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Abstract—In this paper, we present a Bayesian approach for
perception of touch and control of robot emotion. Touch is an
important sensing modality for the development of social robots,
and it is used in this work as stimulus through a human-robot
interaction. A Bayesian framework is proposed for perception of
various types of touch. This method together with a sequential
analysis approach allow the robot to accumulate evidence from
the interaction with humans to achieve accurate touch perception
for adaptable control of robot emotions. Facial expressions are

used to represent the emotions of the iCub humanoid. Emotions
in the robotic platform, based on facial expressions, are handled
by a control architecture that works with the output from the
touch perception process. We validate the accuracy of our system
with simulated and real robot touch experiments. Results from
this work show that our method is suitable and accurate for
perception of touch to control robot emotions, which is essential
for the development of sociable robots.

I. INTRODUCTION

Sociable robots are designed with the purpose to be inte-

grated in society to safely interact with humans, robots, objects

and their surrounding environment. An important social aspect

in human communication and interaction are emotions which

are coupled to social context to determine behavioural reaction

to social events, internal needs and goals [1, 2]. For that reason,

integration and control of emotions in robots is essential to

achieve robust socially interactive intelligent systems able to

exhibit human social characteristics [3].

Investigation on methods for emotions in computers, robots,

toys and software agents has rapidly increased in recent years

given that people usually treat these systems as conscious

agents [4, 5]. Psychology and neuroscience have inspired the

development of architectures for control of artificial emotions

in different robotic systems, emphasising the use of vision and

speech modalities for human-robot interaction [6, 7, 8].

Touch not only plays a fundamental role to build a physical

representation of the external world, identify and manipu-

late objects, but also serves as a non-verbal communication

channel to feel and mediate social perceptions in various

ways [9, 10]. A recent work has shown that humans are able to

accurately recognise intended emotions through the perception

of touch only [11]. Despite the importance of touch for social

robotics and the advances in tactile sensor technology [12],

only few works have paid attention for control of emotions in

Fig. 1. Robot emotion control for social robots based on perception of touch.
Tactile data is obtained from the artificial skin of the iCub humanoid robot.
Emotions are represented by facial expressions and controlled by the touch
perceived from a human-robot tactile interaction.

robotics using facial expressions, discrete tactile switches and

emotional states based on human-robot interaction [13, 14].

We propose a control method for robot emotions using

touch as stimulus during human-robot interaction. In this work,

robot emotions are based on facial expressions with a discrete

categories approach that implements various emotions such

as happiness, shyness, disgust and anger [15]. This subset

of emotions is drawn from the study of universal emotions

generated from patterns of neural responses [16]. Facial ex-

pressions, commonly composed by eyebrows, eyelids and lips,

have demonstrated to provide a good interface to display

emotions with different robotic platforms [14, 17, 18, 19].

In this work, we defined four types of touch that can be

perceived by the robot: hard, soft, caress and pinch. Thus,

facial expressions, that display robot emotions, are controlled

by the perceived touch applied by a human on the skin of the

robotic system located in its torso, arms and hands.

A Bayesian approach was developed for perception of touch

that allows to reduce uncertainty from measurements through



Fig. 2. Tactile sensory system of the iCub humanoid robot. The robot is
covered by tactile sensor in its torso, upper arm, forearm, palm and fingertips.
The sensors are based on capacitive technology that allow the robot to feel,
perceive, interact and manipulate its surrounding environment.

the accumulation of evidence. This method has been used

in previous works for study of perception with vision, audio

and touch sensing modalities obtaining accurate results for

recognition of human emotion, object and shape discrimi-

nation [20, 21, 22]. We implemented our methods with a

sequential analysis approach to give the robot the capability

to make decisions once its confidence of the touch perceived

has exceeded a belief threshold [23].

We developed a control architecture to integrate our pro-

posed method for emotion control based on touch and ac-

tivation of facial expression in the robotic platform. The

architecture is composed of four processing layers named

sensation, perception, action and environment. The input is

the tactile data generated from the artificial skin of the iCub

humanoid robot, whilst the output is the activation of a specific

facial expression to display robot emotion. This architecture

allows humans to interact with the robot and change in real-

time its emotion based on tactile contact.

Validation of our method was made with experiments in

simulated and real worlds. The experiment was to perceive

a specific type of touch and activate the appropriate emotion

based on facial expressions with the iCub humanoid robot.

For the simulated world experiment, we trained and tested

our method with various tactile datasets collected from the

skin of the iCub humanoid robot. We simulated human-

robot tactile interaction randomly drawing tactile data from

the testing datasets. For the real world experiment, human

participants interacted with the robot touching its skin. Thus,

the robot was able to show different emotions, based on the

activation of appropriate facial expressions, for each type of

touch perceived.

Fig. 3. Types of touch applied by a human on the skin of the iCub humanoid
robot. The different tactile contacts were defined as hard, soft, caress and
pinch. Each type of touch is characterised by pressure and duration features.

Overall, results from the investigation undertaken in this

work show that our method allows accurate perception of

touch to control robot emotions from a human-robot tactile

interaction, which provides a reliable framework for the de-

velopment of intelligent sociable robots.

II. METHODS

A. Robotic platform

For investigation of emotion control for sociable robots we

chose the iCub humanoid robot platform. This robot is an

open platform designed for research on cognitive development,

control and interaction with humans [24]. The iCub is a 53

degrees of freedom robot with a similar size of a four year old

child. Its arms and hands allow dexterous manipulations and

interaction with its surrounding environment, whilst its head

and eyes are fully articulated. It is integrated with multiple

sensory capabilities such as vision, touch and hearing that

allow the robot to acquire information on different modalities

from the environment. The iCub humanoid robot is also

capable to produce facial expressions through arrays of LEDs

(Light-Emitting Diodes) located in its face. This allows the

robot to show emotional states for a more natural behaviour

and interaction with humans.

We investigate on touch for control of robot behaviour

and interaction with humans. For that reason, we use the

tactile sensory system of the iCub humanoid robot, which

is located on its arms, forearms, fingers, palms and torso

(Figure 2). The artificial skin covering the iCub humanoid

robot is based on a distributed pressure sensor built with a

capacitive technology. The sensors are composed of flexible

Printed Circuit Boards (PCB), where each PCB provides 12

measurements of capacitance that correspond to 12 round pads

known as taxels. Tactile measurements are locally converted

from capacitance to digital values with 8 bit resolution and

sent to the main computer located in the head of the robot.
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Fig. 4. Data collected from the four types of touch applied by a human
on the artificial skin of the iCub humanoid robot. The tactile contacts are
characterised by pressure and duration features, which allowed to define hard,

soft, caress and pinch contacts shown in red, green, blue and black colours.

B. Data collection

For classification of touch we collected tactile data applying

different pressures by humans using their hands over the

artificial skin of the iCub humanoid. These pressures or types

of touch are labelled as hard, soft, caress and pinch. The parts

of the iCub humanoid robot covered with artificial skin; torso,

arms and hands are shown in Figure 2. The artificial skin

on the left upper arm of the robot was arbitrarily chosen for

data collection. The four types of touch used for tactile data

collection and their visualisation with a GUI (Graphical User

Interface) are shwon in Figure 3.

We collected a total of ten tactile datasets from the artificial

skin of the iCub humanoid robot. On the one hand, five tactile

datasets were collected from the left upper arm and used for

training our methods. On the other hand, different areas of

the tactile sensory system, e.g., arms and torso were used to

collect five tactile datasets for testing our methods. Samples

of data collected for each type of touch are shown in Figure 4.

The data collected is processed before using it as input of

our modules. First, we normalised the data for all the types of

touch. Next, the data is separated to obtain individual tactile

contacts (see Figure 5). Then, the processed data is used to

train our methods for perception of touch (see Section II-C).

C. Bayesian framework for touch

Our work is focused on emotion control in robots based

on touch to show a more natural behaviour in human-robot

interaction. Integration of touch in robotics requires the devel-

opment of methods for perception and understanding of the

changing environment in the presence of uncertainty.

In this work, we propose a probabilistic method with a

Bayesian approach that uses past and present observations

from the environment. Tactile data from human-robot inter-

action is used as input for recognition of touch and control
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Fig. 5. Tactile data collected from the right forearm of the iCub robot. The
complete dataset from each type of touch is segmented in individual contacts
and used as input for ouach Bayesian framework for perception of touch.

of robot emotion. Four types of touch (hard, soft, caress and

pinch) are used in this work for recognition of touch, which

are characterised by pressure and duration features. Figure 5

shows the plots containing these features for each type of touch

applied on the iCub humanoid robot.

The proposed probabilistic approach for touch recognition

implements the Baye’s rule which combines prior probabilities

and the likelihoods obtained from a measurement model. Our

approach also uses a sequential analysis method that estimates

the posterior probability based on recursively updating of

observations. The sequential analysis allows to make decisions

once the belief threshold is exceeded, improving the accuracy

of the robotic system. The benefits of sequential analysis have

been studied for classification of objects and shapes with touch

sensors in robotics [21, 25].

The Bayes’ rule used in our approach recursively updates

the posterior probability P (ck|xt) by the product of the prior

probability P (ck|xt−1) and likelihood P (xt|ck). These values

are normalised by P (xt|xt−1) to obtained probabilities in

[0, 1]. This process is defined as follows:

P (ck|xt) =
P (xt|ck)P (ck|xt−1)

P (xt|xt−1)
(1)

where ck ∈ C = {hard, soft, caress, touch} are the per-

ceptual touch classes to be estimated with k = 1, 2, . . . ,K .

Observations over time t are represented by the vector x.

Prior: an initial prior probability P (ck) is assumed as

uniform for all the classes of touch C, where x0 are the

observations at time t = 0 and K = 4 is the number of

classes used in the task.

P (ck) = P (ck|x0) =
1

K
(2)

Likelihood: the measurement model to estimate the likeli-

hood is based on a multivariate normal distribution of a 2-



dimensional vector xt = {x1 = pressure, x2 = duration}
at time t as follows:

P (xk|ck) =
1

2π|Σ|1/2
exp

(

−
1

2
(xt, µ)

TΣ−1(xt, µ)
)

(3)

where the multivariate normal distribution is characterised by

the mean vector µ and covariance Σ values from pressure and

duration measurements from tactile contact.

The product from the prior probability and likelihood are

normalised by the marginal probabilities conditioned on pre-

vious tactile interactions as follows:

P (xt|xt−1) =
K
∑

k=1

P (xt|ck)P (ck|xt−1) (4)

Decision making: sequential analysis allows to accumulate

evidence and make a decision once one of the hypotheses

from the perceived touch exceeds a belief threshold. This

method provides a decision making approach inspired by

the competing accumulators model proposed from studies in

neuroscience and psychology [26]. Thus, the perceptual class

is obtained using the maximum a posteriori (MAP) estimate

as follows:

if any P (ck|xt) > θthreshold then

ĉ = argmax
ck

P (ck|xk)
(5)

where ĉ is the estimated class of touch at time t. The belief

threshold θdecision allows to adjust the confidence level, which

affects the required amount of accumulation of evidence and

the accuracy of the decision making process. To observe

the effects on the perception accuracy, we defined the belief

threshold to the set of values {0.0, 0.05, . . . , 0.99}. Thus, the

estimated class of touch ĉ is used to control the emotions,

based on facial expressions, of the iCub humanoid robot

(see Section II-D). The flowchart of the process described

in this section for recognition of touch that implements our

probabilistic approach is shown in Figure 6.

D. Robot emotion control

We developed an architecture that integrates our probabilis-

tic approach for the control of emotions based on touch and

activation of facial expressions with the iCub humanoid robot.

This architecture, that receives tactile data and controls facial

expressions, is composed of sensation, perception, action and

environment layers as shown in Figure 6.

Collection and preparation of tactile data as described in

Section II-B are performed in the sensation layer. Our proba-

bilistic method described in Section II-C is implemented on the

modules located in the perception layer. The decision-making

process from the posterior probability distribution, emotion

controller and memory, which stores the actions observed

along the interaction with humans, are performed in the action

layer. Finally, the human-robot interaction process and display

of emotions with the iCub humanoid robot are located in the

environment layer.

The emotion controller module receives the decision

made from our probabilistic method, which activates

specific patterns of LEDs (Light-Emitter Diodes)

to show the corresponding facial expression. The

set of facial expressions used in this work is

facial expressions(happiness, shyness, disgust, anger),
and each of them is selected as follows:

Semotional = facial expressions(ĉ) (6)

where ĉ is the output from the action layer and Semotional is

the emotion selected and sent to the iCub humanoid robot

for activation of the facial expression. Examples of facial

expressions activated from the perceived touch during human-

robot interaction are shown in Figure 7.

All the modules in the control architecture were developed

in C/C++ language, whilst communication and synchronisa-

tion of modules were handled with the YARP (Yet Another

Robot Platform) library developed for robust control of robotic

systems [27].

III. RESULTS

A. Simulated robot touch

Our first experiment is the analysis of perception accuracy

for recognition of touch in a simulated environment. For this

task we used the five datasets for training and five datasets

for testing previously collected in Section II-B. The task was

to randomly drawn different types of touch from the testing

datasets with 5,000 iterations for each belief threshold in the

set of values {0.0, 0.05, . . . , 0.99}. The drawn data was used

as input for our Bayesian framework for perception of touch

described in Section II-C.

Fig. 6. Architecture for control of robot emotions. Four layers compose the
proposed architecture: sensation, perception, action and environment. Tactile
data is read and preprocessed in the sensation layer. Our probabilistic method
for perception of touch is implemented in the perception layer. The action

layer is responsible for the decision making process and activation of facial
expressions, in the robotic platform, for representation of emotions. The
human-robot interaction process is performed in the environment layer.



Fig. 7. Set of facial expressions used to show emotions for validation of
our proposed method with real robot touch and the iCub humanoid robot.
Facial expressions are activated by perception of touch during a human-robot
interaction process.

We analysed the accuracy of touch perception using indi-

vidual duration and pressure features to compare their per-

formances to the accuracy achieved by the combination of

both features. Results from these experiments were averaged

over all trials and for each belief threshold (see Figure 8).

Red colour curve shows that the duration feature was not able

to provide accurate touch perception for low and high belief

thresholds. An accuracy of 53.15% was obtained using the

duration feature for a belief threshold of 0.99. Conversely, the

pressure feature used for perception of touch provided high

accurate results, with a maximum accuracy of 87.20% for a

belief threshold of 0.99 (purple colour curve). Also, it was ob-

served that pressure feature was able to improve the perception

accuracy for increasing belief thresholds. The combination

of both duration and perception features allowed to achieve

better perception of touch over the use of individual features

(green colour curve). This result also shows an increment in

perception accuracy for increasing belief thresholds obtaining

a 95% accuracy for a belief threshold of 0.99.

The confusion matrices for the duration feature, pressure

feature and the combination of them present in Figure 9, show

the accuracy for recognition of each type of touch used in this

work (hard, soft, caress, pinch). These results were obtained

randomly drawing touch data from the test dataset with 5,000

iterations and for a belief thresholds of 0.99. The confusion

matrix with duration feature shows that caress and pinch were

successfully recognised with 100% and 99% accuracy, whilst

for hard and soft the recognition accuracy was of 12% and

0.9%. The confusion matrix with pressure feature shows an

improvement in the recognition of hard and pinch with an

accuracy of 99.3% and 95.5%, and a slightly reduction for

soft and caress achieving a 72.2% and 81.7% accuracy. Finally,

the confusion matrix with the combination of features presents

improved recognition results for hard, soft, caress, and pinch

with accuracies of 99.4%, 83%, 99.9% and 97.66%.

Results from these experiments not only show that our

method allows the recognition of different types of touch

from the artificial skin of the iCub humanoid robot, but

also the improvement of perception accuracy based on the

accumulation of evidence through an iterative human-robot

tactile interaction.

B. Real robot touch

For the second experiment, we repeated the task for recog-

nition of touch but using the iCub humanoid robot. Also

we included the control of emotions in the robot based on

the perceived touch. For training our method, we used the

training datasets previously collected from the robotic platform

(see Section II-B), whilst for testing, we collected tactile data

in real-time with human participants touching different parts

of the artificial skin of the iCub humanoid robot. In this

experiment the decision making process for recognition of

touch was triggered by the belief thresholds of 0.3 and to

0.9 to observed the improvement in perception accuracy.

The scenario for this experiment was the following: First,

the iCub humanoid robot started the task with a flat knowledge

about touch perception from its skin, showing a neutral facial
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Fig. 9. Confusion matrices for perception with real robot touch. The
experiment was performed with a human-robot tactile interaction using belief
thresholds of 0.3 and 0.9. Results for perception of touch with belief threshold
of 0.3 (left matrix) achieved an accuracy of 70.0%, whilst for the belief
threshold of 0.9 (right matrix) the robot achieved an accuracy of 89.50%.

expression. Second, the robot waited for a touch interaction by

a human participant in any part of its tactile sensory systems

(torso, upper arms, forearms). Next, once the human touched

the robot, it performed a data collection and perception process

based on our Bayesian framework. Then, if the posterior

probability, obtained for the current touch interaction, did

not exceed the belief threshold, the robot showed the same

emotion based on facial expression, which means that its

current emotional state was not affected. Thus, the current

posterior probability is updated as the prior probability for

the next touch interaction, allowing to accumulate evidence

along the human-robot interaction process. Otherwise, if the

posterior probability exceeded the belief threshold, a decision

was made selecting the corresponding emotional state from

the set of facial expressions. The complete human-robot tactile

interaction was performed 20 times for each type of touch and

for both 0.3 and 0.9 belief thresholds.

The confusion matrices in Figure 9 show the recognition

accuracy achieved for each type of touch and for both belief

thresholds using real data from the iCub robot through a

human-robot tactile interaction. For the experiment with the

real robot, we used the combination of both duration and

pressure features. The confusion matrices were built with the

decisions made for each type of touch iteratively applied by

the human on the skin of the robot. For the belief threshold

of 0.3 (left matrix), the robot was able to achieve accurate

results for soft and caress, whilst a low recognition accuracy

was obtained for hard and pinch. This confusion matrix shows

a total accuracy of 70%. For the belief threshold of 0.9 (right

matrix), our method allowed the robot to accumulate more

evidence from the human-robot interaction, making reliable

decisions and improve the touch perception for hard, soft,

caress and pinch. The confusion matrix shows that the robot

was able to achieve a total accuracy of 89.50%.

The output from the touch perception process was used to

control the different emotions in the iCub humanoid robot.

The final control and display of robot emotions was based

on the emotion controller module included in our architecture

shown in Figure 6. Thus, the iCub humanoid was able to show

different emotions in real-time, based on facial expressions

for happiness, shyness, disgust and anger, according to the

perceived human touch applied on the artificial skin on the

robotic platform as observed in Figure 7. Overall, the results

from the experiments presented in this work demonstrate that

our method is reliable for perception of touch and emotion

control in robotics.

IV. CONCLUSION

In this work we presented a Bayesian method for emotion

control in robotics based on perception of touch. Emotions in

the robotic platform were represented with facial expressions.

Our method was able to accurately recognise different types

of touch applied by human participants on the artificial skin

of a robotic platform.

We collected tactile data from the skin of the iCub humanoid

robot, applying four types of touch based on a human-robot

interaction process. The data collection process provided ten

datasets; five datasets were used for training and five datasets

for testing. The tactile data was preprocessed and used as input

for our method for perception of touch and control of robot

emotions.

A Bayesian framework for perception of touch was devel-

oped including a sequential analysis method to make confident

decisions. Our proposed method allowed the iCub humanoid

robot to accurately perceive different types of touch based

on the accumulation of evidence through human-robot tactile

interaction. The accurate perception of touch permitted a

better control of robot emotions. Emotions with the iCub

humanoid robot were represented by a set of facial expres-

sions (happiness, shyness, disgust, anger) that corresponds

to different types of touch (hard, soft, caress, pinch). The

facial expressions were controlled by the proposed control

architecture composed by the sensation, perception, action and

environment layers.

We validated our proposed method in simulated and real

robot touch environments. For the validation with simulated

robot touch, we used the training datasets from the data col-

lection process. The testing was performed randomly drawing

tactile data from the testing datasets, accumulating evidence

and making a decision once the belief threshold was exceeded.

This task was performed using individual and combination

of features extracted from touch data. The experiment was

repeated 5,000 times for a set of belief thresholds, achieving a

maximum perception accuracy of 95% with a belief threshold

of 0.99. Our method demonstrated accurate recognition for

different types of touch applied to the robot.

For the validation with real robot touch, a human-robot

interaction task was performed by human participants applying

different types of touch on the skin of the iCub humanoid

robot. Similar to the simulated robot touch, we trained our

method using the training datasets from the data collection

process. The experiment was repeated 20 times for each type

of touch applied to the robot. For each decision made by the

robot, its emotions were controlled according to the type touch

perceived. The mean perception accuracy achieved from all



the trials was 89.50% for a belief threshold of 0.9, showing

accurate robot emotions by the activation of facial expressions.

Touch plays an important role in control of emotions to

achieve safe and reliable social robots. We have demonstrated

that robot emotions can be controlled by accurate perception

of touch in robotics. For future work, we plan to investigate

the integration of multiple sensing modalities such as vision,

hearing and touch, which are essential to provide robust and

socially intelligent systems for society.
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