 4 immunoreactivity.  Remarkably, we 

also found strong evidence for the immunolocalisation of autophagy markers including 

microtubule associated protein 1, light chain 3 (LC3) and sequestosome 1/p62 and Caspase-3 

in GFAP-positive clasmatodendritic cells, particularly within perivascular regions of the deep 

WM.   LC3 was co-localised in more than 90% of the GFAP-positive clasmatodendrocytes. 

Conclusions 

Our novel findings show astrocytes undergo autophagy-like cell death in CADASIL, with the 

anterior temporal pole being highly vulnerable.  We propose astrocytes transform from 

normal appearing type A to hypertrophic type B and eventually to clasmatodendritic type C 

cells.  These observations also suggest the gliovascular unit of the deep WM is severely 

impaired in CADASIL.  
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Introduction 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) is the most common widely occurring hereditary stroke disorder leading to 

cognitive impairment and dementia (4, 38).  It is caused by over 250 distinct mutations in the 

NOTCH3 gene.  In addition to the presence of severe arteriopathy, lacunar infarcts and deep 

white matter (WM) changes, CADASIL is characterised by the presence of aggregated 

NOTCH3 extracellular domain fragments within in granular osmiophilic material (GOM) 

(38, 39).  Hypomorphic NOTCH3 function, causing a partial loss of NOTCH3 protein 

function in vascular smooth muscle cells is also characteristic of CADASIL (2).  However, 

WM hyperintensities identified on magnetic resonance imaging (MRI) in the anterior 

temporal pole and external capsule are key radiological signatures of CADASIL.  We 

previously demonstrated that WM hyperintensities in the anterior temporal pole largely align 

with perivascular spaces and highly rarefied tissue (40).   The degeneration and axonal 

disconnectivity in the WM (9) is associated with abnormalities in oligodendrocytes and 

accumulation of degenerated myelin basic protein.   Oligodendrocytes together with 

astrocytes and microglia also form the gliovascular unit.  We recently showed that astrocytes 

transform to clasmatodendrocytes in the deep WM of elderly post-mortem stroke survivors, 

who develop dementia (6).  This implicates disruption of the gliovascular unit and loss of 

integrity of the blood-brain barrier (BBB) in the WM.  The cellular mechanisms involved in 

astrocytic transformation and whether any protective mechanisms are implicated are 

unknown (3).  We therefore reasoned that CADASIL in which there is severe WM 

degeneration will be pivotal to examine cellular mechanisms involved astrocyte pathology.   

Major mechanisms of cell death after ischemia are apoptosis and necrosis, and both 

have been implicated in delayed neuronal cell death after hypoxic-ischemic injury (14).   

Macroautophagy, a degradation pathway for organelles and long-lived proteins too large to 

be degraded by the ubiquitin-proteasome-system, is also triggered in cells after hypoxic and 

excitotoxic injury, and excessive or imbalanced induction can contribute to cell death (7, 20).  

Although there have been numerous reports on the role of autophagy in neurodegenerative 

diseases, there is lack of autophagy studies in relation to cerebrovascular disorders including 

in CADASIL or post-stroke dementia.   Growing evidence suggests autophagy is enhanced 

following cerebral ischemia, and is stimulated in response to in vivo or in vitro instigated 

energy deficits, hypoxia, endoplasmic reticulum stress and oxidative stress (20, 28, 37).   The 

two most commonly studied proteins involved in autophagy are LC3 (microtubule associated 

protein 1, light chain 3) and Beclin-1. During the initiation of autophagy, LC3-I becomes 
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anchored to the autophagic vacuole membrane to form LC3-II, a specific marker for 

autophagosomes.  Beclin-1 is involved in the recruitment of the membranes which form the 

autophagosomes, and also interacts with anti-apoptotic protein B-cell lymphoma 2 as an 

upstream gatekeeper of apoptosis (27).  Another protein which has been suggested to have a 

pathogenic role in autophagy dysfunction is sequestosome 1 (SQSTM1), or more commonly 

known as p62, a regulatory protein involved in protein homeostasis and DNA repair (17).  

p62 binds directly to LC3 and can target protein aggregates and organelles for autophagic 

degradation, and has a role in regulating the degradation of ubiquitinated tau (26).   In an 

effort to evaluate the integrity of the gliovascular unit and mechanisms of astrocytic cell 

death, we aimed to study the distribution and quantify the expression of GFAP 

immunoreactive cells and protein markers of autophagy in different regions of the WM in 

CADASIL against similar age controls. 

 

Methods 

Subjects and Tissues 

Demographic details and diagnoses of the subjects are shown in Table 1.  The mean age of 

the CADASIL and young control subjects were not different.  Available case notes and 

radiological reports indicated CADASIL subjects showed extensive WM changes consistent 

with small vessel disease and met the minimum criteria for cognitive impairment (1).  

CADASIL diagnosis was confirmed by the presence of NOTCH3 gene mutations or granular 

osmiophilic material (GOM) in arteries within skin biopsies (40).  None of the controls had 

neurological or pathological evidence for cerebrovascular disease or neurodegenerative 

disorder.  Tissue blocks from brains of CADASIL subjects and similar age controls were 

collected from four sources.  In addition to the Newcastle Brain Tissue Resource (NBTR), 

Newcastle University, Campus for Ageing and Vitality, we obtained cases from the MRC 

London Brain Bank for Neurodegenerative Diseases, the MRC Sudden Death Brain and 

Tissue Bank, University of Edinburgh and Neurology Department, Ludwig Maximilians 

University, Germany.  Tissue from older controls were obtained from the NBTR.  Use of 

brain tissue was approved by the local research ethics committee of the Newcastle upon Tyne 

Hospitals NHS Foundation Trust, the NBTR committee, and the ethics committees 

overseeing the Brain Banks at the other respective sites. 
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Immunohistochemistry and immunofluorescence (IF) labelling 

Formalin-fixed paraffin-embedded post mortem WM brain tissue from 5 different regions 

including the pre-frontal lobe (PF), temporal pole (TP), temporal lobe (TL), parietal lateral 

lobe (PL) and occipital inferior lobe (OL) were examined.  These extended along the rostro-

caudal axis of the cerebrum, per atlas of Perry and Oakley (24).  The blocks were cut serially 

at 10ȝm thickness for routine tinctorial staining and immunohistochemistry as described 

previously (40).  Macroscopic and microscopic pathology was assessed using standardised 

protocols as described (10, 19).  Haemotoxylin and eosin (H&E), luxol fast blue (LFB) and 

cresyl fast violet (CFV) were used as standard stains for describing neuropathological 

changes and for detection of infarcts, presence of WM rarefaction and extent of arteriopathy.   

Cerebrovascular lesions including SVD pathology were assessed using a grading system as 

described previously (10).  Vascular sclerotic index (SI) was assessed as described previously 

(40).  

Ten µm thick paraffin wax embedded coronal sections were immunostained with 

various primary mouse monoclonal and rabbit or goat polyclonal antibodies including, 

aldehyde dehydrogenase 1 family, member L1 (ALDH1L1; 1:100 in 0.1% Trion X-100-PBS 

for IF, clone 7G8, mouse, 14-9595, eBioscience), aquaporin 4 (AQP4; 1:50, rabbit , 16473-1-

AP, Proteintech),  Beclin-1 (1:100, mouse  antibody, AM1818a, Abgent), Caspase-3 

(Cleaved Caspase-3, 1:100, Asp175, rabbit ; product #9661, Cell Signalling Technology), 

Collagen IV (COL4, 1:1000, mouse , C1926, Sigma); Delta Like-1 (DLL1; 1:1000, rabbit, 

Ab# 76655 Abcam), fibrinogen (1:2000, rabbit , A0080, Dako),  GFAP  (1:1000, rabbit,  

Z0334, Dako), GFAP mouse antibody (1:50, clone 6F2, monoclonal  M0761, Dako), glucose 

transporter-1 (GLUT-1, 1:200, #21041, Thermo Scientific), Intercellular adhesion molecule-1 

(ICAM-1, CD54, 1:300, mouse , F1743, Dako), LC3 (autophagic vacuoles; 1:100, rabbit 

polyclonal antibody, AP1801a, Abgent),  p62 (1:300, mouse , #610832, BD Biosciences).   

Tissue sections first underwent antigen retrieval by heating in the microwave with citrate 

buffer for 12 minutes before being quenched with TBS and 3% hydrogen peroxide.  Sections 

were then blocked with serum derived from the species in which the secondary antibody was 

generated, before being immunostained with the primary antibody overnight at 4oC.   

Specificities of the GFAP, LC3, p62 and Caspase-3 antibodies were either verified per 

manufacturer’s datasheet or immunostaining of cortical tissue or sections without primary 

antibody as described previously (8, 9).  

Quantification was performed following the general pattern we established previously 

for either parenchymal or cellular protein immunoreactivity (12, 18).  Briefly for GFAP-
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positive cells, at least 20 images were acquired randomly from areas of the deep WM in 

coronal sections (Figure 2), using a Leitz DIALUX 20 brightfield microscope coupled to a 

lumenera infinity digital camera at 10 x magnification. Using ImageJ, the total GFAP+ cells 

and cells showing features of clasmatodendrosis (swollen cell body and beaded processes) 

were counted from frontal, temporal, parietal and occipital deep WM in each case, with the 

percentage of GFAP+ clasmatodendrotic and normal astroglia per total GFAP+ cells were 

calculated.  To verify that only astrocytic cells were targeted, we determined  that GFAP cell 

counts per 0.5 mm2 correlated positively with GFAP staining per unit area (ȡ 0.754, 

p<0.001).  We also showed there was a positive correlation between the frontal and temporal 

total GFAP immunoreactivities (ȡ = 0.500, p = 0.003).   

For immunofluorescence labelling, the primary antibodies were removed and sections 

were washed with PBS prior to incubation at room temperature for one hour with goat anti-

mouse secondary antibody, Dylight 650 conjugated (1:200, 84545, Thermo Scientific) and 

goat anti-rabbit secondary antibody, Texas Red conjugated (1:200, T2767, Life 

Technologies). Sections were counterstained and mounted with DAPI incorporated mounting 

medium (Dako). A Leica TCS SP2 UV AOBS MP (upright confocal microscope) and a Life 

Technologies EVOS FL (LED) fluorescence microscope were used for image capture.   

 

Statistical analysis 

Data were analysed using SPSS (V19.0, IBM) and tested for normality using the Shapiro-

Wilk test.  Differences between means of groups were first tested using ANOVA and where 

appropriate using Tukey’s post-hoc test.  In prior analysis, data found to be not normally 

distributed were analysed using non-parametric methods.  Group means such as CADASIL 

and controls were compared using analysis of variance (ANOVA) with post hoc Tukey tests 

for normal data or Kruskall-Wallis, Newman-Keuls and the Mann-Whitney U tests for non-

normally distributed values e.g. differences between pathological variables and total GFAP 

positive cells or the percentage of clasmatodendrocytes in different groups.   Spearman’s rank 

ȡ (rho) correlation was used to assess correlations between clinical and neuropsychometric 

variables or specific protein immunoreactivity measures and microvascular changes.  

Significant difference between means was considered when the P value was less than 0.05. 
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Results 

Astrocyte morphology revealed by GFAP immunohistochemistry 

GFAP immunohistochemical staining of the WM of the anterior temporal pole from 

CADASIL subjects with WM hypersignals on MRI in life revealed abnormal astrocytes in 

the deeper WM (Figure 1).  Screening of immunostained sections from further afield in the 

WM of the PF, TL, PL and OL in CADASIL subjects indicated that GFAP antibodies 

essentially identified three types of morphologically distinct cells (Figure 2).  There were the 

normal appearing star-like astrocytes with small bodies and long fibrous processes, which we 

designated as type A cells (Figure 1I and 2B).  The other two had enlarged cell bodies with 

shortened or retracted fibres (type B) and rounded profiles without processes (type C).  Many 

of the latter were found to be with smaller almost punctate cell bodies.   The type B cells with 

enlarged cell bodies invariably exhibited thickened and shortened processes.  The GFAP-

positive cells types A to C collectively likely represented a continuous spectrum from normal 

to abnormal.   The GFAP-positive cells were also immunostained by antibodies to ALDH1-

L1 and DLL-1.  The cytoplasmic immunoreactivities of these markers were similar to what 

we had observed in SVD cases from elders post-stroke survivors (6).  Similarly, several 

clasmatodendrocytes were immuostained by fibrinogen (data not shown).  

Quantitative analyses (Figure 3) in all the 5 regions showed that the total population 

of GFAP-positive type C cells comprising counts from all regions was increased in 

CADASIL subjects compared to controls (P=0.037).   Type C cells appeared as 

clasmatodendrocytes, exhibiting an enlarged cell body and absence of processes.  At higher 

magnification intracellular vacuoles could be discerned in these cells.  There were no 

significant differences in type B cells (P=0.392) which appeared abnormal but these were not 

necessarily changed in CADASIL.  However, boxplots also revealed a trend in less number 

of normal astrocytes in CADASIL subjects compared to similar age controls (P=0.051).   We 

also noted higher percentage of type C cells (P=0.046) and a significantly lower percentage 

of type A cells (P=0.025) in CADASIL.   When we compared percentage of the sum of all 

the abnormal cell (types B and C) there were significant differences (P=0.046) between 

CADASIL and controls.  This suggested that the proportions of abnormal astrocytes were 

substantially increased in CADASIL.   We found similar profiles of astrocytes with high 

variability in SVD cases but these were not quantified (6).   However, it was unclear whether 

any of the astrocytes described here coincide with the most recently described cytotoxic 

astrocyte type A1 (21) or whether the WM astrocytes are a specialised type (5). 
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The regional distribution of each category of astrocytes across the 5 brain WM 

regions PF, anterior TP, TL, PL and OL were qualitatively similar.  However, there were 

considerable regional variations in clasmatodendritic numbers with the most robust change 

was in the temporal pole, consistent with WMHs upon MRI.    There were consistently higher 

percentage of degenerated cells (type C) and lower percentage of type A (normal) cells in 

CADASIL compared to controls, as indicated by the median.  The low percentage of type B 

cells with hyperplasic cell bodies and shortened processes in both disease and control groups 

across all brain areas were notable.  Greater differences in the percentage of degenerating 

type C cells were apparent in the anterior temporal pole and temporal lobe with almost 

equivalent degree of changes in the pre-frontal lobe (Figure 3).  Type A counts tended to be 

lower in the temporal pole (P=0.055) with a significant increase in the degenerating type C 

cells in the temporal lobe.   We noted there was no clear relationship between specific 

genotype mutations and astrocyte pathology.   This suggested NOTCH 3 mutations had no 

specific effects on degree of astrocyte change within the WM of brain regions examined. 

 

Localisation of AQP4 in astrocytes and microvascular markers 

Double-immunofluorescence staining showed co-localisation of AQP4 and GFAP in the end-

feet of normal astrocytes (Figure 4).  Clasmatodendritic astrocytes showed localisation of 

AQP4 and GFAP in the cell bodies.  There was a clear indication that numerous 

clasmatodendritic astrocytes had retracted end-feet containing the water channel protein 

AQP4 in CADASIL and SVD cases (6).  As expected this was most prominent in the anterior 

temporal pole of CADASIL subjects.  

 Focusing on the frontal and anterior temporal pole WM, we first observed that the SI 

was increased in both CADASIL and SVD compared to their relative control age groups 

(P<0.001 and P<0.05, respectively).  The mean SI value for frontal WM was 0.43 in 

CADASIL subjects versus 0.30 in similar age controls.  Whereas more relevant to the 

astrocytic pathology, in the anterior temporal pole the SI value was 0.46 in CADASIL 

compared to 0.31 in controls.  In SVD, the SI value for the anterior temporal pole was 0.35 

versus 0.31 in controls indicating on average a 46% increment in CADASIL.  The density of 

COL4 per area and ratio of GLUT1 to COL4 within microvessels were also increased 

indicating increased basement membranes in CADASIL and SVD but a reduced endothelium.  

This was demonstrated by the decreased ICAM-1 immunoreactivity in the order CADASIL 

<SVD <young controls <old controls (P=0.001).  CADASIL subjects showed 1.5-fold lower 

ICAM-1 immunoreactivity per area compared to young controls.  Consistent with the data 
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above on total GFAP reactive cells, we found ratios of GFAP to ICAM-1 immunoreactivity 

was increased in CADASIL and SVD cases compared to young and older controls (P=0.001) 

 

Mechanisms of astrocytic cell death – markers of autophagy  

In subsequent experiments, we explored mechanisms of astrocytic degeneration particularly 

focusing on the WM of the anterior temporal pole.  We found that p62 immunoreactivities 

were localised in 90 +10% of the clamatodendritic astrocytes (Figure 5).  Immunostaining 

with other markers of the dysfunctional autophagy pathway suggested that LC3 was similarly 

highly co-localised in p62 immunoreactive cells.  Thus, remarkably immunoreactivities of 

both LC3 and p62 were identified in clasmatodendritic astrocytes in CADASIL subjects but 

these were seldom evident in the similar age controls.  Quantification of the co-labelled LC3 

marker and GFAP-positive clasmatodendrocytes again showed 90 +9% co-localisation 

compared to 0% in controls (P=0.000).  We also noted Beclin-1 immunoreactivity in type C 

cells in the perivascular regions in SVD but not in controls (not shown).  Furthermore, we 

reasoned that since astrocytes were essentially undergoing cell death that Caspase-3 or 

Apoptain might be activated.  Caspase-3 is a critical for cell death, as it is either partially or 

totally responsible for the proteolytic cleavage of many key proteins including the nuclear 

enzyme poly (ADP-ribose) polymerase.  We found that the hypertrophic appearing astrocytes 

undergoing clasmatodendrosis were strikingly reactive for activated Caspase-3 whereas few 

if any Caspase-3-positive cells were observed in similar age controls (Figure 6).  In contrast, 

there were no apparent Caspase-3-positive cells in the neocortex in either CADASIL subjects 

or controls.  Caspase-3 expression in CADASIL was specific to the WM in the damaged 

astrocytes and end-feet (Figure 6). 

 

Discussion 

We report severe albeit variable astrocytopathy in CADASIL.  Examination of CADASIL 

brains revealed essentially three morphologically distinct GFAP-positive cell profiles.  

Higher percentage of abnormal and lower percentage of normal cells were indicative of 

greater clasmatodendrosis in CADASIL brains compared to controls.  The abnormal type C 

largely comprised clasmatodendrocytes with retracted processes and dislocated end-feet 

containing AQP4, similar to what we recently reported in post-stroke survivors (6).  As 

increased astrocytopathy was evident, our findings implicate profound effects on disease 

pathophysiology, white matter lesions, vascular pathology and BBB damage.  Astrocytes are 
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continually being broken down and new cells being formed but this may slow down with age 

and duration of disease (34).    Consistent with previous findings that large perivascular 

spaces were found in the WM of the temporal pole and greater pericyte and vascular smooth 

muscle cell degeneration (40), we suggest there is high turnover of astrocytes.  This is likely 

increased also due to strategic location of subcortical infarcts (11).  

 Our observations foremost provide evidence that astrocytic cell death may involve 

deregulation of autophagy.  We found the co-localisation of key markers in the autophagy 

pathway.  In light of the current knowledge of the autophagy pathway, p62 likely binds to 

ubiquinated astrocytic proteins and these complexes are then recruited into LC3 labelled 

autophagosomes within dying cells. Accumulation of LC3-positive structures may suggest 

either autophagy upregulation at the level of autophagosome biogenesis or a block in 

autophagy at the later stages of the pathway, e.g. impairment of autophagosome-lysosome 

fusion (30).   However, simultaneous accumulation of LC3 and the autophagic substrate p62 

strongly argues that the changes we observe are likely to be due to the autophagy blockade, 

which has been implicated in a range of neurological pathologies and could result in the loss 

of cell viability(22).  We propose that autophagy dysfunction or an insufficient autophagy in 

stress conditions may be the cause of apoptosis in CADASIL astrocytes and result in greater 

turnover of astrocytes.  Mechanisms leading to autophagy dysfunction as well as those 

linking defective autophagy to death of astrocytes in CADASIL require further investigation.  

Besides a consequence of the vascular pathology, is it plausible that astrocytes are 

directly affected by the mutant NOTCH3 receptor?  Related to this proposal, Tang et al (35) 

recently showed that demyelination occurs secondary to vascular pathology.   They showed 

that compared to cells overexpressing wild-type NOTCH3, oligodendrocytes overexpressing 

mutant NOTCH3 (R90C) were less viable and had a higher rate of apoptosis.   Cells with 

mutant NOTCH3 also had higher levels of intrinsic mitochondrial apoptosis, extrinsic death 

receptor path-related apoptosis, and autophagy.  Thus, early defects in glia influenced by 

NOTCH3 mutants may directly contribute to WM pathology in addition to secondary 

vascular defects.  Consistent with our findings, in vitro model of ischaemia induced by 

oxygen and glucose deprivation there was increased formation of autophagosomes and 

autolysosomes and monodansylcadaverine (MDC)-labeled vesicles in cultured astrocytes 

(25).  This was accompanied by increased production of microtubule-associated protein 1 

light chain 3-II  (LC3-II) and upregulation of Beclin 1, lysosome-associated membrane 

protein 2 (LAMP2) and lysosomal cathepsin B expression in primary astrocytes. 
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Recent publications have described clasmatodendrosis in various neurodegenerative 

diseases and brain injury (32, 36).  However, it appears that the astrocytopathy largely 

associated with the WM in CADASIL is a profound, albeit related to the intensity of disease 

onset.   Previous studies have suggested loss of AQP4 is associated with clasmatodendrosis 

and oedema in neuromyelitis optica (23).  We recently reported AQP4 dislocation and and 

astrocytopathy/clasmatodendrosis in post-stroke survivors and an experimental animal model 

(6). Such similarities with CADASIL indicate that new information regarding treatment of 

neuromyelitis optica could also be applicable to CADASIL and SVD.  The extent of astrocyte 

involvement in causing WM degeneration in acute haemorrhagic leukoencephalitis and 

Binswanger’s disease has been hotly discussed.  It is argued that clasmatodendrosis is causing 

demyelination in acute haemorrhagic leukoencephalitis because it occurs before any evidence 

of demyelination can be detected (29) whereas in Binswanger-like disease, clasmatodendrosis 

may occur without any signs of myelin loss (31).  The natural history of the changes in these 

and even neurodegenerative disorders suggests that arteriolosclerosis is one of the first 

changes (10).  The arteriopathy via reduction in the vascular bed could be the direct link in 

causing damage to astrocytes (33).  That this is plausible is because reducing brain perfusion 

even in subcortical structures and the WM with bilateral carotid artery stenosis non-

invasively to the brain in mice leads to increased percentage of clasmatodendritic astrocytes 

(15, 16).   Damaged astrocytes would then escalate WM changes through progressively 

altered BBB function.  BBB damage causes leaky vessels and fibrinogen, leaked from brain 

vessels to parenchyma, could be taken up by damaged astrocytes (clasmatodendrocytes), as 

several clasmatodendrocytes were immuostained by fibrinogen in CADASIL. At this stage, 

severity of clasmatodendrosis might be more severe and we observed them as Type C cells 

(severe clasmatodendrocytes). Furthermore, ischaemic preconditioning prevents astrocyte 

injury through upregulating protective protein 14-3-3Ȗ in murine models.  Preservation of 

astrocytes could therefore offer a potential therapy in minimising arteriopathy in CADASIL.  

Our study is not without limitations.  Despite analysis of a sizeable number of 

different CADASIL cases, we could not demonstrate the features of astrocytic cell death by 

ultrastructural morphology.   The final proof how the process occurs could be resolved by this 

means but it was difficult to examine well preserve post-mortem tissue.  Access to a larger 

cohort of CADASIL cases, there would be the possibility of exploring genotype-phenotype 

relationships and whether all genotypes have similar effects on astroglial demise.  A recent 

study (13) showed that although specific NOTCH3 genotypes did not relate to WM changes, 

overrepresentation of the apolipoprotein E İ2 allele was associated with greater WM 
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hyperintensity volumes.  Our analysis was also limited to the examination of astrocytes in the 

WM.  It is possible that dysfunctional grey matter astrocytes cause similar effects, 

particularly BBB disruption.  

In summary, we report that there is significant astrocyte pathology in CADASIL, with 

the temporal lobe being most affected.  We also provide clear evidence that astrocyte death in 

CADASIL involves the autophagy pathway.   Our findings have implications for both 

CADASIL and ageing related small vessel disease, where agents, which modulate astrocyte 

signalling, may provide therapeutic strategies to reduce the morbidity in vascular dementias. 
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Table 1:  Demographic details of CADASIL cases and controls 

Group(n) Age (yr) Gender Mutation site 
Duration 

(yr) 

Key clinical features 

and risk factors 

CAD1 44 F Arg153Cys 8 Cardiac arrhythmias 

CAD2 53 F Arg133Cys 6 No vascular risk 

CAD3 55 M Arg558Cys 11 Brief history of gout 

CAD4 58 M Arg985Cys 13 No vascular risk 

CAD5 59 M Arg169Cys 12 No vascular risk 

CAD6 61 M Arg169Cys 10 Obesity (55yr -) 

CAD7 66 F D239_D253del 23 No vascular risk, obesity 

CAD8 68 F Arg133Cys 18 Smoking history 

CAD9 68 M Arg153Cys 28 Smoking, prostate tumour 

CAD10 52 M Arg141Cys 15 No vascular risk 

CAD11 74 M Arg141Cys 12 No vascular risk 

CADASIL  

(11)*† 

58.8 

+7.4 

7M/4F - 10.8  Mean age at onset 46 years  

Young 

Controls 

(10) 

65.7 

+8.1 

3M/7F - - No significant cerebrovascular 

or neurodegenerative disorder. 

No pathological diagnosis 

SVD 

(10) 

82.4  

+8.1 

4M/6F - 7.9 Vascular dementia, heart 

failure, cancer, GI bleed, 

sudden death 

Older 
controls 
(12) 

84.0 -
+8.0 

3M/9F - - No significant cerebrovascular 
or neurodegenerative disorder. 
Heart failure, cancer, ischemic 
bowel infection. 

 

Length of fixation ranged 1-19 months for CADASIL, young controls and SVD samples and 

2- 68 months for old controls.   *WM Score; white matter pathology score assessed using 
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scale from (10).   Abbreviations: GI, gastrointestinal; n/a, not available; PMD, post-mortem 

interval; SVD, small vessel disease; WM, white matter.  *The MMSE scores for the patients 

ranged from 12-21. Controls, mean age was not significantly different to mean age of 

CADASIL group (p>0.05).  † Mode of WM scores were 3 in young controls, 1 in young 

controls and 2 in older controls (9). 
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Figure legends 

Figure 1:  Histological features in the anterior temporal pole of CADASIL and control 

subjects.  A-I, Images show H&E (A, D and G), LFB (B, E and H) and GFAP (C, F and I) 

stained sections in two CADASIL patients with NOTCH3 mutations (R133C and R558C) 

(A-F) and a similar age control (G-I). Insets in C, F and I show profiles of single GFAP 

immunostained astrocytes; abnormal astrocytes (C and F) and normal appearing astrocyte (I).  

Consistent with MRI, the WM in both CADASIL patients also revealed numerous 

perivascular spaces.    Magnification bar = 3mm (A-I) and in insets C, F and I = 20µm.  

 

Figure 2:  Morphology of different GFAP immunopositive cell types in the deep WM of 

CADASIL and control subjects.  A-B, Star-like normal appearing type A cells. End-feet can 

be seen juxtaposed to a perivascular space (arrow heads).  C-D, Abnormal type B cells with 

an enlarged cell body and short thick processes.  E-F, Type C cells, abnormal astrocytes with 

severely retracted processes and rounded cell bodies.  Magnification bar = 200 µm (A, C and 

E) and 50 µm (B, D and F). 

 

Figure 3:  Quantitative analyses of the total population of GFAP-positive cells in CADASIL 

and controls.  A-F, Box plots showing density of GFAP-positive each type of cells averaged 

from all brain regions (A), anterior temporal pole (C) and pre-frontal WM (E) as well as 

percentage of GFAP-positive each type of cell per total GFAP-positive cells averaged from 

all brain regions (B), anterior temporal pole (D) and pre-frontal WM (F). Compare to controls, 

CADASIL subjects showed increased density of abnormal type C cells in all brain regions 

(A) (*P=0.037) and increased percentage of abnormal type C cells in all brain regions (B) 

(*P=0.046) and the anterior temporal pole (D) (*P=0.011). When comparing each type of cell 

amongst CADASIL subjects, both density and percentage of abnormal type C cells were 

increased in all brain regions (A and B) and the anterior temporal pole (C and D) (‡P<0.01 

throughout).  However, differences between CADASIL and controls in the pre-frontal WM 

did not reach statistical significance (E and F).  There was relatively low abundance of type B 

cells in the same screened regions.  Other regions including the temporal, parietal and 

occipital WM similarly showed differences in percentage of abnormal to normal cells 

compared to controls (not shown).  

 

Figure 4:  Immunofluorescence staining of type C clasmatodendrocytic astrocytes with 

antibodies to aquaporin (AQP4) and GFAP in CADASIL subjects. A and B, Localisation of 
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AQP4 (red) in profiles of astrocytic cells and GFAP (green) in cell bodies of mostly 

clasmatodendritic astrocytes in CADASIL. C, Merged imaged of A and B shows co-

localisation of AQP4 and GFAP in the processes of normal appearing astrocytes but mostly 

nearer cell bodies in clasmatodendrocytes (closed arrow).  D, Normal cells shown at a higher 

magnification than A-C from an age matched control subject.  Open arrow shows an 

astrocytic process around a blood vessel.  Closed arrow shows AQP4 at the end-feet of an 

astrocyte juxtaposed a blood vessel.  E, Degenerating type B and abnormal clasmatodendritic 

type C cells (green) with AQP4 dislocation (red) (closed arrows).  Sections were 

counterstained with DAPI (blue) to show nuclei.  Magnification bar = 20 µm (A-C) and 10 

µm (D and E). 

 

Figure 5: Co-localisation of LC3, p62 and GFAP immunoreactivities in the WM of 

CADASIL subjects.   A-I, Sections from the anterior temporal lobe from a 61-year-old male 

with CADASIL carrying the R133C mutation (A-C),  55-year-old male with CADASIL 

carrying the R558C mutation (D-F) and age matched control cases (G-I) were immunostained 

for p62 (red) and GFAP (green) or LC3 (green).  A, D and G, Perivascular immunoreactivity 

of p62 was observed around >90% of the vessel profiles in CADASIL with R133C mutation 

(A), whereas less perivascular p62 immunoreactivity was observed in CADASIL with R133C 

mutation (D) and no apparent p62 immunoreactivity was observed in control (G).  B, C, E, F, 

H and I, Compared to control (H and I), the merged immunofluorescent images from 

CADASIL subjects show strong co-immunolocalisation of p62 antigen in degenerating 

GFAP labelled astrocytes (arrows in B and E) which are also immunopositive for LC3 

(arrows in C and F).  H-I, Normal astrocytes stained for GFAP with no apparent 

immunopositivity to p62 (H) (arrow head) and negative immunoreactivitiy for LC3 (I).  

Magnification bar = 50 ȝm (A, D and G), 25 ȝm (B, C, E, F and H) and in insets B, C, E, F 

and H =10µm. ‘v’ indicates a blood vessel (B, C, H and I). 

 

Figure 6:  Caspase-3 immunoreactivity associated with abnormal astrocytes in CADASIL.  

Caspase-3 was frequently found in abnormal type B cells with large cell bodies and some 

retracted processes but not in normal astrocytes in either CADASIL or control subjects.   A-

B, Perivascular immunoreactivity of Caspase-3 was noted in deep WM of a CADASIL 

(R133C mutation) subject. Some astrocytes within the WM parenchyma were also observed 

in CADASIL (C) but there was no Caspase-3 immunoreactivity in controls (D-F).   
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Magnification bar = 50 ȝm in A and D, 25 ȝm in B, C, E and F, and in insets = 5 ȝm (B and 

C). 
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