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Objective. This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in
platform-based ankle robots. Method. English-language studies published from Jan 1980 to Aug 2017 were searched from four
databases using key words of “Ankle*” AND “Robot*” AND “Effect* OR Improv* OR Increas*.” Following an initial screening,
three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. Result. A total of 21
studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used
different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while
two studies used proprioceptive neuromuscular facilitation (PNF) training. Conclusion. Active training techniques delivered by
platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are
mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment
has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement
intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive

training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.

1. Introduction

Human ankle joints are very complex with ligaments and
muscles bonded, the main function of which is to maintain
the balance of human bodies when they are standing and
provide a forward or backward force when they are walking
[1,2]. As one of the most fragile portions in the human body,
ankle joints are easy to get injured in daily life when they
experience unexpected force or suffer diseases. Stroke has
been listed as one of the main reasons for ankle disability
[3], with the number of stroke patients increasing yearly at
a rate of approximate 795,000 in the United States. In 2013,
over 7.5 million of stroke patients existed in China, with
an increasing proportion of younger patients [4]. In New
Zealand, there is an estimated number of 60,000 stroke
patients; many of them have an abnormal gait pattern [5].

Patients with ankle disability partially or totally lose their
motion ability. This can result in the lack of movements to
maintain joint range of motion (ROM) simply based on their
own efforts. With the elapse of time, drop foot, amyotrophy,
and severe passive ankle stiffness (PAS) can be caused when
without sufficient ankle rotations [6]. Traditional ankle physi-
cal therapy is delivered manually by therapists [7]. Many assis-
tive and rehabilitation devices have been developed over the
past few decades, and the emerging of robot-assisted ankle
rehabilitation techniques bring a new breakthrough with great
potential for clinical applications [8, 9]. Ankle robots can pro-
vide accurate and uniform rehabilitation exercises in a long-
time session of the training, the difficulty of which can be
adaptively modified based on real-time feedback of therapeu-
tic effects [10]. Also, the use of robot-assisted ankle rehabilita-
tion technique allows for real-time data collection throughout
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the training, to further judge the accuracy of the training [5],
evaluate the biomechanical properties of ankle joints [11,
12], assess the performance of motion ability of ankle joints
[10, 13], and customize future therapies [14]. Ankle robots
can be classified to two kinds, one of which is wearable ankle
robots applied to improve gait and locomotor ability, and the
other of which is platform-based robots applied in a sitting
position to enhance physical function and motion ability of
ankle joints [15]. Until now, various ankle rehabilitation
robots have been developed based on different kinematics
modules, mechanical structures, and training strategies [16-
20], where some clinical tests were conducted to evaluate their
effectiveness for treating ankle injuries.

Robot-assisted rehabilitation techniques involve the
delivery of both passive and active training. For passive train-
ing, subjects are always requested to keep relaxed when their
ankle joints follow up rotation trajectories of robots [21].
After a period of passive training, partial function of ankle
joints can be maintained and foot drop can be alleviated cor-
respondingly [22]. For active training, subjects are required
to accomplish a task within a predefined time through rotat-
ing ankle joints with assistance from robots following visual
or auditory instructions [23]. Differently from passive train-
ing, active training can exercise the information transmission
loop between the brains and ankle joints, and evidences dem-
onstrate that conducting active training could achieve more
improvement for patients in walking speed, motor control,
and gait patterning [21]. However, a comprehensive review
of active training strategies applied with platform ankle
robots is lacking. This paper aims to provide a systematical
investigation of the clinical effectiveness of active training
strategies applied in platform-based ankle robots.

2. Methods

2.1. Search Strategy. Only English-language studies published
from January 1980 to August 2017 were searched in the fol-
lowing four databases: Scopus, Web of Science, ScienceDir-
ect, and Embase. Key words for searching were set up as
“Ankle*” AND “Robot*” AND “Effect* OR Improv* OR
Increas™”.

A total of 639 studies were obtained after removing 339
duplicates from the initial search result, and further discrim-
ination was conducted successively based on the title, the
abstract, and the full text of the studies. The selection process
is described in Figure 1, where the inclusion and exclusion
criteria are described next.

2.2. Inclusion and Exclusion Criteria. This study aims to pro-
vide a systematical investigation of clinical effectiveness of
active training strategies applied in platform-based ankle
robots. Inclusion criteria are (1) studies involving platform-
based ankle robots and (2) studies involving clinical research
of ankle rehabilitation training. Exclusion criteria were (1)
studies whose training was conducted not in a seated posi-
tion, (2) studies whose purpose was to propose and verify
novel technologies and algorithms, (3) studies whose inter-
vention protocol simply contained the passive training, (4)
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978 studies were searched from Scopus (328), Web
of Science (531), ScienceDirect (35), and Embase (84)

( 639 studies were maintained after removing duplicates
( 96 studies were maintained based on the abstract

165 studies were maintained based on the title j

VR game training was applied in 19 studies, while

21 studies were selected based on the full text, and
PNF training was used in the other 2 studies.

F1GURE 1: Flow diagram of selection process for final review.

studies whose purpose was to verify the feasibility of novel
robots, (5) studies involving only one subject, (6) conference
papers whose content were merged into a peer-reviewed
journal one, and (7) studies whose purpose was to analyze
the biomechanics of ankle joints. Only English-language
studies published in peer-reviewed journals or conference
papers were included.

3. Result

After excluding studies involving training conducted not in a
seated position [1, 24-29], proposition and verification of
novel technologies and algorithms [22, 30-37], single passive
training [5, 38, 39], proposition and verification of novel
robots [8, 16-19, 40-45], single subject [46], conference
papers merged into peer-reviewed journals [47-49], and ana-
lyzing the biomechanics of ankle joints [11, 12, 50, 51], a total
of 21 studies were finally selected with 311 patients involved;
of them, 13 studies applied a single group while another eight
studies used different groups for comparison to verify the
therapeutic effect. Virtual-reality (VR) game training was
applied in 19 studies, while two studies used proprioceptive
neuromuscular facilitation (PNF) training, as shown in
Table 1.

4. Discussion

The purpose of this review is to provide a systematical inves-
tigation of clinical effectiveness of active training strategies
applied in platform-based ankle robots. This review will be
discussed from two main aspects: achievements of clinical
research and training strategies.

4.1. Achievements of Clinical Research. VR game training has
been demonstrated to be a good selection for ankle rehabili-
tation therapies, even a single session of VR game training
can greatly improve motor control ability of paretic ankle
joints, to be more effective if integrated with a locomotor
treadmill, and to be more beneficial to subjects with
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moderate and mild gait speed impairments. Mirelman et al.
[13] arranged eighteen subjects with chronic hemiparesis
equally to a robot VR group and a robot group. Subjects in
the robot VR group executed ankle training with VR feed-
back, and subjects in the robot group conducted the same
training simply with instructions informed by a therapist
every 30 seconds. The robot VR group achieved better per-
formance in walking than the robot group did. Forrester
et al. [52] suggested that VR game training can be a valuable
supplement to locomotor therapies, based on the observation
that patients with chronic stroke not only improved motor
ability of paretic ankle joints realizing faster and smoother
movements but also significantly increased walking velocity
after a 6-week 18-session training. Waldman et al. [53]
recruited 23 stroke survivors to a robot group and a control
group. The robot group conducted VR game training in hos-
pital, and the control group conducted the similar training
manually following verbal and written instructions at home.
It was observed that the robot group achieved more signifi-
cant improvement in motor function and mobility than the
control group did after an 18-session clinical trial. Roy et al.
[54] observed that immediately following and 48 hours after
a single session of VR game training, motor control of paretic
ankle joints was improved with significant positive changes
in success, speed, and smoothness of targeted ankle move-
ments but not for nondisabled ankles. Forrester et al. [55]
concluded that VR game training was more effective when
it was integrated with a locomotor treadmill, based on the
observation that the TMR (treadmill robotic) group achieved
better improvement in gait biomechanics and paretic ankle
function than the SRT (seated robotic training) group did
after an 18-session training. Chang et al. [56] arranged a
6-week 18-session VR game training for 29 subjects with
hemiparesis, who were categorized to low, moderate, and
high-function groups according to gait speed performance
levels. It was concluded that the therapeutic effect of con-
ducting VR game training was better for subjects with better
gait speed performance, based on the observation that the
high-function group recovered their comfortable gait speed
to the normal and the moderate-function group also
received a positive change in gait speed but the low-
function group did not get an obvious alteration in gait
speed. Forrester et al. [57] summarized its clinical effective-
ness of the anklebot for stroke rehabilitation by reviewing
pilot studies using seated visuomotor anklebot training with
chronic patients, along with results from initial efforts to
evaluate the anklebot’s utility as a clinical tool for assessing
intrinsic ankle stiffness.

VR game training following up the clinical protocol has
similar effect as the one under the lab protocol, which has
been successfully and efficiently applied to subjects in the
early subacute phase of stroke, to children with CP, to
patients with multiple sclerosis (MS), and to patients in
bed. Sukal-Moulton et al. [58] investigated the therapeutic
effect of a clinic cohort, the intervention of which was
designed by therapists, through comparing with an existing
research cohort. It was suggested that VR game training
was feasible for clinical applications, based on the observa-
tion that the clinic cohort achieved equivalent clinical
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improvements to those attained from the research cohort.
Forrester et al. [21] divided 34 patients in the early subacute
phase of stroke to a robot group and a stretching group. The
robot group conducted VR game training while the stretch-
ing group received manual passive stretching. It was observed
that the robot group achieved more improvement in walking
speed, motor control, and gait patterning than the stretching
group did. Wu et al. [59] arranged 12 children with spastic
CP to conduct VR game training and concluded that VR
game training was beneficial for children with CP, based on
the improvement in ankle biomechanical properties, perfor-
mance of motor control, and functional capability in balance
and mobility after the training. Krebs et al. [60] concluded
that VR game training on pediAnklebot could provide better
therapeutic effect on ankle rehabilitation among children
with CP, based on the improvement of the physical function
of ankle joints in pointing abilities and gait speed after the
training. Lee et al. [61] concluded that VR game training
could provide subjects with MS better therapeutic effect on
sensorimotor functions of lower limbs, based on great
improvements of rotation abilities and sensory functions of
ankle joints after the training. Ren et al. [62] demonstrated
that in-bed VR game training met clinical requirements
based on the significant improvement in active and passive
biomechanical properties of ankle joints.

The performance of VR game training is directly mapped
to the motion ability of ankle joints, which can be improved
in explicit motor learning and implicit motor learning, espe-
cially if targets in VR games are progressive. Burdea et al. [10]
arranged three pediatric subjects with CP to conduct a 36-
session VR game training with the difficulty gradually
increased in the process. It was concluded that the perfor-
mance of playing the game was mapped to the physical
improvements evaluated clinically in ankle strength, gait
kinematics, and speed. Michmizos et al. [63] arranged three
children with CP to conduct a 9-session VR game training
as quickly and accurately as possible. It was concluded that
participants obtained significant improvement in explicit
motor learning assessed with less jerky, better controlled,
and increased speed of movements and implicit motor learn-
ing evaluated by the reduction of the average reaction time
(RT). Roy et al. [2] arranged eight subjects with chronic
stroke to conduct an 18-session VR game training, which
could inspire participants’ motivation by integrating the
function of performance-based progression. It was found
that VR game training with progressive targets significantly
decreased PAS of paretic ankle joints, even to the normal
range of dorsiflexion.

Neural plasticity at the cortical can be induced by robot-
assisted stretching triggered by motor imagination and be
accelerated to form when rewards are integrated with VR
game training. Xu et al. [64] arranged nine healthy subjects
to conduct robot-assisted passive stretching which were trig-
gered by motion intention extracted from electroencephalo-
graph (EEG) signals. The neural plasticity at the cortical
was induced based on the observation that the size of the
motor-evoked potential (MEP) elicited by transcranial mag-
netic stimulation (TMS) significantly increased immediately
following and 30 minutes after the training. Goodman et al.
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[23] suggested that when subjects with chronic hemiparetic
stroke conducted VR game training, rewards integrated with
the performance could accelerate activity-dependent brain
plasticity to improve motor control ability of ankle joints.

VR game training with teleassistance is effective, and its
therapeutic effect will not be significantly affected by whether
therapists are on-site or online. Chen et al. [65] arranged 23
patients with CP to conduct an 18-session VR game training
at home with remote technical support and communication
from therapists. It was found that VR game training with tel-
eassistance is not only convenient and economical but also
effective based on significant improvement in passive and
active joint ROM, muscle strength, spasticity, and balance
after the training at home. Chen et al. [14] divided 41 chil-
dren with CP to a laboratory-based group and a home-
based group to conduct the same VR game training. This also
suggested that VR game training is feasible to be conducted at
home since both groups received similar benefits after the
training. Deutsch et al. [66] demonstrated that therapeutic
effects of injured ankles were not significantly different for
chronic stroke patients with a 12-session VR game training,
no matter whether therapists were in the same room with
patients or appeared in front of patients remotely.

Robot-assisted PNF stretching is effective for injured
ankles. Zhou et al. [67] arranged 5 patients with chronic
stroke to conduct an 18-session PNF stretching. It was con-
cluded that robot-assisted PNF stretching was an effective
therapy method to rehabilitate ankle joints with contracture
and spasticity, based on the improvement of ROM and the
resistant torque after the PNF training. Zhou et al. [68] draw
a further conclusion that robot-assisted PNF stretching was
effective in alleviating spasticity of lower limbs and improv-
ing motor function.

4.2. Training Strategies. One basic function of training
strategies applied with ankle robots is to provide feedback
for subjects through transferring real-time parameters of
ankle training to visual, auditory, and haptic information.
This can provide an intelligent stretching through compre-
hensively analyzing motion ability of ankle joints and
rehabilitation plans. Bioelectrical signal can also be applied
to control the ankle training. In this section, training strate-
gies will be discussed from three aspects: robot-assisted
feedback, intelligent and interactive training strategies, and
the use of bioelectrical signals.

4.2.1. Robot-Assisted Feedback. A robot can not only provide
real-time visual and auditory feedback, but also set up emo-
tional and haptic feedback to exercise motion ability of ankle
joints. VR game training can provide visual and auditory
feedback [2, 21, 23, 52-55, 63, 66]. It usually starts with a
target emerging suddenly at the VR circumstance, the cur-
sor of which will be manipulated to achieve the target
through actively rotating ankle joints [53, 59, 60]. When
VR game training is conducted, visual or auditory feedback
provided by robots enables subjects to acquire real-time
performance of the training in rate of progress, speed, num-
ber of jerk, smoothness of movement track, whether the cur-
sor achieves goals, scoring, and so on [63]. By analyzing those

information, subjects can efficiently allocate their energy to
rotate ankle joints to achieve targets. After several loops of
information transferring and ankle joint movements, one
round of VR game training will be accomplished when
the target is reached by the cursor [58]. Without feedback
provided from VR circumstance, subjects will not be able
to completely handle the training simply based on their
own qualitative analysis and judgment; even information
is provided by physical therapists [13]. VR game training
has been demonstrated to achieve better performance than
similar robot-assisted training without VR feedback [13].
In general, VR game training can inspire the enthusiasm
of subjects to accomplish the training through transferring
boring ankle training to interesting games with visual and
auditory feedback. To some extent, VR game training
improves the therapeutic effect.

Rewards can provide emotional feedback for subjects to
inspire their enthusiasm to accomplish the goals in the ankle
training. Rewards are divided to immediate rewards which
should be achieved within a session and long-term rewards
which can be achieved throughout the whole rehabilitation
program [23]. Rewards integrated with VR game training
are regarded as another parameter both for patients and
physical therapists to evaluate therapeutic effects. Rewards
represent a comprehensive assessment result through analyz-
ing the performance of all evaluation parameters, such as the
number of jerk, the smoothness of movement track, the
spending time, speed, and the number of success. Thus, the
performance of the training can be judged directly by
patients based on the level of rewards achieved. Rewards
are in accordance with a universal value in the living that
better performance can lead to better rewards. In this cir-
cumstance, subjects always have strong motivations to
earn more rewards since better performance will result in
higher probability to recover from their disability. Studies
suggested that rewards associated with the performance
when subjects conducted VR game training could acceler-
ate activity-dependent brain plasticity to improve their
motor control ability of ankle joints [23].

Haptic effects simulate the feeling of subjects assuming
they are being in the VR game scene. Haptic effects integrated
with VR game training are divided to low-level haptic and
task-level effects. Low-level haptic effects are applied to sup-
port subjects as a compensation of the gap between the actual
position and the desired one through modifying properties of
robots, such as impedance gains and proportional gains.
Task-level haptic effects are utilized to be a disturbance
by modifying suddenly and fiercely the position of rotating
platforms [69]. Haptic feedback can be selectively applied
in the ankle training. A task-level haptic effect was applied
in [10] as one of the parameters to modify the difficulty of
training in the Rutgers Ankle CP by altering its intensity.
Haptic feedback was selectively applied to support subjects
[13], where the robot VR group was with the support of the
low-level force feedback and the task-level haptic feedback,
but the robot group was assisted only with the low-level force
feedback. Compared with exercises without haptic effects,
the same training with task-level haptic effects achieved
significant improvements in accuracy, mechanical power



of impaired ankles, repetitions of ankle movements, duration
of training, and efficiency of training time [66]. In general,
haptic feedback cooperates with visual and auditory feed-
back originating from the VR game, which enables subjects
to better control the VR game training. Disturbance accom-
panying with task-level haptic effects can increase the diffi-
culty for participants to control and accomplish VR
training tasks.

When performing hold-reflex PNF stretching, injured
ankle joints are stretched passively by robots to arrive and
stay at the extreme dorsiflexion position, where subjects are
requested to actively conduct plantarflexion with real-time
recording of electromyography (EMG) value being in the
range of 40% to 60% MVC during a prescribed time, and
then ankle joints are rotated back to their neutral position
[67]. Further relaxation of soleus muscles can be resulted
from active contraction in PNF stretching, repetitions of
which can enable subjects to contract and relax their ankle
joints [68]. Compared with manual PNF training, subjects
can easily control the variation range of voluntary contrac-
tions in a predefined range when robot-assisted PNF stretch-
ing is conducted. Differently from passive stretching, active
participation and force control is the key to conduct the
PNF stretching. Its therapeutic effect significantly depends
on participants themselves.

4.2.2. Intelligent and Interactive Training Strategies. Intelli-
gent passive training is a robot-assisted passive ankle stretch-
ing widely applied together with active ankle training,
because of its safety and efficiency. The rotating speed of
intelligent passive stretching can be set to be inversely pro-
portional to the resistance torque of ankle joints [22]. When
ankle joints rotate toward their limitation of ROM, the
related muscle tendon will be stretched slowly because
increased resistance torque of ankle joints gradually slows
down the robot [70]. When a predefined maximum resis-
tance torque value is achieved, the ankle joint is at that posi-
tion for a period of time to allow stress relaxation and then is
stretched back to its neutral position [53]. When conducting
intelligent passive stretching, subjects are requested to feel
relaxed with ankle joints being stretched to follow up prede-
fined motion trajectories of the robot and without resistance
force generated from their ankle joints [22]. In the clinical
research, intelligent passive stretching is usually regarded as
either a process of warming up to energize impaired ankle
joints or a process of cooling down to eliminate the tension
of ankle joints at the end of the training [14, 49, 53, 59, 65].
In general, intelligent passive stretching can avoid acciden-
tal injuries to ankle joints, because of its inverse propor-
tion between the rotating speed and the resistance torque
of ankle joints.

The function of the “assist-as-needed” strategy can sup-
port subjects to achieve the targets through providing neces-
sary assistance, which can be computed based on the location
gap between the predefined target and the cursor manipu-
lated by the ankle joint, when subjects cannot activate the
rotation of ankle joints within a predefined time or cannot
reach the targets in time [2, 52, 54]. The provided assistance
from robots can be adjusted through modifying the stiffness
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parameter of the controller [23]. The function of “assist as
needed” will not be activated if robots cannot detect the rota-
tion force of ankle joints [55, 63]. In general, the function of
the “assist-as-needed” control strategy enlarges the applica-
tion of VR game training to subjects who cannot control
VR games based on their own motion ability of ankle joints.
When the rotation force of ankle joints is detected by sensors
built in robots, subjects can conduct VR game training suc-
cessfully with necessary assistance. The confidence of sub-
jects will be enhanced greatly when they can smoothly
control the whole processes and finally reach the targets with
a higher success rate.

Active training can be assisted active movements, assis-
tance torques of which are provided by ankle robots to assist
subjects to accomplish targets designed in VR game training,
or resisted active movements, resistance torques of which are
supplied by ankle robots to increase the difficulty of con-
ducting the VR training game [14, 49, 53, 58, 59, 61, 65].
Compared with the “assist as needed,” assisted active move-
ments provide a similar function but without considering
whether subjects can achieve the targets simply through their
own effort. It can assist subjects to complete the VR game
training easily; meanwhile, their confidence to succeed in
the next training is enhanced. Resisted active movement
mode allows subjects to achieve targets slightly beyond their
ability, which requires them to pay more attention and effort
to accomplish VR game training. In general, both active
movement modes are mostly combined together in a clinical
session where assisted active movements are conducted in
advance as a warm-up exercise, while resisted active move-
ments mainly focus on breakthrough of motion ability of
ankle joints.

The strategy of “easy to difficult” is applied on robots
for subjects to maintain enthusiasm and avoid frustration
through decreasing assistance strength in a session [2, 10,
13, 23, 52, 54, 55, 60, 63]. First is that subjects can quickly
be familiar with processes and regulations of the training
since stronger assistance enables them to spend only a
small portion of time and energy to achieve the goals. Sec-
ond, the participants can gradually build confidence in the
motion ability of ankle joints, which can inspire their
enthusiasm to successfully achieve goals in the subsequent
training with less assistance provided by the robot. Finally,
they can spare no effort to achieve goals with minimum
assistance based on accumulation of familiarity, technique,
and confidence during the previous training stages. In gen-
eral, the strategy of “easy to difficult” can assist subjects to
gradually build confidence in the ankle training and finally
accomplish the training little beyond their motion ability of
ankle joints.

The strategy of “performance-based progression” is
another kind of intelligent training realized by evaluating
the online performance to decide the parameters of the next
training. When an ankle training program comprises a series
of sessions, the performance achieved by subjects in each
session can be different; therefore, adjusting parameters
of the training in the next session according to the perfor-
mance is essential. The strategy of “performance-based
progression” applied in [2] increased target locations by
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10% in weeks 3-4 and added frequency of target presenta-
tion by 0.06 Hz in weeks 5-6 when the success rate with-
out robotic assistance was sustained at least 80%. Therefore,
the concept of “performance-based progression” can be
regarded as a kind of training strategy that challenges the
participants over time by increasing the training difficulty
with better performance [55].

4.2.3. The Use of Bioelectrical Signals. Bioelectrical signals
applied in robot-assisted ankle training mainly comprise
EMG and EEG. EMG signals are originated from muscle acti-
vation and can reflect electrical activities of skeletal muscles
by detecting their potentials generated by muscle cells [11].
EEG signals are recorded over a period of time from multiple
electrodes placed on the scalp to display spontaneous electri-
cal activity within the brains [71].

EMG signals generated by performing MVC can be
used to indicate the motion ability of ankle joints [64, 67].
During the testing run in [64], EMG signals were applied
to ensure there will not be any visible EMG activity
involved when subjects conducted motor imagery. During
stretch reflex measurements in [64], EMG signals were
applied as an indicator for subjects at all times to maintain
a 5% MVC EMG level in their right tibialis anterior (TA)
when they were being interfered with the plantarflexion
perturbation imposed on the ankle joints. EMG signals
were utilized in [67] to confirm whether the soleus is the
main source of the resistance torque generated by ankle
joints when subjects were conducting dorsiflexion. EMG
signals were also used in [67] as real-time feedback for sub-
jects to maintain the soleus EMG value in the range of 40%
to 60% MVC for 15 seconds. EMG signals can be also used
to predict and display the force orientation of ankle joints
through recording electrical activities of targeted muscles.
They have been utilized in [2] to prove the assumption of
zero voluntary contribution from both gastrocnemius
(GAS) and TA muscles during the passive stretching. In
general, this kind of application of EMG signals is an aux-
iliary tool for biomechanical assessment purposes.

The EEG signals have two applications when integrated
with robot-assisted ankle rehabilitation training, one of
which is to analyze the potential distribution of human
brains, the other of which is to extract the motion intention
of subjects as a switch signal to trigger the robot-assisted
stretching. EEG signals were applied in [23] to evaluate
whether task-related training could produce neurophysio-
logic adaptations related to motor learning, based on the
comparison of EEG signals measured at the first training
day and the last training day. Although not applied on
patients, EEG signals were utilized in [64] to detect motion
intention of subjects to trigger the robot to conduct passive
dorsiflexion stretching through analyzing movement-
related cortical potential (MRCP). In brief, one application
is to make the rehabilitation training to have a similar human
motion mechanism by which movement instructions come
from the brains. Another application enables therapists to
know the modification of potential distribution in human
brains after ankle training, and then they can judge the ther-
apeutic effect based on an assessment protocol.

4.3. Ideal Training Strategies for Ankle Rehabilitation. Train-
ing strategies cannot be identical for all patients; therefore,
ideal training strategies should be tailored according to actual
rehabilitation requirement and specific motion ability of
ankle joints. A VR-based training environment has been used
in most studies included in this review except [67, 68]. This
strategy can not only provide visual and auditory feedback
but also inspire the enthusiasm of patients to continuously
conduct ankle training. The application of bioelectrical sig-
nals can be a good supplement of VR game training because
they allow intelligent assessment of joint function and
motion ability. Elements of intelligent stretching can be selec-
tively applied to VR game training by considering rehabilita-
tion requirement and motion ability of ankle joints. For
instance, for patients whose ankle motion ability cannot
accomplish the training with their own effort, integrating
the strategy of “assist as needed” to the VR game training
can support subjects to finish the training with active partic-
ipation. Other strategies, such as warming up, cooling down,
and challenge, can be well combined with VR training games
for enhanced efficacy.

4.4. Limitations. An attempt was made to make sure that all
published clinical studies of active ankle training strategies
applied in platform-based robots were reviewed. In this
review, we identified “ankle” as one of the key words, but
some publications with the key term “foot,” “lower extrem-
ity,” or “lower limb” possibly representing “ankle” may result
in an incomplete search. Following up our searching strate-
gies, studies which aimed to verify the feasibility of novel
robots were excluded, but their training strategies may be
valuable and original. Non-English studies with related con-
tent may have been left out.

5. Conclusion

Active training techniques delivered by platform ankle reha-
bilitation robots have been widely researched over the world,
and their therapeutic effects have been demonstrated with
great potential for clinical applications. Training strategies
are mostly combined with one another by comprehensively
considering rehabilitation schemes and motion ability of
ankle joints. The VR game environment has been commonly
used with active ankle training since it allows for visual and
auditory feedback and encourages active participation. Bio-
electrical signals integrated with VR game training can
implement intelligent identification of movement intention
and assessment. These further provide the foundation for
advanced interactive training strategies that can lead to
enhanced training safety and confidence for patients and bet-
ter treatment efficacy. Specific active training strategies
should be customized on a patient-specific basis depending
on the ankle disability level.
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